EP2662929A1 - Phased array antenna and method for processing received signals in a phased array antenna - Google Patents

Phased array antenna and method for processing received signals in a phased array antenna Download PDF

Info

Publication number
EP2662929A1
EP2662929A1 EP13002387.2A EP13002387A EP2662929A1 EP 2662929 A1 EP2662929 A1 EP 2662929A1 EP 13002387 A EP13002387 A EP 13002387A EP 2662929 A1 EP2662929 A1 EP 2662929A1
Authority
EP
European Patent Office
Prior art keywords
signal
array antenna
phased array
phase
oscillator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP13002387.2A
Other languages
German (de)
French (fr)
Other versions
EP2662929B1 (en
Inventor
Wolfgang Schlecker
Michael Epp
Georg J. Vallant
Walter Ludwig
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hensoldt Sensors GmbH
Original Assignee
EADS Deutschland GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EADS Deutschland GmbH filed Critical EADS Deutschland GmbH
Publication of EP2662929A1 publication Critical patent/EP2662929A1/en
Application granted granted Critical
Publication of EP2662929B1 publication Critical patent/EP2662929B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/34Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means
    • H01Q3/42Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means using frequency-mixing

Definitions

  • the invention relates to a method for processing received signals in a phased array antenna according to the features of patent claim 1 and a phased array antenna according to the features of patent claim 3.
  • FIG. 1 The structure of an N-channel phased array antenna with digital beam shaping is shown schematically.
  • the use of a plurality of receiving channels shown in FIG. 5 achieves a directivity in the surroundings of the radar device.
  • the dynamic range over a single receiver system increases by a factor of 10log 10 (N) dB, where N expresses the number of channels used and n expresses the run index for the nth channel.
  • N log 10
  • the high-frequency signals X 1 ,..., X N provided by the antenna elements E 1 ,..., E N are fed to the analogue receiver stages ARX 1 ,..., ARX N.
  • the high frequency signals X 1 , ..., X N are converted to a lower intermediate frequency U 1 , ..., U N.
  • a mixing signal BO from the block central base oscillator 6 of the analog receiver unit 2 is supplied.
  • the internal distribution of the central BO takes place at each analogue receiver stage ARX 1 ,..., ARX N.
  • the intermediate frequency signals U 1 ,..., U n generated by the mixing process of X 1 ,..., X N with the oscillator signals derived from BO are subsequently supplied to the digital receiver unit 3.
  • the analog signals with the analog-to-digital converters ADC 1 , ..., ADC N are first converted into digital signals.
  • the downstream digital preprocessing unit PP 1 ,..., PP N the complex baseband signals IQ 1 ,..., IQ N are generated.
  • a complex baseband signal IQ n is vectorially composed of a real part Re ⁇ IQ n ⁇ and an imaginary part Im ⁇ IQ n ⁇ .
  • the digital beamforming processing unit 4 is part of a signal processor and uses all signals IQ 1 , ..., IQ N provided by the N individual channels to form a number J beams B 1 , ..., B J. As a rule, the number of beams is: J ⁇ N. These beams provide directional access to distance and speed information. The concept is explained independently of the selected modulation type.
  • the signal LO 1 provided by the local LO 1 is extracted from the central base oscillator BO (reference 6) in FIG Fig. 1 , derived.
  • the central base oscillator 6 provides a local LO signal of identical frequency to each receiving element.
  • the intermediate frequency signal U 1 is generated.
  • the digitization of the value and time-continuous signal U 1 in the signal D 1 takes place in the analog-to-digital converter (ADC 1 ).
  • ADC 1 and PP 1 form a digital individual receiver 10 in the network.
  • the processing work Digital Beamforming 4 is described below Fig .1 explained in more detail.
  • the direction-dependent phase shifts ⁇ 1 - ⁇ N remain in the conversion of the signals X 1 , ..., X N to IQ 1 , ..., IQ N obtained and can in the mixer units P 1 , ..., P N in 4 each be applied inversely.
  • the object of the invention is to provide a method in which occurring in the receiver harmonics are suppressed by the selected signal processing concept and the trouble-free dynamic range is improved over all angles ⁇ . Another object is to provide a corresponding antenna.
  • Fig. 3 shows schematically the construction according to the invention of an N-channel phased array antenna with digital beam shaping including the decorrelation units 8,9.
  • receive signals X 1 ,..., X N are processed in a phased array antenna having a plurality of receive elements E 1 ,..., E N , each having an associated receive path, an analog intermediate frequency signal U 1 in each receive path , ..., U N produced by mixing the reception signal X 1, ..., X N with an oscillator signal LO 1, ...
  • each receiving element of the phased array antenna is exactly one individual phase variable from - ⁇ to: + ⁇ normal-distributed phase value ⁇ r, 1 , .., ⁇ r, N within the first Is assigned to the oscillator signal these normally distributed phase values ⁇ r, 1 , .., ⁇ r, N and that within the second decorrelation unit 9 in each receive path to the complex baseband signal IQ 1 , ..
  • IQ N is one of the receiving direction of the antenna corresponding phase shift ⁇ rx, 1 , .., ⁇ rx, N in which the normally distributed phase values ⁇ r, 1 , .., ⁇ r, N are considered inversely applied.
  • the first decorrelation unit 8 and the second decorrelation unit 9 differ in that the first decorrelation unit 8 has a channel-dependent phase shift added in the analog part of the receiver whereas the second decorrelation unit 9 inversely applies the added channel-dependent phase shift in the digital part of the receiver and thus reverses it.
  • the introduced blocks RX 1 , ..., RX 2 each denote the union of ADC and PP in each channel (see also FIG Fig. 1 .).
  • an amplitude weighting may additionally be performed, the application of a weighting function does not affect the subject matter of this invention.
  • ⁇ inv - ⁇
  • [ ⁇ 1 ⁇ 2 ⁇ 3 ... ⁇ N ]
  • the phased array antenna comprises a plurality of receiving elements E 1 , ..., E N , N local oscillators, which may be connected to a base oscillator, for example, for generating the oscillator signals, mixers for mixing the oscillator signals LO 1 ,. LO N with correspondingly received by the receiving elements E 1 , ..., E N received signals, analog-to-digital converter circuits and a signal processor, each receiving element E 1 , ..., E N a mixer LO 1 , ..., LO N is assigned.
  • the inventive phased array antenna is characterized in an embodiment in that the oscillator LO 1 , ..., LO N with each mixer LO 1 , ..., LO N is connected via signal lines, each signal line a targeted additive length deviation whose length is itself normally distributed.
  • a phased array antenna according to the invention can thus be constructed such that either each signal line is assigned a specific additive length deviation whose length is itself normally distributed, or each oscillator receives a targeted additive phase shift whose value is also normally distributed.
  • the lengths of the individual signal lines can be derived from a normal distribution of a phase range from - ⁇ to + ⁇ for a given carrier frequency of the received signal.
  • Fig. 5 shows a schematic representation of an exemplary front end of a phased array antenna with 4 receiving elements E1, E2, E3, E4.
  • Each receiving element E1, E2, E3, E4 is in each case assigned a channel K1, K2, K3, K4.
  • a respective mixer M1, M2, M3, M4 which is connected to a common oscillator OSZ.
  • This oscillator OSZ is connected to the individual mixers M1, M2, M3, M4 via individual signal lines L1, L2, L3, L4.
  • the additive length deviations of the individual signal lines L1, L2, L3, L4 in this case correspond to a normal distribution.

Landscapes

  • Radar Systems Or Details Thereof (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

The received signals processing method involves assigning, once or permanently, one individual phase value, which is normally distributed from a phase range within a decorrelation unit (8), to each receiving element (E-1 to E-N) of a phased-array antenna. The normally distributed phase values are added up to oscillator signals (LO-1 to LO-N). The phase displacement corresponding to a receiving direction of the antenna is deployed on complex baseband-signals (IQ-1 to IQ-N) within another decorrelation unit (9) in each receiving path. An independent claim is included for a phased-array antenna.

Description

Die Erfindung betrifft ein Verfahren zur Verarbeitung von Empfangssignalen in einer Phased-Array Antenne gemäß den Merkmalen des Patentanspruchs 1 sowie eine Phased-Array Antenne gemäß den Merkmalen des Patentanspruchs 3.The invention relates to a method for processing received signals in a phased array antenna according to the features of patent claim 1 and a phased array antenna according to the features of patent claim 3.

STAND DER TECHNIKSTATE OF THE ART

Aus DE 600 25 064 T2 und DE 10 2007 046 566 B4 sind Radargeräte mit Verwendung von digitaler Strahlformung bekannt.Out DE 600 25 064 T2 and DE 10 2007 046 566 B4 radars are known using digital beamforming.

In Fig. 1 ist schematisch der Aufbau einer N-kanaligen Phased-Array Antenne mit digitaler Strahlformung dargestellt. Durch die in 5 dargestellte Verwendung mehrerer Empfangskanäle wird eine Richtwirkung in der Umgebung des Radargeräts erzielt. Unter idealen Bedingungen vergrößert sich der Dynamikbereich gegenüber einem Einzelempfänger-System um den Faktor 10log10(N) dB, wobei N die Anzahl der verwendeten Kanäle und n den Laufindex für den n-ten Kanal ausdrückt. Am Beispiel einer linearen Phased-Array Antenne 1 mit Antennenabstand d=λ/2 (λ: Über die Lichtgeschwindigkeit c mit der verwendeten Trägerfrequenz fc verknüpfte Wellenlänge, entsprechend λ=c/fc) wird die weitere Verarbeitung beschrieben. Die von den Antennen-Elementen E1,...,EN zur Verfügung gestellten Hochfrequenzsignale X1,...,XN werden den analogen Empfängerstufen ARX1,... ,ARXN zugeführt. In der vollständigen analogen Empfängereinheit 2 werden die Hochfrequenzsignale X1,...,XN auf eine niedrigere Zwischenfrequenz U1,...,UN umgesetzt. Hierzu wird ein Mischsignal BO aus dem Block zentraler Basisoszillator 6 der analogen Empfängereinheit 2 zugeführt. Die interne Verteilung des zentralen BO erfolgt an jede analoge Empfängerstufe ARX1,... ,ARXN. Die durch den Mischprozess von X1,...,XN mit den aus BO abgeleiteten Oszillatorsignalen erzeugten Zwischenfrequenzsignale U1,...,Un werden anschließend der digitalen Empfängereinheit 3 zugeführt. Dort werden zunächst die analogen Signale mit den Analog-zu-Digital-Wandlern ADC1,...,ADCN in digitale Signale umgesetzt. In der nachgeschalteten digitalen Vorverarbeitungseinheit PP1,...,PPN werden die komplexen Basisbandsignale IQ1,...,IQN erzeugt. Ein komplexes Basisbandsignal IQn setzt sich vektoriell zusammen aus einem Realteil Re{IQn} und Imaginärteil Im{IQn}. Die Verarbeitungseinheit Digitale Strahlformung 4 ist Teil eines Signalprozessors und verwendet alle von den N Einzelkanälen zur Verfügung gestellten Signale IQ1,...,IQN, um eine Anzahl J Beams B1,...,BJ zu formen. Für die Anzahl an Beams gilt im Regelfall: J<N. Diese Beams bieten einen richtungsabhängigen Zugriff auf Entfernungs- und Geschwindigkeitsinformationen. Das Konzept wird unabhängig von der gewählten Modulationsart erläutert.In Fig. 1 The structure of an N-channel phased array antenna with digital beam shaping is shown schematically. The use of a plurality of receiving channels shown in FIG. 5 achieves a directivity in the surroundings of the radar device. Under ideal conditions, the dynamic range over a single receiver system increases by a factor of 10log 10 (N) dB, where N expresses the number of channels used and n expresses the run index for the nth channel. Using the example of a linear phased array antenna 1 with antenna spacing d = λ / 2 (λ: wavelength associated with the carrier frequency f c used via the speed of light c, corresponding to λ = c / f c ), further processing is described. The high-frequency signals X 1 ,..., X N provided by the antenna elements E 1 ,..., E N are fed to the analogue receiver stages ARX 1 ,..., ARX N. In the complete analog receiver unit 2 the high frequency signals X 1 , ..., X N are converted to a lower intermediate frequency U 1 , ..., U N. For this purpose, a mixing signal BO from the block central base oscillator 6 of the analog receiver unit 2 is supplied. The internal distribution of the central BO takes place at each analogue receiver stage ARX 1 ,..., ARX N. The intermediate frequency signals U 1 ,..., U n generated by the mixing process of X 1 ,..., X N with the oscillator signals derived from BO are subsequently supplied to the digital receiver unit 3. There, the analog signals with the analog-to-digital converters ADC 1 , ..., ADC N are first converted into digital signals. In the downstream digital preprocessing unit PP 1 ,..., PP N , the complex baseband signals IQ 1 ,..., IQ N are generated. A complex baseband signal IQ n is vectorially composed of a real part Re {IQ n } and an imaginary part Im {IQ n }. The digital beamforming processing unit 4 is part of a signal processor and uses all signals IQ 1 , ..., IQ N provided by the N individual channels to form a number J beams B 1 , ..., B J. As a rule, the number of beams is: J <N. These beams provide directional access to distance and speed information. The concept is explained independently of the selected modulation type.

Wie für lineare Phased-Arrays theoretisch bekannt, erzeugt eine einfallende Signalwelle jeweils im n-ten Kanal eine richtungsabhängige Phasenverschiebung (ϕn=n*2*π*fc*d/c*sin(Θ), wobei fc die Trägerfrequenz, d den Antennenabstand und Θ den Einfallswinkel darstellt. Zur weiteren Darstellung wird Fig. 2. mit dem Empfangskanal 7 anhand des Laufindex n=1 herangezogen.As is known theoretically for linear phased arrays, an incident signal wave produces a direction-dependent phase shift in each case in the nth channel (φ n = n * 2 * π * f c * d / c * sin (Θ), where f c is the carrier frequency, d represents the antenna distance and Θ the angle of incidence Fig. 2 , with the receiving channel 7 based on the index n = 1 used.

Das vom lokalen LO1 zur Verfügung gestellte Signal LO1 wird aus dem zentralen Basisoszillator BO (Bezugszeichen 6) in Fig. 1. abgeleitet. Der zentrale Basisoszillator 6 stellt jedem Empfangselement ein lokales LO-Signal identischer Frequenz zur Verfügung. Durch Multiplikation von LO1 und dem phasenverschobenen X1 wird das Zwischenfrequenzsignal U1 erzeugt. Die Digitalisierung des wert- und zeitkontinuierlichen Signals U1 in das Signal D1 erfolgt im Analog-Digital-Wandler (ADC1). Die Generierung des komplexen Basisbandsignals Re{IQ1}+j*Im{IQ1} erfolgt in der Vorverarbeitungseinheit PP1. ADC1 und PP1 bilden im Verbund definitionsgemäß einen digitalen Einzelempfänger 10. Im Folgenden wird die Verarbeitungsarbeit Digitale Strahlformung 4 aus Fig .1 näher erläutert. Die richtungsabhängigen Phasenverschiebungen ϕ1N bleiben bei der Umsetzung der Signale X1,...,XN nach IQ1,...,IQN erhalten und können in den Mischereinheiten P1,...,PN in 4 jeweils invers angewendet werden. Die Multiplikation der komplexen Signale IQ1∼IQN mit inversen Drehzeigern Rn=exp(-j*n*2*π*fc *d/c*sin(Θ)) erzeugt eine inverse Phasenverschiebung von ϕinv,nn im jeweils n-ten Kanal und ermöglicht eine kohärente Addition (konstruktive Überlagerung) aller Empfangssignale in der nachgeschalteten Summiereinheit 12. Die erzeugten Ausgangssignale B1-BJ werden einer nachfolgenden Prozessoreinheit (Radar-Prozessor) zugeführt.The signal LO 1 provided by the local LO 1 is extracted from the central base oscillator BO (reference 6) in FIG Fig. 1 , derived. The central base oscillator 6 provides a local LO signal of identical frequency to each receiving element. By multiplying LO 1 and the phase-shifted X 1 , the intermediate frequency signal U 1 is generated. The digitization of the value and time-continuous signal U 1 in the signal D 1 takes place in the analog-to-digital converter (ADC 1 ). The generation of the complex baseband signal Re {IQ 1 } + j * Im {IQ 1 } takes place in the preprocessing unit PP1. By definition, ADC 1 and PP 1 form a digital individual receiver 10 in the network. The processing work Digital Beamforming 4 is described below Fig .1 explained in more detail. The direction-dependent phase shifts φ 1N remain in the conversion of the signals X 1 , ..., X N to IQ 1 , ..., IQ N obtained and can in the mixer units P 1 , ..., P N in 4 each be applied inversely. The multiplication of the complex signals IQ 1 ~IQ N with inverse rotation hands R n = exp (-j * n * 2 * π * f c * d / c * sin (Θ)) produces an inverse phase shift of φ inv, n = φ n in each n-th channel and allows a coherent addition (constructive superposition) of all received signals in the subsequent summing unit 12. The generated output signals B 1 -B J are fed to a subsequent processor unit (radar processor).

Die Gesamtheit aller angewendeten inversen Phasenverschiebungen lässt sich somit in einem Vektor Φinv=[ϕinv,2 ϕinv,3 ϕinv,4 ϕinv,5 ... ϕinv,N] und damit einem Zeigervektor R=Ataper*exp(jΦinv) ausdrücken, der durch Multiplikation den Mischereinheiten P1∼Pn beaufschlagt wird. Wird keine Amplitudenwichtung vorgesehen (Ataper=[11 ... 1] mit Ataper

Figure imgb0001
1xN) ergibt sich ein Richtdiagramm nach G(Θ)=10log10(sin2(N*π*d/λ*sin(Θ-Θ0))/ (N2*sin2(π*d/λ*sin(Θ-Θ0)))), wobei Θ0 den tatsächlichen Einfallswinkel der elektromagnetischen Welle und Θ die eingestellte Vorzugsrichtung der digitalen Strahlformung.The totality of all applied inverse phase shifts can thus be in a vector Φ inv = [φ inv , 2 φ inv , 3 φ inv , 4 φ inv , 5 ... φ inv , N] and thus a pointer vector R = A taper * exp (jΦ inv ), which is applied by multiplication to the mixer units P 1 ~P n . If no amplitude weighting is provided (A taper = [11 ... 1] with A taper
Figure imgb0001
1xN ) results in a directional diagram according to G (Θ) = 10log 10 (sin 2 (N * π * d / λ * sin (Θ-Θ 0 )) / (N 2 * sin 2 (π * d / λ * sin ( Θ-Θ 0 )))), where Θ 0 the actual angle of incidence of the electromagnetic wave and Θ the set preferred direction of digital beam forming.

Herkömmliche Verfahren weisen einen Nachteil bezüglich dem nutzbaren störungsfreien Dynamikbereich auf. Bei Anwendung von Strahlformung erfahren Verzerrungsprodukte (HD2, HD3 ...HDi = Harmonic Distortion, in nichtlinearen Systemen erzeugte Störsignale bei Vielfachen i der Signalfrequenz) einen dem Nutzsignal entsprechende inverse Phasenverschiebung. Die den Verzerrungsprodukten zugeordneten Phasen weisen einen vom Vektor Φinv abweichenden Faktor Ψ auf, z. B. Ψ=2 für HD2. Dies führt in Abhängigkeit der Blickwinkel Θ zu zu einer teildestruktiven bzw. konstruktiven Überlagerung dieser Verzerrungsprodukte.Conventional methods have a drawback with respect to the useful noiseless dynamic range. When using beamforming, distortion products (HD 2 , HD 3 ... HD i = Harmonic Distortion, interfering signals generated in nonlinear systems at multiples i of the signal frequency) experience an inverse phase shift corresponding to the useful signal. The phases associated with the distortion products have a factor Ψ deviating from the vector φ inv , e.g. Eg Ψ = 2 for HD2. Depending on the viewing angle Θ, this leads to a partially destructive or constructive superimposition of these distortion products.

Nachteil bei einer Signalverarbeitung gemäß dem Stand der Technik ist folglich, dass es bei der Addition zwar zu einer konstruktiven Interferenz des Eingangssignals kommt, bei den Verzerrungsprodukten allerdings neben einer teildestruktiven Interferenz ebenfalls zu einer konstruktiveri Interferenz bei dem Blickwinkel Θ=0° und größeren Winkeln gemäß den Nullstellen in der Funktion P(Θ)=10log10(sin2(Ψ*N*π*d/λ*sin(Θ-Θ0))/ (N2*Sin2(Ψ*π*d/λ*sin(Θ-Θ0)))). Dadurch wird zwangsläufig der störungsfreie Dynamikbereich (=spurios-free dynamic range, SFDR), welcher in diesem Fall das Verhältnis aus dem leistungsmäßigen Betrag der größten Harmonischen zum leistungsmäßigen Betrag des Empfangssignals (Fundamentale) darstellt, verschlechtert. Die von der digitalen Strahlformung erwartete Dynamikbereichsvergrößerung 10log10(N) dB kann somit nicht garantiert werden, da Verzerrungsprodukte nicht bei allen Blickwinkeln Θ von Kanal zu Kanal dekorreliert sind und somit in gleicher Weise wie das Nutzsignal aufaddiert werden.Disadvantage of a signal processing according to the prior art is therefore that there is a constructive interference of the input signal in the addition, but in the distortion products, however, in addition to a partially destructive Interference also leads to a constructive interference at the viewing angle Θ = 0 ° and larger angles according to the zeros in the function P (Θ) = 10log 10 (sin 2 (Ψ * N * π * d / λ * sin (Θ-Θ 0 ) ) / (N 2 * Sin 2 (Ψ * π * d / λ * sin (Θ-Θ 0 )))). This inevitably worsens the spur-free dynamic range (SFDR), which in this case represents the ratio of the power magnitude of the largest harmonic to the power level of the received signal (fundamental). The dynamic range increase 10log 10 (N) dB expected by the digital beamforming can thus not be guaranteed, since distortion products are not decorrelated from channel to channel at all viewing angles Θ and thus are added up in the same way as the useful signal.

BESCHREIBUNG DER ERFINDUNGDESCRIPTION OF THE INVENTION

Aufgabe der Erfindung ist es, ein Verfahren anzugeben, bei welchem im Empfänger auftretende Harmonische durch das gewählte Signalverarbeitungskonzept unterdrückt werden und der störungsfreie dynamische Bereich über allen Blickwinkeln Θ verbessert wird. Eine weitere Aufgabe besteht darin, eine entsprechende Antenne zu schaffen.The object of the invention is to provide a method in which occurring in the receiver harmonics are suppressed by the selected signal processing concept and the trouble-free dynamic range is improved over all angles Θ. Another object is to provide a corresponding antenna.

Die Aufgaben werden mit dem Verfahren gemäß den Merkmalen der geltenden Patentanspruchs 1 sowie der Vorrichtung gemäß Patentanspruch 3 gelöst. Vorteilhafte Ausgestaltungen der Erfindung sind Gegenstand von Unteransprüchen.The objects are achieved by the method according to the features of the valid patent claim 1 and the device according to claim 3. Advantageous embodiments of the invention are the subject of dependent claims.

Die Erfindung sowie weitere vorteilhafte Ausgestaltungen der Erfindung werden im Weiteren anhand von Zeichnung näher erläutert. Es zeigen:

Fig. 1
schematisch der Aufbau einer N-kanaligen Phased-Array Antenne mit digitaler Strahlformung,
Fig. 2
schematisch der Aufbau einer N-kanaligen Phased-Array Antenne mit digitaler Strahlformung und richtungsabhängigen Phasenverschiebungen,
Fig. 3
schematisch der erfindungsgemäße Aufbau einer N-kanaligen Phased-Array Antenne mit digitaler Strahlformung inklusive der Dekorrelationseinheiten,
Fig. 4
beispielhafte erfindungsgemäße Phasenbelegung im Empfangsteil
Fig. 5
eine schematische Darstellung eines beispielhaften Frontends, des Mischers und des Oszillators einer Phased-Array Antenne gemäß Fig.1.
The invention and further advantageous embodiments of the invention will be explained in more detail with reference to the drawing. Show it:
Fig. 1
the construction of an N-channel phased array antenna with digital beam shaping,
Fig. 2
the structure of an N-channel phased array antenna with digital beam shaping and direction-dependent phase shifts,
Fig. 3
FIG. 2 schematically the structure according to the invention of an N-channel phased array antenna with digital beam shaping including the decorrelation units, FIG.
Fig. 4
exemplary phase assignment according to the invention in the receiving part
Fig. 5
a schematic representation of an exemplary front end, the mixer and the oscillator of a phased array antenna according to Fig.1 ,

Fig. 3 zeigt schematisch den erfindungsgemäßen Aufbau einer N-kanaligen Phased-Array Antenne mit digitaler Strahlformung inklusive der Dekorrelationseinheiten 8,9. Gemäß der Erfindung werden Empfangssignale X1,...,XN in einer Phased-Array Antenne mit einer Mehrzahl von Empfangselementen E1,...,EN mit jeweils einem zugeordneten Empfangspfad verarbeitet, wobei in jedem Empfangspfad ein analoges Zwischenfrequenzsignal U1,...,UN durch Mischung des Empfangssignals X1,...,XN mit einem Oszillatorsignal LO1,...,LON erzeugt und anschließend durch Digitalisierung und evtl. digitaler Mischung in ein komplexes Basisband-Signal IQ1,...,IQN überführt wird, wobei in jedem Empfangspfad auf das komplexe Basisband-Signal IQ1,...,IQN eine der Empfangsrichtung der Antenne entsprechende Phasenverschiebung angewendet wird. Die Erfindung zeichnet sich dadurch aus, dass bei erstmaliger Durchführung des Verfahrens jedem Empfangselement der Phased-Array Antenne genau ein individueller aus einem Phasenbereich von -π bis :+π normalverteiler Phasenwert ϕr,1,..,ϕr,N innerhalb der ersten Dekorrelationseinheit 8 einmalig und dauerhaft zugewiesen wird, dass dem Oszillatorsignal diese normalverteilten Phasenwerte <ϕr,1,..,ϕr,N aufaddiert werden und dass innerhalb der zweiten Dekorrelationseinheit 9 in jedem Empfangspfad auf das komplexe Basisband-Signal IQ1,...,IQN eine der Empfangsrichtung der Antenne entsprechende Phasenverschiebung ϕrx,1,..,ϕrx,N in welcher die normalverteilten Phasenwerte ϕr,1,.. ,ϕr,N berücksichtigt sind, invers angewendet wird. Fig. 3 shows schematically the construction according to the invention of an N-channel phased array antenna with digital beam shaping including the decorrelation units 8,9. According to the invention, receive signals X 1 ,..., X N are processed in a phased array antenna having a plurality of receive elements E 1 ,..., E N , each having an associated receive path, an analog intermediate frequency signal U 1 in each receive path , ..., U N produced by mixing the reception signal X 1, ..., X N with an oscillator signal LO 1, ... LO N and then by digitization and possibly digital blend into a complex base band signal IQ 1 , ..., IQ N , wherein in each receive path to the complex baseband signal IQ 1 , ..., IQ N one of the receive direction of the antenna corresponding phase shift is applied. The invention is characterized in that, when the method is carried out for the first time, each receiving element of the phased array antenna is exactly one individual phase variable from -π to: + π normal-distributed phase value φ r, 1 , .., φ r, N within the first Is assigned to the oscillator signal these normally distributed phase values <φ r, 1 , .., φ r, N and that within the second decorrelation unit 9 in each receive path to the complex baseband signal IQ 1 , .. , IQ N is one of the receiving direction of the antenna corresponding phase shift φ rx, 1 , .., φ rx, N in which the normally distributed phase values φ r, 1 , .., φ r, N are considered inversely applied.

Die erste Dekorrelationseinheit 8 und die zweite Dekorrelationseinheit 9 unterscheiden sich dadurch, dass die erste Dekorrelationseinheit 8 eine gezielt hinzugefügte kanalabhängige Phasenverschiebung im analogen Teil des Empfängers appliziert, wohingegen die zweite Dekorrelationseinheit 9 die hinzugefügte kanalabhängige Phasenverschiebung im digitalen Teil des Empfängers invers appliziert und damit rückgängig macht. Die eingeführten Blöcke RX1,...,RX2 bezeichnen jeweils den Verbund von ADC und PP in jedem Kanal (siehe auch Fig 1.).The first decorrelation unit 8 and the second decorrelation unit 9 differ in that the first decorrelation unit 8 has a channel-dependent phase shift added in the analog part of the receiver whereas the second decorrelation unit 9 inversely applies the added channel-dependent phase shift in the digital part of the receiver and thus reverses it. The introduced blocks RX 1 , ..., RX 2 each denote the union of ADC and PP in each channel (see also FIG Fig. 1 .).

Bei der Anwendung der Phasenverschiebung ϕrx,1,..,ϕrx,N auf das komplexe Basisband-Signal IQ1,...,IQN kann zusätzlich eine Amplitudenwichtung durchgeführt werden, die Anwendung einer Wichtungsfunktion berührt den Gegenstand dieser Erfindung nicht.In applying the phase shift φ rx, 1 , .., φ rx, N to the complex baseband signal IQ 1 , ..., IQ N , an amplitude weighting may additionally be performed, the application of a weighting function does not affect the subject matter of this invention.

Der der Erfindung zugrundeliegende digitalseitig applizierte Phasenvektor in der zweiten Dekorrelationseinheit 9 lässt sich somit ausdrücken als Φdekorrinvrx, wobei Φrx=[ϕrx,1 ϕrx,2 ϕrx,3 ... ϕrx,N] den additiven, einem normalverteilten Zufallsprozess entnommenen, und bereits in der ersten Dekorrelationseinheit 8 analogseitig applizierten Datensatz von Phasenwerten darstellt, welche zwischen +/- π liegen. Der analogseitig applizierte Phasenvektor in der ersten Dekorrelationseinheit 8 entspricht dem Phasenvektor in der zweiten Dekorrelationseinheit 9 mit umgekehrtem Vorzeichen gemäß Φr=-Φrx. Weiterhin ist Φinv der eigentlichen Strahlformung zuzuordnen und in den bereits in Fig 2. beschriebenen komplexen Drehzeigern R1∼RN enthalten. Φrx enthält die zusätzlich eingebrachten Phasenwerte. Die in Vektorform digitalseitig applizierte Phasenverschiebung lässt sich somit ausdrücken als Multiplikation mit dem Signalvektor Rdekorr= exp(j(Φinvrx))= exp(jΦdekorr) mit den Einzelzeigern [Rdekorr,1 Rdekorr,2 ...Rdekorr,N]. Analogseitig werden gleichermaßen Phasenverschiebungen über den Vektor Φr=[ϕr,1 ϕr,2 ϕr,3 ...ϕr,N] den Mischersignalen LO1-LON beaufschlagt. Die Mischersignale mit eingebrachten Phasenverschiebungen ϕr,1,...,ϕr,N werden im Signalvektor LOdekorr=[ LOdekorr,1 LOdekorr,2 ... LOdekorr,N] zusammengefasst.The object underlying the invention digital each applied phase vector in the second decorrelation unit 9 can thus be expressed as Φ dekorr = Φ inv + Φ rx, wherein Φ r x = [φ rx, 1 φ rx, 2 φ rx, 3 ... φ rx, N ] represents the additive, a normally distributed random process taken, and already applied in the first decorrelation unit 8 analog applied data set of phase values, which lie between +/- π. The analog-applied phase vector in the first decorrelation unit 8 corresponds to the phase vector in the second decorrelation unit 9 with the opposite sign according to Φ r = -φ rx . Furthermore, Φ inv is to be assigned to the actual beam shaping and into those already in Fig. 2 , described complex rotary hands R 1 ~R N included. Φ rx contains the additionally introduced phase values. The phase shift applied in vector form on the digital side can thus be expressed as a multiplication by the signal vector R dekorr = exp (j (φ inv + φ rx )) = exp (jφ dekorr ) with the individual pointers [R dekorr, 1 R dekorr , 2 ... R dekorr, N ]. On the analog side, phase shifts are likewise applied to the mixer signals LO 1 -LO N via the vector Φ r = [φ r , 1 φ r, 2 φ r, 3 ... Φ r, N ]. The mixer signals with introduced phase shifts φ r, 1 ,..., Φ r, N are combined in the signal vector LO dekorr = [LO decorr, 1 LO decorr, 2 ... LO decorr, N].

Die Wahrscheinlichkeitsdichtefunktion des Φrx zugrundeliegenden Zufallsprozesses lässt sich ausdrücken als f(x)=1/(σ*sqrt(2*π)*exp(-0.5*(((x-µ)/ σ)2), wobei µ den Erwartungswert und σ die Standardabweichung repräsentiert. Die Multiplikation der komplexen Basisband-Signale IQ1,...,IQN mit dem komplexen Rdekorr führt damit um einen zur korrekten Strahlformung aufgrund Φinv =-Φ, wobei Φ=[ϕ1 ϕ2 ϕ3 ... ϕN] die richtungsabhängigen Phasenverschiebungen ϕn gemäß Fig 2. beinhaltet, und zum anderen zur Dekorrelation der Harmonischen und damit zu einem SFDR-Gewinn über allen Blickwinkeln Θ aufgrund der inversen Beziehung der gezielt eingebrachten Phasenverschiebungen Φrx=-Φr.The probability density function of the random process underlying Φ rx can be expressed as f (x) = 1 / (σ * sqrt (2 * π) * exp (-0.5 * (((x-μ) / σ) 2 ), where μ is the expected value and σ represents the standard deviation The multiplication of the complex baseband signals IQ 1 , ..., IQ N with the complex R decorr results Thus, one for the correct beam shaping due to Φ inv = -Φ, where Φ = [φ 1 φ 2 φ 3 ... φ N ], the direction-dependent phase shifts φ n according to Fig. 2 , and on the other hand to decorrelate the harmonics and thus to obtain an SFDR gain over all points of view Θ due to the inverse relationship of the specifically introduced phase shifts Φ rx = -φ r .

Eine beispielhafte Vektorbelegung für Φinv und Φrx für einen Blickwinkel in rad von Θ=30°, d=λ/2 und N=100 ist in Fig. 4 dargestellt. Die bis hierhin verwendeten Vektor- und Signalbezeichnungen werden zur Klarstellung noch einmal zusammengefasst und erläutert.

Φ
richtungsabhängig auftretenden Phasenverschiebungen, analogseitig, wobei Φ=[ϕ1 ϕ2 ϕ3 ...ϕN] mit ϕn=n*2*n*π*fc*sin(Θ) im n-ten Kanal.
Φ inv
inverse Phasenverschiebungen für korrekte Strahlformung, digitalseitig, wobei Φ inv=[ϕinv,2 ϕinv,3 ... ϕinv,N]=-Φ.
Φ r
normalverteilte Phasenverschiebungen, gezielt analogseitig appliziert in der ersten Dekorrelationseinheit 8 wobei Φ r =[ϕr,1 ϕr,2 ϕr,3 ... ϕr,N] mit entnommenen Einzelwerten aus f(x)=1/σ*sqrt(2*π)*exp(-0.5*(((x-µ)/σ)2).
Φ rx
normalverteilte Phasenverschiebungen, gezielt digitalseitig appliziert in der zweiten Dekorrelationseinheit 9, wobei Φ rx =[ϕrx,1 ϕrx,2 ϕrx,3 ...ϕrx,N]=-Φ r.
Φ dekorr
effektiv angewandte Phasenverschiebungen wobei Φ dekorr=Φ inv+Φ rx.
R
Zeigervektor exp(jΦ inv), digitalseitig appliziert, sorgt für korrekte Strahlformung.
R dekorr
Zeigervektor exp(jΦ dekorr), digitalseitig appliziert, sorgt für korrekte Strahlformung und Dekorrelation von Harmonischen.
LO
Signalvektor für analogseitige Mischersignale.
LO dekorr
Signalvektor für analogseitige Mischersignale mit Phasenterm exp(jΦr).
An exemplary vector assignment for Φ inv and Φ rx for a viewing angle in radians of Θ = 30 °, d = λ / 2 and N = 100 is in Fig. 4 shown. The hitherto used vector and signal designations are summarized and explained again for clarity.
Φ
direction-dependent occurring phase shifts, analog side, where Φ = [φ 1 φ 2 φ 3 ... φ N ] with φ n = n * 2 * n * π * f c * sin (Θ) in the n-th channel.
Φ inv
inverse phase shifts for correct beam shaping, digitally, where φ inv = [φ inv, 2 φ inv, 3 ... φ inv, N ] = - φ .
Φ r
normally distributed phase shifts, specifically applied on the analog side in the first decorrelation unit 8 where Φ r = [φ r, 1 φ r, 2 φ r, 3 ... φ r, N ] with extracted individual values from f (x) = 1 / σ * sqrt (2 * π) * exp (-0.5 * (((x-μ) / σ) 2 ).
Φ rx
normally distributed phase shifts, specifically applied digitally in the second decorrelation unit 9, where Φ rx = [φ rx, 1 φ rx, 2 φ rx, 3 ... φ rx, N ] = - φ r .
Φ decorr
effectively applied phase shifts where Φ decorr = Φ inv + Φ rx .
R
Pointer vector exp (j Φ inv ), applied on the digital side, ensures correct beam shaping.
R decorr
Pointer vector exp (j Φ decorr ), applied on the digital side, ensures correct beam shaping and decorrelation of harmonics.
LO
Signal vector for analog-side mixer signals.
LO decorr
Signal vector for analog mixer signals with phase term exp (jΦ r ).

Die erfindungsgemäße Phased-Array Antenne umfasst eine Mehrzahl von Empfangselementen E1,...,EN , N Lokaloszillatoren, welche z.B. mit einem Basisoszillator verbunden sein können, zur Erzeugung der Oszillatorsignale, Mischer zur Mischung der Oszillatorsignale LO1,...,LON mit entsprechend von den Empfangselementen E1,...,EN empfangenen Empfangssignalen, Analog-Digital-Wandlerschaltungen und einen Signalprozessor, wobei jedem Empfangselement E1,...,EN ein Mischer LO1,...,LON zugeordnet ist. Die erfindungsgemäße Phased-Array Antenne zeichnet sich in einem Ausführungsbeispiel dadurch aus, dass der Oszillator LO1,...,LON mit jedem Mischer LO1,...,LON über Signalleitungen verbunden ist, wobei jeder Signalleitung eine gezielte additive Längenabweichung zugeordnet wird, deren Länge selbst normalverteilt ist.The phased array antenna according to the invention comprises a plurality of receiving elements E 1 , ..., E N , N local oscillators, which may be connected to a base oscillator, for example, for generating the oscillator signals, mixers for mixing the oscillator signals LO 1 ,. LO N with correspondingly received by the receiving elements E 1 , ..., E N received signals, analog-to-digital converter circuits and a signal processor, each receiving element E 1 , ..., E N a mixer LO 1 , ..., LO N is assigned. The inventive phased array antenna is characterized in an embodiment in that the oscillator LO 1 , ..., LO N with each mixer LO 1 , ..., LO N is connected via signal lines, each signal line a targeted additive length deviation whose length is itself normally distributed.

Eine Phased-Array Antenne gemäß der Erfindung kann somit derart aufgebaut sein, dass entweder jeder Signalleitung eine gezielte additive Längenabweichung zugeordnet wird, deren Länge selbst normalverteilt ist, oder jeder Oszillator erhält eine gezielte additive Phasenverschiebung, deren Wert ebenfalls normalverteilt ist.A phased array antenna according to the invention can thus be constructed such that either each signal line is assigned a specific additive length deviation whose length is itself normally distributed, or each oscillator receives a targeted additive phase shift whose value is also normally distributed.

De Längen der einzelnen Signalleitungen können aus einer Normalverteilung eines Phasenbereiches von -π bis + π bei vorgegebener Trägerfrequenz des Empfangssignals abgeleitet werden.The lengths of the individual signal lines can be derived from a normal distribution of a phase range from -π to + π for a given carrier frequency of the received signal.

Der Zusammenhang zwischen den Längen der Signalleitungen und den erzeugten Phasenverschiebungen ist über I=Φdekorr/(2*π)*λ gegeben. Dabei gilt λ=c0/(fc*r), wobei fc die Trägerfrequenz und n die Brechzahl des Mediums darstellt. Am Beispiel von fc=5 GHz, n=1 und λ = 6cm entspricht eine Leitungslängenabweichung von +/- 3 cm dem geforderten Phasenintervall von +/- π.The relationship between the lengths of the signal lines and the phase shifts generated is given by I = Φ decorr / (2 * π) * λ. In this case, λ = c 0 / (f c * r), where f c represents the carrier frequency and n the refractive index of the medium. Using the example of f c = 5 GHz, n = 1 and λ = 6cm, a line length deviation of +/- 3 cm corresponds to the required phase interval of +/- π.

Fig. 5 zeigt eine schematische Darstellung eines beispielhaften Frontends einer Phased-Array Antenne mit 4 Empfangselementen E1, E2, E3, E4. Jedes Empfangselement E1, E2, E3, E4 ist jeweils ein Kanal K1, K2, K3, K4 zugeordnet. In jedem Kanal K1, K2, K3, K4 ist jeweils ein Mischer M1, M2, M3, M4 vorhanden, welcher mit einem gemeinsamen Oszillator OSZ verbunden ist. Dieser Oszillator OSZ ist mit den einzelnen Mischer M1, M2, M3, M4 über individuelle Signalleitungen L1, L2, L3, L4 verbunden. Die additiven Längenabweichungen der einzelnen Signalleitungen L1, L2, L3, L4 entsprechen hierbei einer Normalverteilung. Fig. 5 shows a schematic representation of an exemplary front end of a phased array antenna with 4 receiving elements E1, E2, E3, E4. Each receiving element E1, E2, E3, E4 is in each case assigned a channel K1, K2, K3, K4. In each channel K1, K2, K3, K4 there is a respective mixer M1, M2, M3, M4, which is connected to a common oscillator OSZ. This oscillator OSZ is connected to the individual mixers M1, M2, M3, M4 via individual signal lines L1, L2, L3, L4. The additive length deviations of the individual signal lines L1, L2, L3, L4 in this case correspond to a normal distribution.

Claims (4)

Verfahren zur Verarbeitung von Empfangssignalen in einer Phased-Array Antenne mit einer Mehrzahl von Empfangselementen (E1,...,EN) mit jeweils einem zugeordneten Empfangspfad,
wobei in jedem Empfangspfad ein analoges Zwischenfrequenzsignal (U1,...,UN) durch Mischung des Empfangssignals (X1,...,XN) in jedem Empfangspfad mit einem Oszillatorsignal (LO1,...,LON) erzeugt und durch anschließende Digitalisierung in ein komplexes Basisband-Signal (IQ1,...,IQN) überführt wird,
wobei in jedem Empfangspfad auf das komplexe Basisband-Signal (IQ1,...,IQN) eine der Empfangsrichtung der Antenne entsprechende Phasenverschiebung angewendet wird,
dadurch gekennzeichnet, dass
bei erstmaliger Durchführung des Verfahrens jedem Empfangselement (E1,...,EN) der Phased-Array Antenne genau ein individueller aus einem Phasenbereich von -π bis + π normalverteiler Phasenwert (ϕr,1,..,ϕr,N) innerhalb einer ersten Dekorrelationseinheit (8) einmalig und dauerhaft zugewiesen wird,
dass dem Oszillatorsignal (LO1,... ,LON) diese normalverteilten Phasenwerte (ϕr,1..,(ϕr,N) aufaddiert werden und
dass innerhalb einer zweiten Dekorrelationseinheit (9) in jedem Empfangspfad auf das komplexe Basisband-Signal (IQ1,...,IQN) eine der Empfangsrichtung der Antenne entsprechende Phasenverschiebung (ϕrx,1,.. ,ϕrx,N), in welcher die normalverteilten Phasenwerte (ϕr,1,..,ϕr,N) berücksichtigt sind, angewendet wird.
Method for processing received signals in a phased array antenna with a plurality of receiving elements (E 1 , ..., E N ) each having an associated receiving path,
wherein in each receive path an analog intermediate frequency signal (U 1 , ..., U N ) by mixing the received signal (X 1 , ..., X N ) generated in each receive path with an oscillator signal (LO 1 , ..., LON) and converted into a complex baseband signal (IQ 1 , ..., IQ N ) by subsequent digitization,
wherein in each reception path to the complex baseband signal (IQ 1 , ..., IQ N ) a phase shift corresponding to the reception direction of the antenna is applied,
characterized in that
when the method is carried out for the first time, each receive element (E 1 ,..., E N ) of the phased array antenna has exactly one individual phase value from a phase range from -π to + π normal distribution (φ r , 1 , .., φ r, N ) is assigned once and permanently within a first decorrelation unit (8),
that the oscillator signal (LO 1 , ..., LO N ) these normal distributed phase values (φ r, 1 .., (φ r, N ) are added up and
in a second decorrelation unit (9) in each receive path to the complex baseband signal (IQ 1 , ..., IQ N ) a phase shift corresponding to the receive direction of the antenna (φ rx, 1 , .., φ rx, N ), in which the normally distributed phase values (φ r, 1 , .., φ r, N ) are taken into account.
Verfahren nach Anspruch 1,
dadurch gekennzeichnet, dass
bei der Anwendung der Phasenverschiebung (ϕrx,1,.. ,ϕrx,N) auf das komplexe Basisband-Signal (IQ1,...,IQN) eine Amplitudenwichtung durchgeführt wird.
Method according to claim 1,
characterized in that
in the application of the phase shift (φ rx, 1 , .., φ rx, N ) to the complex baseband signal (IQ 1 , ..., IQ N ) an amplitude weighting is performed.
Phased-Array Antenne umfassend eine Mehrzahl von Empfangselementen, einen Oszillator (OSZ) zur Erzeugung eines Oszillatorsignals, Mischer (M1,...,M4) zur Mischung des Oszillatorsignals mit entsprechend von den Empfangselementen (E1,...,E4) empfangenen Empfangssignalen, Analog-Digital-Wandlerschaltungen und einen Signalprozessor,
wobei jedem Empfangselement (E1,...,E4) ein Mischer (M1,...,M4) zugeordnet ist,
dadurch gekennzeichnet, dass
der Oszillator (OSZ) mit jedem Mischer (M1,...,M4) über Signalleitungen (L1,...,L4) verbunden ist, wobei jeder Signalleitung (L1,...,L4) eine gezielte additive Längenabweichung zugeordnet wird, deren Länge selbst normalverteilt ist.
Phased array antenna comprising a plurality of receiving elements, an oscillator (OSZ) for generating an oscillator signal, mixers (M1, ..., M4) for mixing the oscillator signal with received signals correspondingly received by the receiving elements (E1, ..., E4) , Analog-to-digital converter circuits and a signal processor,
wherein each receiving element (E1, ..., E4) is assigned a mixer (M1, ..., M4),
characterized in that
the oscillator (OSZ) is connected to each mixer (M1, ..., M4) via signal lines (L1, ..., L4), each signal line (L1, ..., L4) being assigned a specific additive length deviation, whose length itself is normally distributed.
Phased-Array Antenne nach Anspruch 3,
dadurch gekennzeichnet, dass
die Längen der einzelnen Signalleitungen (L1,...,L4) aus einer Normalverteilung eines Phasenbereichs von -π bis + π bei vorgegebener Trägerfrequenz des Empfangssignals abgeleitet werden.
Phased array antenna according to claim 3,
characterized in that
the lengths of the individual signal lines (L1, ..., L4) are derived from a normal distribution of a phase range from -π to + π at a predetermined carrier frequency of the received signal.
EP13002387.2A 2012-05-10 2013-05-04 Phased array antenna and method for processing received signals in a phased array antenna Active EP2662929B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102012009402A DE102012009402B3 (en) 2012-05-10 2012-05-10 Phased array antenna and method for processing received signals in a phased array antenna

Publications (2)

Publication Number Publication Date
EP2662929A1 true EP2662929A1 (en) 2013-11-13
EP2662929B1 EP2662929B1 (en) 2019-02-20

Family

ID=48236653

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13002387.2A Active EP2662929B1 (en) 2012-05-10 2013-05-04 Phased array antenna and method for processing received signals in a phased array antenna

Country Status (4)

Country Link
EP (1) EP2662929B1 (en)
DE (1) DE102012009402B3 (en)
DK (1) DK2662929T3 (en)
ES (1) ES2727391T3 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017177339A1 (en) * 2016-04-15 2017-10-19 Emscan Corporation Wireless scanner

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10157216C1 (en) * 2001-11-22 2003-02-13 Eads Deutschland Gmbh Active reception group antennna for RF or HF signals has each reception channel supplied with local oscillator signal and calibration signal via distribution network
WO2003061070A1 (en) * 2001-12-21 2003-07-24 Raytheon Company Method and apparatus for processing signals in an array antenna system
DE60025064T2 (en) 1999-03-31 2006-08-24 Denso Corp., Kariya Radar device using digital beamforming technology
US7312751B1 (en) * 2006-10-30 2007-12-25 The Boeing Company Phased array antenna system to achieve suppression of undesired signal components
US20090273517A1 (en) * 2008-05-01 2009-11-05 Emag Technologies, Inc. Vertically integrated electronically steered phased array and method for packaging
DE102007046566B4 (en) 2006-10-05 2011-07-07 Infineon Technologies AG, 85579 HF frontend for a radar system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60025064T2 (en) 1999-03-31 2006-08-24 Denso Corp., Kariya Radar device using digital beamforming technology
DE10157216C1 (en) * 2001-11-22 2003-02-13 Eads Deutschland Gmbh Active reception group antennna for RF or HF signals has each reception channel supplied with local oscillator signal and calibration signal via distribution network
WO2003061070A1 (en) * 2001-12-21 2003-07-24 Raytheon Company Method and apparatus for processing signals in an array antenna system
DE102007046566B4 (en) 2006-10-05 2011-07-07 Infineon Technologies AG, 85579 HF frontend for a radar system
US7312751B1 (en) * 2006-10-30 2007-12-25 The Boeing Company Phased array antenna system to achieve suppression of undesired signal components
US20090273517A1 (en) * 2008-05-01 2009-11-05 Emag Technologies, Inc. Vertically integrated electronically steered phased array and method for packaging

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017177339A1 (en) * 2016-04-15 2017-10-19 Emscan Corporation Wireless scanner

Also Published As

Publication number Publication date
DK2662929T3 (en) 2020-04-20
DE102012009402B3 (en) 2013-07-04
EP2662929B1 (en) 2019-02-20
ES2727391T3 (en) 2019-10-15

Similar Documents

Publication Publication Date Title
DE69023737T2 (en) Digital beamforming for independent multi-beam lobes.
DE112008000513B4 (en) Electronically scanning radar system
DE102019125991A1 (en) Radar device and radar method
DE69012238T2 (en) Multi-lobe antenna system with active modules and with lobe formation through numerical calculation.
DE112019006800T5 (en) Antenna device and radar device
DE102018121987A1 (en) Frequency modulated continuous wave radar system
DE2244724A1 (en) CONTROL DEVICE FOR AN ANTENNA LINE FOR GENERATING ELECTRONICALLY SWIVELING RADIATION DIAGRAMS
EP3534178B1 (en) Radar apparatus with antenna array and method for source location using a two-dimensional antenna array
DE3336196C2 (en) Radar device with an antenna consisting of several individual antennas
EP1582890B1 (en) Pulse radar with linear frequency modulation
DE2323541C3 (en) Precision alignment arrangement of acoustic antennas with a circular cross-section
DE112020001356T5 (en) Radar device and transmitter / receiver group antenna
DE4206797B4 (en) Method for operating a radar antenna system and radar antenna system
EP2662929B1 (en) Phased array antenna and method for processing received signals in a phased array antenna
DE69206927T2 (en) Method for processing antenna characteristics
DE2029836C3 (en) Filter arrangement for a coherent pulse Doppler radar device with variable pulse repetition frequency
DE2946331A1 (en) MICROWAVE POWER DIVIDER WITH TWO INPUTS AND THREE OUTPUTS
DE102012224062A1 (en) Strip conductor antenna for radar device used in motor car for detecting e.g. distance upto object, has power supply line connecting radiation element with main power supply line and conducting power from main power supply line to element
DE102015202874A1 (en) Radar system and method for detecting objects
DE19627218A1 (en) Radar device
DE102018128334B3 (en) DEVICE AND METHOD FOR SETTING A CANCELING SIGNAL FOR SUPPRESSING AN RF INTERFERENCE SIGNAL
EP3082273B1 (en) Method and device for reduction of correlated interference in multichannel receiver systems correlated with digital beam forming
EP3738214B1 (en) Systems for transporting externally received signals within a motor vehicle
DE3909874A1 (en) Method for digitising and signal processing of received signals of a phased-array receiving system, and a device for carrying out the method
EP0335284B1 (en) Phase to digital conversion method and arrangement for carrying out the method

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20140506

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: AIRBUS DEFENCE AND SPACE GMBH

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: AIRBUS DS ELECTRONICS AND BORDER SECURITY GMBH

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20161201

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: HENSOLDT SENSORS GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20181128

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SCHLECKER, WOLFGANG

Inventor name: EPP, MICHAEL

Inventor name: LUDWIG, WALTER

Inventor name: VALLANT, GEORG J.

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013012187

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1099404

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190315

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190220

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190620

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190520

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190520

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190620

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190521

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2727391

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20191015

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013012187

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20191121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190531

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190531

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190504

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

REG Reference to a national code

Ref country code: DK

Ref legal event code: EGE

Effective date: 20200415

Ref country code: DK

Ref legal event code: T3

Effective date: 20200415

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190531

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1099404

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130504

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230517

Year of fee payment: 11

Ref country code: ES

Payment date: 20230621

Year of fee payment: 11

Ref country code: DK

Payment date: 20230522

Year of fee payment: 11

Ref country code: DE

Payment date: 20230519

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230522

Year of fee payment: 11