EP2668541A1 - Cellule electro- optique massive ayant une structure fine et a base de materiaux a coefficients electro - optiques geants, son procede de fabrication - Google Patents

Cellule electro- optique massive ayant une structure fine et a base de materiaux a coefficients electro - optiques geants, son procede de fabrication

Info

Publication number
EP2668541A1
EP2668541A1 EP12708553.8A EP12708553A EP2668541A1 EP 2668541 A1 EP2668541 A1 EP 2668541A1 EP 12708553 A EP12708553 A EP 12708553A EP 2668541 A1 EP2668541 A1 EP 2668541A1
Authority
EP
European Patent Office
Prior art keywords
electro
optical
ferroelectric
cell according
optical cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP12708553.8A
Other languages
German (de)
English (en)
Inventor
Marc Alexandre BOUVROT
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP2668541A1 publication Critical patent/EP2668541A1/fr
Ceased legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/0305Constructional arrangements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/0009Materials therefor
    • G02F1/0018Electro-optical materials
    • G02F1/0027Ferro-electric materials
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/035Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect in an optical waveguide structure
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/05Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect with ferro-electric properties
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/05Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect with ferro-electric properties
    • G02F1/0508Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect with ferro-electric properties specially adapted for gating or modulating in optical waveguides
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/011Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  in optical waveguides, not otherwise provided for in this subclass
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/0305Constructional arrangements
    • G02F1/0316Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/035Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect in an optical waveguide structure
    • G02F1/0353Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect in an optical waveguide structure involving an electro-optic TE-TM mode conversion

Definitions

  • the invention relates to the field of electro-optics, in particular for light modulation applications.
  • Electro-optical cells are known in the so-called "micro-massive" structure. As illustrated in FIG. 1, such a cell comprises a substrate (1) of glass, silicon or any other type of substrate whose properties of rigidity and thermal expansion are adapted to the operation of the cell, which supports a layer of ferroelectric bulk material thinned (4). An electrode (2) is provided between the substrate and the ferroelectric layer, and another (5), narrower and facing the first, is provided above the ferroelectric layer. Depending on the application, the thicknesses of each element may vary.
  • Lithium Niobate has a Curie temperature of about 1134 ° C, which allows the creation of waveguides by surface diffusion, requiring a rise in temperature of the order of 1000 ° C. On the other hand, its electro-optical performances remain modest.
  • Electro-optical materials called giant coefficients. These are for example the so-called SBN or KTN materials, which will be defined in detail below.
  • SBN or KTN materials which will be defined in detail below.
  • their Curie temperature is low, and close to ambient.
  • the manufacture of the cell can nevertheless be done by fixing the crystal (ferroelectric type monocrystal) of electro-optical material on the substrate by a cold molecular welding technique.
  • the Applicant has now found that we do not fully take advantage of the expected benefits of electro-optical materials with giant coefficients.
  • the present invention improves the situation.
  • An electro-optical cell comprising, on a substrate, a layer of ferroelectric solid material, with a ground-plane electrode, provided between the substrate and the ferroelectric layer, and another electrode, filiform mounted next to the first one above of the ferroelectric layer, comprises grooves formed in the ferroelectric layer, on either side of the upper electrode.
  • FIG. 1 is a schematic sectional view of a known electrooptic cell
  • FIG. 2 is a perspective view of the electro-optical cell of FIG. 1, coupled to two optical fibers, in experimental setup,
  • FIG. 3 is the same type of view as FIG. 2, but without showing the support, and showing in addition the desired orientations of the crystal, as well as the orientations of the optical and electrical fields passing through the cell,
  • FIGS. 4a to 4d are diagrammatic sectional views, illustrating the fabrication of an electro-optical cell proposed here,
  • FIG. 5 is a view similar to FIG. 1, but showing a multichannel cell
  • FIGS. 6a and 6b are graphical representations of the normalized detected intensity as a function of the voltage applied respectively in linear mode and in quadratic mode of the KTN.
  • the term “length” will be used here for the direction substantially parallel to the direction of propagation of the light (vector X in FIG. 3).
  • the term “width” will be used here for the direction substantially perpendicular to the direction of propagation of the light and in the plane of the cell (vector Y in FIG. 3).
  • the word “narrow (es)” means small width.
  • the terms “above”, “below”, “upper” or “lower” will be used here with reference to the direction of the thickness of the cell (vector Z in FIG. 3).
  • an electro-optical cell in a micro-massive structure comprises a substrate 1 of glass or silicon, which supports a layer of ferroelectric material 4 thinned.
  • An electrode 2 is provided between the substrate and the ferroelectric layer, and another electrode 5, of width narrower than the first and facing it, is provided above the layer of solid material.
  • the layer of solid material is here thinned.
  • FIG. 2 also shows an input optical fiber, OF1, and an output optical fiber OF2, the cores of which are optically coupled to the ferroelectric layer 4 which is between the electrodes 2 and 5.
  • the applications are signal processing, short and long-distance fiber optic telecommunications, optical sensors, but also lasers, polarization switches or applications for selecting and isolating an optical pulse from a transmission train. Pulse ("pulse-picking" in English) of short pulses, in particular.
  • the operation of the cell is based on the principle of two-wave birefringent interferometry through a capacitive micro-structure formed by the two electrodes in vis-à-vis.
  • the incident optical electromagnetic wave polarized rectilinearly to the input of the cell separates into two independent waves propagating each on the neutral axes of the crystal (Y and Z axes of Figure 3).
  • the properties of different indices present on each of these axes induce different propagation speeds of the two waves.
  • the latter recombine at the cell output to form a single optical electromagnetic wave whose polarization state is different from that at the input of the cell.
  • the ferroelectric layer 4 is here a selected crystal, in particular according to the characteristics desired for the cell.
  • Ferroelectric materials are known to form a sub-group of pyroelectric materials which exhibit, in certain temperature ranges, a spontaneous electric polarization which can be canceled or reoriented by application of an electric field. They are therefore both piezoelectric and pyroelectric. These ferroelectric materials have a global polarization, and therefore a relative electrical permittivity, which depends at the same time on the temperature, the mechanical stresses and the electric field. From the coexistence of all these phenomena combined, it follows that the study of the physical properties of these materials is difficult and progress little, despite the significant interest that their potential applications have aroused for many years. The aforementioned thesis is one of the elements of these studies.
  • the value of the dominant coefficient varies according to the composition of the material.
  • SBN typically between 400 and 1400 pm / V.
  • Lithium Niobate has mainly been used because its Curie temperature of about 1134 ° C is sufficiently high for the creation of surface diffusion waveguides, requiring a rise in temperature of the order 1000 ° C.
  • its coefficient r 33 remains modest.
  • electro-optical materials with giant coefficients are for example the so-called SBN (Strontium Barium Niobium), KTN (Potassium Tantalum Niobium) materials.
  • Figure 3 is a perspective view similar to Figure 2, the substrate is not shown. It illustrates a positioning of the crystal such that the coefficient r 33 occurs in the vertical direction Z varying the index of polarization n e (so-called extraordinary index). In the other two directions X and Y, it is the coefficient r 13 , acting on the index n 0 (index called ordinary).
  • the material When the material has only two different indices, no and ne, it is classified in the family of uniaxial propagation media. When these three indices are all different between them, the middle is called biaxis. In all cases, the index of the optical propagation axis (vector X in FIG. 3) has no effect on the overall electro-optical behavior of the cell. We will now proceed to a more detailed examination of the prior art.
  • the electro-optical effect makes it possible to modify, under the effect of an electric field E, the refractive index of an electroactive material, and consequently to control the polarization state of the light passing through the cell. .
  • Pockels cells exploit a massive capacitive structure between two electrodes for applications in free optical injection (without waveguide).
  • this type of component imposes significant differences between the electrodes due to the massive material used.
  • This induces very high control voltages of up to a few thousand volts, and therefore low modulation bandwidths or even single-frequency modulation operation.
  • This also induces the use of a particular driver or driver circuit ("driver" in English), specifically adapted to each cell whose cost is generally of the same order of magnitude as the cell itself.
  • the integrated modulators on Lithium Niobate are based on a complex structure, for example that described in FR0014804. Their operation exploits the principle of Mach-Zehnder interferometer.
  • the modulation operates on the imbalance of one of the Mach-Zehnder arms relative to the other, modifying the light interactions during the recombination of the two beams at the interferometer output.
  • This technology relies on a guiding structure diffused on the surface, allowing the guiding of the light in the arms of Mach-Zehnder.
  • the necessity of separating the optical beam in the arms as well as the moderate value of the electro-optical coefficient r 33 involved require large lengths of chip, respectively, in order to limit the losses by bending of the guide on the one hand, and to obtain enough electro-optical effect on the other hand over the entire length of interaction.
  • the interaction lengths involved require a particular design ("design") of progressive wave electrodes, so as to adapt the propagation speeds of the electromagnetic and optical electromagnetic fields. This adaptation makes it possible for the optical wave to be in the presence of the same index modulation throughout its propagation in the arms.
  • Lithium Niobate has a Curie temperature of about 1134 ° C, which allows the creation of a surface-diffused waveguide requiring a temperature rise to about 1000 ° C.
  • the materials with giant coefficients have Curie temperatures that vary according to their constitution, but typically they do not exceed one hundred degrees Celsius, which makes it impossible to create diffused guides.
  • LiNbO Lithium Niobate
  • Lithium Niobate is currently one of the most used materials in integrated optics thanks to the combination of its many properties and characteristics. These characteristics make it possible to adapt the response of the material. Lithium Niobate allows the realization of various photonic components. It is also possible to do to grow crystals with excellent optical qualities. The most common method for growing this crystal, non-existent in the natural state, is the Czochralski method, which allows the production of very homogeneous crystals of several kilograms, and this at relatively low cost. Such single crystals have interesting electro-optical, piezoelectric, photoelastic properties and optical non-linearities.
  • This material is a chemical compound of Niobium, Lithium and Oxygen (LiNb0 3 ) of trigonal crystalline structure, transparent for wavelengths between 350 and 5000 nanometers and exhibiting an electro-optical Pockels effect. Its birefringence strongly depends on the temperature: a precise adjustment of this one makes it possible to control a possible agreement of phase. In its crystalline form, it is in the form of a solid material, chemically very stable at room temperature thus making it a particularly attractive material for applications in spatial or integrated optics. Its high Curie temperature allows it to preserve its ferroelectric properties during technological shaping processes.
  • This compound results from an assembly of solid compounds of KNb0 3 and KTa0 3 , the proportions of which can be chosen.
  • the ferroelectric material therefore has a Curie temperature of less than 1000 ° C.
  • the KTN material has a cubic crystal mesh: the material is isotropic.
  • the KTN is a transparent crystal on the 400-4000nm window, with the particularity of exciting a Kerr quadratic electro-optical effect.
  • KTN is generally known for use in quadratic mode as opposed to linear mode.
  • the linear mode is observable at temperatures below the Curie temperature, close to 0 ° C.
  • the optical intensity detected as a function of the applied voltage is shown in FIG. 6a.
  • the behavior in linear regime presents a pattern, sinusoidal type, repeated by constant pitch of applied voltage.
  • the efficiency slopes are identical for the different voltage ranges applied. But we have found that we can do the work locally linear mode while being in quadratic mode, that is to say above the Curie temperature.
  • the optical intensity detected as a function of the applied voltage is visible in FIG. 6b.
  • the quadratic behavior has patterns whose period decreases as the applied voltage increases. The efficiency slopes therefore increase significantly when the applied voltage increases, cf.
  • SrBaNb 2 0 6 is a ferroelectric crystal widely used today for its piezoelectric, pyroelectric, electro-optical and generally non-linear second order optical properties, for photorefractive purposes for example in the creation of guides by photorefractive effect buried under temporary conditions because degradable in visible light.
  • This crystal corresponds to an assembly of solid compounds of BaNb 2 0 6 and SrNb 2 0 6 , to finally lead to the complete crystal Sr x Ba 1-x Nb 2 0 6 .
  • This material has a 4mm tetragonal crystalline structure, whose partial concentration of Barium (Ba) relative to Strontium (Sr) can be adjusted from 20 to 80%.
  • the tensor of this structure as well as the values of its electro-optical coefficients are given in Appendix III, in point III.2.
  • the SBN: 61 has the composition Sr 0 6 0 3 iBa 9Nb2O6 and SBN: 34 the composition Sr 0.34 Ba 0.66 Nb 2 O 6.
  • Its Curie Te temperature is very low compared to LiNbO 3 : it varies from ambient (about 22 ° C) for a composition rich in Strontium, to 80 ° C for compositions rich in Barium.
  • Strontium Niobate and Barium have a paraelectric operating regime when maintained at a temperature higher than that of Curie, and a ferroelectric regime when its temperature is lower than Te.
  • the electro-optical properties of this crystal are very sensitive to its composition.
  • the values of the coefficients r 33 can thus vary from 400 to 1400 pm / V, which is approximately 12 to 40 times that of LiNb0 3 .
  • SBN for example, the higher the concentration of Strontium, the higher the coefficient r 33 , but the lower the Curie temperature. Depending on the uses, the best compromise will be chosen.
  • the ferroelectric material may comprise at least one of the materials known as SBN, KTN, KNSBN, and mixtures thereof.
  • the structure is composed of a thin plate of ferroelectric solid material 4 selected between two metallizations 2 and 5 realizing the function of very capacitive type electromagnetic excitation electrodes.
  • This excitation generates an electric field in V / d, V being the applied potential and the thickness of the blade. This field is therefore all the more important as the thickness is fine.
  • the modulation obtained corresponds to an electro-optically induced birefringence modulation resulting in a modification of the polarization state of the light as a function of the interaction length L.
  • phase shift or phase shift ⁇ between the two components of the optical wave. This phase shift is proportional to the interaction length, the applied electric field and the coefficient r 33 and inversely proportional to the thickness of the ferroelectric solid material plate:
  • it can also include grooves 6 in the ferroelectric layer 4 surrounding the upper electrode 5 on either side of this electrode.
  • This process essentially comprises the following operations:
  • the thickness of this substrate is variable.
  • Thinning ferroelectric solid material by honing, polishing or ultrasonic machining.
  • the final thickness of the ferroelectric material is defined according to the desired performance of the electro-optical cell.
  • electro-optical cells operating with control voltages of the order of 5 volts are obtained for a modulation bandwidth of approximately 1 GHz.
  • the voltage is rather of the order of 15 volts.
  • the furrows made during the operation f. allow to improve these performances by a factor of at least three.
  • the grooves first of all make it possible to confine the electric field under the surface electrode, eliminating parasitic leakage lines that degrade the bandwidth. They also have the effect of increasing the overlap integral of the electric and optical fields, which promotes the electro-optical interaction and reduces the control voltage. They still have the effect of creating a pseudo-ridge waveguide type of optical waveguide, which improves the optical coupling in the structure and reduces insertion losses of the component.
  • FIG. 4a illustrates the substrate 1 with a metal layer 2 on the upper face, and, separately, a solid crystalline body of ferroelectric material 3, with a layer 2 of the same metal on the lower face. As indicated by the arrows, the two are pressed against each other, to obtain a cold welding at the two layers 2, which merge without exceeding the Curie temperature of the crystalline body 3.
  • the substrate can be glass, silicon, or other rigid material.
  • the metal layer is gold deposited, which lends itself well to cold welding.
  • FIG. 4b illustrates the thinning of the solid crystalline body 3, which loses thickness, as shown in dashed line, and by the arrows, to become the ferroelectric blade 4.
  • FIG. 4c illustrates the deposition of the upper electrode 5 , which can also be in gold.
  • FIG. 4d illustrates the realization of two grooves 6, in the ferroelectric blade 4, at the right of the upper electrode 5 and on both sides thereof. Examples of sizing the different parts of the cell are given in the attached Table II. Electro-optical cells can be obtained whose distance between the electrodes is less than about 300 micrometers. The width of at least one of the electrodes is less than the inter-electrode distance. The inter-electrode distance can go down to values of about ten micrometers.
  • Variants of the invention make it possible to obtain cells operating at choice in phase or intensity modulation. From the proposed device, it becomes possible to realize a light modulator integrated with N independent channels. This is illustrated in FIG. 5.
  • the spacing between the central axes of the electrodes 5 depends directly on the external environment in which the component is placed (optical fibers, laser grating, etc.). For example at least spaced apart from each other by about 250 micrometers, standard width of an optical fiber.
  • compositions and dimensions may be the same as in Table II.
  • N modulation channels in the hundred MHz is interesting in systems in various fields: telecommunications, transmission and signal processing in industrial and / or scientific applications.
  • An N number of channels of the order of 10 is feasible on a single substrate and for a single ferroelectric layer.
  • the N independent channels may be chosen such that N is greater than or equal to 2.
  • phase modulation and polarization switch
  • a dynamic control component of the phase of N independent channels Such a function is useful for example in a fiber laser system, actively using the power combination of N channels. It is then possible to produce a component comprising, for example, 64 integrated modulators either on a single chip or on several juxtaposed chips.
  • the other function identified concerns optical switching between delay lines for the control of microwave antennas. The good optical extinction (25-30dB) and the measured DC stability are undeniable assets. Thanks to the simplified structure of microstrip ("microstrip" in English) of short length and very low capacity, microwave operation is possible but not necessarily necessary for this type of applications.
  • This type of component can be manufactured from the cell manufacturing process already described. This method is modified at the level of the design ("design") of the mask for depositing the upper electrode: the initial patterns are repetitively reproduced over the entire available width of the thinned electro-active material.
  • the two electrodes may be separated by a distance of less than about 300 microns.
  • the electric field can be obtained via an excitation circuit 9 connected to one and the other of the electrodes of the cell to operate as a phase modulator and / or polarization of the light.
  • the excitation circuit 9 may also be arranged for operation as an intensity modulator or as a light switch.
  • the proposed device has marked advantages. For example, for the same control voltage and for crystals of the same thickness, the same electro-optical efficiency is obtained with an interaction length of 10 cm in a lithium Niobate crystal, against an interaction length of only 5 mm. in a SBN crystal.
  • Substrate rigid material (electro4mm 2mm 2mm

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Optical Integrated Circuits (AREA)

Description

CELLULE ELECTRO- OPTIQUE MASSIVE AYANT UNE STRUCTURE FINE ET A BASE DE MATERIAUX A COEFFICIENTS ELECTRO - OPTIQUES GEANTS, SON PROCEDE DE FABRICATION
L'invention concerne le domaine de Γ électro-optique, notamment pour des applications 5 de modulation de lumière.
On connaît des cellules électro-optiques en structure dite « micro-massive ». Comme illustré sur la figure 1, une telle cellule comporte un substrat (1) de verre, de silicium ou tout autre type de substrat dont les propriétés de rigidité et de dilatation thermique sont 10 adaptées au fonctionnement de la cellule, qui supporte une couche de matériau massif ferroélectrique aminci (4). Une électrode (2) est prévue entre le substrat et la couche ferroélectrique, et une autre (5), plus étroite et en regard de la première, est prévue au dessus de la couche ferroélectrique. En fonction des applications, les épaisseurs de chacun des éléments peuvent varier.
15
Une telle cellule est décrite notamment dans la thèse de Doctorat intitulée « MICRO MODULATEURS DE LUMIÈRE À BASE DE CRISTAUX ÉLECTRO-OPTIQUES À COEFFICIENTS GÉANTS » de Marc BOUVROT, soutenue le 08 février 2010 à l'Université de Franche-Comté, Besançon, France.
20
Les modulateurs électro-optiques commerciaux utilisent le Niobate de Lithium. Il possède une température de Curie d'environ 1 134°C, ce qui permet la création de guides d'ondes par diffusion en surface, nécessitant une montée en température de l'ordre de 1000°C. En revanche, ses performances électro-optiques restent modestes.
25
Il existe des matériaux électro-optiques dits à coefficients géants. Ce sont par exemple les matériaux dits SBN ou KTN, que l'on définira en détail plus loin. En revanche, leur température de Curie est basse, et proche de l'ambiante. La fabrication de la cellule peut néanmoins se faire en fixant le cristal (monocristal de type ferroélectrique) de matériau 30 électro-optique sur le substrat par une technique de soudure moléculaire à froid. Mais la Demanderesse a maintenant constaté que l'on ne tire pas complètement parti des avantages attendus des matériaux électro-optiques à coefficients géants. La présente invention vient améliorer la situation.
Une cellule électro-optique, comportant, sur un substrat, une couche de matériau massif ferroélectrique, avec une électrode formant plan-masse, prévue entre le substrat et la couche ferroélectrique, et une autre électrode, filiforme montée en regard de la première au dessus de la couche ferroélectrique, comporte des sillons ménagés dans la couche ferroélectrique, de part et d'autre de l'électrode supérieure. D'autres avantages et caractéristiques de l'invention apparaîtront à la lecture de la description détaillée ci-après et sur les dessins annexés sur lesquels :
la figure 1 , déjà citée, est une vue en coupe schématique d'une cellule électrooptique connue,
la figure 2 est une vue en perspective de la cellule électro-optique de la figure 1 , couplée à deux fibres optiques, en montage expérimental,
la figure 3 est le même type de vue que la Figure 2, mais sans montrer le support, et en faisant en outre apparaître les orientations désirées du cristal, ainsi que les orientations des champs optiques et électriques traversant la cellule,
les figures 4a à 4d sont des vues en coupe schématique, illustrant la fabrication d'une cellule électro-optique proposée ici,
la figure 5 est une vue semblable à la figure 1, mais montrant une cellule multivoies, et
les figures 6a et 6b sont des représentations graphiques de l'intensité détectée normalisée en fonction de la tension appliquée respectivement en mode linéaire et en mode quadratique du KTN.
Les dessins et la description ci-après, avec ses annexes, contiennent, pour l'essentiel, des éléments de caractère certain. Les dessins représentent, pour partie au moins, des aspects difficiles à décrire autrement que par le dessin. Ils font partie intégrante de la description, et pourront donc non seulement servir à mieux faire comprendre la présente invention, mais aussi contribuer à sa définition, le cas échéant. Il en est de même pour les tableaux annexés à la présente description.
On emploiera ici le terme « longueur » pour la direction sensiblement parallèle à la direction de propagation de la lumière (vecteur X sur la figure 3). On emploiera ici les termes « largeur » pour la direction sensiblement perpendiculaire à la direction de propagation de la lumière et dans le plan de la cellule (vecteur Y sur la figure 3). Et le mot « étroit(es) » signifie de faible largeur. On emploiera ici les termes « dessus », « dessous », « supérieur » ou « inférieur » en référence à la direction de l'épaisseur de la cellule (vecteur Z sur la figure 3).
Telle qu'illustrée sur la figure 1, une cellule électro-optique en structure micro-massive comporte un substrat 1 de verre ou de silicium, qui supporte une couche de matériau massif ferroélectrique 4 aminci. Une électrode 2 est prévue entre le substrat et la couche ferroélectrique, et une autre électrode 5, de largeur plus étroite que la première et en regard de celle-ci, est prévue au dessus de la couche de matériau massif. La couche de matériau massif est ici amincie.
On retrouve ces éléments sur la figure 2, qui fait apparaître en outre une fibre optique d'entrée, OF1, et une fibre optique de sortie OF2, dont les cœurs sont couplés optiquement à la couche ferroélectrique 4 qui est comprise entre les électrodes 2 et 5. Cela définit un trajet optique LP10 dans la fibre d'entrée OF1 , puis LP1 1 dans la couche ferroélectrique 4, et LP12 dans la fibre de sortie OF2.
Les applications sont le traitement du signal, les télécommunications par fibres optiques sur courtes et longues distances, les capteurs optiques mais également les lasers, les commutateurs de polarisation ou encore les applications de sélection et d'isolation d'une impulsion optique parmi un train d'impulsion (« pulse-picking » en anglais) d'impulsions courtes, notamment. Le fonctionnement de la cellule repose sur le principe d'interférométrie biréfringente à deux ondes à travers une micro structure capacitive formée par les deux électrodes en vis-à-vis. L'onde électromagnétique optique incidente polarisée rectilignement à l'entrée de la cellule se sépare en deux ondes indépendantes se propageant chacune sur les axes neutres du cristal (axes Y et Z de la figure 3). Les propriétés d'indices différents présents sur chacun de ces axes (n0 et ne) induisent des vitesses de propagation différentes des deux ondes. Ces dernières se recombinent en sortie de cellule pour former une seule onde électromagnétique optique dont l'état de polarisation est différent de celui à l'entrée de la cellule. La commande électrique (E) de la cellule permet de contrôler la différence d'indice (An=n0-ne) entre les deux axes neutres du matériau, et par conséquent de modifier l'état de polarisation de la lumière traversant la zone active localisée sous l'électrode supérieure 5.
La couche ferro électrique 4 est ici un cristal choisi, notamment selon les caractéristiques désirées pour la cellule.
On sait que les matériaux ferroélectriques forment un sous-groupe des matériaux pyroélectriques qui présentent, dans certaines gammes de températures, une polarisation électrique spontanée pouvant être annulée ou réorientée par application d'un champ électrique. Ils sont donc à la fois piézoélectriques et pyroélectriques. Ces matériaux ferroélectriques ont une polarisation globale, et donc une permittivité électrique relative, qui dépend à la fois de la température, des contraintes mécaniques et du champ électrique. De la coexistence de tous ces phénomènes combinés, il découle que l'étude des propriétés physiques de ces matériaux est difficile et progresse peu, malgré l'intérêt important que leurs applications potentielles suscitent depuis de nombreuses années. La thèse précitée est l'un des éléments de ces études. Considérant la structure cristallographique d'un matériau ferroélectrique donné, le chapitre 2 de la thèse montre comment définir un tenseur électro-optique qui représente mathématiquement les propriétés du matériau ferroélectrique, en fonction de l'anisotropie de son indice optique. La thèse montre aussi qu'il existe une orientation privilégiée pour le champ électrique appliqué permettant d'exciter le coefficient électro- optique le plus élevé et d'obtenir l'effet électro-optique le plus important, associée à un coefficient électro-optique noté conventionnellement r33, dont la valeur est plus grande que celle des autres coefficients. Les valeurs de ces tenseurs sont connus et propres à chaque matériau. A titre d'exemple, les valeurs des tenseurs électro-optiques linéaires (effet Pockels) propres au Niobate de Lithium et au SBN sont données en annexe III. En régime linéaire, le Niobate de Lithium a une structure trigonale symétrie 3m tandis que le SBN a une structure tétragonale 4mm.
Concernant les matériaux ferroélectriques à coefficients géants, la valeur du coefficient dominant varie en fonction de la composition du matériau. Pour le SBN typiquement entre 400 et 1400 pm/V. Jusqu'à présent, on a principalement utilisé le Niobate de Lithium, car sa température de Curie d'environ 1134°C est suffisamment élevée pour la création de guides d'ondes par diffusion en surface, nécessitant une montée en température de l'ordre de 1000°C. En revanche, son coefficient r33 reste modeste. II existe des matériaux dont le coefficient r33 est nettement plus favorable que celui du Niobate de Lithium. On les appelle des matériaux électro-optiques à coefficients géants. Ce sont par exemple les matériaux dits SBN (Strontium Baryum Niobium), KTN (Potassium Tantale Niobium). En revanche, leur température de Curie est basse, et proche de l'ambiante, ce qui pose problème. Comme l'expose le chapitre 3 de la thèse, l'un de ces problèmes peut être résolu en fixant le cristal massif de matériau électrooptique sur un substrat adapté par une technique de soudure moléculaire à froid. Cette fixation est à exécuter selon l'orientation voulue pour faire agir le coefficient dominant. Le coefficient dominant, Γ33, doit être orienté selon l'épaisseur de la cellule (vecteur Z sur la figure 3).
La figure 3 est une vue en perspective semblable à la figure 2, le substrat n'étant pas représenté. Elle illustre un positionnement du cristal tel que le coefficient r33 intervient dans la direction verticale Z faisant varier l'indice de polarisation ne (indice dit extraordinaire). Dans les deux autres directions X et Y, il s'agit du coefficient r13, agissant sur l'indice n0 (indice dit ordinaire).
Lorsque le matériau ne possède que deux indices différents, no et ne, il est classé dans la famille des milieux de propagation uniaxes. Lorsque ces trois indices sont tous différents entre eux, le milieu est appelé biaxe. Dans tous les cas, l'indice de l'axe de propagation optique (vecteur X dans la figure 3) n'a aucun effet dans le comportement électro-optique global de la cellule. On procédera maintenant à un examen plus détaillé de l'art antérieur.
L'état de l'art comprend deux grands types de modulateurs par effet électrooptique fonctionnant sur Niobate de Lithium :
- les cellules de Pockels utilisées dans les lasers en général, ou pour les besoins de modulation dans l'espace libre, et
- les modulateurs intégrés exploités pour les besoins des télécommunications par fibres optiques à très haut débit.
L'effet électro-optique permet de modifier, sous l'effet d'un champ électrique E, l'indice de réfraction d'un matériau électro-actif, et par conséquent de contrôler l'état de polarisation de la lumière traversant la cellule.
Les cellules de Pockels exploitent une structure massive capacitive entre deux électrodes pour des applications en injection optique libre (sans guide d'onde). Cependant, ce type de composant impose des écarts importants entre les électrodes dus au matériau massif utilisé. Ceci induit des tensions de commande très élevées atteignant quelques milliers de volts, et par conséquent de faibles bandes passantes de modulation ou même le fonctionnement à une seule fréquence de modulation. Ceci induit également l'utilisation d'un circuit d'excitation ou pilote électrique (« driver » en anglais) particulier, adapté spécifiquement à chaque cellule dont le coût est en général du même ordre de grandeur que la cellule elle-même.
Les modulateurs intégrés sur Niobate de Lithium reposent sur une structure complexe, par exemple celle décrite dans FR0014804. Leur fonctionnement exploite le principe d'interféromètre de Mach-Zehnder. La modulation s'opère sur le déséquilibre d'un des bras du Mach-Zehnder par rapport à l'autre, modifiant les interactions lumineuses lors de la recombinaison des deux faisceaux en sortie d'interféromètre. Cette technologie s'appuie sur une structure guidante diffusée en surface, permettant le guidage de la lumière dans les bras du Mach-Zehnder. En revanche, la nécessité de séparer le faisceau optique dans les bras ainsi que la valeur modérée du coefficient électro-optique r33 en jeu, nécessitent des grandes longueurs de puce, respectivement pour limiter les pertes par courbure du guide d'une part, et pour obtenir suffisamment d'effet électro-optique d'autre part sur toute la longueur d'interaction. Les longueurs d'interaction en jeu nécessitent un dessin (« design ») particulier d'électrodes à onde progressive, de façon à adapter les vitesses de propagation des champs électromagnétiques optiques et électriques. Cette adaptation permet en effet à l'onde optique de se trouver en présence de la même modulation d'indice tout au long de sa propagation dans les bras.
Toutefois, cette technologie reste incompatible avec les matériaux à coefficients géants pour des raisons de propriétés intrinsèques des matériaux. La principale limitation est la température de Curie des matériaux. Cette température correspond à une limite entre deux états du matériau. En dessous de cette température, le matériau possède une polarisation spontanée : c'est la phase ferroélectrique. Au dessus de cette température, le matériau change d'état en perdant cette polarisation : c'est l'état paraélectrique. Il est donc important de toujours rester en dessous de cette température, notamment lors des étapes technologiques de fabrication, pour conserver les propriétés initiales voulues. Le Niobate de Lithium possède une température de Curie d'environ 1134°C, ce qui permet la création de guide d'onde diffusé en surface nécessitant une montée en température jusqu'à environ 1000°C. Les matériaux à coefficients géants possèdent des températures de Curie variables en fonction de leur constitution, mais typiquement, celles-ci ne dépassent pas la centaine de degré Celsius, qui rend impossible la création de guides diffusés.
Niobate de Lithium (LiNbO )
Le Niobate de Lithium est actuellement l'un des matériaux les plus utilisés en optique intégrée grâce à la combinaison de ses nombreuses propriétés et caractéristiques. Ces caractéristiques permettent d'adapter la réponse du matériau. Le Niobate de Lithium permet la réalisation de divers composants photoniques. Il est en outre possible de faire croître des cristaux aux excellentes qualités optiques. La méthode la plus répandue pour faire croître ce cristal, inexistant à l'état naturel, est la méthode Czochralski, qui permet la fabrication de cristaux très homogènes de plusieurs kilogrammes, et ce à relativement faible coût. De tels monocristaux possèdent des propriétés électro-optiques, piézoélectriques, photoélastiques et de non-linéarités optiques intéressantes.
Ce matériau est un composé chimique de Niobium, de Lithium et d'Oxygène (LiNb03) de structure cristalline trigonale, transparent pour des longueurs d'ondes entre 350 et 5000 nanomètres et exhibant un effet électro-optique Pockels. Sa biréfringence dépend fortement de la température : un ajustement précis de celle-ci permet de contrôler un éventuel accord de phase. Dans sa forme cristalline, il se présente sous la forme d'un matériau solide, chimiquement très stable à température ambiante faisant ainsi de lui un matériau particulièrement attractif pour des applications en optique spatiale ou intégrée. Sa température de Curie élevée lui permet de préserver ses propriétés ferroélectriques lors des processus technologiques de mise en forme. Ses tenseurs et coefficients électrooptiques, donnés en Annexe III, au point III.1 , restent faibles mais néanmoins suffisants grâce à la technologie de guides d'onde diffusés permettant d'obtenir de grandes longueurs d'interaction et de faibles distances entre électrodes (donc un fort champ électrique local).
Depuis plusieurs décennies, il existe des systèmes commerciaux électro-optiques tels que les modulateurs rapides utilisés dans les télécommunications optiques. Les développements récents permettent d'atteindre des fréquences de modulation autorisant des débits supérieurs à 40 Gb/s. Par ailleurs, on trouve aujourd'hui de nombreux composants en optique intégrée sur LiNb03, tels que des commutateurs, des coupleurs, des interféromètres Mach-Zehnder exploitant les propriétés électro-optiques de ce matériau.
La Demanderesse a comparé le Niobate de Lithium à d'autres matériaux ferroélectriques, dont les cristaux KTN et SBN. L'essentiel de cette comparaison figure dans le tableau I annexé. Niobate de Tantale et Potassium (KTN)
Ce composé, très utilisé pour ces propriétés non-linéaires, résulte d'un assemblage de composés solides de KNb03 et KTa03 dont les proportions peuvent être choisies. La grande différence de température de Curie Te entre ces deux composés (7c = 428°C pour KNb03 contre Te = -260°C pour KTa03) permet, en ajustant les proportions de Tantale et de Niobium, d'obtenir une température de Curie de l'ensemble KTaNb03 qui se situe entre -38 et 428°C. Le matériau ferroélectrique possède donc une température de Curie inférieure à 1000°C. En phase paraélectrique, le matériau KTN possède une maille cristalline cubique : le matériau est isotrope. L'application d'un champ électrique au matériau va avoir pour effet de modifier la maille cubique en une maille tétragonale, et ainsi faire apparaître la nature biréfringente du cristal, via l'effet électro-optique. Sous la forme de cristal massif, le KTN est un cristal transparent sur la fenêtre 400-4000nm, possédant la particularité d'exciter un effet électro-optique quadratique Kerr.
Ainsi, le KTN est généralement connu pour un usage en mode quadratique par opposition au mode linéaire. Le mode linéaire est observable aux températures inférieures à la température de Curie, proche de 0°C. L'intensité optique détectée en fonction de la tension appliquée est représentée en figure 6a. Le comportement en régime linéaire présente un motif, de type sinusoïdal, répété par pas constant de tension appliquée. Les pentes d'efficacité sont identiques pour les différentes plages de tension appliquée. Mais la Demanderesse a observé que l'on peut le faire travailler en mode linéaire local' tout en étant en mode quadratique, c'est-à-dire au-dessus de la température de Curie. En mode quadratique, l'intensité optique détectée en fonction de la tension appliquée est visible en figure 6b. Le comportement en régime quadratique présente des motifs dont la période diminue lorsque la tension appliquée augmente. Les pentes d'efficacité augmentent donc significativement lors de l'augmentation de la tension appliquée, cf. partie droite de la figure 6b. En régime quadratique, la pente ρβ pour une tension appliquée proche de 40 Volts est plus importante que la pente β pour une tension appliquée proche de 10 Volts qui est elle-même plus importante qu'une pente a pour une tension appliquée proche de 10 Volts dans un régime linéaire. La cellule à base de KTN peut donc être excitée de sorte que le matériau ferroélectrique soit utilisé en régime linéaire. L'intérêt de ce matériau porte sur les faibles tensions nécessaires pour augmenter la pente d'efficacité qui reste tout de même linéaire.
Ainsi, il est possible d'utiliser le KTN en régime linéaire, dont le coefficient est de l'ordre de plusieurs centaines de picomètres par volt, très nettement supérieur à celui du Niobate de Lithium, en se plaçant dans sa phase ferroélectrique sous la température de Curie.
Niobate de Strontium et Baryum (SEN)
Le SrBaNb206 est un cristal ferroélectrique très utilisé de nos jours pour ses propriétés piézoélectriques, pyroélectriques, électro-optiques et en règle générale d'optiques non linéaires du second ordre, pour des besoins de photoréfractivité par exemple dans la création de guides par effet photoréfractif enterrés ë rnais temporaires car dégradables à la lumière visible.
Ce cristal correspond à un assemblage de composés solides de BaNb206 et de SrNb206, pour aboutir finalement au cristal complet SrxBa1-xNb206. Ce matériau possède une structure cristalline tétragonale 4mm, dont la concentration partielle en Baryum (Ba) par rapport au Strontium (Sr) peut-être ajustée de 20 à 80 %. Le tenseur de cette structure ainsi que les valeurs de ses coefficients électro-optiques sont donnés en Annexe III, au point III.2. A titre d'exemple, le SBN:61 aura la composition Sr0 6iBa0 39Nb2O6 et le SBN:34 la composition Sr0.34Ba0.66Nb2O6. Sa température de Curie Te est très faible par rapport au LiNb03 : elle varie de l'ambiante (environ 22°C) pour une composition riche en Strontium, à 80°C pour les compositions riches en Baryum.
Le Niobate de Strontium et Baryum possède un régime de fonctionnement paraélectrique lorsqu'il est maintenu à une température supérieure à celle de Curie, et un régime ferroélectrique lorsque sa température est inférieure Te.
Les propriétés électro-optiques de ce cristal sont très sensibles à sa composition. Les valeurs des coefficients r33 peuvent ainsi varier de 400 à 1400 pm/V soit environ 12 à 40 fois celles de LiNb03. Dans le cas du SBN par exemple, plus la concentration en Strontium est importante plus le coefficient r33 est fort, mais plus la température de Curie est basse. En fonction des utilisations, le meilleur compromis sera choisi.
Il est proposé ici d'exploiter les « propriétés géantes » des matériaux ferroélectriques à coefficients géants en structure micro massive, réduisant considérablement les tensions de commande ainsi que les longueurs d'interaction nécessaires. Le matériau ferroélectrique pourra comprendre l'un au moins des matériaux dits SBN, KTN, KNSBN, et leurs mélanges.
Comme on peut le voir dans les figures 1 à 3, la structure est composée d'une lame fine du matériau massif ferroélectrique 4 choisi entre deux métallisations 2 et 5 réalisant la fonction d'électrodes d'excitation électrique très large bande de type capacitives. Cette excitation génère un champ électrique en V/d, V étant le potentiel appliqué et d l'épaisseur de la lame. Ce champ est donc d'autant plus important que l'épaisseur est fine. La modulation obtenue correspond à une modulation de biréfringence électro- optiquement induite se traduisant par une modification de l'état de polarisation de la lumière en fonction de la longueur d'interaction L. Il apparaît un décalage de phase ou déphasage Δφ entre les deux composantes de l'onde optique. Ce déphasage est proportionnel à la longueur d'interaction, au champ électrique appliqué ainsi qu'au coefficient r33 et inversement proportionnel à l'épaisseur de la lame de matériau massif ferroélectrique :
Δφ a r^.L. V/d.
On définit ainsi les principaux paramètres :
- Rapport géométrique de la structure créée ( /d),
- Propriété tensorielle du matériau choisi (r33),
- Tension de commande nécessaire Vn (pour obtenir un déphasage de π) Détail de l'invention
De façon à améliorer les performances de la cellule, celle-ci peut également comporter des sillons 6 dans la couche ferroélectrique 4 entourant l'électrode supérieure 5 de part et d'autre de cette électrode.
On décrira maintenant un procédé de réalisation de ce type de modulateur. Ce procédé comporte pour l'essentiel les opérations suivantes :
a. Réalisation d'un dépôt métallique sur le substrat choisi (verre/silicium/matériau rigide) : l'épaisseur de ce substrat est variable.
b. Réalisation d'un dépôt similaire sur le matériau ferroélectrique ; en fonction des applications, différents matériaux sont privilégiés.
c. Report du matériau ferroélectrique sur le substrat par soudure moléculaire à froid par pression.
d. Amincissement du matériau massif ferroélectrique par rodage, polissage ou par usinage ultrasonore. L'épaisseur finale du matériau ferroélectrique est définie en fonction des performances souhaitées de la cellule électro-optique.
e. Réalisation d'au moins une électrode de surface par photolithographie.
f. Réalisation de sillons de part et d'autre de l'électrode de surface. Ces sillons sont obtenus par ablation de matière, par usinage au laser femto-seconde, par usinage ultrasonore ou par trait de découpe à la scie.
g. Découpe et polissage des accès optiques en entrée et sortie de la cellule.
Grâce à ce procédé de réalisation on obtient des cellules électro-optiques fonctionnant avec des tensions de commande de l'ordre de 5 volts pour une bande passante de modulation d'environ 1 GHz. Sans sillons, la tension est plutôt de l'ordre de 15 volts. Les sillons réalisés à l'opération f. permettent d'améliorer ces performances d'un facteur au moins égal à trois. Les sillons permettent tout d'abord de confiner le champ électrique sous l'électrode de surface, en éliminant les lignes de champ de fuite parasites qui dégradent la bande passante. Ils ont également pour effet d'augmenter l'intégrale de recouvrement des champs électrique et optique, ce qui favorise l'interaction électro -optique et permet de réduire la tension de commande. Ils ont encore pour effet de créer un pseudo-guide d'onde optique de type guide d'onde nervuré (« ridge waveguide » en anglais), ce qui améliore le couplage optique dans la structure et permet de réduire les pertes d'insertion du composant.
La figure 4a illustre le substrat 1 avec une couche métallique 2 en face supérieure, et, séparément, un corps cristallin massif de matériau ferroélectrique 3, avec une couche 2 du même métal en face inférieure. Comme l'indiquent les flèches, on presse les deux l'un sur l'autre, pour obtenir un soudage à froid au niveau des deux couches 2, qui fusionnent sans dépassement de la température de Curie du corps cristallin 3. Le substrat peut être en verre, silicium, ou autre matériau rigide. Dans un exemple la couche métallique est en or déposé, qui se prête bien au soudage à froid.
La figure 4b illustre l'amincissement du corps cristallin massif 3, qui perd de l'épaisseur, comme illustré en trait tireté, et par les flèches, pour devenir la lame ferroélectrique 4. La figure 4c illustre le dépôt de l'électrode supérieure 5, qui peut elle aussi être en or.
La figure 4d illustre la réalisation de deux sillons 6, dans la lame ferroélectrique 4, au droit de l'électrode supérieure 5 et de part et d'autre de celle-ci. Des exemples de dimensionnement des différentes parties de la cellule sont donnés dans le tableau II annexé. On peut obtenir des cellules électro-optiques dont la distance entre les électrodes est inférieure à 300 micromètres environ. La largeur de l'une au moins des électrodes est inférieure à la distance inter-électrodes. La distance inter-électrodes peut descendre jusqu'à des valeurs d'environ une dizaine de micromètres.
Des variantes de l'invention permettent d'obtenir des cellules fonctionnant au choix en modulation de phase ou d'intensité. A partir du dispositif proposé, il devient possible de réaliser un modulateur de lumière intégré à N voies indépendantes. Ceci est illustré sur la figure 5. Les éléments sont les mêmes que sur la figure 4d, à ceci près que l'on a réalisé N = 5 voies sur le même substrat et à partir du même corps de matériau électrooptique massif aminci. L'écartement entre les axes centraux des électrodes 5 dépend directement de l'environnement extérieur dans lequel le composant est placé (fibres optiques, réseau laser...). Par exemple au moins écartées entre elles d'environ 250 micromètres, largeur standard d'une fibre optique.
Les compositions et dimensions peuvent être les mêmes que dans le tableau II.
Même sans pousser la bande dans le domaine micro-onde, on peut raisonnablement penser qu'un tel produit miniature à N voies de modulation dans la centaine de MHz est intéressant dans des systèmes relevant de domaines variés : télécommunications, transmission et traitement de signaux dans des applications industrielles et/ou scientifiques. Un nombre N de voies de l'ordre de 10 est réalisable sur un seul substrat et pour une seule couche ferroélectrique. Les N voies indépendantes pourront être choisies telles que N soit supérieur ou égal à 2.
Deux modes de travail sont possibles, non limitativement : la modulation de phase, et le commutateur de polarisation (« polarisation switch », en anglais).
Dans le premier cas, on obtient un composant de contrôle dynamique de la phase de N voies indépendantes. Une telle fonction est utile par exemple dans un système de laser à fibre, utilisant de manière active la combinaison de puissance de N voies. On peut alors réaliser un composant comprenant par exemple 64 modulateurs intégrés soit sur une unique puce, soit sur plusieurs puces juxtaposées. L'autre fonction identifiée concerne la commutation optique entre lignes à retard pour la commande d'antennes hyper-fréquences. La bonne extinction optique (25-30dB) et la stabilité en courant continu mesurées sont des atouts indéniables. Grâce à la structure simplifiée du microruban (« microstrip » en anglais) de faible longueur et de très faible capacité, le fonctionnement hyperfréquence est possible mais pas forcément nécessaire pour ce type d'applications. Les contraintes géométriques ne représentent donc pas un verrou technique, et permettent de réduire les tensions de commande électrique jusque dans la gamme de quelques volts. Ce type de composant peut se fabriquer à partir du procédé de fabrication des cellules déjà décrit. Ce procédé est modifié au niveau du dessin (« design ») du masque pour le dépôt de l'électrode supérieure : on reproduit répétitivement les motifs initiaux sur toute la largeur disponible du matériau électro-actif aminci.
Il est proposé ici un modulateur de lumière exploitant les propriétés massives des matériaux ferroélectriques à coefficients géants en structure amincies, dont l'épaisseur varie en fonction des performances du composant souhaitées. Sous l'effet d'un champ électrique, l'indice de réfraction de matériau est modifié. Il est donc possible grâce à l'invention, de réaliser des applications de modulation externes de façon électro-optique avec des composants de dimensions submillimétriques. Par exemple, les deux électrodes pourront être séparées d'une distance inférieure à 300 micromètres environ. Le champ électrique pourra être obtenu par l'intermédiaire d'un circuit d'excitation 9 connecté à l'une et l'autre des électrodes de la cellule pour la faire fonctionner en modulateur de phase et/ou de polarisation de la lumière. Le circuit d'excitation 9 pourra également être agencé pour un fonctionnement en modulateur d'intensité ou en commutateur de la lumière.
Le dispositif proposé présente des avantages marqués. Par exemple, pour une même tension de commande et pour des cristaux de même épaisseur, la même efficacité électro-optique est obtenue avec une longueur d'interaction de 10cm dans un cristal de Niobate de Lithium, contre une longueur d'interaction de seulement 5mm dans un cristal de SBN.
Les avantages apportés sont donc :
- forte augmentation de l'efficacité de modulation optique,
- forte miniaturisation de la longueur d'interaction,
- bande passante de modulation en radiofréquence,
- structure électro-optique simplifiée (interféromètre biréfringent sans guide d'onde), - technologie de réalisation collective, avec intégration de composants multi modulateurs indépendants sur un même composant.
ANNEXES A LA DESCRIPTION
Tableau I :
Tableau II :
Dimensions
Parties Nature
Longueur Largeur Epaisseur
Verre, Silicium ou
500μη à 800μιη à 500μηι à
1 Substrat matériau rigide (électro4mm 2mm 2mm
optique ou non)
Couche métallique / 500μιτι à 800μπι à
2 2000Â Chrome-Or
électrode de masse 4mm 2mm
Matériau électro500μιη à 800μηι à 500μιτι à Ferroélectriques :
3
actif massif initial 4mm 2mm 1mm SBN, KTN, KNSBN.
Matériau électro500μπι à 800μιη à ΙΟμιη à Ferroélectriques :
4
actif massif aminci 4mm 2mm 200μm SBN, KTN, KNSBN.
Electrode 500μπι à ΙΟμπι à
5 2000Â Chrome-Or
supérieure 4mm 200μιη
80% de
500μηι à 100 à Air ou matériau d'indice
6 Sillons l'épaisseur
4mm 300μιη faible
de 4
Annexe III
III.1 LiNb03
III.2 SBN:60

Claims

REVENDICATIONS
1. Cellule électro -optique, comportant, sur un substrat (1), une couche de matériau massif ferroélectrique (4), avec une électrode (2) formant plan-masse, prévue entre le substrat (1) et la couche ferroélectrique (4), et une autre électrode (5) étroite, montée en regard de la première au-dessus de la couche ferroélectrique, caractérisée en ce qu'elle comporte des sillons (6) ménagés dans la couche ferroélectrique, de part et d'autre de l'électrode supérieure (5).
2. Cellule électro-optique selon la revendication 1, caractérisé en ce que le matériau ferroélectrique (4) possède une température de Curie inférieure à 1000° C, et en ce que la distance entre les deux électrodes (2, 5) est inférieure à 300 micromètres, environ.
3. Cellule électro-optique selon l'une des revendications 1 et 2, caractérisée en ce que le matériau ferroélectrique comprend l'un au moins des matériaux dits SBN, KTN, KNSBN, et leurs mélanges.
4. Cellule électro-optique selon l'une des revendications 1 à 3, caractérisée en ce qu'elle est excitée de sorte que le matériau ferroélectrique soit utilisé en régime linéaire.
5. Cellule électro-optique selon l'une des revendications 1 à 4, caractérisée en ce que la distance entre les deux électrodes (2, 5) est d'environ 10 micromètres, la largeur de l'électrode étroite (5) étant inférieure à la distance inter-électrodes.
6. Cellule électro-optique selon l'une des revendications 1 à 5, caractérisée en ce qu'elle comprend N agencements sensiblement parallèles entre eux d'électrodes étroites (5) chacune encadrée de sillons (6), ces N agencements formant N voies indépendantes, où N est supérieur ou égal à 2.
7. Cellule électro-optique selon l'une des revendications 1 à 6, caractérisée en ce qu'elle est munie d'un circuit d'excitation (9) agencé pour la faire fonctionner en modulateur de phase de la lumière.
8. Cellule électro-optique selon l'une des revendications 1 à 7, caractérisée en ce qu'elle est munie d'un circuit d'excitation (9) agencé pour la faire fonctionner en modulateur de polarisation de la lumière.
9. Cellule électro-optique selon l'une des revendications 1 à 8, caractérisée en ce qu'elle est munie d'un circuit d'excitation (9) agencé pour la faire fonctionner en modulateur d'intensité ou commutateur de lumière.
10. Procédé de fabrication d'une cellule électro-optique comprenant les étapes suivantes :
a) réalisation d'un dépôt métallique sur un substrat choisi,
b) réalisation d'un dépôt similaire sur un matériau ferroélectrique,
c) report du matériau ferroélectrique sur le substrat par soudure moléculaire à froid, d) amincissement du matériau ferroélectrique,
e) réalisation d'au moins une électrode de surface par photolithographie, f) réalisation de sillons de part et d'autre de l'électrode de surface, les sillons étant obtenus par ablation de matière,
g) découpe et polissage des accès optiques en entrée et sortie de la cellule
EP12708553.8A 2011-01-26 2012-01-23 Cellule electro- optique massive ayant une structure fine et a base de materiaux a coefficients electro - optiques geants, son procede de fabrication Ceased EP2668541A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1100231A FR2970788B1 (fr) 2011-01-26 2011-01-26 Circuit electro-optique en structure micro-massive a base de matériaux electro-optiques a coefficient géant, et procédé de fabrication
PCT/FR2012/000029 WO2012101349A1 (fr) 2011-01-26 2012-01-23 Cellule electro- optique massive ayant une structure fine et a base de materiaux a coefficients electro - optiques geants, son procede de fabrication

Publications (1)

Publication Number Publication Date
EP2668541A1 true EP2668541A1 (fr) 2013-12-04

Family

ID=44314094

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12708553.8A Ceased EP2668541A1 (fr) 2011-01-26 2012-01-23 Cellule electro- optique massive ayant une structure fine et a base de materiaux a coefficients electro - optiques geants, son procede de fabrication

Country Status (5)

Country Link
US (1) US9036239B2 (fr)
EP (1) EP2668541A1 (fr)
CN (1) CN103534635B (fr)
FR (1) FR2970788B1 (fr)
WO (1) WO2012101349A1 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3189100A2 (fr) 2014-09-05 2017-07-12 ExxonMobil Chemical Patents Inc. Compositions de polymères et matières non tissées préparées à partir de celles-ci
CN104849498A (zh) * 2015-05-22 2015-08-19 重庆科技学院 原位观察铁电材料在电场作用前后电畴结构的装置及方法
CN109844621A (zh) * 2016-08-12 2019-06-04 哈佛学院院长等 微机械薄膜锂铌酸锂电光装置
CN111051970B (zh) * 2017-08-24 2023-08-11 Tdk株式会社 光调制器
KR102171432B1 (ko) * 2018-08-03 2020-10-29 한국과학기술연구원 강유전체 물질을 이용하는 광 위상 변환기 및 광 스위치 소자
CN115145062A (zh) * 2021-03-30 2022-10-04 Tdk株式会社 光学器件

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060109542A1 (en) * 2003-01-15 2006-05-25 Matsushita Electric Industrial Co., Ltd. Optical waveguide device, optical waveguide laser using the same and optical apparatus having same

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4993811A (en) * 1988-12-08 1991-02-19 Eastman Kodak Company Ridge array light valve device
DE69026766T2 (de) * 1989-05-18 1996-11-28 Sony Corp Verfahren zur Kontrolle der ferroelektrischen Domänen eines nichtlinearen optischen Substrates
EP0532969B1 (fr) * 1991-09-18 1997-12-17 Fujitsu Limited Dispositif d'illumination et projecteur l'utilisant
US5756263A (en) * 1995-05-30 1998-05-26 Eastman Kodak Company Method of inverting ferroelectric domains by application of controlled electric field
US6310712B1 (en) * 1997-10-29 2001-10-30 Teloptics Corporation Discrete element light modulating microstructure devices
US6069729A (en) * 1999-01-20 2000-05-30 Northwestern University High speed electro-optic modulator
JP2000305117A (ja) * 1999-02-19 2000-11-02 Fuji Xerox Co Ltd 光デバイス、光デバイスの駆動方法、及び光デバイスの製造方法
US7440161B2 (en) * 2004-03-24 2008-10-21 Matsushita Electric Industrial Co., Ltd. Optical element and method for forming domain inversion regions
EP1795946B1 (fr) * 2004-09-29 2019-05-22 NGK Insulators, Ltd. Dispositif à fonctionnement optique
EP1801625B1 (fr) * 2004-10-12 2019-11-20 NGK Insulators, Ltd. Substrat de guide d onde optique et dispositif générateur d harmoniques
JP4662872B2 (ja) * 2006-03-20 2011-03-30 日本碍子株式会社 波長変換素子
JP2008209449A (ja) * 2007-02-23 2008-09-11 Ngk Insulators Ltd 波長変換素子
US8508318B2 (en) * 2007-03-16 2013-08-13 Nec Corporation Transmission line filter

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060109542A1 (en) * 2003-01-15 2006-05-25 Matsushita Electric Industrial Co., Ltd. Optical waveguide device, optical waveguide laser using the same and optical apparatus having same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2012101349A1 *

Also Published As

Publication number Publication date
CN103534635A (zh) 2014-01-22
FR2970788A1 (fr) 2012-07-27
CN103534635B (zh) 2016-08-31
US9036239B2 (en) 2015-05-19
WO2012101349A1 (fr) 2012-08-02
FR2970788B1 (fr) 2013-07-26
US20140036335A1 (en) 2014-02-06

Similar Documents

Publication Publication Date Title
EP3009879B1 (fr) Modulateur de phase électro-optique et procédé de modulation
EP0017571B1 (fr) Modulateur d'intensité lumineuse en optique intégrée et circuit optique intégré comportant un tel modulateur
EP0112732B1 (fr) Dispositif coupleur optique intégré non linéaire, et oscillateur paramétrique comprenant un tel dispositif
EP2628243B1 (fr) Structure acoustique heterogene formee a partir d'un materiau homogene
EP2668541A1 (fr) Cellule electro- optique massive ayant une structure fine et a base de materiaux a coefficients electro - optiques geants, son procede de fabrication
EP2278708B1 (fr) Dispositif résonant à ondes acoustiques guidées et procédé de réalisation du dispositif
FR2724778A1 (fr) Dispositif a guide d'ondes optique a semiconducteurs, commutateur optique du type a commande optique et dispositif de converstion de longueur d'onde
EP2141520A1 (fr) Dispositif de couplage à birefringence compensée
FR2695216A1 (fr) Commutateur optique ayant une direction de propagation proche de l'axe Z du matériau électro-optique.
EP1412814B1 (fr) Modulateurs electro-optiques large bande
EP1008892A1 (fr) Modulateur de phase à semi-conducteur
EP0099282B1 (fr) Dispositif optique intégré modulateur indépendant de la polarisation incidente
FR2784243A1 (fr) Amplificateur optique en semi-conducteur
EP1829172A1 (fr) Source laser a recombinaison coherente de faisceaux
EP2144113B1 (fr) Dispositif optique comportant un cristal photonique a base de GaInP sans absorption à deux photons
EP1253462B1 (fr) Emetteur optique comprenant un modulateur compose d'une pluralite d'éléments de modulation
WO2002103443A1 (fr) Dispositif electrooptique, formant notamment commutateur, a base de cristaux liquides
EP0805371B1 (fr) Modulateur électro-optique à puits quantiques
EP0783127A1 (fr) Modulateur de phase électro-optique pour fibre optique monomode
EP4055671B1 (fr) Laser à verrouillage de mode à tranchées et composant optique associé
EP0604303B1 (fr) Source cohérente optique à émission accordable
FR2840415A1 (fr) Procede de realisation de microguides optiques a tres faibles pertes
FR2684194A1 (fr) Dispositif acousto-optique utilisant un materiau, notamment un materiau semi-conducteur, au voisinage de son seuil d'absorption optique.
FR2725048A1 (fr) Dispositif de modulation de phase utilisant l'effet electroclinique dans un cristal liquide en phase chirale smectique a*
WO2003007056A1 (fr) Filtre commandable a commutation rapide

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130717

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20150327

REG Reference to a national code

Ref country code: DE

Ref legal event code: R003

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20161111