EP2659093B1 - Turbomachine - Google Patents

Turbomachine Download PDF

Info

Publication number
EP2659093B1
EP2659093B1 EP11802969.3A EP11802969A EP2659093B1 EP 2659093 B1 EP2659093 B1 EP 2659093B1 EP 11802969 A EP11802969 A EP 11802969A EP 2659093 B1 EP2659093 B1 EP 2659093B1
Authority
EP
European Patent Office
Prior art keywords
impeller
working medium
radial
radial turbine
duct
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11802969.3A
Other languages
German (de)
French (fr)
Other versions
EP2659093A1 (en
Inventor
Frank Eckert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Duerr Cyplan Ltd
Original Assignee
Duerr Cyplan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE201010056557 external-priority patent/DE102010056557A1/en
Priority claimed from DE202010017157U external-priority patent/DE202010017157U1/en
Application filed by Duerr Cyplan Ltd filed Critical Duerr Cyplan Ltd
Priority to EP18209322.9A priority Critical patent/EP3480425B1/en
Publication of EP2659093A1 publication Critical patent/EP2659093A1/en
Application granted granted Critical
Publication of EP2659093B1 publication Critical patent/EP2659093B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/54Fluid-guiding means, e.g. diffusers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D1/00Non-positive-displacement machines or engines, e.g. steam turbines
    • F01D1/02Non-positive-displacement machines or engines, e.g. steam turbines with stationary working-fluid guiding means and bladed or like rotor, e.g. multi-bladed impulse steam turbines
    • F01D1/06Non-positive-displacement machines or engines, e.g. steam turbines with stationary working-fluid guiding means and bladed or like rotor, e.g. multi-bladed impulse steam turbines traversed by the working-fluid substantially radially
    • F01D1/08Non-positive-displacement machines or engines, e.g. steam turbines with stationary working-fluid guiding means and bladed or like rotor, e.g. multi-bladed impulse steam turbines traversed by the working-fluid substantially radially having inward flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/30Exhaust heads, chambers, or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • F05D2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05D2240/302Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor characteristics related to shock waves, transonic or supersonic flow

Definitions

  • the invention relates to a radial turbine, comprising a housing, which has a housing channel for the inflow of working fluid and a diffuser having a channel for the discharge of working medium, wherein in the housing an impeller on a rotatable about an axis of rotation rotatable impeller is positioned, wherein on the impeller, a plurality of blades are arranged which form blade channels having a rotational axis facing blade channel opening for the passage of working fluid to the channel for the discharge of working fluid, wherein the channel for the discharge of working fluid has an impeller-side opening, wherein the working medium a guided from the blade channel opening of the blade channels to the impeller side opening of the channel for the outflow of working fluid is guided intermediate region and wherein for the deflection of flowing through the intermediate region working fluid a guide body is provided, de r is extended from the intermediate region in the channel for the discharge of working medium.
  • Such a radial turbine is z. B. from the GB 492,144 A known.
  • the invention also relates to an energy conversion plant which makes use of a cyclic process for the provision of mechanical energy, in which a working medium is thermodynamically expanded almost isentropically by means of a thermal turbomachine (turbine).
  • a thermal turbomachine turbine
  • FIG. 1 is a sectional view of a portion of a conventional steam turbine in the form of a radial turbine, which is designed for a vapor flow below the speed of sound (subsonic flow).
  • a radial turbine the corresponding working fluid flows in the radial direction with respect to a rotation axis an impeller and acts on the blade on the edge of this impeller.
  • the working medium is flowed in the axial direction with respect to a rotational axis of the impeller.
  • turbine are formed by the radial in the axial direction at an angle of 90 ° extending blade inlet and -ausbergskanten.
  • the Fig. 1 has a substantially stationary turbine housing 110 in which a turbine wheel 120 (impeller) is arranged.
  • the impeller 120 includes a plurality of (co-rotating) blades, wherein Fig. 1 representative of a blade 121 is shown.
  • a gaseous working medium for example exhaust gas from an internal combustion engine, flows through an inflow channel or through a nozzle channel 100 of the turbine housing 110 according to a directional arrow 151 and drives the impeller 120.
  • the flowing working fluid is first accelerated in the nozzle channel 110 and deflected along a blade 121, wherein the edges of the blade are aligned on the one hand in the region of a working medium inlet parallel to the axis of rotation of the impeller 120 and have a working medium outlet 153 in the radial direction.
  • the working medium is guided along its entire flow path in the impeller between vanes 121.
  • the impeller 120 of the flow device (turbine) according to Fig.1 is fundamentally similar to the impeller of a compressor designed in which the driven by the blades working fluid in an opposite to the representation according to Fig. 1 oriented direction flows. Accordingly, the flow can be deflected in an operating state as a compressor within the blades of the impeller from the inside out so that it runs after exiting the blade channels at Hämediumaustritt axially to the impeller.
  • This type of paddle wheels or blading is well suited for working medium or vapor velocities below the speed of sound.
  • a particular problem is that radial turbines for supersonic flows with parallel and axially aligned to the shaft blades cause vortex formation and thereby lose effectiveness.
  • the Organic Rankine cycle process is a process of energy conversion in which a working fluid other than water vapor is used from a heat source to operate steam turbines.
  • a working medium mostly organic liquids with a lower evaporation temperature (T verd ⁇ 100 ° C), rarely used with a higher evaporation temperature.
  • the method is used primarily in power generation and energy conversion plants when the available temperature gradient between the heat source and the heat sink is too low for the operation of a water vapor driven turbine.
  • Such a radial turbine according to the invention is in the German utility model application DE 20 2010 017 157.1 with the utility model DE 20 2010 017 157 U1 and the German patent application filed on 30.12.2010 DE 10 2010 056 557.1 to which reference is hereby made and the disclosures of which are fully incorporated into the description of this invention.
  • a radial turbine according to the invention has a housing with an inflow channel.
  • a rotatably mounted on a shaft impeller is arranged, which has a plurality of flowable by the working medium blades.
  • a special feature of a radial turbine according to the invention is that a guide body is provided with at least one deflecting element in the intermediate region between the Schaufelkanalaustritt and the outlet channel for a deflection of the effluent from a blade channel working medium in the direction of the outlet channel.
  • the working fluid first flows into the impeller via the inflow passage in the radial direction with respect to an axis of rotation of the impeller.
  • the blades of the impeller thereby form a grid rotating with the impeller, divided in the circumferential direction of the impeller, in which the working medium is deflected in particular in the circumferential direction and directed in the radial direction into the interior of the impeller.
  • rectangular inlet openings of a plurality of blade channels are formed between the radially outer edges of the blades and rectangular outlet openings of a plurality of blade channels are formed between the radially inner edges of the blades.
  • the inlet and outlet openings of a blade channel according to the invention are arranged in each case in planes which are parallel to each other or an acute angle to each other.
  • the (co-rotating) intermediate region according to the invention is arranged in the interior of the impeller such that it is surrounded in a ring shape at least in sections by the outlet openings of a plurality of vane channels.
  • the guide body preferably has a deflection element in the form of an integrally formed with the impeller shaft support structure with rotationshyperboloider or conical outer contour (impeller cone), which serves on its outer side for flow deflection.
  • the guide body also has an annular deflection element in the form of a circular ring structure, which is at least partially inserted into the intermediate space.
  • a guide body with all subsections can be connected in a rotationally fixed manner to the impeller.
  • a baffle may have both stationary and non-moving baffles connected to the impeller.
  • an engaging in the intermediate annular deflecting element can be fixed via a mounting ring on the housing of the radial turbine.
  • the fastening ring is then preferred as a disk-shaped. flow-through lattice structure designed with radially extending spokes. In this case, the axial force acting on the paddle wheel resulting from the directional change of the flow is reduced.
  • the working medium flows into the impeller via a widening inflow channel (in relation to the rotational axis of the impeller) in the radial direction.
  • a constriction is provided for the flow of the working medium in the region of the inflow channel in order to be able to achieve supersonic speed in the area of the inflow channel.
  • the guide body has a deflecting element with a first and a second annular edge, wherein the first annular edge of the deflecting element is positioned adjacent to the Schaufelkanalaustritt and wherein the second annular edge is positioned adjacent to the diffuser channel entrance.
  • the deflecting element is designed such that the first edge is a leading edge and in (relative to the impeller) radial direction, wherein the second edge is a trailing edge and facing in the same direction as the axis of rotation, so that so that the effluent from the blade channel working fluid is deflected from the radial to the axial direction.
  • the guide body has a plurality of spaced-apart deflection elements.
  • the deflecting element comprises a side facing the impeller and a side facing away from the impeller.
  • the deflecting element is here positioned so that it from the working medium can be flowed around on both sides. Accordingly arise on both sides of the deflecting annular channels for the working fluid.
  • the annular deflecting element is arranged approximately on all sides by working medium umströmbar. More preferably, the annular deflecting element at least partially on a drop, half-moon or wing wing-shaped cross-sectional geometry. This results in an advantageous deflection of the working medium in the region of the impeller. This enables a particularly efficient operation of the flow device.
  • the guide body on a plurality of spaced deflecting elements, which together form a through-flow grating with annular channels.
  • the total flow of the working medium is divided into a plurality of annular partial streams.
  • the individual streams formed can be subjected to different treatments by the contours of the deflecting elements are designed differently from each other.
  • further flow guidance elements such as turbulence promoters, surface coatings or the like can be arranged on the deflection elements. The same effect can basically be achieved even when using only one deflecting element.
  • the deflecting elements spaced apart from each other are positioned such that their edges facing the blades of the impeller have an axial spacing in the axial direction.
  • the edges facing the blades of the impeller at least approximately the same (outer) diameter, which in turn is smaller by a maximum of 10% than a (common) diameter of the inner edges of the impeller blades.
  • the deflecting elements spaced from each other are positioned such that their edges pointing in the direction of the axis of rotation of the impeller have a different radial distance with respect to the axis of rotation of the impeller.
  • a plurality of permanent magnets and / or rotor windings are arranged on a shaft connected to the impeller, which with a plurality of adjacently arranged, the shaft encircling stator windings form an electrical generator.
  • the turbomachine can be used as a "generator turbine" for power generation.
  • a radial turbine according to the invention can in particular be a thermal turbomachine.
  • An idea of the invention is moreover to use a radial turbine according to the invention in an Organic Rankine cycle.
  • the invention therefore also extends to a system for converting energy with a cyclic process in which a turbomachine according to the invention is used.
  • the invention relates to a radial turbine for a plant for the conversion of energy in the form of a so-called ORC plant.
  • An ORC plant is a plant in which a thermodynamic cycle in the form of an "Organic Rankine Cycle” (ORC) is performed, with which heat can be converted into mechanical energy.
  • the heat supplied to an ORC system according to the invention can originate, for example, from a heat source in the form of an internal combustion engine from a combined heat and power plant, from a biomass combustion plant, from a geothermal source or from a solar power plant.
  • a heat source in the form of an internal combustion engine from a combined heat and power plant, from a biomass combustion plant, from a geothermal source or from a solar power plant.
  • Any form of waste heat can be used with an ORC system.
  • additional electrical energy can be obtained.
  • An ORC plant may contain a condenser for liquefying a working medium of the plant, a pump, an evaporator for evaporating the working medium.
  • a condenser for liquefying a working medium of the plant
  • a pump for liquefying the working medium.
  • an evaporator for evaporating the working medium.
  • the pump brings a liquid working under standard conditions to operating pressure. Subsequently, the still liquid working medium flows through the heat exchanger (evaporator) or a heat exchanger system in which thermal energy is transferred for example from one of the aforementioned sources to the working medium of the ORC system. Due to the energy input, the working medium preferably evaporates completely. At the outlet of the evaporator then saturated steam or dry steam is formed. The energy input in the evaporator increases the specific volume and the temperature of the steam.
  • volume change work which converts the turbine on their blades into mechanical energy.
  • the steam flows out of the turbine through a regenerator in which a heat exchange takes place between the vaporous working medium and the liquid working medium coming from the pump (internal heat exchange).
  • the (still vaporous) working medium brought to the condensation temperature in the turbine and possibly in the regenerator reaches the downstream condenser, in which the working medium is reconstituted, indicating low-temperature heat.
  • the heat released in the condensation is preferably fed via a cooling water circuit in a heat network.
  • the working medium condenses out and returns completely to the liquid state of aggregation.
  • the feed pump (pump) subsequently brings the working fluid to operating pressure and then back into the evaporator. This completes the cycle.
  • a flow device used as a turbine in an ORC system, in particular a generator can be driven, which generates electrical current with the turbine obtained from thermal energy mechanical energy.
  • Such an ORC system with a radial turbine according to the invention can be used both for small and large home systems as well as for large industrial plants and power plants.
  • home appliances are the power supplies, z.
  • Industrial plants are, for example, production plants, in particular production plants of the automobile industry, in particular paint shops, in which a balanced demand for electricity (from mechanical energy) and heat at different temperature levels is needed.
  • Fig. 2 shows in sections a sectional view of a turbomachine in the form of a radial turbine with a substantially stationary turbine housing 1, 4, 11, in which a turbine wheel 2 (impeller) is arranged.
  • the turbine housing 1, 4, 11 in particular comprises a nozzle ring 1 and an associated cover 11.
  • the cover 11 and the nozzle ring 1 are preferably designed as separate assemblies. Between them, the nozzle channels 10 are formed.
  • the turbine housing 1, 4, 11 comprises a diffuser 4 with an outlet channel 40 for the working medium.
  • the impeller 2 disposed in the turbine housing includes a plurality of (co-rotating) vanes.
  • the impeller 2 is shown with a blade 21.
  • Between the blades of the impeller 2 straight or curved blade channels 20 are formed, which have a substantially rectangular cross-section.
  • the blades are connected to each other via a base of the impeller 2 and on a side spaced therefrom via a so-called bandage 22.
  • a vaporous working medium for example the working medium of an ORC system, flows through a nozzle channel 10 of the turbine housing 11 acting as an inflow channel according to a directional arrow 51.
  • the flowing working medium is accelerated via a corresponding nozzle geometry, so that sound velocity is reached at a constriction. wherein the working fluid can be brought to supersonic speed before a transfer into the impeller 2.
  • the vaporous working medium flows out of the nozzle channel 10 and impinges on the blade 21, which is designed such that both the flowed Edge and the lying in the direction of flow edge of the blade 21 and thus also these are aligned parallel to and parallel to the impeller shaft.
  • the majority of the stream 51 of working medium is deflected after passing through the blades 21 or a respective blade channel between a plurality of blades 21 (and thus in a so-called intermediate region of the impeller 2) to parallel to the axis of rotation of the impeller (arrow 53).
  • a guide body 3 in the form of a conical deflecting element (impeller cone) is provided according to the invention, which is preferably designed as a rotational hyperboloid.
  • This deflecting element can optionally be designed in one piece with the impeller.
  • the guide body 3 is located in an intermediate region 29 between the Schaufelkanalausbergen 23 and the inlet opening 24 in the outlet channel 40 formed by the diffuser 4.
  • the trained as impeller cone deflection element with the guide body 3 is in the region of its base in the intermediate region 29 within the impeller. 2 arranged. It is partially surrounded annularly by the blade channel exits 23 and the blades 21 of the impeller.
  • the guide body 3 extends into the outlet channel 40 formed by the diffuser 4.
  • the impeller cone causes a largely laminar flow deflection at moderate flow velocities. At high flow velocities, vortices 54 can arise.
  • Vortex formation can be achieved by the positioning of guide bodies in the outflow or in the diffuser 4 behind the impeller 2, a reduction of vortex formation.
  • a radial turbine according to the invention is in the Fig. 3 shown substantially similar to the radial turbine according to Fig. 2 is executed. Accordingly, to the above description Fig. 2 Be referred. Corresponding are also similar components and functional units provided with the same reference numerals.
  • the radial turbine after Fig. 3 comprises, in addition to a first deflection element in the form of the co-rotating impeller cone, a second deflection element 31 in the form of an annular guide body 3 'mounted on the housing side.
  • the guide body 3 ' preferably engages in an intermediate region 29 of the impeller 2, which is encompassed by the impeller blades 21.
  • the guide body 3 has a first and a second annular edge 25, 26.
  • the first edge 25 of the deflection element is positioned adjacent to the blade channel exit 23 within the intermediate region 29.
  • the second edge 26 is arranged adjacent to the inlet opening 24 within the outlet channel 40.
  • the first edge 25 acts as a leading edge.
  • the second edge 26 is a trailing edge.
  • the deflecting element 31 is formed with a guide contour 28, which extends from the first edge 25 from an approximately to a rotational axis 27 of the impeller 2 radial direction to the second edge 26 in an approximately to the axis of rotation 27 of the impeller 2 axial direction.
  • the effluent from the blade channel 20 working fluid is thus deflected by the deflecting element 31 from a substantially radial in a substantially axial direction.
  • other flow directions can be generated by the contours of the deflecting elements are oriented in the corresponding directions.
  • radial turbines are often used in ORC plants for converting the flow energy of the working medium into a torque. Due to the low speed of sound in such media and the high pressure ratios between the inlet and outlet of the steam in the turbine, the flow rate of the steam in the impeller of the turbine is often above the speed of sound. Also, the exit velocity of the steam from the impeller is often still over Mach 0.7. Considering the geometrically predetermined large difference between the radius of curvature of the impeller cone and the inner edge of a drum 22 over the blades 21 and the high outflow velocity, a uniform outflow of the vaporous working medium in turbines of ORC systems is often prevented.
  • Fig. 4 . 5a and 5b are sections of a further inventive, designed as a radial turbine turbomachine shown, the nozzle ring 1 with a nozzle cover 11, mounted in a housing on a shaft impeller 2, an inflow passage 10, a diffuser 4, a plurality of arranged on the impeller 2 blades 21, a first has a lattice-shaped guide body 3 "and a second conical guide body 3.
  • a basic mode of operation corresponds to that of the radial turbine according to FIG Fig. 2 respectively.
  • Fig. 3 so that reference can be made to the statements made for this purpose.
  • a vaporous working medium can be conducted via the inflow passage 10 to a wheel entry of the impeller according to a directional arrow 51. It meets there the blade 21 and flows between the blades 21 in a blade channel 20 according to a directional arrow 42 ( Fig. 5b ). After flowing through the blade channel 20, the working fluid enters an intermediate region 29 between a blade channel outlet and an outlet channel 40 downstream of the rotor 2 Diffuser channel entry according to the invention, the first guide body 3 "and the second guide body 3 is positioned, wherein both guide body preferably also sections can protrude out of the intermediate region in the outlet channel 40.
  • the first guide body 3 “comprises, in addition to a lattice-shaped fastening ring 34, which is also provided with radial spokes, two annular deflection elements 31 and 32, wherein in alternative embodiments more than two deflection elements can be used circular deflecting elements 31, 32 are preferably made in one piece together with the fastening ring 34 and thus form the first guide body 3 ", which may also be referred to as a flow grid.
  • the first guide body 3 "thus constructed cooperates with the second guide body 3 in the form of the impeller cone: both guide bodies 3, 3" cooperatively divide the intermediate region 29 of the impeller 2 at least in sections into annular flow channels separated from one another.
  • the working medium is accordingly divided several times immediately after the blades 21 by the deflecting elements 31 and 32 of the first guide body 3 "and, for the most part, still directed within the paddle wheel 2 parallel to its axis of rotation according to a directional arrow 53.
  • the first baffle 3 "extends between a first 25 and a second edge 26 of a baffle 31 and 32, respectively, and is configured such that the first edge is positioned adjacent the airfoil exit, with the second edge 26 positioned adjacent to the diffuser channel entrance 40.
  • the deflecting element 31, 32 is designed such that the first edge 25 serves as leading edge and points in the radial direction to the axis of rotation of the impeller 2, wherein the second edge 26 is a trailing edge and in the same Direction as the axis of rotation points, so that the effluent from the blade channel 20 working fluid is deflected from a radial in an approximately axial direction.
  • both deflecting elements 31, 32 each have a side facing the impeller 2 and a side facing away from the impeller 2.
  • the deflection elements 31, 32 are in particular positioned such that they can be flowed around on both sides by the working medium.
  • the working medium after its exit from the blade channel 20 is deflected in such a way in the diffuser channel 40 that a flow along the impeller 2 is optimized.
  • the deflecting elements 31 and 32 of the first guide body 3 "preferably have crescent-shaped cross-sectional contours, the profile of which is designed to be favorable in flow.)
  • the first edge (annular leading edge) facing the impeller 2 points radially away from the center
  • the second edge located on the axial opposite side (annular Trailing edge) points away from the impeller base 2.
  • the curvature of the profile of the deflecting elements is designed such that the working medium is continuously deflected parallel to the axis of rotation of the impeller 2.
  • the trailing edges of these deflecting elements 31, 32 have different diameters with respect to the axis of rotation of the impeller 2, while it is expedient that the leading edges have the same diameter with respect to a rotational axis of the impeller 2
  • the leading edges are positioned as close as possible to the exit edges of the blades 21.
  • the (substantially the same) diameter of the leading edges of the deflecting elements 31, 32 have a diameter which is less than 10% smaller than the diameter of the circle that all the exit edges of the blades touch.
  • Each blade 21 has a blade height 60 at the blade channel outlet within the rotor 2.
  • a first axial distance 61 between a surface of the impeller base and the leading edge of the (first) deflecting element 31 is smaller than an axial distance between the leading edge of the (second) deflecting element 32 and the same surface of the impeller base, so that between the leading edges of both deflecting elements 31, 32 an axial distance 62 is present.
  • the leading edge of the deflecting element 32 to the drum 22 is spaced by an axial distance 63.
  • the mutually adjacent deflection elements 31,32 are positioned such that their trailing edges 26 have a different radial distance with respect to the axis of rotation of the impeller 2.
  • the leading edges facing the blades of the impeller have a different axial spacing 61 or spacing 61 + 62 relative to the impeller base in the axial direction.
  • the impeller 2 is the rotating part of the turbomachine or the radial turbine, which extracts work from the flowing working medium when using the turbomachine as a turbine.
  • the impeller 2 is connected to a shaft, not shown, is discharged through the generated mechanical energy.
  • diffuser 4 In the guide body 3 downstream diffuser 4 is slowed by expansion of the flow cross section, the gas flow and increases the static gas pressure.
  • the diffuser 4 represents in principle the inversion of a nozzle.
  • An in Fig. 5a shown bandage 22 is disposed on the blades 21 and serves to stabilize the impeller 2 and to keep in shape.
  • the guide body 3 and the deflecting elements 31 and 32 are preferably connected via webs 33 to the turbine housing or the diffuser 4 of the turbine connected, so that the forces acting due to the deflection of the working medium forces are not transmitted to the impeller shaft.
  • the guide body 3 is the counterpart to the moving impeller 2, wherein the guide body 3 is preferably formed fixedly to the housing or on the diffuser 4 via the webs 33. Accordingly, the impeller 2 and the guide body 3 together form a step.
  • a fastening ring 34 of the guide body 3 is provided on the diffuser inlet.
  • deflecting elements 31 and 32 may be attached to the impeller 2, so that they then co-rotate.
  • a deflecting element may be fixed to the impeller and another to the housing.
  • the guide body 3 "or the deflecting elements 31 and 32 in a turbomachine according to the invention are manufactured from (noble) steel and are produced by machining processes, but these can in principle also be produced from cast metal (cast aluminum, cast steel, cast iron).
  • the turbomachine is preferably used as a radial turbine in an ORC plant for carrying out an Organic Rankine cycle.
  • a turbine system in particular, in which a vaporous working medium flows under a pressure, is expanded and accelerated in a fixed nozzle system, even with guide blading, is designated in particular as turbomachine.
  • turbomachine After the nozzle system, the steam is deflected therein by a rotating blade system, possibly further relaxed and gives off its flow energy through the blades to a shaft connected to the blades or coupled. From this shaft, the mechanical rotational energy is then transferred to a consumer or a means for converting energy for further use. For example, you can powered by the shaft facilities for converting energy in the form of generators for power generation.
  • the invention causes with simple and inexpensive Leit analyses an increase in efficiency of radial turbines.
  • a turbomachine according to the invention the efficiency of an ORC system can thus be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

Die Erfindung betrifft eine Radialturbine, mit einem Gehäuse, das einen Gehäusekanal für das Einströmen von Arbeitsmedium aufweist und einen Diffusor mit einem Kanal für das Ausströmen von Arbeitsmedium umfasst, wobei in dem Gehäuse ein an einer um eine Rotationsachse drehbaren Laufradwelle aufgenommenes Laufrad positioniert ist, wobei an dem Laufrad mehrere Schaufeln angeordnet sind, die Schaufelkanäle bilden, die eine der Rotationsachse zugewandte Schaufelkanalöffnung für das Durchströmen von Arbeitsmedium zu dem Kanal für das Ausströmen von Arbeitsmedium haben, wobei der Kanal für das Ausströmen von Arbeitsmedium eine laufradseitige Öffnung hat, wobei das Arbeitsmedium durch einen von der Schaufelkanalöffnung der Schaufelkanäle zu der laufradseitigen Öffnung des Kanals für das Ausströmen von Arbeitsmedium erstreckten Zwischenbereich geführt ist und wobei für das Umlenken von durch den Zwischenbereich strömendem Arbeitsmedium ein Leitkörper vorgesehen ist, der aus dem Zwischenbereich in den Kanal für das Ausströmen von Arbeitsmedium erstreckt ist.The invention relates to a radial turbine, comprising a housing, which has a housing channel for the inflow of working fluid and a diffuser having a channel for the discharge of working medium, wherein in the housing an impeller on a rotatable about an axis of rotation rotatable impeller is positioned, wherein on the impeller, a plurality of blades are arranged which form blade channels having a rotational axis facing blade channel opening for the passage of working fluid to the channel for the discharge of working fluid, wherein the channel for the discharge of working fluid has an impeller-side opening, wherein the working medium a guided from the blade channel opening of the blade channels to the impeller side opening of the channel for the outflow of working fluid is guided intermediate region and wherein for the deflection of flowing through the intermediate region working fluid a guide body is provided, de r is extended from the intermediate region in the channel for the discharge of working medium.

Eine derartige Radialturbine ist z. B. aus der GB 492,144 A bekannt.Such a radial turbine is z. B. from the GB 492,144 A known.

Die Erfindung betrifft außerdem eine Energieumwandlungsanlage, die zur Bereitstellung von mechanischer Energie von einem Kreisprozess Gebrauch macht, bei dem ein Arbeitsmedium mit Hilfe einer thermischen Strömungsmaschine (Turbine) thermodynamisch nahezu isentrop entspannt wird.The invention also relates to an energy conversion plant which makes use of a cyclic process for the provision of mechanical energy, in which a working medium is thermodynamically expanded almost isentropically by means of a thermal turbomachine (turbine).

Eine als Radialturbine ausgebildete Strömungsmaschine gemäß dem Stand der Technik ist in der Fig. 1 gezeigt. Die Fig. 1 ist eine Schnittansicht eines Abschnitts einer herkömmlichen Dampfturbine in Form einer Radialturbine, die für eine Dampfströmung unterhalb der Schallgeschwindigkeit (Unterschallströmung) ausgelegt ist. Bei einer Radialturbine strömt das entsprechende Arbeitsmedium in radialer Richtung bezüglich einer Rotationsachse eines Laufrads und beaufschlagt die Schaufel am Rande dieses Laufrads. Bei Axialturbinen hingegen wird das Arbeitsmedium in axialer Richtung bezüglich einer Rotationsachse des Laufrads eingeströmt. Bei der in der Fig. 1 gezeigten Turbine sind von der radialen in die axiale Richtung mit einem Winkel um 90° verlaufende Schaufelein- und -austrittskanten ausgebildet.A turbomachine designed as a radial turbine according to the prior art is in the Fig. 1 shown. The Fig. 1 is a sectional view of a portion of a conventional steam turbine in the form of a radial turbine, which is designed for a vapor flow below the speed of sound (subsonic flow). In a radial turbine, the corresponding working fluid flows in the radial direction with respect to a rotation axis an impeller and acts on the blade on the edge of this impeller. In axial turbines, however, the working medium is flowed in the axial direction with respect to a rotational axis of the impeller. When in the Fig. 1 shown turbine are formed by the radial in the axial direction at an angle of 90 ° extending blade inlet and -austrittskanten.

Die als Radialturbine ausgebildete Strömungsmaschine der Fig. 1 hat ein im Wesentlichen ruhendes Turbinengehäuse 110, in dem ein Turbinenrad 120 (Laufrad) angeordnet ist. Das Laufrad 120 umfasst eine Mehrzahl an (mitrotierenden) Schaufeln, wobei in Fig. 1 stellvertretend eine Schaufel 121 dargestellt ist. Ein gasförmiges Arbeitsmedium, beispielsweise Abgas aus einer Brennkraftmaschine, strömt durch einen Einströmungskanal bzw. durch einen Düsenkanal 100 des Turbinengehäuses 110 gemäß eines Richtungspfeils 151 und treibt das Laufrad 120 an. Hierzu wird das strömende Arbeitsmedium zunächst im Düsenkanal 110 beschleunigt und entlang einer Schaufel 121 umgelenkt, wobei die Kanten der Schaufel einerseits im Bereich eines Arbeitsmediumeintritts parallel zur Rotationsachse des Laufrads 120 ausgerichtet sind und an einem Arbeitsmediumaustritt 153 in radiale Richtung weisen. Das Arbeitsmedium wird dabei entlang seines gesamten Strömungsweges im Laufrad zwischen Schaufeln 121 geführt.Trained as a radial turbine turbomachine the Fig. 1 has a substantially stationary turbine housing 110 in which a turbine wheel 120 (impeller) is arranged. The impeller 120 includes a plurality of (co-rotating) blades, wherein Fig. 1 representative of a blade 121 is shown. A gaseous working medium, for example exhaust gas from an internal combustion engine, flows through an inflow channel or through a nozzle channel 100 of the turbine housing 110 according to a directional arrow 151 and drives the impeller 120. For this purpose, the flowing working fluid is first accelerated in the nozzle channel 110 and deflected along a blade 121, wherein the edges of the blade are aligned on the one hand in the region of a working medium inlet parallel to the axis of rotation of the impeller 120 and have a working medium outlet 153 in the radial direction. The working medium is guided along its entire flow path in the impeller between vanes 121.

Das Laufrad 120 der Strömungsvorrichtung (Turbine) gemäß Fig.1 ist grundsätzlich ähnlich wie das Laufrad eines Verdichters gestaltet, bei dem das durch die Schaufeln getriebene Arbeitsmedium in einer entgegengesetzt zur Darstellung gemäß Fig. 1 orientierten Richtung einströmt. Entsprechend kann die Strömung in einem Betriebszustand als Verdichter innerhalb der Schaufeln des Laufrades von innen nach außen derart umgelenkt werden, dass sie nach dem Austritt aus den Schaufelkanälen am Arbeitsmediumaustritt axial zum Laufrad verläuft. Diese Bauart von Schaufelrädern bzw. Beschaufelung ist für Arbeitsmedium- bzw. Dampfgeschwindigkeiten unterhalb der Schallgeschwindigkeit gut geeignet.The impeller 120 of the flow device (turbine) according to Fig.1 is fundamentally similar to the impeller of a compressor designed in which the driven by the blades working fluid in an opposite to the representation according to Fig. 1 oriented direction flows. Accordingly, the flow can be deflected in an operating state as a compressor within the blades of the impeller from the inside out so that it runs after exiting the blade channels at Arbeitsmediumaustritt axially to the impeller. This type of paddle wheels or blading is well suited for working medium or vapor velocities below the speed of sound.

Bei Radialturbinen gemäß dem Stand der Technik, mit Laufrädern, in denen die Strömung entlang ihrer Beschaufelung um 90° umgelenkt wird, ergeben sich Schwierigkeiten, wenn Dampfströmungen ihre Schallgeschwindigkeit erreichen.In radial turbines according to the prior art, with impellers in which the flow is deflected along its blading by 90 °, difficulties arise when steam flows reach their speed of sound.

Ein besonderes Problem besteht darin, dass Radialturbinen für Überschallströmungen mit parallelen und axial zur Welle ausgerichteten Schaufeln zur Wirbelbildung führen und dadurch an Effektivität verlieren.A particular problem is that radial turbines for supersonic flows with parallel and axially aligned to the shaft blades cause vortex formation and thereby lose effectiveness.

Es ist daher Aufgabe der vorliegenden Erfindung, eine mit Überschallströmung betreibbare Radialturbine anzugeben, mit der ein höherer Wirkungsgrad und eine verbesserte Strömungsführung ermöglicht wird.It is therefore an object of the present invention to provide a radial turbine operable with supersonic flow, with which a higher efficiency and improved flow guidance is made possible.

Des Weiteren ist es Aufgabe der vorliegenden Erfindung, eine Anlage zur Energiewandlung, insbesondere zur Durchführung eines Kreisprozesses, insbesondere eines sogenannten Organic-Rankine-Kreisprozesses, zur Verfügung zu stellen, deren Wirkungsgrad insbesondere im Bereich des enthaltenen Entspannungsvorgangs verbessert ist.Furthermore, it is an object of the present invention to provide a plant for energy conversion, in particular for carrying out a cyclic process, in particular a so-called Organic Rankine cycle process, whose efficiency is improved, in particular in the region of the expansion process contained.

Der Organic-Rankine-Kreisprozess (ORC) ist ein Verfahren zur Energieumwandlung, bei dem aus einer Wärmequelle zum Betrieb von Dampfturbinen ein anderes Arbeitsmedium als Wasserdampf verwendet wird. Als Arbeitsmedium werden meistens organische Flüssigkeiten mit einer niedrigeren Verdampfungstemperatur (Tverd < 100°C), selten mit einer höheren Verdampfungstemperatur verwendet. Das Verfahren kommt in Energieerzeugungs- und Energieumwandlungsanlagen vorwiegend dann zum Einsatz, wenn das zur Verfügung stehende Temperaturgefälle zwischen Wärmequelle und Wärmesenke zu niedrig für den Betrieb einer von Wasserdampf angetriebenen Turbine ist.The Organic Rankine cycle process (ORC) is a process of energy conversion in which a working fluid other than water vapor is used from a heat source to operate steam turbines. As a working medium mostly organic liquids with a lower evaporation temperature (T verd <100 ° C), rarely used with a higher evaporation temperature. The method is used primarily in power generation and energy conversion plants when the available temperature gradient between the heat source and the heat sink is too low for the operation of a water vapor driven turbine.

Diese Aufgabe wird zum einen gelöst durch eine Radialturbine mit den Merkmalen des Patentanspruchs 1 sowie zum anderen durch eine Anlage mit den Merkmalen des Patentanspruchs 16.This object is achieved on the one hand by a radial turbine having the features of patent claim 1 and on the other hand by a system having the features of patent claim 16.

Eine solche erfindungsgemäße Radialturbine ist in der deutschen Gebrauchsmusteranmeldung DE 20 2010 017 157.1 mit der Gebrauchsmusterschrift DE 20 2010 017 157 U1 und der am 30.12.2010 angemeldeten deutschen Patentanmeldung DE 10 2010 056 557.1 beschrieben, auf die hiermit Bezug genommen und deren Offenbarungen in die Beschreibung dieser Erfindung in vollem Umfang einbezogen wird.Such a radial turbine according to the invention is in the German utility model application DE 20 2010 017 157.1 with the utility model DE 20 2010 017 157 U1 and the German patent application filed on 30.12.2010 DE 10 2010 056 557.1 to which reference is hereby made and the disclosures of which are fully incorporated into the description of this invention.

Eine erfindungsgemäße Radialturbine hat ein Gehäuse mit einem Einströmungskanal. In dem Gehäuse ist ein auf einer Welle drehbar gelagertes Laufrad angeordnet, das mehrere, von dem Arbeitsmedium anströmbare Schaufeln aufweist.A radial turbine according to the invention has a housing with an inflow channel. In the housing, a rotatably mounted on a shaft impeller is arranged, which has a plurality of flowable by the working medium blades.

Eine Besonderheit einer erfindungsgemäßen Radialturbine ist, dass für eine Umlenkung des aus einem Schaufelkanal ausströmenden Arbeitsmediums in Richtung des Austrittskanals ein Leitkörper mit mindestens einem Umlenkelement im Zwischenbereich zwischen dem Schaufelkanalaustritt und dem Austrittskanal vorgesehen ist. Vorzugsweise strömt das Arbeitsmedium zunächst über den Einströmungskanal in radialer Richtung bezogen auf eine Rotationsachse des Laufrades in das Laufrad ein. Die Schaufeln des Laufrades bilden dabei ein mit dem Laufrad rotierendes, in Umfangsrichtung des Laufrades unterteiltes Gitter, in dem das Arbeitsmedium insbesondere in Umfangsrichtung umgelenkt und in radialer Richtung in das Innere des Laufrades geleitet wird. Bevorzugt sind zwischen den radial äußeren Kanten der Schaufeln rechteckige Eintrittsöffnungen von mehreren Schaufelkanälen und zwischen den radial innenliegenden Kanten der Schaufeln rechteckige Austrittsöffnungen von mehreren Schaufelkanälen gebildet. Dabei sind die Eintritts- und Austrittsöffnungen eines Schaufelkanals erfindungsgemäß jeweils in Ebenen angeordnet, die zueinander parallel sind oder einen spitzen Winkel zueinander aufweisen. Weiter bevorzugt ist der erfindungsgemäße (mitrotierende) Zwischenbereich derart im Inneren des Laufrades angeordnet, dass er zumindest abschnittsweise von den Austrittsöffnungen mehrerer Schaufelkanäle ringförmig umgeben ist.A special feature of a radial turbine according to the invention is that a guide body is provided with at least one deflecting element in the intermediate region between the Schaufelkanalaustritt and the outlet channel for a deflection of the effluent from a blade channel working medium in the direction of the outlet channel. Preferably, the working fluid first flows into the impeller via the inflow passage in the radial direction with respect to an axis of rotation of the impeller. The blades of the impeller thereby form a grid rotating with the impeller, divided in the circumferential direction of the impeller, in which the working medium is deflected in particular in the circumferential direction and directed in the radial direction into the interior of the impeller. Preferably, rectangular inlet openings of a plurality of blade channels are formed between the radially outer edges of the blades and rectangular outlet openings of a plurality of blade channels are formed between the radially inner edges of the blades. The inlet and outlet openings of a blade channel according to the invention are arranged in each case in planes which are parallel to each other or an acute angle to each other. More preferably, the (co-rotating) intermediate region according to the invention is arranged in the interior of the impeller such that it is surrounded in a ring shape at least in sections by the outlet openings of a plurality of vane channels.

Der Leitkörper weist bevorzugt ein Umlenkelement in Form einer einstückig mit der Laufradwelle ausgeführten Tragstruktur mit rotationshyperboloider oder kegeliger Außenkontur (Laufradkegel) auf, die an ihrer Außenseite zur Strömungsumlenkung dient. Der Leitkörper weist ferner ein ringförmiges Umlenkelement in Form einer Kreisringstruktur auf, die zumindest abschnittsweise in den Zwischenraum eingesetzt ist. Erfindungsgemäß kann ein Leitkörper mit allen Teilabschnitten drehfest mit dem Laufrad verbunden sein. Alternativ kann ein Leitkörper sowohl mit dem Laufrad verbundene mitdrehende als auch mit dem Gehäuse verbundene unbewegte Umlenkelemente aufweisen.The guide body preferably has a deflection element in the form of an integrally formed with the impeller shaft support structure with rotationshyperboloider or conical outer contour (impeller cone), which serves on its outer side for flow deflection. The guide body also has an annular deflection element in the form of a circular ring structure, which is at least partially inserted into the intermediate space. According to the invention, a guide body with all subsections can be connected in a rotationally fixed manner to the impeller. Alternatively, a baffle may have both stationary and non-moving baffles connected to the impeller.

Mit der Anordnung von Umlenkelementen innerhalb des Schaufelrades wird erfindungsgemäß eine Ablösung der Strömung und ein damit verbundener Druckverlust unmittelbar nach dem Schaufelrad minimiert. Die Wirkung eines gegebenenfalls nachgeschalteten Diffusors zur zusätzlichen Effizienzerhöhung wird verbessert. Dies wird erfindungsgemäß besonders dann erreicht, wenn durch wenigstens ein ringförmiges Umlenkelement der aus den Austrittsöffnungen mehrerer Schaufelkanäle (Schaufelkanalaustritte) austretende Strom an Arbeitsmedium nochmals in mehrere voneinander getrennte Teilströme unterteilt wird. Erfindungsgemäß ergeben sich dabei insbesondere in (bezogen auf das Laufrad) axialer Richtung voneinander getrennte Teilströme, die mittels unterschiedlicher Konturen an Vorder- und Rückseite eines Umlenkelements unterschiedlich geführt werden können.With the arrangement of deflecting elements within the impeller, a detachment of the flow and an associated pressure loss is minimized immediately after the impeller according to the invention. The effect of an optionally downstream diffuser for additional efficiency increase is improved. This is achieved according to the invention particularly when at least one annular deflecting element separates the stream of working medium emerging from the outlet openings of a plurality of blade channels (blade channel outlets) into a plurality of separate partial streams. According to the invention, in particular in (with respect to the impeller) axial direction separate from each other partial streams, which can be performed differently by means of different contours on the front and back of a deflecting.

Weiterhin kann ein in den Zwischenraum eingreifendes ringförmiges Umlenkelement über einen Befestigungsring am Gehäuse der Radialturbine festgelegt sein. Der Befestigungsring ist dann bevorzugt als scheibenförmige. durchströmbare Gitterstruktur mit radial verlaufenden Speichen ausgeführt. In diesem Fall wird die auf das Schaufelrad wirkende axiale Kraft reduziert, welche aus der Richtungsänderung der Strömung resultiert.Furthermore, an engaging in the intermediate annular deflecting element can be fixed via a mounting ring on the housing of the radial turbine. The fastening ring is then preferred as a disk-shaped. flow-through lattice structure designed with radially extending spokes. In this case, the axial force acting on the paddle wheel resulting from the directional change of the flow is reduced.

In einer Ausgestaltung der Erfindung strömt das Arbeitsmedium über einen sich erweiternden Einströmungskanal in (bezogen auf die Rotationsachse des Laufrads) radialer Richtung in das Laufrad ein. Eine Engstelle ist für den Strom des Arbeitsmediums im Bereich des Einströmungskanals vorgesehen, um im Bereich des Einströmungskanals Überschallgeschwindigkeit erreichen zu können.In one embodiment of the invention, the working medium flows into the impeller via a widening inflow channel (in relation to the rotational axis of the impeller) in the radial direction. A constriction is provided for the flow of the working medium in the region of the inflow channel in order to be able to achieve supersonic speed in the area of the inflow channel.

Nach einer Ausgestaltung der Erfindung weist der Leitkörper ein Umlenkelement mit einer ersten und einer zweiten ringförmigen Kante auf, wobei die erste ringförmige Kante des Umlenkelements benachbart zu dem Schaufelkanalaustritt positioniert ist und wobei die zweite ringförmige Kante benachbart zu dem Diffusorkanaleintritt positioniert ist. Hierdurch wird eine vorteilhafte Abströmung des Arbeitsmediums von dem Laufrad erzielt. Die Folge ist, dass damit eine Wirbelbildung im Austrittsbereich der Strömungsvorrichtung bzw. im Diffusoreintrittsbereich verhindert wird.According to one embodiment of the invention, the guide body has a deflecting element with a first and a second annular edge, wherein the first annular edge of the deflecting element is positioned adjacent to the Schaufelkanalaustritt and wherein the second annular edge is positioned adjacent to the diffuser channel entrance. As a result, an advantageous outflow of the working medium is achieved by the impeller. The consequence is that this prevents vortex formation in the outlet region of the flow device or in the diffuser inlet region.

In einer weiteren Ausgestaltung der Erfindung ist das Umlenkelement derart ausgebildet, dass die erste Kante eine Anströmkante ist und in (bezogen auf das Laufrad) radialer Richtung weist, wobei die zweite Kante eine Abströmkante ist und in die gleiche Richtung wie die Rotationsachse weist, so dass damit das aus dem Schaufelkanal ausströmende Arbeitsmedium von der radialen in die axiale Richtung umgelenkt wird. Hierdurch wird der Wirkungsgrad der Strömungsmaschine verbessert. Vorzugsweise weist der Leitkörper mehrere zueinander beabstandete Umlenkelemente auf.In a further embodiment of the invention, the deflecting element is designed such that the first edge is a leading edge and in (relative to the impeller) radial direction, wherein the second edge is a trailing edge and facing in the same direction as the axis of rotation, so that so that the effluent from the blade channel working fluid is deflected from the radial to the axial direction. As a result, the efficiency of the turbomachine is improved. Preferably, the guide body has a plurality of spaced-apart deflection elements.

Nach einer weiteren Ausgestaltung der Erfindung umfasst das Umlenkelement eine dem Laufrad zugewandte und eine dem Laufrad abgewandte Seite. Das Umlenkelement ist hier derart positioniert, dass es von dem Arbeitsmedium beidseitig umströmt werden kann. Entsprechend ergeben sich beiderseits des Umlenkelements ringförmige Kanäle für das Arbeitsmedium. Weiter bevorzugt ist das ringförmige Umlenkelement näherungsweise allseitig von Arbeitsmedium umströmbar angeordnet. Weiter bevorzugt weist das ringförmige Umlenkelement zumindest abschnittsweise eine tropfen-, halbmond- oder tragflügelförmige Querschnittsgeometrie auf. Hierdurch erfolgt eine vorteilhafte Umlenkung des Arbeitsmediums im Bereich des Laufrads. Damit wird ein besonders effizienter Betrieb der Strömungsvorrichtung ermöglicht.According to a further embodiment of the invention, the deflecting element comprises a side facing the impeller and a side facing away from the impeller. The deflecting element is here positioned so that it from the working medium can be flowed around on both sides. Accordingly arise on both sides of the deflecting annular channels for the working fluid. More preferably, the annular deflecting element is arranged approximately on all sides by working medium umströmbar. More preferably, the annular deflecting element at least partially on a drop, half-moon or wing wing-shaped cross-sectional geometry. This results in an advantageous deflection of the working medium in the region of the impeller. This enables a particularly efficient operation of the flow device.

In einer weiteren Ausgestaltung der Erfindung weist der Leitkörper mehrere voneinander beabstandete Umlenkelemente auf, die zusammen ein durchströmbares Gitter mit ringförmigen Kanälen bilden. Damit wird der Gesamtstrom des Arbeitsmediums in mehrere ringförmige Teilströme unterteilt. Innerhalb eines solchen Gitters aus Umlenkelementen kann der Gesamtstrom wirksam umgelenkt werden, wobei die gebildeten einzelnen Teilströme unterschiedlichen Behandlungen unterzogen werden können, indem die Konturen der Umlenkelemente voneinander unterschiedlich gestaltet werden. Auf den Umlenkelementen können wiederum weitere Strömungsleitelemente wie Turbulenzpromotoren, Oberflächenbeschichtungen oder dergleichen angeordnet sein. Derselbe Effekt kann grundsätzlich auch bei Verwendung nur eines Umlenkelements erreicht werden.In a further embodiment of the invention, the guide body on a plurality of spaced deflecting elements, which together form a through-flow grating with annular channels. Thus, the total flow of the working medium is divided into a plurality of annular partial streams. Within such a grid of deflecting the total current can be effectively deflected, the individual streams formed can be subjected to different treatments by the contours of the deflecting elements are designed differently from each other. In turn, further flow guidance elements such as turbulence promoters, surface coatings or the like can be arranged on the deflection elements. The same effect can basically be achieved even when using only one deflecting element.

In weiterer Ausgestaltung der Erfindung sind die voneinander beabstandeten Umlenkelemente derart positioniert, dass deren den Schaufeln des Laufrades zugewandte Kanten in axialer Richtung einen axialen Abstand aufweisen. Zugleich weisen die den Schaufeln des Laufrades zugewandte Kanten wenigstens näherungsweise den gleichen (Außen-)Durchmesser auf, der wiederum um maximal 10% kleiner ist als ein (gemeinsamer) Durchmesser der inneren Kanten der Laufradschaufeln. Somit wird eine nennenswerte Vereinigung der aus den Schaufelkanälen austretenden Teilströme des Arbeitsmediums unterbunden. Vielmehr werden die in Umfangsrichtung des Laufrades separierten Teilströme im Leitkörper nochmals in (bezogen auf das Laufrad) axialer Richtung unterteilt. Dies kann selbstverständlich auch bei Verwendung nur eines Umlenkelements erreicht werden.In a further embodiment of the invention, the deflecting elements spaced apart from each other are positioned such that their edges facing the blades of the impeller have an axial spacing in the axial direction. At the same time, the edges facing the blades of the impeller at least approximately the same (outer) diameter, which in turn is smaller by a maximum of 10% than a (common) diameter of the inner edges of the impeller blades. Thus, a significant combination of emerging from the blade channels partial streams of the working medium is prevented. Rather, the in the circumferential direction of Impeller separated part streams in the baffle again divided (relative to the impeller) axial direction. This can of course be achieved even when using only one deflecting element.

In weiterer Ausgestaltung der Erfindung sind die voneinander beabstandeten Umlenkelemente derart positioniert, dass deren in Richtung der Rotationsachse des Laufrads weisenden Kanten einen unterschiedlichen radialen Abstand bezüglich der Rotationsachse des Laufrads aufweisen. Damit werden unterschiedliche Teilströme des Arbeitsmediums mit unterschiedlichem radialem Abstand in einen nachgeschalteten Diffusor entlassen und unerwünschte Verwirbelungen minimiert.In a further embodiment of the invention, the deflecting elements spaced from each other are positioned such that their edges pointing in the direction of the axis of rotation of the impeller have a different radial distance with respect to the axis of rotation of the impeller. Thus, different partial flows of the working medium are released with different radial distance in a downstream diffuser and minimized undesirable turbulence.

Nach einem weiteren Aspekt der Erfindung sind an einer mit dem Laufrad verbundenen Welle mehrere Permanentmagneten und/oder Rotorwicklungen angeordnet, die mit mehreren benachbart angeordneten, die Welle umgreifenden Statorwicklungen einen elektrischen Generator bilden. Dementsprechend kann die Strömungsmaschine als "Generatorturbine" zur Stromerzeugung verwendet werden.According to a further aspect of the invention, a plurality of permanent magnets and / or rotor windings are arranged on a shaft connected to the impeller, which with a plurality of adjacently arranged, the shaft encircling stator windings form an electrical generator. Accordingly, the turbomachine can be used as a "generator turbine" for power generation.

Eine erfindungsgemäße Radialturbine kann insbesondere eine thermische Strömungsmaschine sein. Eine Idee der Erfindung ist es darüber hinaus, eine erfindungsgemäße Radialturbine in einem Organic-Rankine-Kreisprozess zu verwenden.A radial turbine according to the invention can in particular be a thermal turbomachine. An idea of the invention is moreover to use a radial turbine according to the invention in an Organic Rankine cycle.

Die Erfindung erstreckt sich deshalb auch auf eine Anlage für das Umwandeln von Energie mit einem Kreisprozess, in der eine erfindungsgemäße Strömungsmaschine eingesetzt wird. Insbesondere betrifft die Erfindung eine Radialturbine für eine Anlage für das Umwandeln von Energie in Form einer sogenannten ORC-Anlage. Als ORC-Anlage wird dabei eine Anlage bezeichnet, in der ein thermodynamischer Kreisprozess in Form eines "Organic Rankine Cycle" (ORC) durchgeführt wird, mit dem Wärme in mechanische Energie gewandelt werden kann.The invention therefore also extends to a system for converting energy with a cyclic process in which a turbomachine according to the invention is used. In particular, the invention relates to a radial turbine for a plant for the conversion of energy in the form of a so-called ORC plant. An ORC plant is a plant in which a thermodynamic cycle in the form of an "Organic Rankine Cycle" (ORC) is performed, with which heat can be converted into mechanical energy.

Die einer erfindungsgemäßen ORC-Anlage zugeführte Wärme kann zum Beispiel aus einer Wärmequelle in Form einer Brennkraftmaschine aus einer Kraft-Wärme-Kopplungsanlage, aus einer Biomasse-Feuerungsanlage, aus einer Geothermie-Quelle oder aus einem Solarkraftwerk stammen. Mittels einer ORC-Anlage kann jede Form von Abwärme genutzt werden. Beispielsweise kann aus der Abwärme von Verbrennungsmotoren mittels einer ORC-Anlage zusätzlich elektrische Energie gewonnen werden.The heat supplied to an ORC system according to the invention can originate, for example, from a heat source in the form of an internal combustion engine from a combined heat and power plant, from a biomass combustion plant, from a geothermal source or from a solar power plant. Any form of waste heat can be used with an ORC system. For example, from the waste heat of internal combustion engines by means of an ORC system additional electrical energy can be obtained.

Eine erfindungsgemäße ORC-Anlage kann einen Kondensator zur Verflüssigung eines Arbeitsmediums der Anlage, eine Pumpe, einen Verdampfer zur Verdampfung des Arbeitsmediums enthalten. In einer solchen Anlage gibt es eine dem Verdampfer nachgeschaltete Radialturbine, in der das Arbeitsmedium unter Entnahme von kinetischer Energie aus dem Kreislauf entspannt wird.An ORC plant according to the invention may contain a condenser for liquefying a working medium of the plant, a pump, an evaporator for evaporating the working medium. In such a plant, there is a downstream of the evaporator radial turbine, in which the working fluid is expanded while removing kinetic energy from the circulation.

Die Pumpe bringt ein bei Normbedingungen flüssiges Arbeitsmedium auf Betriebsdruck. Nachfolgend durchströmt das noch flüssige Arbeitsmedium den Wärmetauscher (Verdampfer) oder auch ein Wärmetauschersystem, in dem thermische Energie beispielsweise aus einer der vorgenannten Quellen auf das Arbeitsmedium der ORC-Anlage übertragen wird. Durch den Energieeintrag verdampft das Arbeitsmedium bevorzugt vollständig. Am Austritt des Verdampfers entsteht dann Sattdampf bzw. Trockendampf. Durch den Energieeintrag im Verdampfer nehmen das spezifische Volumen und die Temperatur des Dampfes zu.The pump brings a liquid working under standard conditions to operating pressure. Subsequently, the still liquid working medium flows through the heat exchanger (evaporator) or a heat exchanger system in which thermal energy is transferred for example from one of the aforementioned sources to the working medium of the ORC system. Due to the energy input, the working medium preferably evaporates completely. At the outlet of the evaporator then saturated steam or dry steam is formed. The energy input in the evaporator increases the specific volume and the temperature of the steam.

Der Dampf des Arbeitsmediums wird über eine erfindungsgemäße Strömungsvorrichtung in Form einer Turbine nahezu isentrop auf einen geringeren Druck entspannt. Das spezifische Volumen nimmt dann durch die Expansion in der Turbine zu. Diese Volumenvergrößerung, hervorgerufen durch die Druckdifferenz und die daraus resultierende Arbeit, wird als Volumenänderungsarbeit bezeichnet, welche die Turbine an ihren Schaufeln in mechanische Energie umwandelt.The vapor of the working medium is expanded almost isentropically to a lower pressure via a flow device according to the invention in the form of a turbine. The specific volume then increases due to the expansion in the turbine. This volume increase, caused by the pressure difference and the resulting work, is called volume change work referred to, which converts the turbine on their blades into mechanical energy.

Aus der Turbine strömt der Dampf gegebenenfalls durch einen Regenerator, in dem ein Wärmeaustausch zwischen dem dampfförmigen Arbeitsmedium und dem von der Pumpe kommenden flüssigen Arbeitsmedium stattfindet (innerer Wärmeaustausch).If necessary, the steam flows out of the turbine through a regenerator in which a heat exchange takes place between the vaporous working medium and the liquid working medium coming from the pump (internal heat exchange).

Das in der Turbine und ggf. im Regenerator auf Kondensationstemperatur gebrachte (noch dampfförmige) Arbeitsmedium gelangt in den nachgeschalteten Kondensator, in dem das Arbeitsmedium unter Angabe von Niedertemperaturwärme rekondensiert wird. Die bei der Kondensation abgegebene Wärme wird bevorzugt noch über einen Kühlwasserkreislauf in ein Wärmenetz gespeist. Das Arbeitsmedium kondensiert aus und geht wieder vollständig in den flüssigen Aggregatzustand über. Die Speisepumpe (Pumpe) bringt nachfolgend das Arbeitsmedium auf Betriebsdruck und anschließend wieder in den Verdampfer. Damit schließt sich der Kreislauf.The (still vaporous) working medium brought to the condensation temperature in the turbine and possibly in the regenerator reaches the downstream condenser, in which the working medium is reconstituted, indicating low-temperature heat. The heat released in the condensation is preferably fed via a cooling water circuit in a heat network. The working medium condenses out and returns completely to the liquid state of aggregation. The feed pump (pump) subsequently brings the working fluid to operating pressure and then back into the evaporator. This completes the cycle.

Mit einer als Turbine in einer ORC-Anlage eingesetzten erfindungsgemäßen Strömungsvorrichtung kann insbesondere ein Generator angetrieben werden, der mit der Turbine aus thermischer Energie gewonnenen mechanischen Energie elektrischen Strom erzeugt.With a flow device according to the invention used as a turbine in an ORC system, in particular a generator can be driven, which generates electrical current with the turbine obtained from thermal energy mechanical energy.

Eine solche ORC-Anlage mit einer erfindungsgemäßen Radialturbine kann sowohl für kleine und große Hausanlagen als auch für große industrielle Anlagen sowie für Kraftwerke eingesetzt werden. Als Hausanlagen sind dabei die Energieversorgungen, z. B. Klimatisierungsanlagen für Büros, Garagen, Krankenhäuser und alle Arten von Gebäuden zu verstehen. Industrielle Anlagen sind z.B. Fertigungsanlagen, insbesondere Fertigungsanlagen der Automobilindustrie, insbesondere Lackierereien, in denen ein ausgewogener Bedarf an Strom (aus mechanischer Energie) und Wärme auf unterschiedlichem Temperaturniveau benötigt wird.Such an ORC system with a radial turbine according to the invention can be used both for small and large home systems as well as for large industrial plants and power plants. As home appliances are the power supplies, z. As air conditioning systems for offices, garages, hospitals and all types of buildings to understand. Industrial plants are, for example, production plants, in particular production plants of the automobile industry, in particular paint shops, in which a balanced demand for electricity (from mechanical energy) and heat at different temperature levels is needed.

Weitere Vorteile, Merkmale und Einzelheiten der Erfindung ergeben sich aus der nachfolgenden Beschreibung mehrerer bevorzugter Ausführungsbeispiele sowie anhand der Zeichnungen.Further advantages, features and details of the invention will become apparent from the following description of several preferred embodiments and from the drawings.

Die vorstehend in der Beschreibung genannten Merkmale und Merkmalskombinationen sowie die nachfolgenden in der Figurenbeschreibung genannten und/oder in den Figuren alleine gezeigten Merkmale und Merkmalskombinationen sind nicht nur in der jeweils angegeben Kombination, sondern auch in anderen Kombinationen oder in Alleinstellung verwendbar, ohne den Rahmen der Erfindung zu verlassen.The features and feature combinations mentioned above in the description and the following features and feature combinations mentioned in the description of the figures and / or shown alone in the figures can be used not only in the respectively indicated combination but also in other combinations or in isolation, without the scope of To leave invention.

Vorteilhafte Ausführungsformen einer erfindungsgemäßen Radialturbine sind anhand der Fig. 2, Fig. 3, Fig. 4. Fig. 5a und Fig. 5b nachfolgend beschrieben.Advantageous embodiments of a radial turbine according to the invention are based on Fig. 2, Fig. 3, Fig. 4 , Fig. 5a and Fig. 5b described below.

Es zeigen:

Fig. 2
eine Schnittansicht einer Radialturbine für Überschallströmung mit einem Umlenkelement in Form eines Rotationshyperboloiden (Laufradkegel) zur Umlenkung der Strömung innerhalb des Laufrads;
Fig. 3
eine Schnittansicht eines Laufrads einer Radialturbine für Überschallströmung mit einem abschnittsweise in das Laufrad hineinragenden Leitkörper zur Verringerung der Wirbelbildung in einem nachgeschalteten Diffusor;
Fig. 4
eine Schnittansicht einer Strömungsvorrichtung mit hauptsächlich innerhalb des Laufrads liegenden Leitkörpern;
Fig. 5a
in einer vergrößerten Schnittansicht einen Abschnitt der Strömungsvorrichtung nach Fig. 4; und
Fig. 5b
eine Ansicht von Schaufeln des Laufrads der erfindungsgemäßen Strömungsvorrichtung aus Fig. 5a, die zur Verdeutlichung ihrer Geometrie quer zur Schaufelachse geschnitten gezeigt sind.
Show it:
Fig. 2
a sectional view of a radial turbine for supersonic flow with a deflection element in the form of a Rotationshyperboloiden (impeller cone) for deflecting the flow within the impeller;
Fig. 3
a sectional view of an impeller of a radial turbine for supersonic flow with a sectionally projecting into the impeller guide body to reduce the vortex formation in a downstream diffuser;
Fig. 4
a sectional view of a flow device with lying mainly within the impeller guide bodies;
Fig. 5a
in an enlarged sectional view of a portion of the flow device according to Fig. 4 ; and
Fig. 5b
a view of blades of the impeller of the flow device according to the invention from Fig. 5a , which are shown cut to illustrate their geometry transverse to the blade axis.

Fig. 2 zeigt abschnittsweise eine Schnittansicht einer Strömungsmaschine in Form einer Radialturbine mit einem im Wesentlichen ruhenden Turbinengehäuse 1, 4, 11, in dem ein Turbinenrad 2 (Laufrad) angeordnet ist. Das Turbinengehäuse 1, 4, 11 umfasst insbesondere einen Düsenring 1 sowie eine zugehörige Abdeckung 11. Die Abdeckung 11 und der Düsenring 1 sind bevorzugt als separate Baugruppen ausgeführt. Zwischen ihnen sind die Düsenkanäle 10 gebildet. Das Turbinengehäuse 1, 4, 11 umfasst einen Diffusor 4 mit einem Austrittkanal 40 für das Arbeitsmedium. Fig. 2 shows in sections a sectional view of a turbomachine in the form of a radial turbine with a substantially stationary turbine housing 1, 4, 11, in which a turbine wheel 2 (impeller) is arranged. The turbine housing 1, 4, 11 in particular comprises a nozzle ring 1 and an associated cover 11. The cover 11 and the nozzle ring 1 are preferably designed as separate assemblies. Between them, the nozzle channels 10 are formed. The turbine housing 1, 4, 11 comprises a diffuser 4 with an outlet channel 40 for the working medium.

Das in dem Turbinengehäuse angeordnete Laufrad 2 umfasst eine Mehrzahl von (mitrotierenden) Schaufeln. In der Fig. 2 ist das Laufrad 2 mit einer Schaufel 21 gezeigt. Zwischen den Schaufeln des Laufrades 2 sind gerade oder gekrümmte Schaufelkanäle 20 ausgebildet, die einen im Wesentlichen rechteckigem Querschnitt haben. Die Schaufeln sind über eine Basis des Laufrades 2 sowie auf einer davon beabstandeten Seite über eine sogenannte Bandage 22 miteinander verbunden.The impeller 2 disposed in the turbine housing includes a plurality of (co-rotating) vanes. In the Fig. 2 the impeller 2 is shown with a blade 21. Between the blades of the impeller 2 straight or curved blade channels 20 are formed, which have a substantially rectangular cross-section. The blades are connected to each other via a base of the impeller 2 and on a side spaced therefrom via a so-called bandage 22.

Ein dampfförmiges Arbeitsmedium, beispielsweise das Arbeitsmedium einer ORC-Anlage, strömt durch einen als Einströmungskanal wirkenden Düsenkanal 10 des Turbinengehäuses 11 gemäß eines Richtungspfeils 51. In dem Einströmungskanal 10 wird über eine entsprechende Düsengeometrie das strömende Arbeitsmedium beschleunigt, so dass an einer Engstelle Schallgeschwindigkeit erreicht, wobei das Arbeitsmedium vor einer Überleitung in das Laufrad 2 auf Überschallgeschwindigkeit gebracht werden kann.A vaporous working medium, for example the working medium of an ORC system, flows through a nozzle channel 10 of the turbine housing 11 acting as an inflow channel according to a directional arrow 51. In the inflow channel 10, the flowing working medium is accelerated via a corresponding nozzle geometry, so that sound velocity is reached at a constriction. wherein the working fluid can be brought to supersonic speed before a transfer into the impeller 2.

Das dampfförmige Arbeitsmedium strömt aus dem Düsenkanal 10 und trifft auf die Schaufel 21, die derart ausgebildet ist, dass sowohl die angeströmte Kante als auch die in Abströmungsrichtung liegende Kante der Schaufel 21 und somit auch diese selbst parallel und axial zur Laufradwelle ausgerichtet sind. Der überwiegende Teil des Stromes 51 an Arbeitsmedium wird nach dem Passieren der Schaufeln 21 bzw. eines jeweiligen Schaufelkanals zwischen mehreren Schaufeln 21 (und somit in einem sogenannten Zwischenbereich des Laufrades 2) auf Parallelität zur Rotationsachse des Laufrades umgelenkt (Pfeilrichtung 53). Hierzu ist erfindungsgemäß ein Leitkörper 3 in Form eines kegeligen Umlenkelements (Laufradkegel) vorgesehen, der bevorzugt als Rotationshyperboloid gestaltet ist. Dieses Umlenkelement kann optional einstückig mit dem Laufrad ausgeführt sein kann. Der Leitkörper 3 befindet sich in einem Zwischenbereich 29 zwischen dem Schaufelkanalaustritten 23 und der Eintrittsöffnung 24 in den von dem Diffusor 4 gebildeten Austrittskanal 40. Das als Laufradkegel ausgebildete Umlenkelement mit dem Leitkörper 3 ist dabei im Bereich seiner Basis in dem Zwischenbereich 29 innerhalb des Laufrades 2 angeordnet. Er wird abschnittsweise ringförmig von den Schaufelkanalaustritten 23 bzw. von den Schaufeln 21 des Laufrades umschlossen. Der Leitkörper 3 erstreckt sich in den von dem Diffusor 4 gebildeten Austrittskanal 40.The vaporous working medium flows out of the nozzle channel 10 and impinges on the blade 21, which is designed such that both the flowed Edge and the lying in the direction of flow edge of the blade 21 and thus also these are aligned parallel to and parallel to the impeller shaft. The majority of the stream 51 of working medium is deflected after passing through the blades 21 or a respective blade channel between a plurality of blades 21 (and thus in a so-called intermediate region of the impeller 2) to parallel to the axis of rotation of the impeller (arrow 53). For this purpose, a guide body 3 in the form of a conical deflecting element (impeller cone) is provided according to the invention, which is preferably designed as a rotational hyperboloid. This deflecting element can optionally be designed in one piece with the impeller. The guide body 3 is located in an intermediate region 29 between the Schaufelkanalaustritten 23 and the inlet opening 24 in the outlet channel 40 formed by the diffuser 4. The trained as impeller cone deflection element with the guide body 3 is in the region of its base in the intermediate region 29 within the impeller. 2 arranged. It is partially surrounded annularly by the blade channel exits 23 and the blades 21 of the impeller. The guide body 3 extends into the outlet channel 40 formed by the diffuser 4.

Der Laufradkegel bewirkt bei moderaten Strömungsgeschwindigkeiten eine weitgehend laminare Strömungsumlenkung. Bei hohen Strömungsgeschwindigkeiten können Wirbel 54 entstehen.The impeller cone causes a largely laminar flow deflection at moderate flow velocities. At high flow velocities, vortices 54 can arise.

Zur Verminderung des in Fig. 2 dargestellten Wirbelbildungseffektes kann durch die Positionierung von Leitkörpern in dem Abströmkanal bzw. in dem Diffusor 4 hinter dem Laufrad 2 eine Reduzierung der Wirbelbildung erzielt werden.To reduce the in Fig. 2 represented vortex formation can be achieved by the positioning of guide bodies in the outflow or in the diffuser 4 behind the impeller 2, a reduction of vortex formation.

Eine erfindungsgemäße Radialturbine ist in der Fig. 3 dargestellt, die im Wesentlichen gleichartig wie die Radialturbine gemäß Fig. 2 ausgeführt ist. Entsprechend kann auf die vorstehende Beschreibung zu Fig. 2 Bezug genommen werden. Entsprechend sind auch gleichartige Bauelemente und Funktionseinheiten mit gleichen Bezugszeichen versehen. Die Radialturbine nach Fig. 3 umfasst neben einem ersten Umlenkelement in Form des mitrotierenden Laufradkegels ein zweites Umlenkelement 31 in Form eines gehäuseseitig montierten, ringförmigen Leitkörpers 3'. Der Leitkörper 3' greift bevorzugt in einen Zwischenbereich 29 des Laufrads 2 ein, der von den Laufradschaufeln 21 umgriffen wird. Dadurch kann der aus den Laufradschaufelkanälen austretende Strom an Arbeitsmedium frühzeitig in zwei ringförmige Teilströme aufgeteilt werden.A radial turbine according to the invention is in the Fig. 3 shown substantially similar to the radial turbine according to Fig. 2 is executed. Accordingly, to the above description Fig. 2 Be referred. Corresponding are also similar components and functional units provided with the same reference numerals. The radial turbine after Fig. 3 comprises, in addition to a first deflection element in the form of the co-rotating impeller cone, a second deflection element 31 in the form of an annular guide body 3 'mounted on the housing side. The guide body 3 'preferably engages in an intermediate region 29 of the impeller 2, which is encompassed by the impeller blades 21. As a result, the stream of working medium emerging from the impeller blade channels can be split up early into two annular partial streams.

Der Leitkörper 3' weist eine erste und eine zweite ringförmige Kante 25, 26 auf. Die erste Kante 25 des Umlenkelements ist benachbart zu dem Schaufelkanalaustritt 23 innerhalb des Zwischenbereichs 29 positioniert. Die zweite Kante 26 ist benachbart zu der Eintrittsöffnung 24 innerhalb des Austrittskanals 40 angeordnet. Die die erste Kante 25 wirkt dabei als eine Anströmkante. Die zweite Kante 26 ist eine Abströmkante. Das Umlenkelement 31 ist mit einer Leitkontur 28 ausgebildet, die sich von der ersten Kante 25 aus einer näherungsweise zu einer Rotationsachse 27 des Laufrades 2 radialen Richtung zu der zweiten Kante 26 in eine näherungsweise zu der Rotationsachse 27 des Laufrades 2 axiale Richtung erstreckt. Das aus dem Schaufelkanal 20 ausströmende Arbeitsmedium wird damit von dem Umlenkelement 31 aus einer im Wesentlichen radialen in eine im wesentlichen axiale Richtung umgelenkt. In modifizierten Ausführungsbeispielen können auch andere Strömungsrichtungen erzeugt werden, indem die Konturen der Umlenkelemente in die entsprechenden Richtungen orientiert werden.The guide body 3 'has a first and a second annular edge 25, 26. The first edge 25 of the deflection element is positioned adjacent to the blade channel exit 23 within the intermediate region 29. The second edge 26 is arranged adjacent to the inlet opening 24 within the outlet channel 40. The first edge 25 acts as a leading edge. The second edge 26 is a trailing edge. The deflecting element 31 is formed with a guide contour 28, which extends from the first edge 25 from an approximately to a rotational axis 27 of the impeller 2 radial direction to the second edge 26 in an approximately to the axis of rotation 27 of the impeller 2 axial direction. The effluent from the blade channel 20 working fluid is thus deflected by the deflecting element 31 from a substantially radial in a substantially axial direction. In modified embodiments, other flow directions can be generated by the contours of the deflecting elements are oriented in the corresponding directions.

Falls trotz der beschriebenen Maßnahmen Restwirbel 54 entstehen - beispielsweise bei besonders hohen Strömungsgeschwindigkeiten können erfindungsgemäß alternativ oder zusätzlich weitere Verbesserungen vorgesehen werden.If residual vortices 54 occur in spite of the measures described-for example, at particularly high flow velocities, further or further improvements may be provided according to the invention as an alternative or in addition.

Insbesondere werden in ORC-Anlagen häufig Radialturbinen zur Umwandlung der Strömungsenergie des Arbeitsmediums in ein Drehmoment verwendet. Aufgrund der niedrigen Schallgeschwindigkeit in solchen Medien und der hohen Druckverhältnisse zwischen Ein- und Austritt des Dampfes in die Turbine liegt die Strömungsgeschwindigkeit des Dampfes im Laufrad der Turbine häufig oberhalb der Schallgeschwindigkeit. Auch die Austrittsgeschwindigkeit des Dampfes aus dem Laufrad liegt häufig noch über Mach 0,7. Unter Betrachtung des geometrisch vorgegebenen großen Unterschieds zwischen dem Krümmungsradius des Laufradkegels und der inneren Kante einer Bandage 22 über den Schaufeln 21 sowie durch die hohe Abströmgeschwindigkeit wird ein gleichmäßiges Abströmen des dampfförmigen Arbeitsmediums in Turbinen von ORC-Anlagen häufig verhindert.In particular, radial turbines are often used in ORC plants for converting the flow energy of the working medium into a torque. Due to the low speed of sound in such media and the high pressure ratios between the inlet and outlet of the steam in the turbine, the flow rate of the steam in the impeller of the turbine is often above the speed of sound. Also, the exit velocity of the steam from the impeller is often still over Mach 0.7. Considering the geometrically predetermined large difference between the radius of curvature of the impeller cone and the inner edge of a drum 22 over the blades 21 and the high outflow velocity, a uniform outflow of the vaporous working medium in turbines of ORC systems is often prevented.

In den Fig. 4, 5a und 5b sind Ausschnitte einer weiteren erfindungsgemäßen, als Radialturbine ausgebildeten Strömungsmaschine gezeigt, die einen Düsenring 1 mit einer Düsenabdeckung 11, ein in einem Gehäuse auf einer Welle gelagerten Laufrad 2, einen Einströmungskanal 10, einen Diffusor 4, mehrere am Laufrad 2 angeordnete Schaufeln 21, einen ersten gitterförmigen Leitkörper 3" und einen zweiten kegeligen Leitkörper 3 aufweist. Eine grundsätzliche Funktionsweise entspricht derjenigen der Radialturbine nach Fig. 2 bzw. Fig. 3, so dass auf die hierzu gemachten Ausführungen Bezug genommen werden kann.In the Fig. 4 . 5a and 5b are sections of a further inventive, designed as a radial turbine turbomachine shown, the nozzle ring 1 with a nozzle cover 11, mounted in a housing on a shaft impeller 2, an inflow passage 10, a diffuser 4, a plurality of arranged on the impeller 2 blades 21, a first has a lattice-shaped guide body 3 "and a second conical guide body 3. A basic mode of operation corresponds to that of the radial turbine according to FIG Fig. 2 respectively. Fig. 3 , so that reference can be made to the statements made for this purpose.

Ein dampfförmiges Arbeitsmedium ist über den Einströmungskanal 10 zu einem Radeintritt des Laufrads gemäß eines Richtungspfeils 51 leitbar. Es trifft dort auf die Schaufel 21 und strömt zwischen den Schaufeln 21 in einen Schaufelkanal 20 gemäß eines Richtungspfeils 42 ein (Fig. 5b). Die Anströmung auf die Schaufel 21 erfolgt in radialer Richtung bezüglich einer Rotationsachse des Laufrads 2. Nach Durchströmung des Schaufelkanals 20 gelangt das Arbeitsmedium in einen Zwischenbereich 29 zwischen einem Schaufelkanalaustritt und einem dem Laufrad 2 nachgeschalteten Austrittskanal 40. In dem Zwischenbereich 29 nach dem Schaufelkanalaustritt und einem Diffusorkanaleintritt sind erfindungsgemäß der erste Leitkörper 3" und der zweite Leitkörper 3 positioniert, wobei beide Leitkörper bevorzugt auch abschnittsweise aus dem Zwischenbereich heraus in den Austrittskanal 40 ragen können.A vaporous working medium can be conducted via the inflow passage 10 to a wheel entry of the impeller according to a directional arrow 51. It meets there the blade 21 and flows between the blades 21 in a blade channel 20 according to a directional arrow 42 ( Fig. 5b ). After flowing through the blade channel 20, the working fluid enters an intermediate region 29 between a blade channel outlet and an outlet channel 40 downstream of the rotor 2 Diffuser channel entry according to the invention, the first guide body 3 "and the second guide body 3 is positioned, wherein both guide body preferably also sections can protrude out of the intermediate region in the outlet channel 40.

Gemäß der Fig. 5a umfasst der erste Leitkörper 3" neben einem ebenfalls gitterförmigen, insbesondere mit radialen Speichen versehenen, durchströmbaren Befestigungsring 34 zwei kreisringförmige Umlenkelemente 31 und 32, wobei in alternativen Ausführungsbeispielen mehr als zwei Umlenkelemente verwendbar sind. Alternativ kann auch ein einzelnes kreisringförmiges Umlenkelement 31 vorgesehen sein. Die kreisringförmigen Umlenkelemente 31, 32 sind bevorzugt zusammen mit dem Befestigungsring 34 einstückig ausgeführt und bilden so den ersten Leitkörper 3", der auch als Strömungsgitter bezeichnet werden kann. Der so aufgebaute erste Leitkörper 3" wirkt mit dem zweiten Leitkörper 3 in Form des Laufradkegels zusammen: Beide Leitkörper 3, 3" teilen zusammenwirkend den Zwischenbereich 29 des Laufrads 2 zumindest abschnittsweise in voneinander separierte ringförmige Strömungskanäle auf.According to the Fig. 5a the first guide body 3 "comprises, in addition to a lattice-shaped fastening ring 34, which is also provided with radial spokes, two annular deflection elements 31 and 32, wherein in alternative embodiments more than two deflection elements can be used circular deflecting elements 31, 32 are preferably made in one piece together with the fastening ring 34 and thus form the first guide body 3 ", which may also be referred to as a flow grid. The first guide body 3 "thus constructed cooperates with the second guide body 3 in the form of the impeller cone: both guide bodies 3, 3" cooperatively divide the intermediate region 29 of the impeller 2 at least in sections into annular flow channels separated from one another.

Das Arbeitsmedium wird unmittelbar nach den Schaufeln 21 durch die Umlenkelemente 31 und 32 des ersten Leitkörpers 3" dementsprechend mehrfach aufgeteilt und zum überwiegenden Teil noch innerhalb des Schaufelrades 2 parallel zu dessen Rotationsachse gemäß eines Richtungspfeils 53 gelenkt.The working medium is accordingly divided several times immediately after the blades 21 by the deflecting elements 31 and 32 of the first guide body 3 "and, for the most part, still directed within the paddle wheel 2 parallel to its axis of rotation according to a directional arrow 53.

Der erste Leitkörper 3" erstreckt sich zwischen einer ersten 25 und einer zweiten Kante 26 eines Umlenkelements 31 bzw. 32 und ist derart ausgebildet ist, dass die erste Kante benachbart zum Schaufelkanalaustritt positioniert ist, wobei die zweite Kante 26 benachbart zum Diffusorkanaleintritt 40 positioniert ist.The first baffle 3 "extends between a first 25 and a second edge 26 of a baffle 31 and 32, respectively, and is configured such that the first edge is positioned adjacent the airfoil exit, with the second edge 26 positioned adjacent to the diffuser channel entrance 40.

Das Umlenkelement 31, 32 ist derart ausgebildet, dass die erste Kante 25 als Anströmkante dient und in radialer Richtung zur Rotationsachse des Laufrades 2 weist, wobei die zweite Kante 26 eine Abströmkante ist und in die gleiche Richtung wie die Rotationsachse weist, so dass das aus dem Schaufelkanal 20 ausströmende Arbeitsmedium von einer radialen in eine näherungsweise axiale Richtung umgelenkt wird. Dabei weisen beide Umlenkelemente 31, 32 jeweils eine dem Laufrad 2 zugewandte und eine dem Laufrad 2 abgewandte Seite auf. Die Umlenkelemente 31, 32 sind insbesondere derart positioniert, dass sie vom Arbeitsmedium beidseitig umströmbar sind.The deflecting element 31, 32 is designed such that the first edge 25 serves as leading edge and points in the radial direction to the axis of rotation of the impeller 2, wherein the second edge 26 is a trailing edge and in the same Direction as the axis of rotation points, so that the effluent from the blade channel 20 working fluid is deflected from a radial in an approximately axial direction. In this case, both deflecting elements 31, 32 each have a side facing the impeller 2 and a side facing away from the impeller 2. The deflection elements 31, 32 are in particular positioned such that they can be flowed around on both sides by the working medium.

Infolgedessen wird das Arbeitsmedium nach dessen Austritt aus dem Schaufelkanal 20 derart in den Diffusorkanal 40 umgelenkt, dass ein Entlangströmen am Laufrad 2 optimiert wird.As a result, the working medium after its exit from the blade channel 20 is deflected in such a way in the diffuser channel 40 that a flow along the impeller 2 is optimized.

Die Umlenkelemente 31 und 32 des ersten Leitkörpers 3" weisen bevorzugt halbmondförmige Querschnittskonturen auf, wobei deren Profil strömungsgünstig ausgestaltet ist. Die zum Laufrad 2 weisende erste Kante (ringförmige Anströmkante) weist radial vom Zentrum weg. Die auf der axialen Gegenseite befindliche zweite Kante (ringförmige Abströmkante) weist von der Laufradbasis 2 weg. Die Krümmung des Profils der Umlenkelemente ist so gestaltet, dass das Arbeitsmedium kontinuierlich parallel zur Rotationsachse des Laufrads 2 umgelenkt wird.The deflecting elements 31 and 32 of the first guide body 3 "preferably have crescent-shaped cross-sectional contours, the profile of which is designed to be favorable in flow.) The first edge (annular leading edge) facing the impeller 2 points radially away from the center The second edge located on the axial opposite side (annular Trailing edge) points away from the impeller base 2. The curvature of the profile of the deflecting elements is designed such that the working medium is continuously deflected parallel to the axis of rotation of the impeller 2.

Werden bei dem Leitkörper 3" mehrere ringförmige Umlenkelemente 31, 32 verwendet, so weisen die Abströmkanten dieser Umlenkelemente 31, 32 unterschiedliche Durchmesser bezüglich der Rotationsachse des Laufrads 2 auf, während es zweckmäßig ist, dass die Anströmkanten den gleichen Durchmesser bezüglich einer Rotationsachse des Laufrads 2 besitzen. Vorzugsweise sind die Anströmkanten möglichst dicht an den Austrittskanten der Schaufeln 21 positioniert. Hierzu ist es sinnvoll, dass die (im Wesentlichen gleichen) Durchmesser der Anströmkanten der Umlenkelemente 31, 32 einen Durchmesser aufweisen, der weniger als 10% kleiner ist als der Durchmesser desjenigen Kreises, den alle Austrittskanten der Schaufeln berühren.If a plurality of annular deflecting elements 31, 32 are used in the guide body 3 ", then the trailing edges of these deflecting elements 31, 32 have different diameters with respect to the axis of rotation of the impeller 2, while it is expedient that the leading edges have the same diameter with respect to a rotational axis of the impeller 2 Preferably, the leading edges are positioned as close as possible to the exit edges of the blades 21. For this purpose, it makes sense that the (substantially the same) diameter of the leading edges of the deflecting elements 31, 32 have a diameter which is less than 10% smaller than the diameter of the circle that all the exit edges of the blades touch.

Gemäß Fig. 5a weist jede Schaufel 21 am Schaufelkanalaustritt innerhalb des Laufrads 2 eine Schaufelhöhe 60 auf. Ein erster axialer Abstand 61 zwischen einer Oberfläche der Laufradbasis und der Anströmkante des (ersten) Umlenkelements 31 ist dabei kleiner als ein axialer Abstand zwischen der Anströmkante des (zweiten) Umlenkelements 32 und derselben Oberfläche der Laufradbasis, so dass zwischen den Anströmkanten beider Umlenkelemente 31, 32 ein axialer Abstand 62 vorhanden ist. Außerdem ist die Anströmkante des Umlenkelements 32 zur Bandage 22 durch einen axialen Abstand 63 beabstandet angeordnet.According to Fig. 5a Each blade 21 has a blade height 60 at the blade channel outlet within the rotor 2. A first axial distance 61 between a surface of the impeller base and the leading edge of the (first) deflecting element 31 is smaller than an axial distance between the leading edge of the (second) deflecting element 32 and the same surface of the impeller base, so that between the leading edges of both deflecting elements 31, 32 an axial distance 62 is present. In addition, the leading edge of the deflecting element 32 to the drum 22 is spaced by an axial distance 63.

Ferner sind die zueinander benachbarten Umlenkelemente 31,32 derart positioniert, dass deren Abströmkanten 26 einen unterschiedlichen radialen Abstand bezüglich der Rotationsachse des Laufrads 2 aufweisen. Außerdem weisen die zu den Schaufeln des Laufrades weisenden Anströmkanten in axialer Richtung einen unterschiedlich axialen Abstand 61 bzw. Abstand 61+62 zur Laufradbasis auf.Furthermore, the mutually adjacent deflection elements 31,32 are positioned such that their trailing edges 26 have a different radial distance with respect to the axis of rotation of the impeller 2. In addition, the leading edges facing the blades of the impeller have a different axial spacing 61 or spacing 61 + 62 relative to the impeller base in the axial direction.

Das Laufrad 2 ist der rotierende Teil der Strömungsmaschine bzw. der Radialturbine, der dem strömenden Arbeitsmedium Arbeit entzieht bei Verwendung der Strömungsmaschine als Turbine. Das Laufrad 2 ist mit einer nicht dargestellten Welle verbunden, über die erzeugte mechanische Energie abgeführt wird.The impeller 2 is the rotating part of the turbomachine or the radial turbine, which extracts work from the flowing working medium when using the turbomachine as a turbine. The impeller 2 is connected to a shaft, not shown, is discharged through the generated mechanical energy.

In dem Leitkörper 3 nachgeschalteten Diffusor 4 wird durch Erweiterung des Strömungsquerschnitts die Gasströmung verlangsamt und der statische Gasdruck erhöht. Der Diffusor 4 stellt im Prinzip die Umkehrung einer Düse dar.In the guide body 3 downstream diffuser 4 is slowed by expansion of the flow cross section, the gas flow and increases the static gas pressure. The diffuser 4 represents in principle the inversion of a nozzle.

Eine in Fig. 5a gezeigte Bandage 22 ist an den Schaufeln 21 angeordnet und dient dazu, das Laufrad 2 zu stabilisieren und in Form zu halten.An in Fig. 5a shown bandage 22 is disposed on the blades 21 and serves to stabilize the impeller 2 and to keep in shape.

Der Leitkörper 3 bzw. die Umlenkelemente 31 bzw. 32 werden über Stege 33 vorzugsweise mit dem Turbinengehäuse oder dem Diffusor 4 der Turbine verbunden, so dass die aufgrund der Umlenkung des Arbeitsmediums wirkenden Kräfte nicht auf die Laufradwelle übertragen werden. Der Leitkörper 3 ist das Gegenstück zum bewegten Laufrad 2, wobei der Leitkörper 3 vorzugsweise fest mit dem Gehäuse bzw. am Diffusor 4 über die Stege 33 ausgebildet ist. Demnach bilden das Laufrad 2 und der Leitkörper 3 zusammen eine Stufe. Zur Befestigung der Umlenkelemente am Diffusor 4 ist ein Befestigungsring 34 des Leitkörpers 3 am Diffusoreinlauf vorgesehen.The guide body 3 and the deflecting elements 31 and 32 are preferably connected via webs 33 to the turbine housing or the diffuser 4 of the turbine connected, so that the forces acting due to the deflection of the working medium forces are not transmitted to the impeller shaft. The guide body 3 is the counterpart to the moving impeller 2, wherein the guide body 3 is preferably formed fixedly to the housing or on the diffuser 4 via the webs 33. Accordingly, the impeller 2 and the guide body 3 together form a step. For fixing the deflecting elements on the diffuser 4, a fastening ring 34 of the guide body 3 is provided on the diffuser inlet.

Es ist auch möglich, die Umlenkelemente 31 bzw. 32 an dem Laufrad 2 zu befestigen, so dass diese dann mitrotieren. Alternativ kann ein Umlenkelement am Laufrad und ein anderes am Gehäuse festgelegt sein.It is also possible to attach the deflecting elements 31 and 32 to the impeller 2, so that they then co-rotate. Alternatively, a deflecting element may be fixed to the impeller and another to the housing.

Der Leitkörper 3" bzw. die Umlenkelemente 31 bzw. 32 in einer erfindungsgemäßen Strömungsmaschine sind aus einem (Edel-)Stahl hergestellt und werden mit zerspanenden Bearbeitungsverfahren gefertigt. Diese können allerdings grundsätzlich auch aus Metallguss (Aluminiumguss, Stahlguss, Grauguss) hergestellt werden.The guide body 3 "or the deflecting elements 31 and 32 in a turbomachine according to the invention are manufactured from (noble) steel and are produced by machining processes, but these can in principle also be produced from cast metal (cast aluminum, cast steel, cast iron).

Vorzugsweise wird die Strömungsmaschine als Radialturbine in einer ORC-Anlage verwendet zur Durchführung eines Organic-Rankine-Kreisprozesses.The turbomachine is preferably used as a radial turbine in an ORC plant for carrying out an Organic Rankine cycle.

Im Sinne der vorliegenden Erfindung wird als Strömungsmaschine insbesondere auch eine Turbinensystem bezeichnet, in dem ein dampfförmiges Arbeitsmedium unter einem Druck einströmt, in einem feststehenden Düsensystem, auch mit Leitbeschaufelung, entspannt und hierbei beschleunigt wird. Nach dem Düsensystem wird der Dampf darin durch ein rotierendes Schaufelsystem umgelenkt, eventuell weiter entspannt und gibt dabei seine Strömungsenergie über die Schaufeln an eine mit den Schaufeln verbundene bzw. gekoppelte Welle ab. Von dieser Welle wird die mechanische Rotationsenergie danach zu der weiteren Nutzung an einen Verbraucher oder eine Einrichtung für das Umwandeln von Energie übertragen. Beispielsweise können durch die Welle Einrichtungen für das Umwandeln von Energie in Form von Generatoren für die Stromerzeugung angetrieben werden.For the purposes of the present invention, a turbine system, in particular, in which a vaporous working medium flows under a pressure, is expanded and accelerated in a fixed nozzle system, even with guide blading, is designated in particular as turbomachine. After the nozzle system, the steam is deflected therein by a rotating blade system, possibly further relaxed and gives off its flow energy through the blades to a shaft connected to the blades or coupled. From this shaft, the mechanical rotational energy is then transferred to a consumer or a means for converting energy for further use. For example, you can powered by the shaft facilities for converting energy in the form of generators for power generation.

Die Erfindung bewirkt mit einfachen und preiswerten Leitkörpern eine Effizienzerhöhung von Radialturbinen. Mit einer erfindungsgemäßen Strömungsmaschine kann so der Wirkungsgrad einer ORC-Anlage verbessert werden.The invention causes with simple and inexpensive Leitkörper an increase in efficiency of radial turbines. With a turbomachine according to the invention, the efficiency of an ORC system can thus be improved.

Bezugszeichenliste:LIST OF REFERENCE NUMBERS

11
Düsenringnozzle ring
1,4,111,4,11
Turbinengehäuseturbine housing
22
LaufradWheel
3, 3', 3"3, 3 ', 3 "
Leitkörperconducting body
44
Diffusordiffuser
55
Strömungsrichtungflow direction
66
Abständedistances
1010
Düsenkanalnozzle channel
1010
Einströmungskanalinflow passage
1111
Abdeckung der DüsenCover of the nozzles
2020
Schaufelkanalblade channel
2121
Schaufelshovel
2222
Bandage an SchaufelBandage on shovel
2323
Schaufelaustrittblade outlet
2424
Eintrittsöffnunginlet opening
2525
Kanteedge
2626
Kanteedge
2727
Rotationsachseaxis of rotation
2828
Leitkonturguide contour
2929
Zwischenbereich innerhalb des LaufradsIntermediate area within the impeller
3030
Kanal zwischen den LeitkörpernChannel between the guide bodies
31,3231.32
Umlenkelementedeflecting
3333
Verbindungssteg zwischen den Leitkörpern und der BefestigungConnecting web between the guide bodies and the attachment
3333
Stegweb
3434
Befestigungsring der Leitkörper am DiffusoreinlaufMounting ring of the guide body at the diffuser inlet
4040
Kanal im DiffusorChannel in the diffuser
4040
Austrittskanaloutlet channel
4040
DiffusorkanaleintrittDiffuser duct inlet
4040
Diffusorkanaldiffuser channel
4242
Strömung zwischen den Schaufeln des LaufradsFlow between the blades of the impeller
42,5142.51
Richtungspfeilarrow
5151
Stromelectricity
5151
Strömung im DüsenkanalFlow in the nozzle channel
5252
Strömung im SchaufelkanalFlow in the blade channel
5353
Strömung zwischen den LeitkörpernFlow between the guide bodies
5353
Pfeilrichtungarrow
5454
Wirbelwhirl
5454
Strömungsablösung im DiffusorFlow separation in the diffuser
6060
Schaufelhöhe am Schaufelkanalaustritt des LaufradsBlade height at the blade channel exit of the impeller
61,62,6361,62,63
Axialer AbstandAxial distance
6161
Axialer Abstand zwischen Laufradscheibe und UmlenkelementAxial distance between impeller disc and deflector
6262
Axialer Abstand zwischen beiden UmlenkelementenAxial distance between both deflection elements
6363
Axialer Abstand zwischen Leitkörper 2 und dem Schaufelkopf bzw. der BandageAxial distance between the guide body 2 and the blade head or the bandage
100100
Düsenkanalnozzle channel
110110
Turbinengehäuseturbine housing
120120
Turbinenrad, LaufradTurbine wheel, impeller
121121
Schaufelshovel
151151
Richtungspfeilarrow
153153
ArbeitsmediumaustrittWorking medium outlet

Claims (16)

  1. Radial turbine having a housing (1, 4, 11) which has a housing duct (10) for the inflowing of working medium and comprises a diffusor (4) having a duct (40) for the outflowing of working medium, wherein in the housing (1, 4, 11) there is positioned an impeller (2) mounted on an impeller shaft which is able to rotate about a rotation axis (27), there being arranged on the impeller multiple blades (21) which form blade ducts (20) which have a blade duct opening (23), oriented towards the rotation axis (27), for the through-flowing of working medium to the duct (40) for the outflowing of working medium, wherein the duct (40) for the outflowing of working medium has an impeller-side opening (24), wherein the working medium is guided through an intermediate region (29) extending from the blade duct opening (23) of the blade ducts (20) to the impeller-side opening (24) of the duct (40) for the outflowing of working medium, and wherein there is provided, for redirecting working medium flowing through the intermediate region (29), a guiding body (3', 3'') which extends from the intermediate region (29) into the duct (40) for the outflowing of working medium, characterized in that
    the housing duct (10) for the inflowing of working medium has a throat and is widened on the impeller side so that the introduced working medium can reach supersonic speeds, and the guiding body (3', 3") is arranged coaxially with the rotation axis (27) of the impeller (2) and has at least one annular redirection element (31, 32), arranged coaxially with the rotation axis (27) of the impeller (2), with a sharp annular leading edge (25) arranged in the intermediate region (29) and with a sharp annular trailing edge (26) arranged in the duct (40) for the outflowing of working medium, wherein working medium can flow either side of the redirection element (31, 32), on a side facing the rotation axis (27) and a side facing away from the rotation axis (27).
  2. Radial turbine according to Claim 1, characterized in that the guiding body (3', 3") is secured on the housing (1, 4, 11).
  3. Radial turbine according to Claim 1 or 2, characterized in that the impeller (2) has, for redirecting working medium, an impeller cone (3) that projects into the guiding body (3', 3'').
  4. Radial turbine according to Claim 3, characterized in that the impeller cone (3) is in the form of a hyperboloid of revolution.
  5. Radial turbine according to one of Claims 1 to 4, characterized in that the duct (40) for the outflowing of working medium is widened on the side facing away from the impeller (2) in the manner of a diffusor.
  6. Radial turbine according to one of Claims 1 to 5, characterized in that the working medium flows on the impeller (2) via the housing duct (10) in the radial direction towards the rotation axis (27) of the impeller (2).
  7. Radial turbine according to one of Claims 1 to 6, characterized in that the leading edge (25) of the redirection element (31, 32) is positioned adjacent to the opening (23) of the blade ducts (20), and the trailing edge (26) is arranged adjacent to the impeller-side opening (24) of the duct (40) for the outflowing of working medium.
  8. Radial turbine according to one of Claims 1 to 7, characterized in that the redirection element (31, 32) has a guiding contour (28) that extends from the leading edge (25), from a direction radial to a rotation axis (27) of the impeller (2), to the trailing edge (26), in a direction axial to the rotation axis (27) of the impeller (2), in order to redirect, from the radial direction into the axial direction, working medium flowing from one of the blade ducts (20) to the duct (40) for the outflowing of working medium.
  9. Radial turbine according to one of Claims 1 to 8, characterized in that the guiding body (3'') has multiple redirection elements (31, 32) which are spaced apart from one another, which each have a leading edge (25) and a trailing edge (26), and which together form a through-flowable cascade in which the total flow of the working medium is split into multiple annular part flows.
  10. Radial turbine according to Claim 9, characterized in that at least one redirection element (31, 32) has a crescent-shaped cross-sectional geometry.
  11. Radial turbine according to Claim 9 or 10, characterized in that the mutually spaced-apart redirection elements (31, 32) are positioned such that their leading edges (25) oriented towards the blades (21) of the impeller (2) have an axial spacing (62) in the axial direction.
  12. Radial turbine according to one of Claims 9 to 11, characterized in that the mutually spaced-apart redirection elements (31, 32) are positioned such that their trailing edges (26) have a different radial spacing with respect to the rotation axis (27) of the impeller (2).
  13. Radial turbine according to Claim 12, characterized in that the radial spacing of the leading edges (25) from the rotation axis (27) of the impeller (2) is greater than the radial spacing of the trailing edges (26) from the rotation axis (27) of the impeller (2).
  14. Radial turbine according to one of Claims 1 to 13, characterized in that on a shaft connected to the impeller (2) there are arranged multiple permanent magnets and/or rotor windings which, together with multiple stator windings arranged adjacently and surrounding the shaft, form an electric generator.
  15. Use of a radial turbine formed according to one of Claims 1 to 14 in an organic Rankine cycle.
  16. Plant for carrying out an organic Rankine cycle, having a condenser for liquefying a working medium circulated in the plant, a pump, an evaporator for evaporating the working medium and a radial turbine connected downstream of the evaporator, in particular a turbine in which the working medium is expanded, thereby extracting energy from the circuit, wherein the radial turbine is designed according to one of Claims 1 to 14.
EP11802969.3A 2010-12-30 2011-12-30 Turbomachine Active EP2659093B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP18209322.9A EP3480425B1 (en) 2010-12-30 2011-12-30 Radial turbine

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE201010056557 DE102010056557A1 (en) 2010-12-30 2010-12-30 Radial turbine for use in organic rankine cycle system for conversion of flow energy of working medium into torque to drive electrical generator, has conducting body, where steam operatively circulates around sides of conducting body
DE202010017157U DE202010017157U1 (en) 2010-12-30 2010-12-30 Efficiency enhancement facilities for radial turbines in ORC plants
PCT/EP2011/074330 WO2012089837A1 (en) 2010-12-30 2011-12-30 Turbomachine

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP18209322.9A Division EP3480425B1 (en) 2010-12-30 2011-12-30 Radial turbine

Publications (2)

Publication Number Publication Date
EP2659093A1 EP2659093A1 (en) 2013-11-06
EP2659093B1 true EP2659093B1 (en) 2018-12-05

Family

ID=45440557

Family Applications (2)

Application Number Title Priority Date Filing Date
EP18209322.9A Active EP3480425B1 (en) 2010-12-30 2011-12-30 Radial turbine
EP11802969.3A Active EP2659093B1 (en) 2010-12-30 2011-12-30 Turbomachine

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP18209322.9A Active EP3480425B1 (en) 2010-12-30 2011-12-30 Radial turbine

Country Status (3)

Country Link
US (1) US9322414B2 (en)
EP (2) EP3480425B1 (en)
WO (1) WO2012089837A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013203448A1 (en) 2013-02-28 2014-08-28 Dürr Systems GmbH Plant and method for treating and / or utilizing gaseous medium
DE102014218344B4 (en) 2014-09-12 2023-08-03 Dürr Systems Ag Process and system for separating contaminants from process exhaust air
US12060867B2 (en) * 2021-04-02 2024-08-13 Ice Thermal Harvesting, Llc Systems for generating geothermal power in an organic Rankine cycle operation during hydrocarbon production based on working fluid temperature
US11592009B2 (en) 2021-04-02 2023-02-28 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power at a drilling rig
US11326550B1 (en) 2021-04-02 2022-05-10 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB492144A (en) 1937-02-27 1938-09-15 Linde Eismasch Ag Improvements in or relating to gas expansion turbines for the production of cold
US2949224A (en) * 1955-08-19 1960-08-16 American Mach & Foundry Supersonic centripetal compressor
GB877988A (en) * 1957-09-24 1961-09-20 American Mach & Foundry Centripetal compressors
DE1551190A1 (en) * 1966-06-24 1970-01-15 Rudolf Logaida Speed turbine with synchronization stages
US4066381A (en) * 1976-07-19 1978-01-03 Hydragon Corporation Turbine stator nozzles
SU595519A1 (en) * 1976-11-02 1978-02-28 Ордена Ленина И Ордена Трудового Красного Знамени Невский Машиностроительный Завод Им.В.И.Ленина Method of assembling centrifugal turbine machine
US4428715A (en) * 1979-07-02 1984-01-31 Caterpillar Tractor Co. Multi-stage centrifugal compressor
EP0093990B1 (en) * 1982-05-11 1988-04-27 A.G. Kühnle, Kopp &amp; Kausch Steam turbine
US4789300A (en) * 1983-06-16 1988-12-06 Rotoflow Corporation Variable flow turbine expanders
US5188510A (en) * 1990-11-21 1993-02-23 Thomas R. Norris Method and apparatus for enhancing gas turbo machinery flow
JPH09264106A (en) * 1996-03-28 1997-10-07 Mitsubishi Heavy Ind Ltd Exhaust diffuser for turbine
DE10037684A1 (en) 2000-07-31 2002-02-14 Alstom Power Nv Low pressure steam turbine with multi-channel diffuser
DE102010056557A1 (en) 2010-12-30 2012-07-05 Duerr Cyplan Ltd. Radial turbine for use in organic rankine cycle system for conversion of flow energy of working medium into torque to drive electrical generator, has conducting body, where steam operatively circulates around sides of conducting body
DE202010017157U1 (en) 2010-12-30 2011-03-17 Eckert, Frank Efficiency enhancement facilities for radial turbines in ORC plants

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP2659093A1 (en) 2013-11-06
US20130129496A1 (en) 2013-05-23
EP3480425B1 (en) 2020-09-09
US9322414B2 (en) 2016-04-26
WO2012089837A1 (en) 2012-07-05
EP3480425A1 (en) 2019-05-08

Similar Documents

Publication Publication Date Title
EP0690206B1 (en) Diffusor for a turbomachine
EP0581978B1 (en) Multi-zone diffuser for turbomachine
DE19615237C2 (en) Exhaust gas turbocharger for an internal combustion engine
EP2582921B1 (en) Noise-reduced turbomachine
EP2659093B1 (en) Turbomachine
CH703553B1 (en) Axial-radial turbine diffuser.
DE2851406B2 (en) Wind turbine
EP3064706A1 (en) Guide blade assembly for a flow engine with axial flow
EP2773854B1 (en) Turbomachine
WO1999051858A1 (en) Steam turbine
AT515217B1 (en) Apparatus and method for converting thermal energy
EP3183427B1 (en) Profiling of inlet guide vanes of radial compressors
EP3164578B1 (en) Discharge region of a turbocharger turbine
DE102019125654A1 (en) TURBINE SHOVEL
DE102014114798A1 (en) Axial fan with external and internal diffuser
AT512653B1 (en) Rotor and radially flowable turbine
WO2016096420A1 (en) Cooling possibility for hydrodynamic machines
DE102010064450B3 (en) Relaxation turbine for the relaxation of gas
DE102010044819A1 (en) Axial turbine and a method for removing a flow from an axial turbine
DE102010056557A1 (en) Radial turbine for use in organic rankine cycle system for conversion of flow energy of working medium into torque to drive electrical generator, has conducting body, where steam operatively circulates around sides of conducting body
DE202010017157U1 (en) Efficiency enhancement facilities for radial turbines in ORC plants
DE10028053C2 (en) Fluid power machine to use small pressure differences
EP0959231A1 (en) Axial-radial diffusor in an axial turbine
DE102010064441B3 (en) Relaxation turbine for the relaxation of gas
DE102011005105B4 (en) Outlet collecting housing for a centrifugal compressor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130709

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20161124

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DUERR CYPLAN LTD.

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502011015129

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: F01D0001080000

Ipc: F04D0029540000

RIC1 Information provided on ipc code assigned before grant

Ipc: F04D 29/54 20060101AFI20180427BHEP

Ipc: F01D 25/30 20060101ALI20180427BHEP

Ipc: F01D 1/08 20060101ALI20180427BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180622

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1073435

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011015129

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: DENNEMEYER AG, CH

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20181205

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181205

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190305

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190305

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181205

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181205

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181205

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190306

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181205

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181205

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181205

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181205

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190405

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181205

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181205

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181230

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181205

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181205

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190405

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011015129

Country of ref document: DE

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20181231

Ref country code: IE

Ref legal event code: MM4A

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181205

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181205

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181230

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181205

26N No opposition filed

Effective date: 20190906

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181205

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1073435

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181205

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502011015129

Country of ref document: DE

Owner name: DUERR SYSTEMS AG, DE

Free format text: FORMER OWNER: DUERR CYPLAN LTD., READING, BERKSHIRE, GB

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181205

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20111230

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181205

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231220

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231221

Year of fee payment: 13

Ref country code: DE

Payment date: 20231214

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20240101

Year of fee payment: 13