EP2678891A1 - Electrode material having high capacitance - Google Patents

Electrode material having high capacitance

Info

Publication number
EP2678891A1
EP2678891A1 EP12702788.6A EP12702788A EP2678891A1 EP 2678891 A1 EP2678891 A1 EP 2678891A1 EP 12702788 A EP12702788 A EP 12702788A EP 2678891 A1 EP2678891 A1 EP 2678891A1
Authority
EP
European Patent Office
Prior art keywords
silicon
carbon
silicon powder
hard carbon
proportion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP12702788.6A
Other languages
German (de)
French (fr)
Inventor
Chuanqi TAO
Martin Miessen
Peter Pilgram
Stefano Passerini
Martin Winter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Litarion GmbH
Original Assignee
Evonik Litarion GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Evonik Litarion GmbH filed Critical Evonik Litarion GmbH
Publication of EP2678891A1 publication Critical patent/EP2678891A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/068Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making
    • Y10T29/49115Electric battery cell making including coating or impregnating

Definitions

  • the invention relates to a microstructured silicon-carbon composite, and its use as an anode material for lithium-ion batteries.
  • Components of a cell within a few charging / discharging cycles decreases sharply and so the silicon-based anode quickly loses its capacity.
  • High-energy mixing also called mechanofusion in the context of the present invention, is a method of applying powder or powder mixtures with high mechanical energy. This is described, for example, in the article "Mechanofusion for High Performance Particles", in Process Engineering, cfi / Ber. DKG 79 (2002), No. 4.
  • Mechanofusion causes an intensive decomposition of the particles of the powder or powder mixture by beating, bouncing , Shearing and breaking of the particles.
  • the particles thus obtained are intensively mixed in the mechanofusion.
  • sub-micron particles are found under the particles, which are known to the expert as “guest particles” and a coating on the remaining, larger particles, also called “host particles” form, such an effect is already in 1989 in a work of Yokoyama in "Mechanofusion" of the
  • the guest particles can coat each other and the surface of the host particles by coating Adhesion forces be bound.
  • Adhesion forces be bound.
  • the bonds between the guest or guest and host particles can also have arisen by chemical nature or by sintering.
  • the apparatus for the mechanofiision is shown schematically in FIG.
  • the "roundabout” is set in rotation at rotational speeds of 200 to 3100 rpm, so that the particles are pressed by centrifugal forces against the inner wall of the roundabout and pushed through the gap between "scraper blade” or “inner compression piece” and the inner wall Not shown in the figure are water cooling and protective gas connection.
  • the invention thus relates to a silicon-carbon composite, which has at least one portion of hard carbon and a proportion of silicon powder, which is obtained by the fact that under noble gas
  • the hard carbon content is treated at least once in a mechanofiision mixer high energy
  • step b) then adding the portion of silicon powder thereto and mixing the portions, or during step a) adding the proportion of silicon powder thereto and continuing the mechanofiision treatment,
  • the composite has an average particle size of less than or equal to 12 ⁇ m, a proportion of hard carbon of from 5 to 50% by weight and a proportion of silicon powder of from 5 to 50% by weight.
  • mixing is meant any process known to those skilled in the art, in which powder or powder mixtures are mixed.
  • the two-stage processing has the advantage that the silicon particles are distributed very evenly on the hard carbon particles and adhere better to them than according to prior art approaches. There is a very good electrical contacting of the silicon particles with the irregularly arranged stacks of graphene which are typical for hard carbon and are referred to in the context of the invention as "carbon matrix.” Without being bound by theory, the inventors are of the opinion in that, due to the stable electrical contact with the carbon matrix, the high
  • Cycle resistance is achieved when used as the anode material. This ensures a high reversible capacity, and the battery made of this electrode material has a better cycle behavior.
  • the carbon matrix of the composite according to the invention has a pore structure optimally adapted to the morphology of the silicon particles.
  • the adapted pore structure makes it possible ideally to compensate for the volume changes occurring in the charge / discharge process, which is equivalent to the lithiation / delithiation, without mechanical stress on the carbon matrix. The resulting from the volume expansion or contraction in the lithiation or delithiation
  • silicon-carbon composite according to the invention Another advantage of the silicon-carbon composite according to the invention is that it can be used both with and without further treatment steps for the preparation of anode slabs.
  • Such anode slats may be solvent or water based and prepared by methods known to those skilled in the art.
  • the present invention also provides the use of the microstructured silicon-carbon composite according to the invention as the anode material in energy storage systems, as well as the use of the silicon-carbon composite obtained in the claimed method in energy storage systems. Furthermore, the subject matter is a lithium-ion cell which has the silicon-carbon composite produced by the process according to the invention.
  • the subject matter of the present invention is a lithium-ion battery which has the silicon-carbon composite produced by the process according to the invention.
  • the erfmdungssiee silicon-carbon composite is obtained under inert gas atmosphere.
  • the continuous exclusion of oxygen in all steps is required because it avoids unwanted oxidation.
  • molecular nitrogen as an inert gas is unsuitable because it reacts with silicon in the energy introduced by the mechanofusion process of hard carbon
  • Preferred noble gases, under which the inventive silicon-carbon composite is obtained are helium, neon, argon, krypton, xenon, of which argon is particularly preferred.
  • silicon powder available from Evonik Degussa GmbH, which is produced by the thermolysis of silane and agglomerates having sizes less than or equal to 1 ⁇ , which are composed of round primary particles with diameters of 20 to 60 nm.
  • the mechanofusion in step a) preferably takes place from 2500 to 3100 rpm, more preferably at 3100 rpm, and for a time of 60 to 360 minutes, particularly preferably for 60 minutes.
  • the proportion of silicon powder of the silicon-carbon composite according to the invention may preferably be added subsequently to step a), and the proportions mixed by continuing the mechanofusion treatment. This has the advantage of dramatically increasing the cycle life of the resulting composite in a lithium-ion battery.
  • the silicon particles adhere better to the hard carbon particles than mixing the fractions by means of processes other than mechanofusion.
  • the mechanofusion treatment in step b) is preferably carried out from 2500 to 3100 rpm, more preferably at 3100 rpm, and for a time of 60 to 360 minutes, particularly preferably for 60 minutes.
  • the further advantage of this procedure is that the Si agglomerates are partially broken and the individual Si particles are incorporated into the surfaces of the hard carbon particles.
  • Hard Carbon is a very hard but brittle substance that can be made from quite different organic precursor materials such as petroleum pitch, sugar, cellulose, phenolic resins and some more by pyrolysis in the absence of oxygen. Hard Carbon is characterized by good electrical conductivity, but also by high micro- and mesoporosity, as well as low
  • the irregularly arranged graphene layers can also be achieved by using very high
  • Hard carbon usually has water in the pores, which must be expelled before use by drying in vacuo at elevated temperature, preferably at 150 ° C and reduced to 1 mbar ambient pressure.
  • Possible aftertreatment steps include the further stabilization of the composite according to the invention by application of carbon and / or binder layers, which may also be of a metallic nature, in the manner known to the person skilled in the art.
  • the silicon-carbon composite according to the invention is particularly suitable for use in rechargeable lithium-ion batteries, one of whose electrodes consists of a lithium-ion battery.
  • This electrode represents the positive electrode.
  • Hard carbon and silicon powder were in a weight ratio 8: 2 under argon in a planetary ball mill (Fritsch Pulverisette 6) with sialon grinding balls in a sialon grinding cup with Gassing lid intensively mixed (16 hours, 500 rpm).
  • the material obtained was processed into anode material as described below and characterized electrochemically.
  • the electrochemical characterization was carried out with a Maccor S4000 Battery Tester (Maccor, USA). The cells were cycled in CCCV mode from 0.02 to 1.5 V, the turn-off points respectively.
  • the first charging step (lithiation) was charged with 0.1 C and discharged at 0.3 C (delithiation).
  • the further loading and unloading steps were carried out with 0.5 C.
  • Silicon powder was high energy treated for a further 60 min at 3100 rpm in the Mechanofusion mixer, then discharged under argon.
  • a scanning electron micrograph of silicon particles on a hard carbon particle of the composite according to the invention is shown in FIG. 2.
  • Example 2 the composite according to the invention was processed to anode material as in the comparative example and characterized electrochemically.
  • Example 2
  • the silicon-carbon composite according to the invention was then as in the
  • Fig. 3 shows the specific capacity of the half-cell as a function of the number of cycles, each with the electrode material prepared from Example 1, 2 and the comparative example. Filled (black) symbols mark the on loading, empty symbols for the specific capacitance measured when the half cell is discharged.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

The invention relates to a silicon-carbon composite comprising at least one portion of hard carbon and one portion of silicon powder, said composite being obtained by virtue of the fact that under a noble gas atmosphere a) the hard carbon portion is treated at high energy at least once in a mechanofusion mixer, and b) afterwards the portion of silicon powder is added thereto and the portions are mixed together, or during step a) the portion of silicon powder is added thereto and the mechanofusion treatment is continued, and said composite being characterized in that the composite has an average particle size of less than or equal to 12 μm, a portion of hard carbon of 5 to 50% by weight and a portion of silicon powder of 5 to 50% by weight.

Description

Elektrodenmaterial mit hoher Kapazität  Electrode material with high capacity
Die Erfindung betrifft ein mikrostrukturiertes Silizium-Kohlenstoff-Komposit, sowie dessen Verwendung als Anodenmaterial für Lithium-Ionen-Batterien. The invention relates to a microstructured silicon-carbon composite, and its use as an anode material for lithium-ion batteries.
Mobile und portable Anwendungen stellen stets höhere Anforderungen an Speichermedien für elektrische Energie. Doppelschichtkondensatoren weisen zwar hohe Lade-/Entladezyklenzahlen auf, jedoch ist die Energiedichte deutlich niedriger als in aufladbaren Batteriesystemen, speziell Lithium-Ionen-Batterien. Hier liegt die theoretische Kapazität des hauptsächlich verwendeten Grafit bei 372 mAh/g für eine Zusammensetzung LiC6. Noch höhere gravimetrische Energiedichten lassen sich durch den Ersatz von Grafit durch Silizium erzielen; hier liegt die Kapazität für eine Legierung mit der Zusammensetzung Li22Si5 bei 4200 mAh/g. Allerdings führt eine vorgenannte vollständige Lithiierung des Silizium zu einer Volumenausdehnung von über 300 %. Der hierbei auftretende mechanische Stress pulverisiert die Siliziumpartikel, wodurch der elektrische Kontakt zwischen Silizium und den stromleitenden Mobile and portable applications place ever greater demands on storage media for electrical energy. Although double-layer capacitors have high charge / discharge cycle numbers, the energy density is significantly lower than in rechargeable battery systems, especially lithium-ion batteries. Here, the theoretical capacity of the main graphite used is 372 mAh / g for a LiC 6 composition. Even higher gravimetric energy densities can be achieved by substituting silicon for graphite; here the capacity for an alloy with the composition Li 22 Si 5 is 4200 mAh / g. However, an aforementioned complete lithiation of the silicon leads to a volume expansion of over 300%. The occurring mechanical stress pulverizes the silicon particles, whereby the electrical contact between silicon and the current-conducting
Komponenten einer Zelle innerhalb weniger Lade-/Entladezyklen stark abnimmt und so die Siliziumbasierte Anode schnell ihre Kapazität verliert. Components of a cell within a few charging / discharging cycles decreases sharply and so the silicon-based anode quickly loses its capacity.
Eine sehr umfassende Übersicht über Ursachen und verschiedenste Ansätze zur Überwindung der Schwierigkeiten beim Einsatz von Silizium als Aktivkomponente in Lithium Ionen Batterien haben Kasavajjula, Wang und Appleby (Journal of Power Sources 163 (2007) 1003-1039) gegeben. A very comprehensive overview of causes and various approaches to overcoming the difficulties in using silicon as an active component in lithium ion batteries has been given by Kasavajjula, Wang and Appleby (Journal of Power Sources 163 (2007) 1003-1039).
Folgende Lösungsansätze zur Überwindung der aus der Volumenexpansion resultierenden Problematik werden genannt: - Pure Si micro- and nano-scale powder anodes The following approaches to overcome the problems resulting from volume expansion are named: - Pure Si micro- and nano-scale powder anodes
Si dispersed in an inactive Matrix  Si dispersed in an inactive matrix
Si dispersed in an active Matrix  Si dispersed in an active matrix
Si anodes with different Binders  Si anodes with different binders
Si thin Films  Si thin films
Weder der Einsatz kleinster kristalliner bzw. amorpher Si-Partikel, konventionell als Slurry oder per Polyvinyhdenfluorid auf dem Stromsammler aufgebracht, noch der Einsatz in interkalierbaren oder auch nicht interkalierbaren Matrices, die chemisch, physikalisch oder auch mechanisch hergestellt und mit unterschiedlichsten Bindersystemen verarbeitet wurden, haben zu silizium-basierten Elektroden von ausreichender Zyklenfestigkeit geführt. Neither the use of the smallest crystalline or amorphous Si particles, conventionally applied as a slurry or by Polyvinyhdenfluorid on the current collector, nor the use in intercalatable or non-intercalatable matrices that were chemically, physically or mechanically produced and processed with a variety of binder systems have to silicon-based electrodes of sufficient cycle resistance.
Allen diesen technischen Lehren gemeinsam ist der Nachteil einer hohen irreversiblen Kapazität und für praktische Anwendungen zu niedrigen Zyklenzahlen von Lade- und Entladevorgängen. Common to all these teachings is the disadvantage of high irreversible capacitance and, for practical applications, low cycle numbers of charge and discharge operations.
Die Aufsätze von CS. Wang, Wu, Thang, Qi, Li, Electrochem. Soc 145 (1998) 2751, und G. X. Wang, Yao, Liu, Electrochem. Solid-State Lett. 7 (2004) A250, diskutieren, dass das Mischen und Mahlen von feinteiligem Siliziumpulver mit Kohlenstoff in der Kugelmühle durch Zerstörung von Grafit- und MCMB-Strukturen zu einem Elektrodenmaterial führt, das sehr hohe irreversible Kapazitäten zeigt. The essays of CS. Wang, Wu, Thang, Qi, Li, Electrochem. Soc 145 (1998) 2751, and G.X. Wang, Yao, Liu, Electrochem. Solid State Lett. 7 (2004) A250, discuss that mixing and milling finely divided silicon powder with carbon in the ball mill by destroying graphite and MCMB structures results in an electrode material exhibiting very high irreversible capacities.
Aufgabe der vorliegenden Erfindung war es daher, ein Verfahren zur Herstellung von Silizium- Kohlenstoff-Kompositen und das Silizium-Kohlenstoff-Komposit selbst bereit zu stellen, das zur Verwendung als Anodenmaterial mit ausreichender Kapazität und Zyklenstabilität in einer Lithium- Ionen-Batterie geeignet ist. It was therefore an object of the present invention to provide a process for producing silicon-carbon composites and the silicon-carbon composite itself, which is suitable for use as an anode material having sufficient capacity and cycle stability in a lithium-ion battery.
Überraschend wurde gefunden, dass bei Verwendung von Hard Carbon als Kohlenstoffquelle für ein Silizium-Kohlenstoff-Komposit eine Vorbehandlung des Anteils Hard Carbon in dem Komposit unter Argon in einem Hochenergie-Mischer die nachfolgende Kompositbildung mit Siliziumpulver verbessert. Wird nach dieser separaten Vorbehandlung des Hard Carbon der Anteil Siliziumpulver in den Mischer dazu gegeben, das resultierende Gemisch nochmals hochenergetisch behandelt und unter Schutzgas weiterverarbeitet, so resultiert ein Silizium-Hard Carbon Komposit mit deutlich verbessertem Surprisingly, it has been found that when using hard carbon as the carbon source for a silicon-carbon composite, a pretreatment of the hard carbon fraction in the composite under argon in a high-energy mixer improves the subsequent composite formation with silicon powder. If, after this separate pretreatment of the hard carbon, the proportion of silicon powder in the mixer is added, the resulting mixture is again subjected to high energy treatment and further processed under protective gas, the result is a silicon-hard carbon composite with significantly improved
Zyklenverhalten . Cycle behavior.
Hochenergie-Mischen, im Rahmen der vorliegenden Erfindung auch Mechanofusion genannt, ist ein Verfahren, Pulver oder Pulvergemische mit hoher mechanischer Energie zu beaufschlagen. Dies wird zum Beispiel in dem Aufsatz„Mechanofusion for High Performance Particles ", in Process Engineering, cfi/Ber. DKG 79 (2002), No. 4, geschildert. Mechanofusion bewirkt eine intensive Zerlegung der Teilchen des Pulvers oder Pulvergemisches durch Schlagen, Prallen, Scheren und Brechen der Teilchen. Die so erhaltenen Partikel werden in der Mechanofusion intensiv vermischt. Infolge der Mechanofusion finden sich unter den Partikeln sub-Mikrometer große Partikel, die dem Fachmann als„guest-Partikel" bekannt sind und eine Beschichtung auf den übrigen, größeren Partikeln, auch„host-Partikel" genannt, bilden. Eine solche Wirkung wird bereits 1989 in einer Arbeit von Yokoyama in„Mechanofusion " des High-energy mixing, also called mechanofusion in the context of the present invention, is a method of applying powder or powder mixtures with high mechanical energy. This is described, for example, in the article "Mechanofusion for High Performance Particles", in Process Engineering, cfi / Ber. DKG 79 (2002), No. 4. Mechanofusion causes an intensive decomposition of the particles of the powder or powder mixture by beating, bouncing , Shearing and breaking of the particles.The particles thus obtained are intensively mixed in the mechanofusion.As a result of mechanofusion, sub-micron particles are found under the particles, which are known to the expert as "guest particles" and a coating on the remaining, larger particles, also called "host particles" form, such an effect is already in 1989 in a work of Yokoyama in "Mechanofusion" of the
Micromeritics Laboratory, Hosokawa Micron Corp. Osaka, Japan, 1989, beschrieben. In der Micromeritics Laboratory, Hosokawa Micron Corp. Osaka, Japan, 1989. In the
Beschichtung können die guest-Partikel untereinander und auf die Oberfläche der host-Partikel durch Adhäsionskräfte gebunden sein. Je nach Ausmaß des Energieeintrages mittels Mechanofiision und der Art und Größe der host- bzw. guest-Partikel können die Bindungen zwischen den guest- bzw. den guest- und host-Partikeln auch chemischer Natur oder durch Versinterung entstanden sein. Die Apparatur für die Mechanofiision ist in Fig. 1 schematisch dargestellt. Der„Roundabout" wird mit Umdrehungsgeschwindigkeiten von 200 bis 3100 rpm in Rotation versetzt, so dass die Partikel durch Fliehkräfte an die Innenwand des Roundabouts gepresst und durch den Spalt zwischen„Scraper blade" bzw.„Inner compression piece" und der Innenwand hindurch gedrückt werden. In der Figur nicht dargestellt sind Wasserkühlung und Schutzgasanschluss. The guest particles can coat each other and the surface of the host particles by coating Adhesion forces be bound. Depending on the extent of the energy input by means of mechanofiision and the type and size of the host or guest particles, the bonds between the guest or guest and host particles can also have arisen by chemical nature or by sintering. The apparatus for the mechanofiision is shown schematically in FIG. The "roundabout" is set in rotation at rotational speeds of 200 to 3100 rpm, so that the particles are pressed by centrifugal forces against the inner wall of the roundabout and pushed through the gap between "scraper blade" or "inner compression piece" and the inner wall Not shown in the figure are water cooling and protective gas connection.
Der Eintrag mechanischer Energie durch Scraper blades und Inner compression pieces übt eine schlagende, prallende, scherende, und brechende Wirkung auf die Partikel aus. Die Gesamtheit dieser Wirkungen ist so intensiv, dass auch Wärmeenergie entsteht. Je nach Ausmaß des Energieeintrages und der Art und Größe der host- bzw. guest-Partikel können die Bindungen zwischen den guest- bzw. den guest- und host-Partikeln aber auch chemischer Natur oder durch Versinterung entstanden sein. The introduction of mechanical energy by scraper blades and inner compression pieces exerts a striking, bouncing, shearing, and refractive effect on the particles. The totality of these effects is so intense that heat energy also arises. Depending on the extent of the energy input and the type and size of the host or guest particles, the bonds between the guest or the guest and host particles can also have arisen from a chemical nature or by sintering.
Im Rahmen der vorliegenden Erfindung tritt eine komplexe Kombination makroskopischer und mikroskopischer Prozesse auf, deren Wirkung stark vom Energieeintrag abhängt. Bei der Mechanofiision können Partikel gemischt, in ihrer Morphologie geformt oder auch miteinander verbunden bzw. In the context of the present invention, a complex combination of macroscopic and microscopic processes occurs, the effect of which strongly depends on the energy input. In mechanofiision, particles can be mixed, shaped in their morphology or even connected to each other or
verschmolzen werden. be merged.
Gegenstand der Erfindung ist also ein Silizium-Kohlenstoff-Komposit, das zumindest einen Anteil Hard Carbon und einen Anteil Siliziumpulver aufweist, das dadurch erhalten wird, dass unter Edelgas The invention thus relates to a silicon-carbon composite, which has at least one portion of hard carbon and a proportion of silicon powder, which is obtained by the fact that under noble gas
Atmosphäre the atmosphere
a) der Hard Carbon Anteil zumindest einmal in einem Mechanofiision Mischer hochenergetisch behandelt wird, und  a) the hard carbon content is treated at least once in a mechanofiision mixer high energy, and
b) anschließend der Anteil Siliziumpulver dazu gegeben und die Anteile durchmischt werden, oder während Schritt a) der Anteil Siliziumpulver dazu gegeben und die Mechanofiision Behandlung fortgesetzt wird,  b) then adding the portion of silicon powder thereto and mixing the portions, or during step a) adding the proportion of silicon powder thereto and continuing the mechanofiision treatment,
und das dadurch gekennzeichnet ist, dass das Komposit eine mittlere Partikelgröße von kleiner oder gleich 12 μπι, einen Anteil Hard Carbon von 5 bis 50 Gew.-% und einen Anteil Siliziumpulver von 5 bis 50 Gew.-% aufweist. and characterized in that the composite has an average particle size of less than or equal to 12 μm, a proportion of hard carbon of from 5 to 50% by weight and a proportion of silicon powder of from 5 to 50% by weight.
Unter„durchmischen" wird jedes dem Fachmann bekannte Verfahren verstanden, in welchem Pulver oder Pulvergemische durchmischt werden. By "mixing" is meant any process known to those skilled in the art, in which powder or powder mixtures are mixed.
Die zweistufige Verarbeitung hat den Vorteil, dass die Silizium Partikel auf den Hard Carbon Partikeln sehr gleichmäßig verteilt sind und auf diesen besser haften als nach Vorgehensweisen des Standes der Technik. Es besteht eine sehr gute elektrische Kontaktierung der Silizium-Partikel mit den irregulär angeordneten Stapeln von Graphen, die typisch für Hard Carbon sind und im Rahmen der Erfindung als „ Kohlenstoffmatrix " bezeichnet werden. Ohne an eine Theorie gebunden zu sein, sind die Erfinder der Ansicht, dass durch die stabile elektrische Kontaktierung mit der Kohlenstoffmatrix die hohe The two-stage processing has the advantage that the silicon particles are distributed very evenly on the hard carbon particles and adhere better to them than according to prior art approaches. There is a very good electrical contacting of the silicon particles with the irregularly arranged stacks of graphene which are typical for hard carbon and are referred to in the context of the invention as "carbon matrix." Without being bound by theory, the inventors are of the opinion in that, due to the stable electrical contact with the carbon matrix, the high
Zyklenfestigkeit bei der Verwendung als Anodenmaterial erreicht wird. Diese gewährleistet eine hohe reversible Kapazität, und die aus diesem Elektrodenmaterial hergestellte Batterie weist ein besseres Zyklenverhalten auf. Cycle resistance is achieved when used as the anode material. This ensures a high reversible capacity, and the battery made of this electrode material has a better cycle behavior.
Die Kohlenstoffmatrix des erfindungsgemäßen Komposits weist eine optimal an die Morphologie der Silizium-Partikel angepasste Porenstruktur auf. Die angepasste Porenstruktur ermöglicht die beim Lade- /Entladevorgang, gleichbedeutend mit der Lithiierung/Delithiierung, auftretenden Volumenänderungen idealerweise ohne mechanische Beanspruchung der Kohlenstoffmatrix zu kompensieren. Die durch die Volumenausdehnung bzw. -kontraktion bei der Lithiierung bzw. Delithiierung entstehenden The carbon matrix of the composite according to the invention has a pore structure optimally adapted to the morphology of the silicon particles. The adapted pore structure makes it possible ideally to compensate for the volume changes occurring in the charge / discharge process, which is equivalent to the lithiation / delithiation, without mechanical stress on the carbon matrix. The resulting from the volume expansion or contraction in the lithiation or delithiation
mechanischen Spannungen werden in den Poren der Kohlenstoffmatrix abgebaut. Obwohl beim Zyklisieren bzw. beim Lade-/Entladevorgang teilweise starke Volumenänderungen in den kristallinen und/oder amorphen Phasen der ionen-interkalierenden Partikel auftreten, bleibt bei dem erfindungsgemäßen Komposit die Anbindung dieser Partikel untereinander erhalten. Somit wird beim erfindungsgemäßen Komposit der elektronische Kontakt bewahrt. Ein weiterer Vorteil des erfindungsgemäßen Silizium-Kohlenstoff-Komposites besteht darin, dass es sowohl mit, als auch ohne weitere Behandlungsschritte zur Herstellung von Anodenslumes einsetzbar ist. Solche Anodenslumes können lösemittel- oder wasserbasiert sein und mittels dem Fachmann bekannter Methoden hergestellt werden. Deshalb ist ebenfalls Gegenstand der vorliegenden Erfindung die Verwendung des erfindungsgemäßen mikrostrukturierten Silizium-Kohlenstoff-Komposits als Anodenmaterial in Energiespeichersystemen, sowie die Verwendung des nach dem beanspruchten Verfahren erhaltenen Silizium-Kohlenstoff- Komposits in Energiespeichersystemen. Weiterhin ist Gegenstand eine Lithium-Ionen Zelle, die das nach dem erfindungsgemäßen Verfahren hergestellte Silizium-Kohlenstoff-Komposit aufweist. Mechanical stresses are dissipated in the pores of the carbon matrix. Although in the cyclization or in the charge / discharge partially strong volume changes in the crystalline and / or amorphous phases of the ion-intercalating particles occur, the binding of these particles with each other is obtained in the composite according to the invention. Thus, the electronic contact is preserved in the composite according to the invention. Another advantage of the silicon-carbon composite according to the invention is that it can be used both with and without further treatment steps for the preparation of anode slabs. Such anode slats may be solvent or water based and prepared by methods known to those skilled in the art. Therefore, the present invention also provides the use of the microstructured silicon-carbon composite according to the invention as the anode material in energy storage systems, as well as the use of the silicon-carbon composite obtained in the claimed method in energy storage systems. Furthermore, the subject matter is a lithium-ion cell which has the silicon-carbon composite produced by the process according to the invention.
Weiterhin ist Gegenstand der vorliegenden Erfindung eine Lithium-Ionen Batterie, die das nach dem erfindungsgemäßen Verfahren hergestellte Silizium-Kohlenstoff-Komposit aufweist. Furthermore, the subject matter of the present invention is a lithium-ion battery which has the silicon-carbon composite produced by the process according to the invention.
Die Erfindung wird im Folgenden näher erläutert. The invention will be explained in more detail below.
Das erfmdungsgemäße Silizium-Kohlenstoff-Komposit wird unter Edelgas Atmosphäre erhalten. Der stetige Ausschluss von Sauerstoff in allen Schritten ist erforderlich, weil so unerwünschte Oxidation vermieden wird. Molekularer Stickstoff als inertes Gas ist allerdings ungeeignet, denn es reagiert mit Silizium bei der in dem Mechanofusion Prozess von Hard Carbon eingetragenen Energie zu The erfmdungsgemäße silicon-carbon composite is obtained under inert gas atmosphere. The continuous exclusion of oxygen in all steps is required because it avoids unwanted oxidation. However, molecular nitrogen as an inert gas is unsuitable because it reacts with silicon in the energy introduced by the mechanofusion process of hard carbon
unerwünschtem Siliziumnitrid. Bevorzugte Edelgase, unter denen das erfmdungsgemäße Silizium-Kohlenstoff-Komposit erhalten wird, sind Helium, Neon, Argon, Krypton, Xenon, wovon besonders Argon bevorzugt ist. unwanted silicon nitride. Preferred noble gases, under which the inventive silicon-carbon composite is obtained, are helium, neon, argon, krypton, xenon, of which argon is particularly preferred.
Vorzugsweise wird Silizium-Pulver, erhältlich bei Evonik Degussa GmbH, verwendet, das über die Thermolyse von Silan hergestellt ist und Agglomerate mit Größen kleiner oder gleich 1 μιη aufweist, die aus rundlichen Primärpartikeln mit Durchmessern von 20 bis 60 nm zusammengesetzt sind. Preferably, silicon powder, available from Evonik Degussa GmbH, is used, which is produced by the thermolysis of silane and agglomerates having sizes less than or equal to 1 μιη, which are composed of round primary particles with diameters of 20 to 60 nm.
Vorzugsweise erfolgt die Mechanofusion im Schritt a) von 2500 bis 3100 U/min, besonders bevorzugt bei 3100 U/min, und während einer Zeit von 60 bis 360 min, besonders bevorzugt während 60 min. Der Anteil Siliziumpulver des erfindungsgemäßen Silizium-Kohlenstoff-Komposits kann vorzugsweise anschließend an Schritt a) dazu gegeben, und die Anteile durchmischt werden, indem die Mechanofusion Behandlung fortgesetzt wird. Dies hat den Vorteil einer dramatisch weiter gesteigerten Zyklenfestigkeit des so erhaltenen Komposits in einer Lithium-Ionen-Batterie. Die Silizium Partikel haften besser auf den Hard Carbon Partikeln, als beim Durchmischen der Anteile mittels Verfahren außer Mechanofusion. Vorzugsweise wird die Mechanofusion Behandlung im Schritt b) von 2500 bis 3100 U/min, besonders bevorzugt bei 3100 U/min, und während einer Zeit von 60 bis 360 min, besonders bevorzugt während 60 min durchgeführt. Der weitere Vorteil dieser Vorgehensweise besteht darin, dass die Si-Agglomerate teilweise aufgebrochen und die einzelnen Si-Partikel in die Oberflächen der Hard Carbon Partikeln eingearbeitet werden. Hard Carbon ist eine sehr harte, aber spröde Substanz, die aus recht unterschiedlichen organischen Precursor Materialen wie Petroleum-Pech, Zucker, Cellulose, Phenolharzen und einigen mehr durch Pyrolyse unter Ausschluss von Sauerstoff hergestellt werden kann. Hard Carbon zeichnet sich durch gute elektrische Leitfähigkeit, aber auch durch hohe Mikro- und Mesoporosität, sowie niedrigen The mechanofusion in step a) preferably takes place from 2500 to 3100 rpm, more preferably at 3100 rpm, and for a time of 60 to 360 minutes, particularly preferably for 60 minutes. The proportion of silicon powder of the silicon-carbon composite according to the invention may preferably be added subsequently to step a), and the proportions mixed by continuing the mechanofusion treatment. This has the advantage of dramatically increasing the cycle life of the resulting composite in a lithium-ion battery. The silicon particles adhere better to the hard carbon particles than mixing the fractions by means of processes other than mechanofusion. The mechanofusion treatment in step b) is preferably carried out from 2500 to 3100 rpm, more preferably at 3100 rpm, and for a time of 60 to 360 minutes, particularly preferably for 60 minutes. The further advantage of this procedure is that the Si agglomerates are partially broken and the individual Si particles are incorporated into the surfaces of the hard carbon particles. Hard Carbon is a very hard but brittle substance that can be made from quite different organic precursor materials such as petroleum pitch, sugar, cellulose, phenolic resins and some more by pyrolysis in the absence of oxygen. Hard Carbon is characterized by good electrical conductivity, but also by high micro- and mesoporosity, as well as low
Fernordnungsgrad der Graphenschichten aus. Fernordnungsgrad the graphene layers.
Die irregulär angeordneten Graphenschichten lassen sich auch durch Anwendung sehr hoher The irregularly arranged graphene layers can also be achieved by using very high
Temperaturen nicht ordnen und Hard Carbon daher nicht grafitisieren. Die geschlossene Mikroporosität, die nicht direkt mit der äußeren Oberfläche von Hard Carbon verbunden ist, bewirkt eine gegenüberDo not arrange temperatures and therefore not graphite hard carbon. The closed microporosity, which is not directly connected to the outer surface of hard carbon, causes one opposite
Grafit mit seiner Dichte von 2,26 g/cm3 deutlich geringere Dichte von etwa 1,5 g/cm3, aber auch eine sehr hohe irreversible Kapazität des erfindungsgemäßen Komposits in den ersten Zyklen, sowie eine gegenüber Grafit niedrigere spezifische Kapazität. Hard Carbon weist üblicherweise in den Poren Wasser auf, welches vor seiner Verwendung durch Trocknen im Vakuum bei erhöhter Temperatur, vorzugsweise bei 150 °C und einem auf 1 mbar verminderten Umgebungsdruck ausgetrieben werden muss. Graphite with its density of 2.26 g / cm 3 significantly lower density of about 1.5 g / cm 3 , but also a very high irreversible capacity of the composite according to the invention in the first cycles, and a lower specific capacity compared to graphite. Hard carbon usually has water in the pores, which must be expelled before use by drying in vacuo at elevated temperature, preferably at 150 ° C and reduced to 1 mbar ambient pressure.
Besonders bevorzugt ist ein Verhältnis der Gewichtsanteile Hard Carbon und Siliziumpulver von 8 : 2. Particularly preferred is a ratio of the proportions by weight of hard carbon and silicon powder of 8: 2.
Mögliche Nachbehandlungsschritte beinhalten die weitergehende Stabilisierung des erfindungsgemäßen Komposits durch Aufbringen von Kohlenstoff und/oder Bindemittelschichten, die auch metallischer Art sein können, in der dem Fachmann bekannten Art und Weise. Das erfmdungsgemäße Silizium-Kohlenstoff-Komposit eignet sich besonders zur Verwendung in aufladbaren Lithium-Ionen-Batterien, deren eine Elektrode aus einem Lithium-Possible aftertreatment steps include the further stabilization of the composite according to the invention by application of carbon and / or binder layers, which may also be of a metallic nature, in the manner known to the person skilled in the art. The silicon-carbon composite according to the invention is particularly suitable for use in rechargeable lithium-ion batteries, one of whose electrodes consists of a lithium-ion battery.
Übergangsmetallmischoxid der allgemeinen Formel LiM02 besteht, mit M = mindestens ein Metall aus der Gruppe Co, Ni, Mn, V und /oder einem Lithium-Übergangsmetallphosphat der allgemeinen Formel LiMPC , mit M = mindestens ein Metall aus der Gruppe Fe, Mn, Co. Diese Elektrode stellt die positive Elektrode dar. Transition metal mixed oxide of the general formula LiM0 2 , where M = at least one metal from the group Co, Ni, Mn, V and / or a lithium transition metal phosphate of the general formula LiMPC, with M = at least one metal from the group Fe, Mn, Co This electrode represents the positive electrode.
Ver leichsbeispiel : Example:
Hard Carbon und Silizium Pulver wurden im Gewichtsverhältnis 8 : 2 unter Argon in einer Planeten- Kugelmühle (Fritsch Pulverisette 6) mit Sialon-Mahlkugeln in einem Sialon-Mahlbecher mit Begasungsdeckel intensiv gemischt (16 Stunden, 500 U/min). Das erhaltene Material wurde wie im Folgenden beschrieben zu Anodenmaterial verarbeitet und elektrochemisch charakterisiert. Hard carbon and silicon powder were in a weight ratio 8: 2 under argon in a planetary ball mill (Fritsch Pulverisette 6) with sialon grinding balls in a sialon grinding cup with Gassing lid intensively mixed (16 hours, 500 rpm). The material obtained was processed into anode material as described below and characterized electrochemically.
Zu 77 Gew.-% des erhaltenen Materials wurden 15 Gew.-%„Super P Leitfahigkeitserhöher", erhältlich bei der Firma Timcal, Schweiz, und 8 Gew.-% Natrium-Carboxymethylcellulose, erhältlich im To 77% by weight of the resulting material was added 15% by weight of "Super P Conductivity Enhancer" available from Timcal, Switzerland, and 8% by weight sodium carboxymethylcellulose, available from
Chemikalienhandel, zum Beispiel bei Fluka , Buchs, Schweiz, als wässrige, mit Stickstoff entlüftete Lösung gegeben, homogenisiert, entgast und mit einem Rakelspalt von 100 μιη auf eine 14 μιη dicke Kupferfolie aufgetragen. Die Trocknung erfolgte unter Stickstoff während 30 min bei 80 °C und 120 min bei 110 °C. Die ausgestanzten 12 mm dicken Elektroden wurden vor dem Zusammenbau der Halbzellen über Nacht bei 130 °C im Vakuum nachgetrocknet und in der Glove-Box mit einem Anpressdruck von 6,6 bar zu Halbzellen (sog. T-Zellen, Swagelok, USA) mit Lithium als Gegen- und Referenzelektrode verbaut. Als Separator wurde Celgard 2320 (Celgard, USA) und als Elektrolyt eine Mischung aus EC : EMC : DEC : VC = 29 : 49 : 20 : 2 (Ferro Corp., USA) eingesetzt. Die elektrochemische Charakterisierung erfolgte mit einem Maccor S4000 Battery Tester (Maccor, USA). Die Zellen wurden im CCCV-Modus von 0,02 bis 1,5 V, jeweils die Abschaltpunkte, gezykelt. Im ersten Ladungsschritt (Lithiierung) wurde mit 0,1 C geladen und mit 0,3 C entladen (Delithiierung). Die weiteren Lade- und Entladeschritte erfolgten mit 0,5 C. Beispiel 1:  Chemical trade, for example, at Fluka, Buchs, Switzerland, given as an aqueous, deaerated with nitrogen solution, homogenized, degassed and applied with a squeegee gap of 100 μιη on a 14 μιη thick copper foil. The drying was carried out under nitrogen for 30 min at 80 ° C and 120 min at 110 ° C. The punched out 12 mm thick electrodes were post-dried overnight before the assembly of half-cells at 130 ° C in a vacuum and in the glove box with a contact pressure of 6.6 bar to half cells (so-called T-cells, Swagelok, USA) with lithium installed as counter and reference electrode. The separator used was Celgard 2320 (Celgard, USA) and the electrolyte used was a mixture of EC: EMC: DEC: VC = 29: 49: 20: 2 (Ferro Corp., USA). The electrochemical characterization was carried out with a Maccor S4000 Battery Tester (Maccor, USA). The cells were cycled in CCCV mode from 0.02 to 1.5 V, the turn-off points respectively. In the first charging step (lithiation) was charged with 0.1 C and discharged at 0.3 C (delithiation). The further loading and unloading steps were carried out with 0.5 C. Example 1
Es wurde Hard Carbon verwendet, das aus Petroleum Pech hergestellt war, bezogen von Kureha Corp., Japan unter der Bezeichnung Carbotron P. Es wies einen mittleren Partikeldurchmesser von 10 μιη auf.  It was hard carbon used, which was made of petroleum pitch, obtained from Kureha Corp., Japan under the name Carbotron P. It had a mean particle diameter of 10 μιη on.
8 Anteile Hard Carbon wurden vor Zugabe von 2 Anteilen Siliziumpulver bei 3100 U/min für 60 min unter Argon im AMS-Lab -Mechanofusion Mischer separat hoch-energetisch behandelt. Nach dieser ersten Behandlungsstufe erfolgte unter Argon die Zugabe des Siliziumpulvers. Hard Carbon und 8 parts of hard carbon were separately treated with high energy prior to the addition of 2 parts of silicon powder at 3100 rpm for 60 minutes under argon in the AMS-Lab mechanical fusion mixer. After this first treatment stage, the addition of the silicon powder was carried out under argon. Hard carbon and
Siliziumpulver wurden zusammen weitere 60 min bei 3100 U/min im Mechanofusion Mischer hochenergetisch behandelt, dann unter Argon ausgeschleust. Eine rasterelektronenmikroskopische Aufnahme von Silizium Partikeln auf einem Hard Carbon Partikel des erfindungsgemäßen Komposits zeigt Fig. 2. Silicon powder was high energy treated for a further 60 min at 3100 rpm in the Mechanofusion mixer, then discharged under argon. A scanning electron micrograph of silicon particles on a hard carbon particle of the composite according to the invention is shown in FIG. 2.
Anschließend wurde das erfindungsgemäße Komposit wie in dem Vergleichsbeispiel zu Anodenmaterial verarbeitet und elektrochemisch charakterisiert. Beispiel 2: Subsequently, the composite according to the invention was processed to anode material as in the comparative example and characterized electrochemically. Example 2:
Es wurden 8 Anteile Hard Carbon und 2 Anteile Siliziumpulver wie im Beispiel 1 eingesetzt, im  8 parts hard carbon and 2 parts silicon powder were used as in Example 1, in
Unterschied dazu jedoch von Anfang an gemeinsam bei 3100 U/min während 60 min unter Argon Atmosphäre gemischt. Difference, however, mixed from the beginning together at 3100 rpm for 60 min under argon atmosphere.
Das erfindungsgemäße Silizium-Kohlenstoff-Komposit wurde anschließend wie in dem The silicon-carbon composite according to the invention was then as in the
Vergleichsbeispiel zu Anodenmaterial verarbeitet und elektrochemisch charakterisiert. Die Fig. 3 zeigt die spezifische Kapazität der Halbzelle als Funktion der Zyklenzahl, jeweils mit dem aus Beispiel 1, 2 und dem Vergleichsbeispiel hergestellten Elektrodenmaterial. Ausgefüllte (schwarze) Symbole markieren die beim Laden, leere Symbole für die beim Entladen der Halbzelle gemessene spezifische Kapazität. Comparative example processed to anode material and characterized electrochemically. Fig. 3 shows the specific capacity of the half-cell as a function of the number of cycles, each with the electrode material prepared from Example 1, 2 and the comparative example. Filled (black) symbols mark the on loading, empty symbols for the specific capacitance measured when the half cell is discharged.

Claims

Patentansprüche: claims:
1. Silizium-Kohlenstoff-Komposit, 1. silicon-carbon composite,
zumindest aufweisend einen Anteil Hard Carbon und einen Anteil Siliziumpulver,  at least comprising a proportion of hard carbon and a proportion of silicon powder,
dadurch erhalten,  obtained by
dass unter Edelgas Atmosphäre  that under noble gas atmosphere
a) der Hard Carbon Anteil zumindest einmal in einem Mechanofusion Mischer hochenergetisch behandelt wird, und  a) the hard carbon content is treated at least once in a mechanofusion mixer high energy, and
b) anschließend der Anteil Siliziumpulver dazu gegeben und die Anteile durchmischt werden, oder während Schritt a) der Anteil Siliziumpulver dazu gegeben und die Mechanofusion Behandlung fortgesetzt wird,  b) then adding the portion of silicon powder thereto and mixing the portions, or during step a) adding the proportion of silicon powder thereto and continuing the mechanofusion treatment,
dadurch gekennzeichnet,  characterized,
dass das Komposit eine mittlere Partikelgröße von kleiner oder gleich 12 μιη,  that the composite has an average particle size of less than or equal to 12 μm,
einen Anteil Hard Carbon von 5 bis 50 Gew.-% und  a proportion Hard Carbon of 5 to 50 wt .-% and
einen Anteil Siliziumpulver von 5 bis 50 Gew.-% aufweist.  has a proportion of silicon powder of 5 to 50 wt .-%.
2. Silizium-Kohlenstoff-Komposit nach Anspruch 1, wobei 2. silicon-carbon composite according to claim 1, wherein
die Edelgas Atmosphäre Argon ist.  the noble gas atmosphere is argon.
3. Silizium-Kohlenstoff-Komposit nach einem der vorhergehenden Ansprüche, wobei 3. silicon-carbon composite according to one of the preceding claims, wherein
der Anteil Siliziumpulver anschließend an Schritt a) dazu gegeben wird, und  the proportion of silicon powder is then added to step a), and
die Mechanofusion Behandlung fortgesetzt wird.  the mechanofusion treatment is continued.
4. Verwendung des Silizium-Kohlenstoff-Komposits gemäß einem der Ansprüche 1 - 3 4. Use of the silicon-carbon composite according to one of claims 1 - 3
als Aktivkomponente in einer Lithium-Ionen-Batterie,  as an active component in a lithium-ion battery,
dadurch gekennzeichnet,  characterized,
dass das Komposit zusammen mit einem Leitfähigkeitserhöher und einem Bindemittel zu einer Paste verarbeitet ist, die auf einen Stromableiter aufgebracht ist.  that the composite is processed together with a conductivity enhancer and a binder into a paste which is applied to a current collector.
5. Lithium-Ionen-Batterie, aufweisend das Silizium-Kohlenstoff-Komposit gemäß einem der 5. Lithium-ion battery, comprising the silicon-carbon composite according to one of
Ansprüche 1 - 3  Claims 1 - 3
EP12702788.6A 2011-02-23 2012-01-27 Electrode material having high capacitance Withdrawn EP2678891A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011004564A DE102011004564A1 (en) 2011-02-23 2011-02-23 Electrode material with high capacity
PCT/EP2012/051300 WO2012113606A1 (en) 2011-02-23 2012-01-27 Electrode material having high capacitance

Publications (1)

Publication Number Publication Date
EP2678891A1 true EP2678891A1 (en) 2014-01-01

Family

ID=45566986

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12702788.6A Withdrawn EP2678891A1 (en) 2011-02-23 2012-01-27 Electrode material having high capacitance

Country Status (7)

Country Link
US (1) US20130337334A1 (en)
EP (1) EP2678891A1 (en)
JP (1) JP2014511546A (en)
KR (1) KR20140014142A (en)
CN (1) CN103518275A (en)
DE (1) DE102011004564A1 (en)
WO (1) WO2012113606A1 (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008061212A2 (en) 2006-11-15 2008-05-22 Energ2, Inc. Electric double layer capacitance device
FI2448748T3 (en) 2009-07-01 2024-10-09 Basf Mobile Emissions Catalysts Llc Ultrapure synthetic carbon materials
US20120262127A1 (en) 2011-04-15 2012-10-18 Energ2 Technologies, Inc. Flow ultracapacitor
CN107785180A (en) 2011-06-03 2018-03-09 巴斯福股份公司 For the carbon lead blend in mixed tensor storage device
WO2013120011A1 (en) 2012-02-09 2013-08-15 Energ2 Technologies, Inc. Preparation of polymeric resins and carbon materials
CN110112377A (en) 2013-03-14 2019-08-09 14族科技公司 The complex carbon material of electrochemical modification agent comprising lithium alloyage
JP2016522552A (en) * 2013-07-31 2016-07-28 エルジー・ケム・リミテッド Negative electrode active material for secondary batteries with improved life characteristics
US10195583B2 (en) 2013-11-05 2019-02-05 Group 14 Technologies, Inc. Carbon-based compositions with highly efficient volumetric gas sorption
KR20240069808A (en) 2014-03-14 2024-05-20 그룹14 테크놀로지스, 인코포레이티드 Novel methods for sol-gel polymerization in absence of solvent and creation of tunable carbon structure from same
DE102015200840A1 (en) * 2015-01-20 2016-07-21 Robert Bosch Gmbh Infiltration of silicon nanoparticles into a porous carbon structure
WO2017031006A1 (en) 2015-08-14 2017-02-23 Energ2 Technologies, Inc. Composites of porous nano-featured silicon materials and carbon materials
CN108475779B (en) 2015-08-28 2021-03-23 14集团技术公司 Novel materials with extremely durable lithium intercalation and method for the production thereof
KR102106456B1 (en) * 2016-03-31 2020-05-04 주식회사 엘지화학 Electrode assembly, preperation method thereof and lithium secondary battery comprising the same
US10424779B1 (en) 2016-09-07 2019-09-24 Google Llc Lithium-ion cells and methods of manufacture
US11611071B2 (en) 2017-03-09 2023-03-21 Group14 Technologies, Inc. Decomposition of silicon-containing precursors on porous scaffold materials
KR102243610B1 (en) * 2018-12-17 2021-04-27 주식회사 티씨케이 Negative active material, method for preparing the same and lithium secondary battery comprising the same
CN110474030B (en) * 2019-07-29 2022-10-21 孙旭阳 Preparation method of carbon composite silicon-based negative electrode material of lithium ion battery
US11174167B1 (en) 2020-08-18 2021-11-16 Group14 Technologies, Inc. Silicon carbon composites comprising ultra low Z
US11639292B2 (en) 2020-08-18 2023-05-02 Group14 Technologies, Inc. Particulate composite materials
US11335903B2 (en) 2020-08-18 2022-05-17 Group14 Technologies, Inc. Highly efficient manufacturing of silicon-carbon composites materials comprising ultra low z
CA3195890A1 (en) 2020-09-30 2022-04-07 Group14 Technologies, Inc. Methods of passivation to control oxygen content and reactivity of silicon-carbon composite materials
CN115832267B (en) * 2021-09-16 2024-10-11 南宁宸宇新能源科技有限公司 Amorphous silicon/hard carbon composite material, preparation thereof and application thereof in lithium ion battery

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1705150A (en) * 2004-05-31 2005-12-07 潘树明 Method for making negative electrode material of lithium ion cell

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100814618B1 (en) * 2005-10-27 2008-03-18 주식회사 엘지화학 Electrode active material for secondary battery
KR101375328B1 (en) * 2007-07-27 2014-03-19 삼성에스디아이 주식회사 Si/C composite, anode materials and lithium battery using the same
CN101409345B (en) * 2007-10-12 2012-09-05 比亚迪股份有限公司 Cathode active material for lithium ion secondary battery, and cathode and battery containing the same
CN101339987A (en) * 2008-07-21 2009-01-07 长沙市海容电子材料有限公司 Silicon-carbon composite cathode material of lithium ion battery and preparation thereof
GB2470190B (en) * 2009-05-11 2011-07-13 Nexeon Ltd A binder for lithium ion rechargeable battery cells
CN101850959B (en) * 2010-05-31 2012-03-28 奇瑞汽车股份有限公司 Method for preparing silicon-carbon cathode material of lithium ion battery
WO2012086939A2 (en) * 2010-12-21 2012-06-28 주식회사 엘지화학 Cathode active material and secondary battery using same
US20130252082A1 (en) * 2012-01-11 2013-09-26 Energ2 Technologies, Inc. Hard carbon materials

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1705150A (en) * 2004-05-31 2005-12-07 潘树明 Method for making negative electrode material of lithium ion cell

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2012113606A1 *

Also Published As

Publication number Publication date
US20130337334A1 (en) 2013-12-19
CN103518275A (en) 2014-01-15
WO2012113606A1 (en) 2012-08-30
JP2014511546A (en) 2014-05-15
KR20140014142A (en) 2014-02-05
DE102011004564A1 (en) 2012-08-23

Similar Documents

Publication Publication Date Title
EP2678891A1 (en) Electrode material having high capacitance
EP3011621B1 (en) Electrode material and use thereof in lithium ion batteries
EP2303774B1 (en) Intercalation of silicon and/or tin into porous carbon substrates
DE102017105307A1 (en) PRIMER SURFACE COATING FOR SILICONE-BASED HIGH-PERFORMANCE ELECTRODES
DE112012004320T5 (en) Graphite composite particles and their use
EP2744019B1 (en) Method for producing a coating material for the coating of electrode carriers and coating material in the form of granules
JP6621663B2 (en) Method for producing conductive carbon, method for producing electrode material containing carbon, method for producing electrode using this electrode material, and method for producing electricity storage device provided with this electrode
DE102018123285A1 (en) Elastically deformable carbon aerogels as matrix material in sulfur electrodes
KR20160074523A (en) Electroconductive carbon, electrode material containing said carbon, electrode using said electrode material, and power storage device provided with said electrode
DE102012213219A1 (en) Electrode for an electrochemical energy store and method for producing such
WO2013057023A1 (en) Active material for batteries
WO2013045327A1 (en) Structurally stable active material for battery electrodes
DE102018114195B4 (en) PEO-PVA based binder for lithium-sulfur batteries
DE102013111853A1 (en) Carbon-coated lithium sulfide
DE102010027950A1 (en) Cathode composition for lithium-sulfur cells
EP3507844A1 (en) Anodes of lithium ion batteries
DE102016217403A1 (en) Process for the preparation of an active material composition
EP3008768B1 (en) Lithium-ion cell for a secondary battery
KR20210090562A (en) Artificial graphite, Method for preparing the same, Anode Comprising the same, and Lithium Secondary Battery Comprising the same
WO2016150639A1 (en) Anode material made from silicon composite particles and silicon nanoparticles
EP2621000B1 (en) Process for preparing a suspension and electrode
EP2569813B1 (en) Material for negative electrodes, and negative electrodes and batteries comprising said material, and method for producing the material
DE102021109109B4 (en) Process for manufacturing a lithium-ion cell
DE102014106002A1 (en) Electrode material for sodium-based electrochemical energy storage
DE102014220964A1 (en) Battery without arrester foil

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130703

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20160223

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20160505