EP2673961A1 - Dispositif de moteur magnétique de transducteur électrodynamique - Google Patents

Dispositif de moteur magnétique de transducteur électrodynamique

Info

Publication number
EP2673961A1
EP2673961A1 EP12707877.2A EP12707877A EP2673961A1 EP 2673961 A1 EP2673961 A1 EP 2673961A1 EP 12707877 A EP12707877 A EP 12707877A EP 2673961 A1 EP2673961 A1 EP 2673961A1
Authority
EP
European Patent Office
Prior art keywords
magnetic
cylindrical
metal
tubular
annular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP12707877.2A
Other languages
German (de)
English (en)
Inventor
Claire Peteul-Brouillet
Mathias Remy
Guy Lemarquand
Gael Guyader
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renault SAS
Original Assignee
Renault SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renault SAS filed Critical Renault SAS
Publication of EP2673961A1 publication Critical patent/EP2673961A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/035DC motors; Unipolar motors
    • H02K41/0352Unipolar motors
    • H02K41/0354Lorentz force motors, e.g. voice coil motors
    • H02K41/0356Lorentz force motors, e.g. voice coil motors moving along a straight path
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors
    • H02K41/031Synchronous motors; Motors moving step by step; Reluctance motors of the permanent magnet type
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • H04R9/02Details
    • H04R9/025Magnetic circuit
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2209/00Details of transducers of the moving-coil, moving-strip, or moving-wire type covered by H04R9/00 but not provided for in any of its subgroups
    • H04R2209/022Aspects regarding the stray flux internal or external to the magnetic circuit, e.g. shielding, shape of magnetic circuit, flux compensation coils
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2209/00Details of transducers of the moving-coil, moving-strip, or moving-wire type covered by H04R9/00 but not provided for in any of its subgroups
    • H04R2209/041Voice coil arrangements comprising more than one voice coil unit on the same bobbin
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • H04R9/02Details
    • H04R9/022Cooling arrangements

Definitions

  • the present invention relates to an electrodynamic transducer magnetic motor device comprising an annular connected magnet and a tubular element supporting a coil mounted to move in translation coaxially with respect to the annular bonded magnet.
  • Such a device is particularly, but not exclusively, intended to enter the composition of the electrodynamic speakers.
  • Known magnetic motor devices comprise on the one hand fixed elements, an annular permanent magnet, two metal rings containing iron coaxially sandwiching the permanent magnet forming field plates, and a core also containing coaxially mounted iron.
  • a coiled cylindrical support coaxially held in the air gap between the magnet and the core is a membrane connected to the wound cylindrical support.
  • the cylindrical wound support is for example made of cardboard and it comprises windings son, for example copper, and the power supply of these son causes the axial movement of the wound support in the air gap and therefore the movements of the membrane. It is these movements of the membrane that then cause the vibration of the air and generate the sound.
  • EP 2 1 14 086 is a magnetic motor device, without field plates, but whose permanent magnet is an annular bonded magnet, of a particular shape having a cylindrical surface and to opposite a convex surface.
  • This document notably discloses a magnetic device whose bonded magnet is installed inside the wound support, the bonded magnet having an outer cylindrical surface which extends opposite the windings of wires and a convex surface which extends towards inside the magnet.
  • This convex surface is such that the trace of an axial plane of the bonded magnet and the convex surface is a hemi-ellipse.
  • the outer cylindrical surface has two cylindrical portions opposite to each other with respect to the median plane of the magnet.
  • the field lines extend, from one part to the other inside the magnet parallel to the curvature defined by the surface of the emi-elliptical cone and in cutting substantially perpendicularly the cylindrical surface. This effectively concentrates the magnetic field to the wire windings of the wound support.
  • the field lines do not close easily beyond the coiled carrier opposite the magnet.
  • the document EP 2 1 14 086 discloses the implementation of a magnet connected around the wound and symmetrical support of that which is housed inside so as to close the field lines to obtain a better linearity of the magnetic field. and limit magnetic leakage.
  • the implementation of an additional magnet around the wound support increases the weight and the volume of the magnetic motor device.
  • the bonded magnets, plasto-magnets or elasto-magnets are low conductors of thermal energy and therefore, the thermal energy generated in the coil, where the temperature can reach 170 ° C, is very difficult to dissipate.
  • a problem that arises and that aims to solve the present invention is to provide a magnetic motor device that not only allows to limit the magnetic leakage field but also the accumulation of thermal energy.
  • the present invention provides an electrodynamic transducer magnetic motor device comprising, on the one hand, an annular connected magnet generating a magnetic field, and on the other hand a tubular element mounted coaxially with said annular bonded magnet, said magnet annular bond having a magnetic cylindrical surface, while said tubular element comprises a coil extending facing said magnetic cylindrical surface, said tubular element being intended to be driven axially with respect to said annular bonded magnet when said winding is supplied with electric current .
  • the device further comprises a metal tubular member having a cylindrical metal surface, and said metal tubular member is mounted coaxially with said tubular member so that said cylindrical metal surface extends opposite said surface cylindrical magnetic with respect to said winding so as to close said magnetic field.
  • a feature of the invention lies in the implementation of the tubular metal member opposite the annular bonded magnet relative to the wound tubular member, so as to close the magnetic field.
  • the leakage field is very limited in comparison with conventional structures and the magnetic field is concentrated through the coiled tubular element.
  • the thermal energy generated in the coil easily dissipates through the tubular metal member, which by nature is a good thermal conductor.
  • the tubular metal member for example made of an iron alloy, makes it possible to improve the dimensional tolerances of manufacture.
  • said annular bonded magnet which is obviously a solid solid, advantageously has a surface opposite to said magnetic cylindrical surface, the intersection of which with an axial plane of said annular bonded magnet is a half-ellipse.
  • a hemi-ellipse is a curve defined by an ellipse cut along one of these two axes, either along its minor axis that extends between its two centers, or along its major axis that precisely intersects the two centers.
  • the magnetic field lines extend, in an axial plane, a cylindrical portion located on one side of the median plane of the annular bonded magnet towards the other, through the magnet while marrying the curvature defined by the opposite hemi-elliptical surface and substantially perpendicularly cutting the cylindrical surface of the magnet. They thus pass radially through the coiled tubular element, then radially join the metal tubular member and then flex and extend therethrough in an axial direction as will be explained in more detail in the following description.
  • said opposite surface has a truncation forming a truncated cylindrical surface substantially parallel to said magnetic cylindrical surface.
  • said magnetic cylindrical surface of said annular bonded magnet has two cylindrical first half-surfaces, while said annular bonded magnet generates a magnetic field B, and the ratio of the first cylindrical half-surface and the straight section of the tubular member.
  • metallic factor of said magnetic field B is smaller than the value of the magnetic saturation threshold of the material of said metal tubular member.
  • the cross section of the tubular member corresponds to the surface of this cross section and therefore unlike the outer radius and inner radius surfaces of the tubular member.
  • the required thickness of the metal tubular member is easily determined, and in particular it is avoided to a tubular organ is too bulky and heavy.
  • the ratio of the first cylindrical half-surface and the cross section of the metal tubular member factor of said magnetic field B is less than 1.5 when said metal tubular member is made of iron.
  • said cylindrical metal surface has two cylindrical second half-surfaces located in the axial extension of one another and also divided by a median plane of the tubular member, while said winding is divided into two windings axially spaced from each other and able to extend respectively opposite said second cylindrical half-surfaces.
  • the two windings spaced axially from each other consist of a single wire, but wound in the opposite direction.
  • the two windings are then respectively adjusted to the right of the two opposite parts of the annular bonded magnet, so that the two bundles of field lines passing through the two windings are oriented in the opposite directions from one another.
  • the forces exerted on the coiled tubular element are double, which increases the power of the motor device.
  • said annular bonded magnet is mounted within said tubular member, while said metal tubular member extends around said tubular member.
  • said thermal energy generated in the windings can dissipate through the metal tubular member and radially outwardly of the motor device, when space is free around it.
  • said metal tubular member is mounted inside said tubular element, while said annular bonded magnet extends around said tubular element.
  • FIG. 1 is a schematic axial sectional view of a magnetic motor device according to the invention according to an alternative embodiment
  • Figure 2A is a partial schematic view in axial section of detail of Figure 1;
  • Figure 2B is a corresponding graph of Figure 2A showing the intensity of the local magnetic field.
  • Figure 3 is a schematic view similar to Figure 2A illustrating the dimensional references.
  • FIG. 1 illustrates an alternative embodiment of an electrodynamic transducer magnetic motor device 10. It comprises a receiving part 12 connected to a base 14.
  • the receiving part 12 comprises a frustoconical part 16 integral with a tubular part to circular base 18.
  • the frustoconical portion 16 supports a membrane 20, while the tubular portion 1 8 includes coaxially along the axis of the device Z, a tubular member 22 forming a support and secured to the membrane 20, an annular bonded magnet 24 located at the inside of the tubular element 22 and a metal tubular member 26 surrounding the tubular element 22.
  • the tubular element 22 is made of cardboard, aluminum, polyimide or glass fibers or in a composite material.
  • the tubular element 22 has a first cylindrical rim 28 of tubular element near the attachment to the membrane 20 and a second cylindrical rim 30 of tubular element spaced from the attachment to the membrane 20.
  • it comprises a first winding 32 of a conductive wire of copper, aluminum or any other alloy of these materials, or in some cases silver, located near the first cylindrical rim 28 of tubular element and a second winding 34 of said conductive wire in the opposite direction located near the second cylindrical rim 30 of tubular element.
  • the two windings 32, 34 are connected by the same conductive wire.
  • the annular connected magnet 24 In the tubular part 18 and inside the tubular element 22 extends the annular connected magnet 24. It has an outer cylindrical magnetic surface 36 which extends opposite and at a distance from the tubular element 22, and the opposite, inwardly, an opposite surface 38 having, in the plane of the figure corresponding to an axial plane of the annular bonded magnet 24, a contour in the form of a half-ellipse.
  • the annular bonded magnet 24 has a first median plane P M i perpendicular to the Z axis of the device.
  • the annular bonded magnet 24, in its outer cylindrical magnetic surface 36, has in its upper portion, above the median plane P M i, an outer cylindrical upper half-surface 40 extending facing the first winding 32 of conducting wire and in its lower part, below the median plane P M i, a cylindrical outer half-surface 42 extending opposite the second winding 34 of conductive wire.
  • annular connected magnet 24 is held in a fixed position with respect to the tubular portion 18, for example via the base 14.
  • the metal tubular member 26 for example made of iron, is also held in a fixed position inside the tubular part 18 and it extends coaxially around and at a distance from the tubular element 22. It presents a second median plane P M2 coincides, in Figure 1, with the first median plane P M i of the annular bonded magnet 24. As will be explained in more detail below, the tubular element 22 is free compared to the annular bonded magnet 24 and the metal tubular member 26, and is axially movable relative thereto.
  • the tubular metal member 26 has a cylindrical inner surface 45 divided into two cylindrical inner half-surfaces opposite one another with respect to the second median plane P M2 , an upper half-inner cylindrical surface 44 which extends facing the first winding 32 of conductive wire, and opposite to the second median plane P M2 a lower cylindrical inner surface 46 which extends opposite the second winding 34 of conductive wire.
  • the coiled tubular element 22 is installed optimally in an annular chamber 47, or air gap, which extends between the metal bung member 26 and the annular bonded magnet 24. It is axially movable about a rest position so as to drive the diaphragm 20.
  • FIG. 3 is a detailed view showing a hemisection of the annular bound magnet 24 and of the tubular metal member 26.
  • the annular bonded magnet 24 has a radius R and a height H from the median plane P M i and corresponding to the height of the outer cylindrical upper half-surface 40, whereas the metallic tubular member 26 has a thickness E and an inner radius R2.
  • This thickness E is determined with respect to the maximum field density before saturation of the material, and in this case iron.
  • the ratio between the outer cylindrical half-surface of the annular connected magnet 24, in the air gap 47, and the cross-section of the metallic tubular member 26 along the second median plane P M 2, a factor of the magnetic field conferred by the annular bonded magnet 24, must be less than the value of the magnetic saturation threshold of the material used, for example 1, 5 for the iron.
  • annular connected magnet 24 a radius R of 10 mm, a height H of 6 mm, corresponding to a total half-height of the annular bonded magnet 24, for a magnetic field of 0.4 T (Tesla) conferred by a neodymium charge of the annular bonded magnet and for the metal tubular member 26, an inner radius R2 of 1 1 mm defining an air gap 47 of 1 mm, and a thickness of the metallic tubular member 26 E of 2 mm, a field density is obtained in the tubular metal member 26 close to 1.0 T. This value is less than 1.5 T.
  • FIG. 2A showing the magnetic field lines 48 which extend between the annular bonded magnet 24 and the metal tubular member 26 and to describe the advantages of the magnetic motor device according to the invention. Also in this Figure 2A partially, the tubular element 22 provided with its two windings, the first 32, and the second 34.
  • the curved magnetic field lines 48 extend inside the annular connected magnet 24, in an axial section, substantially parallel to the opposite surface 38 of the magnetic cylindrical surface 36 external, to respectively open perpendicularly in the two half-surfaces 40, 42.
  • These magnetic field lines 48 are here, in Figure 2A, oriented in the direction of clockwise.
  • the magnetic field is oriented in the air gap 47, the upper outer half-surface 40 of the annular bonded magnet 24 towards the upper cylindrical inner half-surface 44 of the metal tubular member 26. It is then guided axially in the tubular metal member 26 towards the lower cylindrical inner half-surface 46 and traverses in the opposite direction the gap 47 to the outer cylindrical lower half-surface 42 to join the annular connected magnet 24.
  • Figure 2B shows in Figure 2B in correspondence, the variations of the magnetic field in the gap 47 which is reversed in the lower part relative to the upper part, as just explained above.
  • the linearity of the magnetic field that can be used in the air gap 47 is no longer linked to external elements but to the only metal tubular member 46. In this way, the sound quality of a loudspeaker produced with the magnetic motor device object of the invention is increased.
  • the geometry of the metal tubular member 46 can be perfectly determined, and in particular its thickness, depending on the maximum field density of the material used, 1, 5 T in the iron.
  • tubular element 22 having the two windings 32, 34 is fully adjusted in the magnetic field which allows to achieve high linearity and further improve the sound quality restored.
  • the metal tubular member 26 is located around the tubular element 22, while the annular bonded magnet 24 is located inside it. In this way, and insofar as the space around the metal tubular member 26 is relatively free, the heat dissipation is great. In this way, the plastic elements used, in particular to guide the tubular element 22, are preserved from heat.
  • the metal tubular member 26 and the annular bonded magnet 24 in another reverse configuration are permuted.
  • the metal tubular member 26 discharges thermal energy axially.
  • the opposite surface 38 of the annular connected magnet 24 has a truncation then forming a truncated cylindrical surface. 54 parallel and coaxial with the magnetic cylindrical surface 36. In this way, the annular magnet 24 is lightened.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electromagnetism (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Reciprocating, Oscillating Or Vibrating Motors (AREA)
  • Audible-Bandwidth Dynamoelectric Transducers Other Than Pickups (AREA)

Description

Dispositif de moteur magnétique de transducteur électrodynamique
La présente invention se rapporte à un dispositif de moteur magnétique de transducteur électrodynamique comprenant un aimant lié annulaire et un élément tubulaire supportant un bobinage monté mobile en translation coaxialement par rapport à l'aimant lié annulaire.
Un tel dispositif est notamment, mais non exclusivement, destiné à rentrer dans la composition des haut-parleurs électrodynamiques.
Des dispositifs de moteur magnétique connus comportent d'une part des éléments fixes, un aimant permanent annulaire, deux couronnes métalliques contenant du fer prenant coaxialement en sandwich l'aimant permanent en formant des plaques de champ, et un noyau contenant également du fer monté coaxialement au centre de l'aimant permanent, et d'autre part des éléments mobiles, un support cylindrique bobiné maintenu coaxialement dans l'entrefer entre l'aimant et le noyau est une membrane reliée au support cylindrique bobiné. Le support cylindrique bobiné est par exemple réalisé en carton et il comporte des enroulements de fils, par exemple en cuivre, et l'alimentation en courant électrique de ces fils provoque le mouvement axial du support bobiné dans l'entrefer et par conséquent, les mouvements de la membrane. Ce sont ces mouvements de la membrane qui provoquent alors la vibration de l'air et génèrent le son.
Aussi, de nombreux éléments de ces dispositifs destinés à guider les lignes de champ de l'aimant contiennent du fer, ce qui engendre un certain nombre de non-linéarités nuisibles à la qualité et à la fidélité de restitution sonore du transducteur.
Par conséquent, il a été imaginé des dispositifs tout aimant, ne comprenant pas de fer. Or, les aimants frittés traditionnels sont relativement complexes à former et à adapter selon des géométries particulières.
Aussi, il a été imaginé des aimants liés, plasto-aimants ou élasto-aimants, pouvant être conformés à loisir. Ils sont en effet réalisés par injection dans un moule, lequel peut présenter une très grande variété de formes. Cela permet de créer des éléments dont le champ magnétique utile est amélioré et par conséquent de limiter le champ de fuite qui est un défaut principal des aimants frittés classiques.
Ainsi, l'objet du document EP 2 1 14 086 est un dispositif de moteur magnétique, dépourvu de plaques de champ, mais dont l'aimant permanent est un aimant lié annulaire, d'une forme particulière présentant une surface cylindrique et à l'opposé une surface convexe. Ce document divulgue notamment un dispositif magnétique dont l'aimant lié est installé à l'intérieur du support bobiné, l'aimant lié présentant une surface cylindrique externe qui s'étend en regard des enroulements de fils et une surface convexe qui s'étend vers l'intérieur de l'aimant. Cette surface convexe est telle que la trace d'un plan axial de l'aimant lié et de la surface convexe est une hémi-ellipse. En outre, la surface cylindrique externe présente deux parties cylindriques opposées l'une de l'autre par rapport au plan médian de l'aimant.
De la sorte, selon un plan axial, les lignes de champ s'étendent, d'une partie vers l'autre à l'intérieur de l'aimant parallèlement à la courbure définie pa r l a s u rface con vexe h ém i-elliptique et en coupant sensiblement perpendiculairement la surface cylindrique. Cela permet de concentrer efficacement le champ magnétique vers les enroulements de fils du support bobiné.
Cependant, les lignes de champ ne se referment pas aisément au-delà du support bobiné à l'opposé de l'aimant. Aussi, le document EP 2 1 14 086 divulgue la mise en œuvre d'un aimant lié autour du support bobiné et symétrique de celui qui est logé à l'intérieur de manière à refermer les lignes de champ pour obtenir une meilleure linéarité du champ magnétique et limiter les fuites magnétiques.
Toutefois, la mise en œuvre d'un aimant supplémentaire autour du support bobiné augmente le poids et le volume du dispositif de moteur magnétique. En outre, les aimants liés, plasto-aimants ou élasto-aimants, sont peu conducteurs de l'énergie thermique et par conséquent, l'énergie thermique générée dans le bobinage, où la température peut atteindre 170° C, est très difficilement dissipée. Aussi, un problème qui se pose et que vise à résoudre la présente invention est de fournir un dispositif de moteur magnétique qui permette non seulement de limiter le champ de fuite magnétique mais aussi l'accumulation d'énergie thermique.
Dans ce but, la présente invention propose un dispositif de moteur magnétique de transducteur électrodynamique comprenant, d'une part un aimant lié annulaire générant un champ magnétique, et d'autre part un élément tubulaire monté coaxialement par rapport audit aimant lié annulaire, ledit aimant lié annulaire présentant une surface cylindrique magnétique, tandis que ledit élément tubulaire comporte un bobinage s'étendant en regard de ladite surface cylindrique magnétique, ledit élément tubulaire étant destiné à être entraîné axialement par rapport audit aimant lié annulaire lorsque ledit bobinage est alimenté en courant électrique. Selon l'invention, le dispositif comprend en outre un organe tubulaire métallique présentant une surface cylindrique métallique, et ledit organe tubulaire métallique est monté coaxialement par rapport audit élément tubulaire de façon que ladite surface cylindrique métallique s'étende à l'opposé de ladite surface cylindrique magnétique par rapport audit bobinage de manière à fermer ledit champ magnétique.
Ainsi, une caractéristique de l'invention réside dans la mise en œuvre de l'organe tubulaire métallique à l'opposé de l'aimant lié annulaire par rapport à l'élément tubulaire bobiné, de manière à fermer le champ magnétique. De la sorte, le champ de fuite est très fortement limité en comparaison des structures classiques et le champ magnétique est concentré à travers l'élément tubulaire bobiné.
Au surplus, l'énergie thermique générée dans le bobinage se dissipe aisément à travers l'organe tubulaire métallique, qui par nature est un bon conducteur thermique. Selon l'art antérieur, en l'absence d'organe tubulaire métallique, il est nécessaire d'incorporer dans l'aimant lié annulaire, des matériaux coûteux permettant cette dissipation thermique. Outre la dissipation thermique, l'organe tubulaire métallique, par exemple réalisé dans un alliage de fer, permet d'améliorer les tolérances dimensionnelles de fabrication.
Par ailleurs, ledit aimant lié annulaire, qui est bien évidemment un solide plein, présente avantageusement une surface opposée à ladite surface cylindrique magnétique, dont l'intersection avec un plan axial dudit aimant lié annulaire est une hémi-ellipse. Une hémi-ellipse est une courbe définie par une ellipse coupée selon l'un de ces deux axes, soit selon son petit axe qui s'étend entre ses deux centres, soit selon son grand axe qui coupe précisément les deux centres. De la sorte, les lignes de champ magnétique s'étendent, selon un plan axial, d'une partie cylindrique située d'un côté du plan médian de l'aimant lié annulaire vers l'autre, à travers l'aimant en épousant la courbure définie par la surface opposée hémi-elliptique et en coupant sensiblement perpendiculairement la surface cylindrique de l'aimant. Elles traversent ainsi radialement l'élément tubulaire bobiné, puis rejoignent radialement également l'organe tubulaire métallique pour ensuite s'infléchir et s'étendre à travers selon une direction axiale comme on l'expliquera plus en détail dans la suite de la description.
Selon une variante de réalisation, visant essentiellement à réduire le poids et/ou le volume du dispositif de moteur magnétique, ladite surface opposée présente une troncature formant une surface cylindrique tronquée sensiblement parallèle à ladite surface cylindrique magnétique.
Préférentiellement, ladite surface cylindrique magnétique dudit aimant lié annulaire présente deux premières demi-surfaces cylindriques, tandis que ledit aimant lié annulaire génère un champ magnétique B, et le rapport de la première demi-surface cylindrique et de la section droite de l'organe tubulaire métallique facteur dudit champ magnétique B, est inférieur à la valeur du seuil de saturation magnétique du matériau dudit organe tubulaire métallique. La section droite de l'organe tubulaire correspond à la surface de cette section droite et par conséquent à la différence des surfaces de rayon externe et de rayon interne de l'organe tubulaire. Ainsi, on détermine aisément l'épaisseur requise de l'organe tubulaire métallique, et notamment on évite de mettre en œuvre un organe tubulaire trop volumineux et pesant. Ainsi, par exemple, le rapport de la première demi-surface cylindrique et de la section droite de l'organe tubulaire métallique facteur dudit champ magnétique B, est inférieur à 1 ,5 lorsque ledit organe tubulaire métallique est réalisé en fer.
Selon un mode de mise en œuvre de l'invention particulièrement avantageux, ladite surface cylindrique métallique présente deux secondes demi-surfaces cylindriques situées dans le prolongement axiale l'une de l'autre et divisées également par un plan médian de l'organe tubulaire, tandis que ledit bobinage est divisé en deux enroulements espacés axialement l'un de l'autre et aptes à venir s'étendre respectivement en regard desdites secondes demi-surfaces cylindriques. Les deux enroulements espacés axialement l'un de l'autre sont constitués d'un seul fil, mais enroulé en sens inverse. Ainsi, lorsque le courant d'alimentation est délivré au fil, il circule dans deux sens opposés entre les deux enroulements. Les deux enroulements sont alors respectivement ajustés au droit des deux parties opposées de l'aimant lié annulaire, de sorte que les deux faisceaux de lignes de champ traversant les deux enroulements sont orientées dans les directions opposées l'une de l'autre. Aussi, les efforts qui s'exercent sur l'élément tubulaire bobiné sont doubles, ce qui accroît la puissance du dispositif de moteur.
Par ailleurs, selon une première variante de réalisation ledit aimant lié annulaire est monté à l'intérieur dudit élément tubulaire, tandis que ledit organe tubulaire métallique s'étend autour dudit élément tubulaire. Ainsi, l'énergie thermique générée dans les enroulements peut se dissiper à travers l'organe tubulaire métallique et radialement vers l'extérieur du dispositif moteur, lorsque l'espace est libre autour de lui. Selon une autre variante, permettant d'évacuer l'énergie thermique axialement vers l'arrière du dispositif moteur, ledit organe tubulaire métallique est monté à l'intérieur dudit élément tubulaire, tandis que ledit aimant lié annulaire s'étend autour dudit élément tubulaire.
D'autres particularités et avantages de l'invention ressortiront à la lecture de la description faite ci-après d'un mode de réalisation particulier de l'invention, donné à titre indicatif mais non limitatif, en référence aux dessins annexés sur lesquels : - la Figure 1 est une vue schématique en coupe axiale d'un dispositif de moteur magnétique selon l'invention conformément à une variante de réalisation ;
- la Figure 2A est une vue schématique partielle en coupe axiale de détail de la figure 1 ;
- la Figure 2B est un graphique en correspondance de la figure 2A représentant l'intensité du champ magnétique local ; et,
- la Figure 3 est une vue schématique analogue à la figure 2A illustrant les références dimensionnelles.
La Figure 1 illustre une variante de réalisation d'un dispositif de moteur magnétique de transducteur électrodynamique 10. Il comprend une partie de réception 12 reliée à une embase 14. La partie de réception 12 comporte une partie tronconique 16 solidaire d'une partie tubulaire à base circulaire 18. La partie tronconique 16 supporte une membrane 20, tandis que la partie tubulaire 1 8 inclut coaxialement selon l'axe du dispositif Z, un élément tubulaire 22 formant support et solidaire de la membrane 20, un aimant lié annulaire 24 situé à l'intérieur de l'élément tubulaire 22 et un organe tubulaire métallique 26 entourant l'élément tubulaire 22. L'élément tubulaire 22 est réalisé en carton, en aluminium, en polyimide ou en fibres de verre ou bien dans un matériau composite. Au surplus, l'élément tubulaire 22 présente une première bordure cylindrique 28 d'élément tubulaire près du rattachement à la membrane 20 et une seconde bordure cylindrique 30 d'élément tubulaire écartée du rattachement à la membrane 20. En outre, il comprend un premier enroulement 32 d'un fil conducteur en cuivre, en aluminium ou tout autre alliage de ces matériaux, voire dans certains cas en argent, situé près de la première bordure cylindrique 28 d'élément tubulaire et un second enroulement 34 dudit fil conducteur en sens inverse situé près de la seconde bordure cylindrique 30 d'élément tubulaire. Bien évidement, les deux enroulements 32, 34 sont reliés par le même fil conducteur.
Dans la partie tubulaire 18 et à l'intérieur de l'élément tubulaire 22 s'étend l'aimant lié annulaire 24. Il présente une surface cylindrique magnétique 36 externe qui s'étend en regard et à distance de l'élément tubulaire 22, et à l'opposé, vers l'intérieur, une surface opposée 38 présentant, dans le plan de la figure correspondant à un plan axial de l'aimant lié annulaire 24, un contour en forme de demi-ellipse. L'aimant lié annulaire 24 présente un premier plan médian PMi perpendiculaire à l'axe Z du dispositif. Aussi, l'aimant lié annulaire 24, dans sa surface cylindrique magnétique 36 externe, présente dans sa partie supérieure, au-dessus du plan médian PMi , une demi-surface supérieure cylindrique 40 externe s'étendant en regard du premier enroulement 32 de fil conducteur et dans sa partie inférieure, au-dessous du plan médian PMi , une demi-surface inférieure cylindrique 42 externe, s'étendant en regard du second enroulement 34 de fil conducteur.
Bien évidemment, l'aimant lié annulaire 24 est maintenu en position fixe par rapport à la partie tubulaire 18, par exemple par l'intermédiaire de l'embase 14.
L'organe tubulaire métallique 26, par exemple à base de fer, est également maintenu en position fixe à l'intérieur de la partie tubulaire 18 et il s'étend coaxialement autour et à distance de l'élément tubulaire 22. Il présente un second plan médian PM2 confondu, sur la Figure 1 , avec le premier plan médian PMi de l'aimant lié annulaire 24. Ainsi qu'on l'expliquera plus en détail ci-après, l'élément tubulaire 22 est libre par rapport à l'aimant lié annulaire 24 et à l'organe tubulaire métallique 26, et il est mobile axialement par rapport à ces derniers.
L'organe tubulaire métallique 26 présente une surface interne cylindrique 45 divisée en deux demi-surfaces internes cylindriques opposées l'une de l'autre par rapport au second plan médian PM2, une dem i-surface interne cylindrique supérieure 44 qui s'étend en regard du premier enroulement 32 de fil conducteur, et à l'opposé par rapport au second plan médian PM2 une demi- surface interne cylindrique inférieure 46 qui s'étend en regard du second enroulement 34 de fil conducteur.
Ainsi, l'élément tubulaire 22 bobiné est installé l ibrement dans une chambre annulaire 47, ou entrefer, qu i s'étend entre l'organe tu bulaire métallique 26 et l'aimant lié annulaire 24. Il est mobile axialement autour d'une position de repos de manière à pouvoir entraîner la membrane 20. On se reportera sur la figure 3 pour définir les dimensions et les positions relatives de l'aimant lié annulaire 24 et de l'organe tubulaire métallique 26. La figure 3 est une vue de détail présentant une hémisection de l'aimant lié annulaire 24 et de l'organe tubulaire métallique 26.
Ainsi, l'aimant lié annulaire 24 présente un rayon R et une hauteur H à partir du plan médian PMi et correspondant à la hauteur de la demi-surface supérieure cylindrique 40 externe, tandis que l'organe tubulaire métallique 26 présente une épaisseur E et un rayon intérieur R2. Cette épaisseur E est déterminée par rapport à la densité de champ maximal avant saturation du matériau, et en l'espèce du fer. Ainsi, le ratio entre la demi-surface cylindrique externe de l'aimant lié annulaire 24, dans l'entrefer 47, et la section droite de l'organe tubulaire métallique 26 selon le second plan médian PM2, facteur du champ magnétique conféré par l'aimant lié annulaire 24, doit être inférieur à la valeur du seuil de saturation magnétique du matériau utilisé, par exemple 1 ,5 pour le fer.
Aussi, en choisissant pour l'aimant lié annulaire 24, un rayon R de 10 mm, une hauteur H de 6 mm, correspondant à une demi-hauteur totale de l'aimant lié annulaire 24, pour un champ magnétique de 0,4 T (Tesla) conféré par une charge au Néodyme de l'aimant lié annulaire et pour l'organe tubulaire métallique 26, un rayon intérieur R2 de 1 1 mm définissant alors un entrefer 47 de 1 mm, et une épaisseur de l'organe tubulaire métallique 26 E de 2 mm, on obtient une densité de champ dans l'organe tubulaire métallique 26 voisine de 1 ,0 T. Cette valeur est inférieure à 1 ,5 T.
On se reportera à présent sur la figure 2A montrant les lignes de champ magnétique 48 qui s'étendent entre l'aimant lié annulaire 24 et l'organe tubulaire métallique 26 et pour décrire les avantages du dispositif de moteur magnétique selon l'invention. On retrouve également sur cette figure 2A partiellement, l'élément tubulaire 22 muni de ses deux enroulements, le premier 32, et le second 34.
Ainsi, les lignes de champ magnétique 48 courbées s'étendent à l'intérieur de l'aimant lié annulaire 24, selon une section axiale, sensiblement parallèlement à la surface opposée 38 de la surface cylindrique magnétique 36 externe, pour déboucher respectivement perpendiculairement dans les deux demi-surfaces 40, 42. Ces lignes de champ magnétique 48 sont ici, sur la figure 2A, orientées dans le sens des aiguilles d'une montre. Aussi, le champ magnétique est orienté dans l'entrefer 47, de la demi-surface supérieure externe 40 de l'aimant lié annulaire 24 vers la demi-surface interne cylindrique supérieure 44 de l'organe tubulaire métallique 26. Il est ensuite guidé axialement dans l'organe tubulaire métallique 26 vers la demi-surface interne cylindrique inférieure 46 et traverse en sens inverse l'entrefer 47 vers la demi- surface inférieur cylindrique externe 42 pour rejoindre l'aimant lié annulaire 24. On a représenté sur la figure 2B en correspondance, les variations du champ magnétique dans l'entrefer 47 lequel s'inverse dans la partie inférieure par rapport à la partie supérieure, comme on vient de l'expliquer ci-dessus.
Ainsi, la linéarité du champ magnétique utilisable dans l'entrefer 47 n'est plus liée à des éléments extérieurs mais au seul organe tubulaire métallique 46. De la sorte, la qualité sonore d'un haut-parleur réalisé avec le dispositif de moteur magnétique objet de l'invention est augmentée. En outre, et ainsi qu'on l'a expliqué ci-dessus, la géométrie de l'organe tubulaire métallique 46 peut être parfaitement déterminée, et notamment son épaisseur, en fonction de la densité de champ maximal du matériau utilisé, soit 1 ,5 T dans le fer.
En outre, l'élément tubulaire 22 présentant les deux enroulements 32, 34 est entièrement ajusté dans le champ magnétique ce qui permet d'atteindre des linéarités élevées et d'améliorer plus encore la qualité sonore restituée.
Selon la présente variante de réalisation, l'organe tubulaire métallique 26 est situé autour de l'élément tubulaire 22, tandis que l'aimant lié annulaire 24 est situé lui à l'intérieur. De la sorte, et dans la mesure où l'espace autour de l'organe tubulaire métallique 26 est relativement libre, la dissipation thermique est grande. De la sorte, les éléments en matière plastique utilisés, notamment pour guider l'élément tubulaire 22, sont préservés de la chaleur.
Toutefois, il est envisagé une autre variante de réalisation ou l'organe tubulaire métallique 26 et l'aimant lié annulaire 24 dans une autre configuration inverse, sont permutés. De la sorte, l'organe tubulaire métallique 26 évacue l'énergie thermique axialement. Selon encore une autre variante de réalisation, illustrée sur la Figure 1 par des traits interrompus 50, 52, parallèles à l'axe du dispositif Z, la surface opposée 38 de l'aimant lié annulaire 24 présente une troncature formant alors une surface cylindrique tronquée 54 parallèle et coaxiale à la surface cylindrique magnétique 36. De la sorte, on allège l'aimant annulaire 24.

Claims

REVENDICATIONS
1 . Dispositif de moteur magnétique de transducteur électrodynamique comprenant, d'une part un aimant lié annulaire (24) générant un champ magnétique, et d'autre part un élément tubulaire (22) monté coaxialement par rapport audit aimant lié annulaire, ledit aimant lié annulaire (24) présentant une surface cylindrique magnétique (36), tandis que ledit élément tubulaire (22) comporte un bobinage (32, 34) s'étendant en regard de ladite surface cylindrique magnétique (36), ledit élément tubulaire (22) étant destiné à être entraîné axialement par rapport audit aimant lié annulaire (24) lorsque ledit bobinage est alimenté en courant électrique ;
caractérisé en ce qu'il comprend en outre un organe tubulaire métallique (26) présentant une surface cylindrique métallique (45),
et en ce que ledit organe tubulaire métallique (26) est monté coaxialement par rapport audit élément tubulaire (22) de façon que lad ite surface cylindrique métallique (45), s'étende à l'opposé de ladite surface cylindrique magnétique (36) par rapport audit bobinage (32, 34) de manière à fermer ledit champ magnétique.
2. Dispositif de moteur magnétique selon la revendication 1 , caractérisé en ce que ledit aimant lié annulaire (24) présente une surface opposée (38) à ladite surface cylindrique magnétique (36) dont l'intersection avec un plan axial dudit aimant lié annulaire (24) est une hémi-ellipse.
3. Dispositif de moteur magnétique selon la revendication 2, caractérisé en ce que ladite surface opposée (38) présente une troncature formant une surface cylindrique tronquée (54) sensiblement parallèle à ladite surface cylindrique magnétique (36).
4. Dispositif de moteur magnétique selon l'une quelconque des revendications 1 à 3, caractérisé en ce que ladite surface cylindrique magnétique (36) dudit aimant lié annulaire (24) présente deux premières demi- surfaces cylindriques (40, 42), tandis que ledit aimant lié annulaire génère un champ magnétique B, et en ce que le rapport de la première demi-surface cylindrique et de la section droite de l'organe tubulaire métallique (26), facteur dudit champ magnétique B est inférieur à la valeur du seuil de saturation magnétique du matériau dudit organe tubulaire métallique (26).
5. Dispositif de moteur magnétique selon la revendication 4, caractérisé en ce que le rapport de la première demi-surface cylindrique et de la section droite de l'organe tubulaire métallique (26), facteur dudit champ magnétique B, est inférieur à 1 ,5 lorsque ledit organe tubulaire métallique (26) est réalisé en fer.
6. Dispositif de moteur magnétique selon l'une quelconque des revendications 1 à 5, caractérisé en ce que ladite surface cylindrique métallique (45) présente deux secondes demi-surfaces cylindriques (44, 46) situées dans le prolongement axiale l'une de l'autre, tandis que ledit bobinage est divisé en deux enroulements (32, 34) espacés axialement l'un de l'autre et aptes à venir s'étendre respectivement en regard desdites secondes demi- surfaces cylindriques (44, 46).
7. Dispositif de moteur magnétique selon l'une quelconque des revendications 1 à 6, caractérisé en ce que ledit aimant lié annulaire (24) est monté à l'intérieur dudit élément tubulaire (22), tandis que ledit organe tubulaire métallique (26) s'étend autour dudit élément tubulaire.
8. Dispositif de moteur magnétique selon l'une quelconque des revendications 1 à 6, caractérisé en ce que ledit organe tubulaire métallique (26) est monté à l'intérieur dudit élément tubulaire (22), tandis que ledit aimant lié annulaire (24) s'étend autour dudit élément tubulaire.
EP12707877.2A 2011-02-08 2012-02-07 Dispositif de moteur magnétique de transducteur électrodynamique Withdrawn EP2673961A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1150993A FR2971385B1 (fr) 2011-02-08 2011-02-08 Dispositif de moteur magnetique de transducteur electrodynamique
PCT/FR2012/050262 WO2012107682A1 (fr) 2011-02-08 2012-02-07 Dispositif de moteur magnétique de transducteur électrodynamique

Publications (1)

Publication Number Publication Date
EP2673961A1 true EP2673961A1 (fr) 2013-12-18

Family

ID=44209791

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12707877.2A Withdrawn EP2673961A1 (fr) 2011-02-08 2012-02-07 Dispositif de moteur magnétique de transducteur électrodynamique

Country Status (5)

Country Link
US (2) US20140339924A1 (fr)
EP (1) EP2673961A1 (fr)
CN (1) CN103348701A (fr)
FR (1) FR2971385B1 (fr)
WO (1) WO2012107682A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019120137B3 (de) * 2019-07-25 2020-08-13 Karsten Atmani, bürgerlicher Name Buß Elektrodynamischer Lautsprecher

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5701040A (en) * 1992-11-03 1997-12-23 British Technology Group Limited Magnet arrangement, and drive device and cooling apparatus incorporating same
US5715324A (en) * 1994-01-05 1998-02-03 Alpine Electronics, Inc. Speaker having magnetic circuit
US20050179326A1 (en) * 2000-10-25 2005-08-18 Harman International Industries Incorporated Electromagnetic motor with flux stabilization ring, saturation tips, and radiator
US20090028375A1 (en) * 2005-11-03 2009-01-29 Universite Du Maine Electrodynamic transducer and use thereof in loudspeakers and geophones

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1152601C (zh) * 1998-03-19 2004-06-02 Jbl公司 改进的扬声器驱动器结构
JP2007306214A (ja) * 2006-05-10 2007-11-22 Fujitsu Ten Ltd スピーカ磁気回路
CN201134323Y (zh) * 2007-08-04 2008-10-15 曹晓洪 电磁感应受控直驱往复式高效换能器
ES2402081T3 (es) * 2008-04-30 2013-04-26 Renault S.A.S. Unidad de motor de transducción de bobina sin hierro y sin dispersión

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5701040A (en) * 1992-11-03 1997-12-23 British Technology Group Limited Magnet arrangement, and drive device and cooling apparatus incorporating same
US5715324A (en) * 1994-01-05 1998-02-03 Alpine Electronics, Inc. Speaker having magnetic circuit
US20050179326A1 (en) * 2000-10-25 2005-08-18 Harman International Industries Incorporated Electromagnetic motor with flux stabilization ring, saturation tips, and radiator
US20090028375A1 (en) * 2005-11-03 2009-01-29 Universite Du Maine Electrodynamic transducer and use thereof in loudspeakers and geophones

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2012107682A1 *

Also Published As

Publication number Publication date
FR2971385B1 (fr) 2014-02-14
CN103348701A (zh) 2013-10-09
WO2012107682A1 (fr) 2012-08-16
US20140339924A1 (en) 2014-11-20
FR2971385A1 (fr) 2012-08-10
US20170179807A1 (en) 2017-06-22

Similar Documents

Publication Publication Date Title
EP2577992B1 (fr) Haut-parleur acoustique
EP2524519B1 (fr) Système de haut-parleur coaxial à chambre de compression à pavillon
EP3403314A1 (fr) Stator pour une machine à flux axial avec une couronne de stator formée des modules
FR3076674A1 (fr) Moteur ou generatrice electromagnetique a deux rotors et quatre stators et systeme de refroidissement integre
EP2156538B1 (fr) Actionneur électromagnétique à réluctance variable
FR2851687A1 (fr) Dispositif de stockage et de transformation d'energie
EP2673961A1 (fr) Dispositif de moteur magnétique de transducteur électrodynamique
EP2710714A1 (fr) Turbine génératrice de courant électrique
EP2524521B1 (fr) Transducteur électrodynamique à dôme et suspension flottante
EP1474952B1 (fr) Moteur electrodynamique a bobine mobile notamment pour haut-parleur, haut-parleur et piece polaire adaptee
EP2534851B1 (fr) Moteur magnetique de transducteur electrodynamique
FR3104368A1 (fr) Haut-parleur à grande excursion, faible distorsion et faible profondeur
FR3071678A1 (fr) Convertisseur d'energie electromagnetique
WO2021111010A1 (fr) Haut-parleur à grande excursion, faible distorsion et faible profondeur
FR3133719A1 (fr) Haut-parleur coaxial à membrane comprenant un matériau isolant, et deux lames conductrices fixées sur ou dans la membrane
FR3078209A1 (fr) Demarreur comprenant un porte balais comprime axialement
WO2011086303A1 (fr) Transducteur électrodynamique comprenant un guide d'onde acoustique assurant une dissipation thermique
EP1237394A1 (fr) Circuit magnétique pour haut-parleur éléctrodynamique
EP3341594A1 (fr) Connecteur électrique d'un actionneur électromagnétique pour soupape
EP0779698A1 (fr) Générateur multipolaire de vibrations électrodynamiques
FR3020894A1 (fr) Systeme d'au moins un electroaimant a bords d'entrefer non plans
WO2014083254A1 (fr) Ensemble electronique comprenant un composant à faces de dissipation thermique multiple
FR2883122A1 (fr) Haut-parleur dote d'un circuit magnetique incluant un dispositif electromagnetique pour limiter la distorsion et le glissement du point de repos dynamique de l'equipage mobile
FR2899393A1 (fr) Bougie de generation de plasma radiofrequence pour un moteur a combustion interne

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130731

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20170418

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20170829