EP2659747B1 - Circuit arrangement and method for operating at least one high-pressure discharge lamp - Google Patents

Circuit arrangement and method for operating at least one high-pressure discharge lamp Download PDF

Info

Publication number
EP2659747B1
EP2659747B1 EP12725657.6A EP12725657A EP2659747B1 EP 2659747 B1 EP2659747 B1 EP 2659747B1 EP 12725657 A EP12725657 A EP 12725657A EP 2659747 B1 EP2659747 B1 EP 2659747B1
Authority
EP
European Patent Office
Prior art keywords
capacitor
connection
discharge lamp
circuit arrangement
electronic switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP12725657.6A
Other languages
German (de)
French (fr)
Other versions
EP2659747A1 (en
Inventor
Michael Boenigk
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osram GmbH
Original Assignee
Osram GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osram GmbH filed Critical Osram GmbH
Publication of EP2659747A1 publication Critical patent/EP2659747A1/en
Application granted granted Critical
Publication of EP2659747B1 publication Critical patent/EP2659747B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/288Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices and specially adapted for lamps without preheating electrodes, e.g. for high-intensity discharge lamps, high-pressure mercury or sodium lamps or low-pressure sodium lamps
    • H05B41/2881Load circuits; Control thereof
    • H05B41/2882Load circuits; Control thereof the control resulting from an action on the static converter
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/02Details
    • H05B41/04Starting switches
    • H05B41/042Starting switches using semiconductor devices
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/282Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices
    • H05B41/2821Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices by means of a single-switch converter or a parallel push-pull converter in the final stage
    • H05B41/2824Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices by means of a single-switch converter or a parallel push-pull converter in the final stage using control circuits for the switching element
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Definitions

  • the present invention relates to a circuit arrangement for operating at least one high-pressure discharge lamp with a voltage converter having at least one electronic switch, a drive circuit for driving the at least one electronic switch of the voltage converter with a predeterminable converter frequency, a first and a second connection for coupling to the at least one high-pressure discharge lamp, a first capacitor coupled between the voltage converter and the first terminal for the discharge lamp, and a charging device coupled to the first capacitor for charging it with a DC voltage to an ignition voltage for igniting the high pressure discharge lamp. It also relates to a corresponding method for operating a high-pressure discharge lamp.
  • High-intensity discharge lamps have arc resonances, so-called acoustic resonances, in operation in certain frequency ranges. These resonance frequencies are usually in a range between 1 kHz to 1 MHz. Therefore, these lamps are usually operated with a square wave frequency below 1 kHz. Electronic ballasts designed to have such a square frequency However, to provide, but are technically very complex and therefore corresponding bulky and expensive.
  • a circuit arrangement which enables DC ignition of a high-pressure discharge lamp.
  • an ignition or coupling capacitance which is designated there by C1
  • the ignition voltage which may be, for example, between 10 and 15 kV
  • this ignition or coupling capacitance must have a very high capacitance value in order to transmit the corresponding current for the required lamp power.
  • this capacitor is namely the ignition capacity, which is charged to the appropriate ignition voltage, while in stationary operation of the lamp this capacitor forced - works as a coupling capacity.
  • this capacitor must be the circuit between the transformer close the voltage converter and the lamp and thus take over the entire lamp current and forward.
  • the inductance L1 and the capacitor C3 see there Fig. 2 , only the take-over voltage is provided, which is only a few kV and thus significantly below the ignition voltage.
  • Transducers for electronic ballasts for high frequency operation are generally operated in resonance mode.
  • the transistors for loss of power reduction in the current or de-energized state that is at zero crossing.
  • an additional resonance capacitor is necessary on the primary side of the converter, which forms a resonant circuit with the primary inductance.
  • the voltages or currents are sinusoidal, so that can be switched at zero crossing.
  • the resonance capacitor is designated C2.
  • the primary inductance is formed by the windings W1a and W1b of the push-pull converter, which in turn comprises the transistors T1, T2 and the transformer Tr1.
  • the object of the present invention is to develop a circuit arrangement mentioned at the outset or an initially mentioned method such that the capacitance of the first capacitor, which constitutes the coupling or ignition capacitor, can be reduced.
  • the present invention is based on the finding that this is fundamentally made possible when the voltage converter comprises a transformer, wherein the transformer comprises a primary inductance with at least one first and a second terminal and a secondary inductance with a first and a second terminal, wherein the first capacitor is coupled between the first terminal of the secondary inductance and the first terminal for the at least one high-pressure discharge lamp.
  • the converter frequency in stationary operation of the circuit arrangement is selected such that the secondary side, which comprises at least the series connection of secondary inductance, first capacitor and high-pressure discharge lamp, is operated substantially in resonance.
  • the impedance of the ignition or coupling capacitor that is of the first capacitor
  • the impedance of the ignition or coupling capacitor is also in operation with such Converter frequency very small.
  • the capacity of the first capacitor compared to the known procedure can be significantly reduced. This is a cost reduction of the first capacitor and a reduction in volume the circuit arrangement, that is the electronic ballast, accompanied.
  • the components of the voltage converter can also be made smaller, which leads to a further cost reduction.
  • the invention is not to be confused with the parallel to the lamp resonant capacitor C1 WO 98/18297 A1 or the capacitor C2 of the DE 199 09 530 A1 , which provide a far above the stationary frequency of the voltage converter further resonance point for voltage overshoot for the adoption of the high-pressure discharge lamp and are ineffective in stationary lamp operation, since they are short-circuited by the high pressure discharge lamp.
  • Their capacity value is much smaller than the ignition or coupling capacity.
  • the present invention provides the advantage that the resonance capacitor of the primary side as in WO 98/18297 A1 still present, can be omitted, since the primary current is now also forcibly sinusoidal.
  • the circuit complexity can be significantly reduced again, resulting in a further cost reduction.
  • the converter frequency is in a range of +/- 10% of the resonant frequency of the secondary circuit.
  • the frequency is chosen within this range, a significant reduction of the capacitance of the first capacitor can already be achieved.
  • the current or voltage curve is then sufficiently sinusoidal for low-loss switching.
  • the voltage converter may be a push-pull converter comprising at least first and second electronic switches coupled in series, wherein a first terminal of the primary inductance with the first electronic switch, a second terminal of the primary inductance with the second electronic switch and a third terminal of the primary inductance is coupled to a reference potential.
  • a second capacitor is connected in parallel to the primary inductance in order to limit the voltage increase and to obtain further resonance points.
  • a third capacitor is coupled between the first and the second connection for the high-pressure discharge lamp. This serves to provide a resonance at higher frequencies for generating the take-over voltage, wherein the resonance frequency is determined by the leakage inductance of the transformer on the secondary side and the third capacitor. In operation, this third capacitor is ineffective because it is shorted by the lamp, which becomes low impedance during operation.
  • a first inductance is coupled between the first capacitor and the first connection for the high-pressure discharge lamp.
  • This serves for current shaping and current limiting. It can also be used, in conjunction with the third capacitor, to set up further resonance points for the purpose of transfer voltage generation and to shift the resonance point in conjunction with the first capacitor. Under certain circumstances it makes sense to use the first inductance between the first capacitor and the first connection of the Secondary side of the transformer to couple.
  • the third capacitor is then coupled between the junction of the first capacitor and the first inductor and the second terminal of the high pressure discharge lamp. In this case, the second capacitor blocks a part of the discharge current of the first capacitor (assuming the high-pressure discharge lamp) from the secondary side of the transformer. This reduces the flyback voltage in the primary circuit of the transformer and thus the voltage load of the first and the second electronic switch in the ignition of the high-pressure discharge lamp.
  • the voltage converter may also be a bridge converter comprising at least a first and a second electronic switch.
  • the first connection of the primary inductance can be coupled to a connection point between the first and the second electronic switch, wherein the second connection of the primary inductance is coupled to the connection of the remote connection point of the second electronic switch.
  • a fourth capacitor can be coupled in parallel to the secondary inductance. This in turn serves to generate the transfer voltage for the high-pressure discharge lamp together with the secondary inductance of the transformer of the voltage converter.
  • a fifth capacitor can be coupled between the connection of the connection point remote from the second electronic switch and the second connection of the primary inductance. This serves with unfavorable capacity size of the first capacitor as a balancing capacitor for the transformer and allows a shift of the resonant frequency of the entire system, because the capacitances of the first and fifth capacitors add up over the square of the transformation ratio of the transformer.
  • the voltage converter can also be a Einschalterwandler with an electronic switch, in particular a flyback converter represent. Preference is given to the electronic switch, a sixth capacitor connected in parallel. This serves to limit the voltage increase across the first electronic switch and also influences the resonant frequency of the secondary circuit. The inclusion of the already known from the circuit designs already described additional inductance in the secondary circuit is again possible.
  • a seventh capacitor may be connected in parallel, which in turn serves to provide the crossover frequency.
  • the converter frequency is at least 1 MHz in the preferred embodiments of the present invention.
  • Fig. 1 shows a schematic representation of a first embodiment of a circuit arrangement according to the invention for operating a high-pressure discharge lamp La.
  • a voltage converter 10 is realized by a push-pull converter, which comprises a first electronic switch T1 and a second electronic switch T2, which are coupled in series.
  • the voltage converter 10 further comprises a transformer Tr having a primary inductance P1, which comprises a first partial inductance P1a and a second partial inductance P1b.
  • a secondary inductance is S1 designated.
  • a first terminal of the primary inductance P1 is coupled to the first electronic switch T1, while a second terminal of the primary inductance P1 is coupled to the second electronic switch T2.
  • a third terminal, which is arranged between the first partial inductance P1a and the second partial inductance P1b, is coupled to a reference potential, which in particular represents a DC voltage U V.
  • the first and second electronic switches T1, T2 are driven by a drive device 12 with a drive signal having a switching frequency f s .
  • a first capacitor C1 is provided, which is coupled between the secondary inductance S1 and a first terminal of the high-pressure discharge lamp La.
  • a charging device 14 coupled to the first capacitor C1 serves to charge the first capacitor C1 with a DC voltage to an ignition voltage for igniting the high-pressure discharge lamp La.
  • inductors and capacitors generally have a frequency dependent reactance.
  • the impedance Z of a series circuit of an ohmic resistance R, an inductance L and a capacitor C is also frequency-dependent.
  • R represents the ohmic resistance of the high-pressure discharge lamp La, which is usually between 10 and 200 ⁇
  • Ls the total inductance of the secondary circuit consisting of all direct and indirect inductances
  • Cs the total capacity of the secondary circuit consisting of all direct and indirect capacities:
  • a direct inductance represents, for example, the additional inductance L1
  • indirect inductances are formed, for example, by stray, parasitic or retroactive inductances.
  • a direct capacitance is, for example, the ignition or coupling capacitance C1, while indirect capacitances are formed, for example, by stray, parasitic or retroactive capacitances.
  • the determining capacity in Cs is C1.
  • the switching frequency f s is now chosen so that the total inductance Ls and the total capacitance Cs are operated in series resonance.
  • Fig. 2 shows a second embodiment of a circuit arrangement according to the invention, in which the primary inductance P1, a capacitor C2 is connected in parallel. This capacitor C2 serves to limit the voltage increase in the primary circuit and to provide further resonance points.
  • Fig. 2 illustrated embodiment of the high pressure discharge lamp La a capacitor C3 connected in parallel. This has the task of providing a further resonance point for generating the transfer voltage.
  • An inductor L1 coupled between the capacitor C1 and the first terminal for the high-pressure discharge lamp La serves for current shaping and current limiting. It can also be used, in conjunction with the capacitor C3, to set up further resonance points for the purpose of transfer voltage generation and to shift the resonance point in connection with the capacitor C1. Under certain circumstances, it is also useful to couple the inductance L1 between the capacitor C1 and the first terminal of the secondary side of the transformer Tr. The capacitor C3 is then coupled between the junction of the capacitor C1 and the inductor L1 and the second terminal of the high pressure discharge lamp La. In this case, the capacitor C2 blocks a part of the discharge current of the capacitor C1 (assuming the high-pressure discharge lamp) from the secondary side of the transformer Tr from. This reduces the flyback voltage in the primary circuit of the transformer Tr and thus the voltage load of the switches T1 and T2 in the ignition of the high-pressure discharge lamp.
  • the voltage converter 10 represents a bridge converter, in particular a half-bridge converter, wherein the first terminal of the primary inductance P1 is coupled to a connection point between the first T1 and the second electronic switch T2.
  • the second terminal of the primary inductance P1 is coupled to the remote from the connection point P terminal of the second electronic switch T2.
  • a capacitor C4 is coupled, which as well as in Fig. 2 shown capacitor C3 is the voltage overshoot of the conducive for ignition AC voltage component or for increasing the transfer voltage.
  • a capacitor C5 is coupled. This serves as a coupling capacitor.
  • Fig. 4 shows an embodiment with a turn-on as a voltage converter, in the present case, a flyback converter was selected.
  • the electronic switch T1 a capacitor C6 is connected in parallel. This serves to limit the voltage increase across the switch T1 and also influences the resonant frequency of the secondary circuit.
  • the secondary inductance S1 can be connected in parallel with a capacitor C7 be the same function as the capacitor C4 in the in Fig. 3 illustrated embodiment.
  • the capacitance of the capacitor C1 is 1.5 nF. This represents about one-fifth of the capacitance C1 required for the non-resonant operation of the secondary circuit.
  • the switching frequency is 1.2 MHz.
  • the capacitor C1 is DC charged to about 10 kV, that is, the open circuit voltage of the transformer Tr is DC raised to ignite the lamp. Thereafter, the capacitor C1 operates as a series resonant capacitor for the secondary circuit. Due to the resonance mode results in a capacitor capacity, which corresponds to the required dielectric strength of a commercially available device and geometrically without difficulty even in the smallest available space, for example, in the base of a D3 lamp fits.
  • the lamp current I is similar to sine.

Landscapes

  • Circuit Arrangements For Discharge Lamps (AREA)

Description

Technisches GebietTechnical area

Die vorliegende Erfindung betrifft eine Schaltungsanordnung zum Betreiben mindestens einer Hochdruckentladungslampe mit einem Spannungswandler mit mindestens einem elektronischen Schalter, einer Ansteuerschaltung zum Ansteuern des mindestens einen elektronischen Schalters des Spannungswandlers mit einer vorgebbaren Wandlerfrequenz, einem ersten und einem zweiten Anschluss zum Koppeln mit der mindestens einen Hochdruckentladungslampe, einem ersten Kondensator, der zwischen den Spannungswandler und den ersten Anschluss für die Entladungslampe gekoppelt ist, und einer Ladevorrichtung, die mit dem ersten Kondensator gekoppelt ist, um diesen mit einer Gleichspannung auf eine Zündspannung zum Zünden der Hochdruckentladungslampe aufzuladen. Sie betrifft überdies ein entsprechendes Verfahren zum Betreiben einer Hochdruckentladungslampe.The present invention relates to a circuit arrangement for operating at least one high-pressure discharge lamp with a voltage converter having at least one electronic switch, a drive circuit for driving the at least one electronic switch of the voltage converter with a predeterminable converter frequency, a first and a second connection for coupling to the at least one high-pressure discharge lamp, a first capacitor coupled between the voltage converter and the first terminal for the discharge lamp, and a charging device coupled to the first capacitor for charging it with a DC voltage to an ignition voltage for igniting the high pressure discharge lamp. It also relates to a corresponding method for operating a high-pressure discharge lamp.

Stand der TechnikState of the art

Hochdruckentladungslampen weisen beim Betrieb in bestimmten Frequenzbereichen Bogenresonanzen, so genannte akustische Resonanzen, auf. Diese Resonanzfrequenzen liegen meist in einem Bereich zwischen 1 kHz bis 1 MHz. Daher werden diese Lampen üblicherweise mit einer Rechteckfrequenz unterhalb 1 kHz betrieben. Elektronische Vorschaltgeräte, die ausgelegt sind, eine derartige Rechteckfrequenz bereitzustellen, sind jedoch technisch sehr aufwändig und daher entsprechend voluminös und kostenintensiv.High-intensity discharge lamps have arc resonances, so-called acoustic resonances, in operation in certain frequency ranges. These resonance frequencies are usually in a range between 1 kHz to 1 MHz. Therefore, these lamps are usually operated with a square wave frequency below 1 kHz. Electronic ballasts designed to have such a square frequency However, to provide, but are technically very complex and therefore corresponding bulky and expensive.

Vorteile bringt der Betrieb im Bereich um und oberhalb 1 MHz. Dabei besteht aber das Problem, dass die beim Rechteckbetrieb angewandte Impuls-Überlagerungszündung durch die hohe Induktivität des Impulstransformators beim HF-Betrieb nicht einsetzbar ist. Ein derartiger Impulstransformator wirkt nämlich als Filter für die hohen Frequenzen und begrenzt dadurch die Übertragung des Stroms in diesen Frequenzbereichen. Bei derartig hohen Frequenzen wird quasi kein Stromfluss durch einen derartigen Impulstransformator mehr ermöglicht. Es muss also nach anderen Zündungs-Alternativen gesucht werden.The advantage is the operation in the area around and above 1 MHz. However, there is the problem that the impulse superposition ignition used in the rectangular operation can not be used due to the high inductance of the pulse transformer in HF operation. Namely, such a pulse transformer acts as a filter for the high frequencies and thereby limits the transmission of the current in these frequency ranges. With such high frequencies, virtually no current flow through such a pulse transformer is made possible. So you have to look for other ignition alternatives.

Aus der DE 199 09 530 A1 ist in diesem Zusammenhang eine Schaltungsanordnung bekannt, welche eine Gleichstromzündung einer Hochdruckentladungslampe ermöglicht. Dabei wird eine Zünd- beziehungsweise Koppelkapazität, die dort mit C1 bezeichnet ist, auf die Zündspannung, die beispielsweise zwischen 10 und 15 kV betragen kann, aufgeladen. Für den Stationärbetrieb der Hochdruckentladungslampe muss jedoch diese Zünd- beziehungsweise Koppelkapazität einen sehr hohen Kapazitätswert aufweisen, um den entsprechenden Strom für die geforderte Lampenleistung zu übertragen. In Verbindung mit der hohen Spannungsfestigkeit für den Zündvorgang ergeben sich daraus sehr voluminöse und teure Kondensatoren. Im Zündvorgang stellt dieser Kondensator nämlich die Zündkapazität dar, die auf die entsprechende Zündspannung aufgeladen wird, während im Stationärbetrieb der Lampe dieser Kondensatorzwangsweise - als Koppelkapazität arbeitet. Das bedeutet, dieser Kondensator muss den Stromkreis zwischen dem Übertrager des Spannungswandlers und der Lampe schließen und somit den gesamten Lampenstrom übernehmen und weiterleiten. Durch die Induktivität L1 und den Kondensator C3, siehe dort Fig. 2, wird lediglich die Übernahmespannung bereitgestellt, die nur einige kV beträgt und damit deutlich unter der Zündspannung liegt.From the DE 199 09 530 A1 In this context, a circuit arrangement is known which enables DC ignition of a high-pressure discharge lamp. In this case, an ignition or coupling capacitance, which is designated there by C1, to the ignition voltage, which may be, for example, between 10 and 15 kV, charged. For stationary operation of the high-pressure discharge lamp, however, this ignition or coupling capacitance must have a very high capacitance value in order to transmit the corresponding current for the required lamp power. In conjunction with the high dielectric strength for the ignition, this results in very voluminous and expensive capacitors. In the ignition process, this capacitor is namely the ignition capacity, which is charged to the appropriate ignition voltage, while in stationary operation of the lamp this capacitor forced - works as a coupling capacity. This means that this capacitor must be the circuit between the transformer close the voltage converter and the lamp and thus take over the entire lamp current and forward. Through the inductance L1 and the capacitor C3, see there Fig. 2 , only the take-over voltage is provided, which is only a few kV and thus significantly below the ignition voltage.

Wandler für elektronische Vorschaltgeräte für den Hochfrequenzbetrieb werden im Allgemeinen im Resonanzmode betrieben. Hierbei schalten die Transistoren zur Verlustleistungsreduzierung im strom- beziehungsweise spannungslosen Zustand, das heißt im Nulldurchgang. Dafür ist auf der Primärseite des Wandlers ein zusätzlicher Resonanzkondensator notwendig, welcher mit der Primärinduktivität einen Resonanzkreis bildet. Im Resonanzfall sind die Spannungen beziehungsweise Ströme sinusförmig, so dass im Nulldurchgang geschaltet werden kann. In diesem Zusammenhang wird verwiesen auf die WO 98/18297 A1 , bei der der Resonanzkondensator mit C2 bezeichnet ist. Die Primärinduktivität wird gebildet von den Wicklungen W1a und W1b des Push-Pull-Konverters, der seinerseits die Transistoren T1, T2 und den Transformator Tr1 umfasst.Transducers for electronic ballasts for high frequency operation are generally operated in resonance mode. In this case, the transistors for loss of power reduction in the current or de-energized state, that is at zero crossing. For this purpose, an additional resonance capacitor is necessary on the primary side of the converter, which forms a resonant circuit with the primary inductance. In the case of resonance, the voltages or currents are sinusoidal, so that can be switched at zero crossing. In this context, reference is made to the WO 98/18297 A1 in which the resonance capacitor is designated C2. The primary inductance is formed by the windings W1a and W1b of the push-pull converter, which in turn comprises the transistors T1, T2 and the transformer Tr1.

Darstellung der ErfindungPresentation of the invention

Die Aufgabe der vorliegenden Erfindung besteht deshalb darin, eine eingangs genannte Schaltungsanordnung beziehungsweise ein eingangs genanntes Verfahren derart weiterzubilden, dass die Kapazität des ersten Kondensators, der den Koppel- beziehungsweise Zündkondensator darstellt, verringert werden kann.Therefore, the object of the present invention is to develop a circuit arrangement mentioned at the outset or an initially mentioned method such that the capacitance of the first capacitor, which constitutes the coupling or ignition capacitor, can be reduced.

Diese Aufgabe wird gelöst durch eine Schaltungsanordnung mit den Merkmalen von Patentanspruch 1 sowie durch ein Verfahren mit den Merkmalen von Patentanspruch 15.This object is achieved by a circuit arrangement having the features of patent claim 1 and by a method having the features of patent claim 15.

Der vorliegenden Erfindung liegt die Erkenntnis zugrunde, dass dies grundsätzlich ermöglicht wird, wenn der Spannungswandler einen Transformator umfasst, wobei der Transformator eine Primärinduktivität mit mindestens einem ersten und einem zweiten Anschluss und eine Sekundärinduktivität mit einem ersten und einem zweiten Anschluss umfasst, wobei der erste Kondensator zwischen den ersten Anschluss der Sekundärinduktivität und den ersten Anschluss für die mindestens eine Hochdruckentladungslampe gekoppelt ist. Erfindungsgemäß ist die Wandlerfrequenz im Stationärbetrieb der Schaltungsanordnung derart gewählt, dass die Sekundärseite, die zumindest die Serienschaltung aus Sekundärinduktivität, ersten Kondensator sowie Hochdruckentladungslampe umfasst, im Wesentlichen in Resonanz betrieben wird. Dadurch, dass die Induktivitäten und Kapazitäten des Serienkreises mit der Hochdruckentladungslampe einen Reihenresonanzkreis bilden, bei dem im Resonanzfall die Impedanzen der Bauelemente sehr kleine Werte annehmen, ist auch die Impedanz des Zünd- beziehungsweise Koppelkondensators, das heißt des ersten Kondensators, bei Betrieb mit einer derartigen Wandlerfrequenz sehr klein. Hierdurch kann bei relativ niedrigen Frequenzen und geringen Kapazitäten - im Vergleich ohne Resonanz - ein hoher Strom geleitet werden. Dieser ist zudem auch noch sinusförmig. Dadurch lässt sich die Kapazität des ersten Kondensators gegenüber der bekannten Vorgehensweise deutlich verringern. Damit geht eine Kostenreduktion des ersten Kondensators sowie eine Volumenverkleinerung der Schaltungsanordnung, das heißt des elektronischen Vorschaltgeräts, einher. Überdies können die Bauteile des Spannungswandlers ebenfalls kleiner dimensioniert werden, was zu einer weitern Kostenreduktion führt.The present invention is based on the finding that this is fundamentally made possible when the voltage converter comprises a transformer, wherein the transformer comprises a primary inductance with at least one first and a second terminal and a secondary inductance with a first and a second terminal, wherein the first capacitor is coupled between the first terminal of the secondary inductance and the first terminal for the at least one high-pressure discharge lamp. According to the invention, the converter frequency in stationary operation of the circuit arrangement is selected such that the secondary side, which comprises at least the series connection of secondary inductance, first capacitor and high-pressure discharge lamp, is operated substantially in resonance. Due to the fact that the inductances and capacitances of the series circuit with the high-pressure discharge lamp form a series resonant circuit in which the impedances of the components assume very small values in the case of resonance, the impedance of the ignition or coupling capacitor, that is of the first capacitor, is also in operation with such Converter frequency very small. As a result, at relatively low frequencies and low capacities - compared without resonance - a high current can be passed. This is also sinusoidal. As a result, the capacity of the first capacitor compared to the known procedure can be significantly reduced. This is a cost reduction of the first capacitor and a reduction in volume the circuit arrangement, that is the electronic ballast, accompanied. Moreover, the components of the voltage converter can also be made smaller, which leads to a further cost reduction.

Die Erfindung ist nicht zu verwechseln mit der zur Lampe parallel geschalteten Resonanzkapazität C1 der WO 98/18297 A1 beziehungsweise des Kondensators C2 der DE 199 09 530 A1 , welche eine weit oberhalb der Stationärfrequenz des Spannungswandlers liegende weitere Resonanzstelle zur Spannungsüberhöhung für die Übernahme der Hochdruckentladungslampe bereitstellen und im stationären Lampenbetrieb wirkungslos sind, da sie von der Hochdruckentladungslampe kurzgeschlossen werden. Deren Kapazitätswert ist sehr viel kleiner als die Zünd- beziehungsweise Koppelkapazität.The invention is not to be confused with the parallel to the lamp resonant capacitor C1 WO 98/18297 A1 or the capacitor C2 of the DE 199 09 530 A1 , Which provide a far above the stationary frequency of the voltage converter further resonance point for voltage overshoot for the adoption of the high-pressure discharge lamp and are ineffective in stationary lamp operation, since they are short-circuited by the high pressure discharge lamp. Their capacity value is much smaller than the ignition or coupling capacity.

Weiterhin stellt die vorliegende Erfindung den Vorteil bereit, dass der Resonanzkondensator der Primärseite wie in der WO 98/18297 A1 noch vorhanden, entfallen kann, da der Primärstrom nun ebenfalls zwangsweise sinusförmig ist. Somit kann der Schaltungsaufwand nochmals deutlich reduziert werden, was zu einer weiteren Kostenreduktion führt.Furthermore, the present invention provides the advantage that the resonance capacitor of the primary side as in WO 98/18297 A1 still present, can be omitted, since the primary current is now also forcibly sinusoidal. Thus, the circuit complexity can be significantly reduced again, resulting in a further cost reduction.

Bevorzugt liegt die Wandlerfrequenz in einem Bereich von +/- 10 % der Resonanzfrequenz des Sekundärkreises. Durch die Wahl der Frequenz innerhalb dieses Bereichs lässt sich bereits eine deutliche Reduktion der Kapazität des ersten Kondensators erreichen. Der Strom beziehungsweise Spannungsverlauf ist bereits dann für ein verlustarmes Schalten ausreichend sinusförmig.Preferably, the converter frequency is in a range of +/- 10% of the resonant frequency of the secondary circuit. By choosing the frequency within this range, a significant reduction of the capacitance of the first capacitor can already be achieved. The current or voltage curve is then sufficiently sinusoidal for low-loss switching.

Der Spannungswandler kann einen Push-Pull-Konverter darstellen, der mindestens einen ersten und einen zweiten elektronischen Schalter umfasst, die in Serie gekoppelt sind, wobei ein erster Anschluss der Primärinduktivität mit dem ersten elektronischen Schalter, ein zweiter Anschluss der Primärinduktivität mit dem zweiten elektronischen Schalter und ein dritter Anschluss der Primärinduktivität mit einem Bezugspotential gekoppelt ist. Bevorzugt ist der Primärinduktivität ein zweiter Kondensator parallel geschaltet, um den Spannungsanstieg zu begrenzen und weitere Resonanzstellen zu erhalten.The voltage converter may be a push-pull converter comprising at least first and second electronic switches coupled in series, wherein a first terminal of the primary inductance with the first electronic switch, a second terminal of the primary inductance with the second electronic switch and a third terminal of the primary inductance is coupled to a reference potential. Preferably, a second capacitor is connected in parallel to the primary inductance in order to limit the voltage increase and to obtain further resonance points.

Gemäß einer bevorzugten Ausführungsform ist zwischen den ersten und den zweiten Anschluss für die Hochdruckentladungslampe ein dritter Kondensator gekoppelt. Dieser dient dazu, eine Resonanz bei höheren Frequenzen zum Erzeugen der Übernahmespannung bereitzustellen, wobei die Resonanzfrequenz bestimmt ist durch die Streuinduktivität des Transformators auf der Sekundärseite und den drittten Kondensator. Im Betrieb ist dieser dritte Kondensator wirkungslos, da er von der Lampe, die im Betrieb niederohmig wird, kurzgeschlossen wird.According to a preferred embodiment, a third capacitor is coupled between the first and the second connection for the high-pressure discharge lamp. This serves to provide a resonance at higher frequencies for generating the take-over voltage, wherein the resonance frequency is determined by the leakage inductance of the transformer on the secondary side and the third capacitor. In operation, this third capacitor is ineffective because it is shorted by the lamp, which becomes low impedance during operation.

Besonders bevorzugt ist zwischen den ersten Kondensator und den ersten Anschluss für die Hochdruckentladungslampe eine erste Induktivität gekoppelt. Diese dient der Stromformung sowie der Strombegrenzung. Sie kann in Verbindung mit dem dritten Kondensator weiterhin der Einrichtung weiterer Resonanzstellen zum Zwecke der Übernahmespannungserzeugung und der Verschiebung der Resonanzstelle in Verbindung mit dem ersten Kondensator dienen. Unter Umständen ist es auch sinnvoll, die erste Induktivität zwischen den ersten Kondensator und den ersten Anschluss der Sekundärseite des Transformators zu koppeln. Der dritte Kondensator wird dann zwischen den Knotenpunkt des ersten Kondensators und der ersten Induktivität sowie den zweiten Anschluss der Hochdruckentladungslampe gekoppelt. Hierbei blockt der zweite Kondensator einen Teil des Entladestroms des ersten Kondensators (bei Übernahme der Hochdruckentladungslampe) von der Sekundärseite des Transformators ab. Dies verringert die Rückschlagspannung im Primärkreis des Transformators und somit die Spannungsbelastung des ersten und des zweiten elektronischen Schalters im Zündmoment der Hockdruckentladungslampe.Particularly preferably, a first inductance is coupled between the first capacitor and the first connection for the high-pressure discharge lamp. This serves for current shaping and current limiting. It can also be used, in conjunction with the third capacitor, to set up further resonance points for the purpose of transfer voltage generation and to shift the resonance point in conjunction with the first capacitor. Under certain circumstances it makes sense to use the first inductance between the first capacitor and the first connection of the Secondary side of the transformer to couple. The third capacitor is then coupled between the junction of the first capacitor and the first inductor and the second terminal of the high pressure discharge lamp. In this case, the second capacitor blocks a part of the discharge current of the first capacitor (assuming the high-pressure discharge lamp) from the secondary side of the transformer. This reduces the flyback voltage in the primary circuit of the transformer and thus the voltage load of the first and the second electronic switch in the ignition of the high-pressure discharge lamp.

Der Spannungswandler kann auch einen Brückenkonverter darstellen, der mindestens einen ersten und einen zweiten elektronischen Schalter umfasst. Dabei kann der erste Anschluss der Primärinduktivität mit einem Verbindungspunkt zwischen dem ersten und dem zweiten elektronischen Schalter gekoppelt sein, wobei der zweite Anschluss der Primärinduktivität mit dem vom Verbindungspunkt abgekehrten Anschluss des zweiten elektronischen Schalters gekoppelt ist. In diesem Zusammenhang kann parallel zur Sekundärinduktivität ein vierter Kondensator gekoppelt sein. Dieser dient wiederum der Erzeugung der Übernahmespannung für die Hochdruckentladungslampe zusammen mit der Sekundärinduktivität des Transformators des Spannungswandlers.The voltage converter may also be a bridge converter comprising at least a first and a second electronic switch. In this case, the first connection of the primary inductance can be coupled to a connection point between the first and the second electronic switch, wherein the second connection of the primary inductance is coupled to the connection of the remote connection point of the second electronic switch. In this connection, a fourth capacitor can be coupled in parallel to the secondary inductance. This in turn serves to generate the transfer voltage for the high-pressure discharge lamp together with the secondary inductance of the transformer of the voltage converter.

Weiterhin oder alternativ kann zwischen den vom Verbindungspunkt abgekehrten Anschluss des zweiten elektronischen Schalters und den zweiten Anschluss der Primärinduktivität ein fünfter Kondensator gekoppelt sein. Dieser dient bei ungünstiger Kapazitätsgröße des ersten Kondensators als Symmetriekondensator für den Transformator und ermöglicht eine Verschiebung der Resonanzfrequenz des Gesamtsystems, da sich die Kapazitäten des ersten und des fünften Kondensators über das Quadrat des Übersetzungsverhältnisses des Transformators addieren.Furthermore or alternatively, a fifth capacitor can be coupled between the connection of the connection point remote from the second electronic switch and the second connection of the primary inductance. This serves with unfavorable capacity size of the first capacitor as a balancing capacitor for the transformer and allows a shift of the resonant frequency of the entire system, because the capacitances of the first and fifth capacitors add up over the square of the transformation ratio of the transformer.

Der Spannungswandler kann auch einen Einschalterwandler mit einem elektronischen Schalter, insbesondere einen Flyback Konverter, darstellen. Bevorzugt ist dabei dem elektronischen Schalter ein sechster Kondensator parallel geschaltet. Dieser dient der Begrenzung des Spannungsanstiegs über den ersten elektronischen Schalter und beeinflusst ebenfalls die Resonanzfrequenz des Sekundärkreises. Auch die Einbeziehung der aus den weiter oben beschriebenen Schaltungsausführungen bereits bekannten zusätzlichen Induktivität im Sekundärkreis ist wiederum möglich.The voltage converter can also be a Einschalterwandler with an electronic switch, in particular a flyback converter represent. Preference is given to the electronic switch, a sixth capacitor connected in parallel. This serves to limit the voltage increase across the first electronic switch and also influences the resonant frequency of the secondary circuit. The inclusion of the already known from the circuit designs already described additional inductance in the secondary circuit is again possible.

Weiterhin kann der Sekundärinduktivität ein siebter Kondensator parallel geschaltet sein, der wiederum der Bereitstellung der Übernahmefrequenz dient.Furthermore, the secondary inductance, a seventh capacitor may be connected in parallel, which in turn serves to provide the crossover frequency.

Die Wandlerfrequenz beträgt bei den bevorzugten Ausführungsbeispielen der vorliegenden Erfindung mindestens 1 MHz.The converter frequency is at least 1 MHz in the preferred embodiments of the present invention.

Weitere vorteilhafte Ausführungsformen ergeben sich aus den Unteransprüchen.Further advantageous embodiments will become apparent from the dependent claims.

Die mit Bezug auf eine erfindungsgemäße Schaltungsanordnung vorgestellten bevorzugten Ausführungsformen und deren Vorteile gelten, soweit anwendbar, entsprechend für das erfindungsgemäße Verfahren.Kurze Beschreibung der Zeichnung(en) The preferred embodiments presented with reference to a circuit arrangement according to the invention and their advantages, if applicable, apply correspondingly to the method according to the invention. Brief description of the drawing (s)

Im Nachfolgenden werden Ausführungsbeispiele der vorliegenden Erfindung unter Bezugnahme auf die beigefügten Zeichnungen näher beschrieben. Es zeigen:

Fig. 1
in schematischer Darstellung ein erstes Ausführungsbeispiel einer erfindungsgemäßen Schaltungsanordnung;
Fig. 2
in schematischer Darstellung ein zweites Ausführungsbeispiel einer erfindungsgemäßen Schaltungsanordnung;
Fig. 3
in schematischer Darstellung ein drittes Ausführungsbeispiel einer erfindungsgemäßen Schaltungsanordnung; und
Fig. 4
in schematischer Darstellung ein viertes Ausführungsbeispiel einer erfindungsgemäßen Schaltungsanordnung.
Hereinafter, embodiments of the present invention will be described in more detail with reference to the accompanying drawings. Show it:
Fig. 1
a schematic representation of a first embodiment of a circuit arrangement according to the invention;
Fig. 2
a schematic representation of a second embodiment of a circuit arrangement according to the invention;
Fig. 3
a schematic representation of a third embodiment of a circuit arrangement according to the invention; and
Fig. 4
in a schematic representation of a fourth embodiment of a circuit arrangement according to the invention.

In den nachfolgenden Ausführungsbeispielen werden gleiche und gleich wirkende Bauelemente mit denselben Bezugszeichen gekennzeichnet.In the following exemplary embodiments, identical and identically acting components are identified by the same reference numerals.

Fig. 1 zeigt in schematischer Darstellung ein erstes Ausführungsbeispiel einer erfindungsgemäßen Schaltungsanordnung zum Betreiben einer Hochdruckentladungslampe La. In diesem Ausführungsbeispiel ist ein Spannungswandler 10 durch einen Push-Pull-Konverter realisiert, der einen ersten elektronischen Schalter T1 sowie einen zweiten elektronischen Schalter T2 umfasst, die in Serie gekoppelt sind. Der Spannungswandler 10 umfasst weiterhin einen Transformator Tr mit einer Primärinduktivität P1, die eine erste Teilinduktivität P1a und eine zweite Teilinduktivität P1b umfasst. Eine Sekundärinduktivität ist mit S1 bezeichnet. Ein erster Anschluss der Primärinduktivität P1 ist mit dem ersten elektronischen Schalter T1 gekoppelt, während ein zweiter Anschluss der Primärinduktivität P1 mit dem zweiten elektronischen Schalter T2 gekoppelt ist. Ein dritter Anschluss, der zwischen der ersten Teilinduktivität P1a und der zweiten Teilinduktivität P1b angeordnet ist, ist mit einem Bezugspotential gekoppelt, das insbesondere eine Gleichspannung UV darstellt. Fig. 1 shows a schematic representation of a first embodiment of a circuit arrangement according to the invention for operating a high-pressure discharge lamp La. In this embodiment, a voltage converter 10 is realized by a push-pull converter, which comprises a first electronic switch T1 and a second electronic switch T2, which are coupled in series. The voltage converter 10 further comprises a transformer Tr having a primary inductance P1, which comprises a first partial inductance P1a and a second partial inductance P1b. A secondary inductance is S1 designated. A first terminal of the primary inductance P1 is coupled to the first electronic switch T1, while a second terminal of the primary inductance P1 is coupled to the second electronic switch T2. A third terminal, which is arranged between the first partial inductance P1a and the second partial inductance P1b, is coupled to a reference potential, which in particular represents a DC voltage U V.

Der erste und der zweite elektronische Schalter T1, T2 werden von einer Ansteuerungsvorrichtung 12 mit einem Ansteuersignal angesteuert, das eine Schaltfrequenz fs aufweist. Sekundärseitig ist ein erster Kondensator C1 vorgesehen, der zwischen die Sekundärinduktivität S1 sowie einen ersten Anschluss der Hochdruckentladungslampe La gekoppelt ist. Eine mit dem ersten Kondensator C1 gekoppelte Ladevorrichtung 14 dient dazu, den ersten Kondensator C1 mit einer Gleichspannung auf eine Zündspannung zum Zünden der Hochdruckentladungslampe La aufzuladen.The first and second electronic switches T1, T2 are driven by a drive device 12 with a drive signal having a switching frequency f s . On the secondary side, a first capacitor C1 is provided, which is coupled between the secondary inductance S1 and a first terminal of the high-pressure discharge lamp La. A charging device 14 coupled to the first capacitor C1 serves to charge the first capacitor C1 with a DC voltage to an ignition voltage for igniting the high-pressure discharge lamp La.

Im Hinblick auf die vorliegende Erfindung ist folgendes anzumerken: Induktivitäten und Kapazitäten besitzen ganz allgemein einen frequenzabhängigen Blindwiderstand. Damit wird der Scheinwiderstand Z einer Reihenschaltung aus einem ohmschen Widerstand R, einer Induktivität L und eines Kondensators C ebenfalls frequenzabhängig.With respect to the present invention, it should be noted that inductors and capacitors generally have a frequency dependent reactance. Thus, the impedance Z of a series circuit of an ohmic resistance R, an inductance L and a capacitor C is also frequency-dependent.

Im Nachfolgenden stellt R den ohmschen Widerstand der Hochdruckentladungslampe La dar, der üblicherweise zwischen 10 und 200 Ω liegt stellt, Ls die Gesamtinduktivität des Sekundärkreises bestehend aus allen direkten und indirekten Induktivitäten, und Cs die Gesamtkapazität des Sekundärkreises bestehend aus allen direkten und indirekten Kapazitäten: Z = R 2 + ω L s - 1 ω Cs 2

Figure imgb0001
In the following, R represents the ohmic resistance of the high-pressure discharge lamp La, which is usually between 10 and 200 Ω, Ls the total inductance of the secondary circuit consisting of all direct and indirect inductances, and Cs the total capacity of the secondary circuit consisting of all direct and indirect capacities: Z = R 2 + ω L s - 1 ω Cs 2
Figure imgb0001

Eine direkte Induktivität stellt beispielsweise die zusätzliche Induktivität L1 dar, während indirekte Induktivitäten beispielsweise durch Streu-, parasitäre oder rückwirkende Induktivitäten gebildet werden.A direct inductance represents, for example, the additional inductance L1, while indirect inductances are formed, for example, by stray, parasitic or retroactive inductances.

Eine direkte Kapazität ist beispielsweise die Zünd- beziehungsweise Koppelkapazität C1, während indirekte Kapazitäten beispielsweise durch Streu-, parasitäre oder rückwirkende Kapazitäten gebildet werden. Die bestimmende Kapazität in Cs ist C1.A direct capacitance is, for example, the ignition or coupling capacitance C1, while indirect capacitances are formed, for example, by stray, parasitic or retroactive capacitances. The determining capacity in Cs is C1.

Erfindungsgemäß wird nunmehr die Schaltfrequenz fs so gewählt, dass die Gesamtinduktivität Ls und die Gesamtkapazität Cs in Serienresonanz betrieben werden. Um dies zu erreichen, ist die Schaltfrequenz fs wie folgt zu wählen: f s = 1 2 π Ls * Cs

Figure imgb0002
According to the invention, the switching frequency f s is now chosen so that the total inductance Ls and the total capacitance Cs are operated in series resonance. To achieve this, the switching frequency f s should be selected as follows: f s = 1 2 π ls * Cs
Figure imgb0002

Für die Erfindung brauchbare Werte ergeben sich jedoch bereits bei einer Wahl der Schaltfrequenz fs im Bereich von +/- 10 % der oben angegebenen Resonanzfrequenz fs des Sekundärkreises.Values usable for the invention, however, already result in a selection of the switching frequency f s in the range of +/- 10% of the above-indicated resonant frequency f s of the secondary circuit.

Ohne Reihenresonanz wäre die Impedanz des Kondensators C1: Z c = 1 / ω C 1

Figure imgb0003
Without series resonance, the impedance of the capacitor C1 would be: Z c = 1 / ω C 1
Figure imgb0003

Es wäre also eine weitaus höhere Frequenz beziehungsweise ein größerer Kondensator notwendig, um einen entsprechenden Strom I = U/|Z| fließen zu lassen.So it would be a much higher frequency or a larger capacitor necessary to a corresponding current I = U / | Z | to flow.

Fig. 2 zeigt ein zweites Ausführungsbeispiel einer erfindungsgemäßen Schaltungsanordnung, bei dem der Primärinduktivität P1 ein Kondensator C2 parallel geschaltet ist. Dieser Kondensator C2 dient einer Begrenzung des Spannungsanstiegs im Primärkreis sowie der Bereitstellung weiterer Resonanzstellen. Fig. 2 shows a second embodiment of a circuit arrangement according to the invention, in which the primary inductance P1, a capacitor C2 is connected in parallel. This capacitor C2 serves to limit the voltage increase in the primary circuit and to provide further resonance points.

Weiterhin ist bei dem in Fig. 2 dargestellten Ausführungsbeispiel der Hochdruckentladungslampe La ein Kondensator C3 parallel geschaltet. Dieser hat die Aufgabe, eine weitere Resonanzstelle zur Erzeugung der Übernahmespannung bereitzustellen.Furthermore, in the in Fig. 2 illustrated embodiment of the high pressure discharge lamp La a capacitor C3 connected in parallel. This has the task of providing a further resonance point for generating the transfer voltage.

Eine zwischen den Kondensator C1 und den ersten Anschluss für die Hochdruckentladungslampe La gekoppelte Induktivität L1 dient der Stromformung sowie der Strombegrenzung. Sie kann in Verbindung mit dem Kondensator C3 weiterhin der Einrichtung weiterer Resonanzstellen zum Zwecke der Übernahmespannungserzeugung und der Verschiebung der Resonanzstelle in Verbindung mit dem Kondensator C1 dienen. Unter Umständen ist es auch sinnvoll, die Induktivität L1 zwischen den Kondensator C1 und den ersten Anschluss der Sekundärseite des Transformators Tr zu koppeln. Der Kondensator C3 wird dann zwischen den Knotenpunkt des Kondensators C1 und der Induktivität L1 sowie den zweiten Anschluss der Hochdruckentladungslampe La gekoppelt. Hierbei blockt der Kondensator C2 einen Teil des Entladestroms des Kondensators C1 (bei Übernahme der Hochdruckentladungslampe) von der Sekundärseite des Transformators Tr ab. Dies verringert die Rückschlagspannung im Primärkreis des Transformators Tr und somit die Spannungsbelastung der Schalter T1 und T2 im Zündmoment der Hockdruckentladungslampe.An inductor L1 coupled between the capacitor C1 and the first terminal for the high-pressure discharge lamp La serves for current shaping and current limiting. It can also be used, in conjunction with the capacitor C3, to set up further resonance points for the purpose of transfer voltage generation and to shift the resonance point in connection with the capacitor C1. Under certain circumstances, it is also useful to couple the inductance L1 between the capacitor C1 and the first terminal of the secondary side of the transformer Tr. The capacitor C3 is then coupled between the junction of the capacitor C1 and the inductor L1 and the second terminal of the high pressure discharge lamp La. In this case, the capacitor C2 blocks a part of the discharge current of the capacitor C1 (assuming the high-pressure discharge lamp) from the secondary side of the transformer Tr from. This reduces the flyback voltage in the primary circuit of the transformer Tr and thus the voltage load of the switches T1 and T2 in the ignition of the high-pressure discharge lamp.

Bei dem in Fig. 3 dargestellten Ausführungsbeispiel stellt der Spannungswandler 10 einen Brückenkonverter, insbesondere einen Halbbrückenkonverter, dar, wobei der erste Anschluss der Primärinduktivität P1 mit einem Verbindungspunkt zwischen dem ersten T1 und dem zweiten elektronischen Schalter T2 gekoppelt ist. Der zweite Anschluss der Primärinduktivität P1 ist mit dem vom Verbindungspunkt P abgekehrten Anschluss des zweiten elektronischen Schalters T2 gekoppelt. Parallel zur Sekundärinduktivität ist ein Kondensator C4 gekoppelt, der ebenso wie der in Fig. 2 dargestellte Kondensator C3 der Spannungsüberhöhung des für die Zündung förderlichen Wechselspannungsanteils beziehungsweise für die Erhöhung der Übernahmespannung dient.At the in Fig. 3 1, the voltage converter 10 represents a bridge converter, in particular a half-bridge converter, wherein the first terminal of the primary inductance P1 is coupled to a connection point between the first T1 and the second electronic switch T2. The second terminal of the primary inductance P1 is coupled to the remote from the connection point P terminal of the second electronic switch T2. Parallel to the secondary inductance, a capacitor C4 is coupled, which as well as in Fig. 2 shown capacitor C3 is the voltage overshoot of the conducive for ignition AC voltage component or for increasing the transfer voltage.

Zwischen den vom Verbindungspunkt P abgekehrten Anschluss des zweiten elektronischen Schalters T2 und den zweiten Anschluss der Primärinduktivität ist ein Kondensator C5 gekoppelt. Dieser dient als Koppelkondensator.Between the remote from the connection point P terminal of the second electronic switch T2 and the second terminal of the primary inductor, a capacitor C5 is coupled. This serves as a coupling capacitor.

Fig. 4 zeigt ein Ausführungsbeispiel mit einem Einschaltwandler als Spannungswandler, wobei vorliegend ein Flyback Konverter gewählt wurde. Dabei ist dem elektronischen Schalter T1 ein Kondensator C6 parallel geschaltet. Dieser dient der Begrenzung des Spannungsanstiegs über dem Schalter T1 und beeinflusst ebenfalls die Resonanzfrequenz des Sekundärkreises. Weiterhin kann der Sekundärinduktivität S1 ein Kondensator C7 parallel geschaltet sein, der dieselbe Funktion übernimmt wie der Kondensator C4 bei dem in Fig. 3 dargestellten Ausführungsbeispiel. Fig. 4 shows an embodiment with a turn-on as a voltage converter, in the present case, a flyback converter was selected. In this case, the electronic switch T1, a capacitor C6 is connected in parallel. This serves to limit the voltage increase across the switch T1 and also influences the resonant frequency of the secondary circuit. Furthermore, the secondary inductance S1 can be connected in parallel with a capacitor C7 be the same function as the capacitor C4 in the in Fig. 3 illustrated embodiment.

Bei einem bevorzugten Ausführungsbeispiel gemäß Fig. 1 beträgt die Kapazität des Kondensators C1 1,5 nF. Dies stellt etwa ein Fünftel der für den nicht resonanten Betrieb des Sekundärkreises benötigten Kapazität C1 dar. Die Schaltfrequenz liegt bei 1,2 MHz. Für die Zündung der Lampe wird der Kondensator C1 gleichspannungsmäßig auf ca. 10 kV aufgeladen, das heißt die Open Circuit Spannung des Transformators Tr wird gleichspannungsmäßig bis zum Zünden der Lampe angehoben. Danach arbeitet der Kondensator C1 als Reihenresonanzkondensator für den Sekundärkreis. Durch den Resonanzbetrieb ergibt sich eine Kondensatorkapazität, welche bei der benötigten Spannungsfestigkeit einem handelsüblichen Bauelement entspricht und geometrisch ohne Schwierigkeiten selbst in kleinsten zur Verfügung stehenden Bauräumen, beispielsweise in den Sockel einer D3-Lampe, passt.In a preferred embodiment according to Fig. 1 the capacitance of the capacitor C1 is 1.5 nF. This represents about one-fifth of the capacitance C1 required for the non-resonant operation of the secondary circuit. The switching frequency is 1.2 MHz. For the ignition of the lamp, the capacitor C1 is DC charged to about 10 kV, that is, the open circuit voltage of the transformer Tr is DC raised to ignite the lamp. Thereafter, the capacitor C1 operates as a series resonant capacitor for the secondary circuit. Due to the resonance mode results in a capacitor capacity, which corresponds to the required dielectric strength of a commercially available device and geometrically without difficulty even in the smallest available space, for example, in the base of a D3 lamp fits.

Durch den resonanten Betrieb schalten die Transistoren stromlos, auch ohne den sonst üblichen Resonanzkondensator im Primärkreis. Der Lampenstrom I ist sinusähnlich.Due to the resonant operation, the transistors switch off, even without the usual resonant capacitor in the primary circuit. The lamp current I is similar to sine.

Claims (15)

  1. Circuit arrangement for operating at least one high-pressure discharge lamp (La) comprising
    - a voltage converter (10) comprising at least one electronic switch (T1; T2);
    - an actuation circuit (12) for actuating the at least one electronic switch (T1; T2) of the voltage converter (10) at a presettable converter frequency (fs);
    - a first and a second connection for coupling to the at least one high-pressure discharge lamp (La);
    - a first capacitor (C1) which is coupled between the voltage converter (10) and the first connection for the discharge lamp; and
    - a charging apparatus (14), which is coupled to the first capacitor (C1) in order to charge said capacitor with a DC voltage to a starting voltage for starting the high-pressure discharge lamp (La);
    wherein the voltage converter (10) comprises a transformer (Tr), wherein the transformer (Tr) comprises a primary inductance (P1; P1a, P1b) having at least one first and one second connection and a secondary inductance (S1) having a first and a second connection,
    wherein the first capacitor (C1) is coupled between the first connection of the secondary inductance (S1) and the first connection for the at least one high-pressure discharge lamp (La),
    characterized
    in that the converter frequency (fs) is selected during steady-state operation of the circuit arrangement in such a way that the secondary side, which at least comprises the series circuit comprising the secondary inductance (S1), the first capacitor (C1) and the high-pressure discharge lamp (La), is operated substantially at resonance.
  2. Circuit arrangement according to Claim 1,
    characterized
    in that the converter frequency (fs) is in a range of +/- 10% of the resonant frequency of the secondary circuit.
  3. Circuit arrangement according to either of Claims 1 and 2,
    characterized
    in that the voltage converter (10) is a push-pull converter, which comprises at least one first electronic switch (T1) and one second electronic switch (T2), which are coupled in series, wherein a first connection of the primary inductance (P1; P1a, P1b) is coupled to the first electronic switch (T1) a second connection of the primary inductance (P1; P1a, P1b) is coupled to the second electronic switch (T2), and a third connection of the primary inductance (P1; P1a, P1b) is coupled to a reference potential (UV).
  4. Circuit arrangement according to Claim 3,
    characterized
    in that a second capacitor (C2) is connected in parallel with the primary inductance (P1; P1a, P1b).
  5. Circuit arrangement according to either of Claims 3 and 4,
    characterized
    in that a third capacitor (C3) is coupled between the first and second connections for the high-pressure discharge lamp (La).
  6. Circuit arrangement according to one of Claims 3 to 5,
    characterized
    in that a first inductance (L1) is coupled between the first capacitor (C1) and the first connection for the high-pressure discharge lamp (La).
  7. Circuit arrangement according to one of Claims 1 to 3,
    characterized
    in that the voltage converter (10) is a bridge converter, which comprises at least one first electronic switch (T1) and one second electronic switch (T2).
  8. Circuit arrangement according to Claim 7,
    characterized
    in that the first connection of the primary inductance (P1; P1a, P1b) is coupled to a node (P) between the first electronic switch (T1) and the second electronic switch (T2), wherein the second connection of the primary inductance (P1; P1a, P1b) is coupled to that connection of the second electronic switch (T2) which is remote from the node (P).
  9. Circuit arrangement according to either of Claims 7 and 8,
    characterized
    in that a fourth capacitor (C4) is coupled in parallel with the secondary inductance (S1).
  10. Circuit arrangement according to one of Claims 7 to 9,
    characterized
    in that a fifth capacitor (C5) is coupled between that connection of the electronic switch (T2) which is remote from the node (P) and the second connection of the primary inductance (P1; P1a, P1b).
  11. Circuit arrangement according to one of the preceding claims,
    characterized
    in that the voltage converter (10) is an on-off switch converter comprising an electronic switch (T1), in particular a flyback converter.
  12. Circuit arrangement according to Claim 11,
    characterized
    in that a sixth capacitor (C6) is connected in parallel with the electronic switch (T1).
  13. Circuit arrangement according to either of Claims 11 and 12,
    characterized
    in that a seventh capacitor (C7) is connected in parallel with the secondary inductance (S1).
  14. Circuit arrangement according to one of the preceding claims,
    characterized
    in that the converter frequency (fs) is at least 1 MHz.
  15. Method for operating at least one high-pressure discharge lamp (La) using a circuit arrangement comprising a voltage converter (10) comprising at least one electronic switch (T1; T2); an actuation circuit (12) for actuating the at least one electronic switch (T1; T2) of the voltage converter (10) at a presettable converter frequency (fs); a first and a second connection for coupling to the at least one high-pressure discharge lamp (La); a first capacitor (C1), which is coupled between the voltage converter (10) and the first connection for the discharge lamp; and a charging apparatus (14), which is coupled to the first capacitor (C1) in order to charge said capacitor with a DC voltage to a starting voltage for starting the high-pressure discharge lamp (La);
    characterized by the following steps:
    a) providing a transformer (Tr) having a primary inductance (P1; P1a, P1b), which comprises at least one first and one second connection, and a secondary inductance (S1), which comprises a first and a second connection;
    b) coupling the first capacitor (C1) between the first connection of the secondary inductance (S1) and the first connection for the at least one high-pressure discharge lamp (La); and
    c) actuating the at least one electronic switch (T1; T2) of the voltage converter (10) during steady-state operation of the circuit arrangement at a converter frequency (fs) in such a way that the secondary side, which comprises at least the series circuit comprising the secondary inductance (S1), the first capacitor (C1) and the high-pressure discharge lamp (La), is operated substantially at resonance.
EP12725657.6A 2011-05-24 2012-05-21 Circuit arrangement and method for operating at least one high-pressure discharge lamp Not-in-force EP2659747B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011076333A DE102011076333A1 (en) 2011-05-24 2011-05-24 Circuit arrangement and method for operating at least one high-pressure discharge lamp
PCT/EP2012/059325 WO2012160010A1 (en) 2011-05-24 2012-05-21 Circuit arrangement and method for operating at least one high-pressure discharge lamp

Publications (2)

Publication Number Publication Date
EP2659747A1 EP2659747A1 (en) 2013-11-06
EP2659747B1 true EP2659747B1 (en) 2015-04-01

Family

ID=46208450

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12725657.6A Not-in-force EP2659747B1 (en) 2011-05-24 2012-05-21 Circuit arrangement and method for operating at least one high-pressure discharge lamp

Country Status (4)

Country Link
EP (1) EP2659747B1 (en)
JP (1) JP5657180B2 (en)
DE (1) DE102011076333A1 (en)
WO (1) WO2012160010A1 (en)

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5266869A (en) * 1990-09-27 1993-11-30 Tokyo Electric Co., Ltd. Discharge lamp lighting apparatus having output impedance which limits current flow therethrough after start of discharging
US5796216A (en) * 1993-07-16 1998-08-18 Delta Power Supply, Inc. Electronic ignition enhancing circuit having both fundamental and harmonic resonant circuits as well as a DC offset
JP3608208B2 (en) * 1993-07-29 2005-01-05 東芝ライテック株式会社 Discharge lamp lighting device
DE19644115A1 (en) 1996-10-23 1998-04-30 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Circuit arrangement for operating a high-pressure discharge lamp and lighting system with a high-pressure discharge lamp and an operating device for the high-pressure discharge lamp
DE19909530A1 (en) 1999-03-04 2001-01-18 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Circuit arrangement for operating at least one high-pressure discharge lamp and operating method
JP2003264095A (en) * 2002-03-08 2003-09-19 Koito Mfg Co Ltd Lighting circuit for discharge lamp
DE10333729A1 (en) * 2003-07-23 2005-03-10 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Ballast for at least one high-pressure discharge lamp, operating method and lighting system for a high-pressure discharge lamp
JP2005050701A (en) * 2003-07-29 2005-02-24 Mitsubishi Electric Corp Discharge lamp lighting device
DE102004020499A1 (en) * 2004-04-26 2005-11-10 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Circuit arrangement for operating high-pressure discharge lamps and operating method for a high-pressure discharge lamp
DE102005059764A1 (en) * 2005-12-14 2007-06-21 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Circuit arrangement and method for operating a high pressure gas discharge lamp
US7868603B2 (en) * 2006-10-04 2011-01-11 Microsemi Corporation Method and apparatus to compensate for supply voltage variations in a PWM-based voltage regulator
JP4991378B2 (en) * 2007-04-23 2012-08-01 パナソニック株式会社 Discharge lamp lighting device and lighting fixture
DE102008023603A1 (en) * 2008-05-14 2009-11-19 Hella Kgaa Hueck & Co. Ballast for high pressure-discharge lamp in motor vehicle, has control producing control signals, which are output in succession with pause during operating phase, in which signals of one of transistors are controlled for interconnection
DE102010028296A1 (en) * 2009-04-30 2010-11-04 Tridonicatco Gmbh & Co. Kg Circuit for starting and operating fluorescent lamp in lighting system, has freely swinging push-pull converter fed with voltage synchronized with high frequency over throttle, where voltage is produced based on direct current of battery
KR20110057681A (en) * 2009-11-24 2011-06-01 삼성전자주식회사 Inverter circuit, backlight device and liquid crystal display using the same

Also Published As

Publication number Publication date
DE102011076333A1 (en) 2012-11-29
JP2014515544A (en) 2014-06-30
JP5657180B2 (en) 2015-01-21
WO2012160010A1 (en) 2012-11-29
EP2659747A1 (en) 2013-11-06

Similar Documents

Publication Publication Date Title
EP1638374B1 (en) Circuit arrangement for operating at least a light source with improved crest factor
EP1585372B1 (en) Electronic ballast with resonance excitation for voltage generation takeover
DE102009047632B4 (en) Circuit arrangement for operating at least one LED
EP2327276B1 (en) Circuit arrangement and method for operation of a discharge lamp
EP2659747B1 (en) Circuit arrangement and method for operating at least one high-pressure discharge lamp
EP1583403B1 (en) Ballast for at least one lamp
EP1385358B1 (en) Starter circuit for HID lamp
DE102004001618A1 (en) Circuit arrangement for operating light sources
EP1263267B1 (en) Method for starting a discharge lamp
WO2008064715A1 (en) Circuit arrangement and method for igniting a high-pressure discharge lamp
EP1225792A1 (en) Device for electrode heating in discharge lamps
DE102007012413A1 (en) Ballast with improved EMC compatibility
EP2104403B1 (en) Electronic ballast, lighting device and method for operating same
EP2257134B1 (en) Switching assembly for operating a series connection of at least two low pressure gas discharge lamps and method for same
EP1294215B1 (en) Ballast for at least one incandescent lamp, and method for operating such a ballast
EP1243165A1 (en) Circuit for operating a gas discharge lamp
EP2526741B1 (en) Circuit arrangement and method for rapid commutation during square wave operation of high-pressure discharge lamps
EP2248393B1 (en) Device and method for generating an ignition voltage for a lamp
WO2011012373A1 (en) Electronic ballast for operating at least one discharge lamp
WO1997033456A1 (en) Circuit arrangement for igniting of high-pressure gas discharge lamps
WO2013083357A1 (en) Circuit arrangement for igniting and operating a discharge lamp
WO2004054327A1 (en) Electric circuit for igniting a discharge lamp and method for igniting the discharge lamp
WO2008046797A1 (en) Ignition apparatus for a high-pressure discharge lamp and high-pressure discharge lamp and method for igniting a gas discharge in a high-pressure discharge lamp
WO2009089918A1 (en) Electronic ballast and method for operating at least one gas discharge lamp
WO2011144403A1 (en) Circuit arrangement for igniting high-pressure discharge lamps

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130729

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150108

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012002724

Country of ref document: DE

Effective date: 20150513

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 719753

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150515

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20150401

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150401

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150401

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150401

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150803

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150401

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150401

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150401

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150702

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150801

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150401

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502012002724

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150401

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150401

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150531

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150401

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150401

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150531

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150401

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150401

Ref country code: RO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150401

26N No opposition filed

Effective date: 20160105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150521

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150401

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20160521

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150401

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120521

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150401

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160521

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150401

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150521

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150401

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 719753

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170521

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170521

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150401

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190521

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20190523

Year of fee payment: 8

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502012002724

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201201