EP2657360B1 - Druckgusslegierung auf Al-Si-Basis, aufweisend insbesondere Sekundäraluminium - Google Patents

Druckgusslegierung auf Al-Si-Basis, aufweisend insbesondere Sekundäraluminium Download PDF

Info

Publication number
EP2657360B1
EP2657360B1 EP12165829.8A EP12165829A EP2657360B1 EP 2657360 B1 EP2657360 B1 EP 2657360B1 EP 12165829 A EP12165829 A EP 12165829A EP 2657360 B1 EP2657360 B1 EP 2657360B1
Authority
EP
European Patent Office
Prior art keywords
die
casting alloy
alloy
weight
casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12165829.8A
Other languages
English (en)
French (fr)
Other versions
EP2657360A1 (de
Inventor
Jan Hauck
Marc Hummel
Helmut SUPPAN
Holm BÖTTCHER
Werner FRAGNER
Peter Prof. Dr. Uggowitzer
Dominik Bösch
Heinz Werner HÖPPEL
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AMAG CASTING GmbH
Audi AG
Original Assignee
AMAG casting GmbH
Audi AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to ES12165829.8T priority Critical patent/ES2466345T3/es
Application filed by AMAG casting GmbH, Audi AG filed Critical AMAG casting GmbH
Priority to PL12165829T priority patent/PL2657360T3/pl
Priority to EP12165829.8A priority patent/EP2657360B1/de
Priority to SI201230032T priority patent/SI2657360T1/sl
Priority to CN201380022231.6A priority patent/CN104350165B/zh
Priority to PCT/EP2013/057521 priority patent/WO2013160108A2/de
Priority to CA2871260A priority patent/CA2871260C/en
Priority to US14/396,810 priority patent/US20150098859A1/en
Publication of EP2657360A1 publication Critical patent/EP2657360A1/de
Application granted granted Critical
Publication of EP2657360B1 publication Critical patent/EP2657360B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D21/00Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
    • B22D21/002Castings of light metals
    • B22D21/007Castings of light metals with low melting point, e.g. Al 659 degrees C, Mg 650 degrees C
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • C22C21/04Modified aluminium-silicon alloys

Definitions

  • the invention relates to a die-casting alloy based on Al-Si, comprising in particular secondary aluminum.
  • Inexpensive die-cast alloys can be obtained, for example, from aluminum scrap, but as a rule they disadvantageously contain undesirably high impurities, in the form of iron, copper and zinc alloy fractions (US Pat. EP1111077A1 ). This not only leads to a reduced ductility potential but can also have negative effects on the strength and quench sensitivity of the diecasting alloy.
  • Various measures for mutual weighting of the alloying elements, as well as various proposals for alloys are known from the prior art - in particular in order to compensate for the negative influences of the impurities.
  • the DE102004013777B4 proposes a casting alloy with 5 to 18 wt .-% Si, with 0.15 to 0.45 wt .-% Mn, with 0.2 to 0.6 wt .-% Fe, with 0.3 to 0.5 wt % Mg, with possibly 0.1 to 0.5% by weight of Cu and with 4 to 5% by weight of Zn.
  • the content of a maximum of 0.5% by weight of magnesium should avoid the formation of Mg-Fe-'pi 'phases in order to obtain the ductility.
  • Cu is said to improve the heat resistance of the alloy, with the content of zinc being limited to 4 to 5% by weight so as to adjust the strength and quenching sensitivity of the alloy.
  • the DE102009012073A1 with secondary aluminum - due to the comparatively low lower limits of permissible Cu and Zn contents, the range of usable secondary aluminum is comparatively limited.
  • such a composition can not provide comparatively high strength, ductility and castability, especially since Zn as an impurity should be limited to a small extent.
  • Zn content in the diecasting alloy is to be kept below 0.05% by weight.
  • this die-casting alloy should be able to ensure both die casting and complex demoulding as well as excellent mold release, as well as offering excellent processability in the components produced from it.
  • the invention solves the task by the fact that the die-cast alloy 6 to 12 % By weight of silicon (Si), at least 0.3 % By weight of iron (Fe), at least 0.25 Wt .-% manganese (Mn), at least 0.1 Wt.% Copper (Cu), 0.24 to 0.8 Wt .-% magnesium (Mg) and 0.40 to 1.5 Wt .-% zinc (Zn) has and that the die-cast alloy 50 to 300 ppm strontium (Sr) and / or 20 to 250 ppm sodium (Na) and / or 20 to 350 ppm antimony (Sb), and at least one of the following components maximum 0.2 % By weight of titanium (Ti); maximum 0.3 % By weight zirconium; maximum 0.3 % By weight of vanadium (V); and the remainder being aluminum and having unavoidable impurities due to production, the total proportion of Fe and Mn in the die-cast alloy together being a maximum of 1.5% by weight, the quotient of the percentages by
  • a low-cost die-casting alloy can be provided on Al-Si basis, because essentially reduces the proportion of primary aluminum or . even refrained from it or that secondary aluminum can be used increased for the production of castings.
  • the alloy constituents of the casting alloy are forced into specific content limits in order to approximate the parameters known from primary aluminum (eg strength values, ductility values, chemical reaction stability, processability and / or castability).
  • ⁇ -phase eg: Al 5 FeSilAl 8.9 Fe 2 Si 2
  • the ⁇ -phase eg: Al 5 FeSilAl 8.9 Fe 2 Si 2
  • the ⁇ -phase may be present as Al 15 (FeMn) 3 Si 2 due to the manganese content of at least 0.25 wt .-% according to the invention.
  • This ⁇ -phase crystallizes in globulitic form and, due to its compact structure, can have a significantly more favorable influence on the ductility than is known from the acicular ⁇ -phases.
  • a diecasting alloy with a comparatively high ductility can thus be ensured.
  • the total content of Fe and Mn on the die casting alloy is limited to a maximum of 1.5% by weight, the formation of coarse ⁇ phases can be further reduced, even if the high cooling rates usually used in die casting processes are used.
  • the concentration requirements for Fe and Mn can therefore be particularly beneficial to the ductility of the diecasting alloy.
  • the existing copper in the preferably forming Q phase (Al 5 Cu 2 Mg 8 Si 6 ) are bound.
  • This concentration rule can therefore prevent the formation of corrosion-prone phases, such as the Tao phase (Al 5 Cu 4 Zn) or the theta phase (Al 2 Cu) in the microstructure, so that despite comparatively high weight percent of Cu, which according to the invention is used to improve the hot curing of the diecasting alloy, also a high corrosion resistance can be maintained.
  • this excess magnesium can improve the curing mechanism of the alloy because part of the Mg is bound in the Q phase (Al 5 Cu 2 M 98 Si 6 ) and thus overcome known limitations due to excessive precipitation of Set Mg 2 Si pre-phases.
  • the concentration requirements for Cu and Mg can therefore satisfy particularly high demands of the diecasting alloy in terms of strength and chemical reaction resistance.
  • the proposed concentration ratio of Cu and Mg improved the processability, for example with regard to the weldability and rivability of components made from this diecasting alloy.
  • the introduction and / or adjustment of the aforementioned magnesium excess over Cu can also be used to bind the increased Fe content of the diecasting alloy in a pi phase (Al 8 FeMg 3 Si 6 ).
  • the ductility affecting ⁇ -phase eg: Al 5 FeSi / Al 8.9 Fe 2 Si 2
  • the Mn content in the diecasting alloy can also be reduced because the pi phase (eg: Al 8 FeMg 3 Si 6 ) can be used to take up Fe.
  • Die casting problems usually to be accepted due to an increased Mn content to compensate for Fe effects, can thus be reduced. A complex deformation as well as an excellent releasability can be ensured by the special content limits of Mg, Fe, Mn in connection with their concentration requirements.
  • the strength of the alloy for example coined by an interaction of the pre-phases Mg 2 Si and Q-phase (Al 5 Cu 2 Mg 8 Si 6 ), can be determined by solid-solution hardening be further improved with the help of a zinc deposit.
  • zinc should be adjusted in the content limits of 0.40 to 1.5 wt .-%.
  • this may be beneficial to the ductility of the diecasting alloy.
  • the content limits of Zn according to the invention may be distinguished in improving the castability of the die-cast alloy, whereby adverse effects due to the proposed content limits of Mn in the diecasting alloy can be largely compensated.
  • the Al-Si-based die-casting alloy balanced in the alloy components Fe, Mn, Cu, Mg and Zn can combine a comparatively high ductility, corrosion resistance, strength, castability and processability, thus overcoming parameter boundaries known from the prior art even if the die-cast alloy has secondary aluminum and / or is added to it or thereby leads to comparatively high levels of impurities.
  • the die casting alloy may have 50 to 300 ppm strontium (Sr) and / or 20 to 250 ppm sodium (Na) and / or 20 to 350 ppm antimony (Sb).
  • Sr strontium
  • Na sodium
  • SB antimony
  • at most 0.2% by weight of titanium (Ti) and / or at most 0.3% by weight of zirconium and / or at most 0.3% by weight of vanadium (V) may prove to be advantageous.
  • the die-cast alloy can be supplemented in each case to 100% by weight with Al, and this die-casting alloy can also lead to unavoidable impurities due to its production.
  • the die-cast alloy can have impurities of not more than 0.1% by weight and not more than 1% by weight in total.
  • Strength, ductility, processability, and chemical reaction resistance of the die-cast alloy can be further improved when they contain 0.3 to 1.0 wt% Fe (Fe), 0.25 to 1.0 wt% Manganese (Mn), and 0 , 1 to 0.6 wt .-% copper (Cu).
  • the diecast alloy meets the order relation in its composition weight , - % mg > 0 . 2 + 0 . 12 ⁇ weight , - % Fe / weight , - % Mn a simple procedure for increasing the proportion of pi-phase (eg: Al 8 FeMg 3 Si 6 ) in the structure of the die-cast alloy can be given. Increased Fe contents can thus be compensated, whereby the best castability of the die-cast alloy can be maintained with a reduced Mn content.
  • this pi-phase can be converted with a solution annealing into a harmless for the required properties of the die-cast alloy ⁇ -phase.
  • the die cast alloy can be further improved in terms of achievable ductility, strength and corrosion resistance, if the total content of Fe and Mn together on the die-cast alloy together maximally 1.2 wt .-%, the quotient of the weight percentages of Fe and Mn 0.5 to 1 , 25 and the quotient of the weight percent of Cu and Mg is 0.2 to 0.5.
  • the die casting alloy has 9.5 to 11.5 wt.% Silicon (Si) and / or 0.35 to 0.6 wt.% Iron (Fe) and / or 0.3 to 0.75 wt.
  • Manganese (Mn) and / or 0.1 to 0.4% by weight of copper (Cu) and / or 0.24 to 0.5% by weight of magnesium (Mg) and / or 0.40 to 1.0 Zinc (Zn) results in narrower limits for an improved Al-Si based through-casting alloy in its mechanical and / or chemical resistance.
  • the proposed content of Si improves the flow properties of the melt and that brittle primary silicon phases can be avoided. This also makes it possible to pressure-mold even comparatively thin-walled components. 9.5 to 11.5% by weight of silicon (Si) may prove to be particularly advantageous for this purpose.
  • Alloy 1 is a die cast alloy of low contamination primary aluminum.
  • Alloy 2 shows a considerable degree of impurities in iron and copper alloy fractions, which can be introduced, for example, by secondary aluminum.
  • concentration ratios for a diecasting alloy proposed according to the invention make it possible to ensure comparatively high ductility, corrosion resistance, strength, castability and processability.

Description

  • Die Erfindung betrifft eine Druckgusslegierung auf Al-Si-Basis, aufweisend insbesondere Sekundäraluminium.
  • Preiswerte Druckgusslegierungen können beispielsweise aus Aluminium-Schrotten gewonnen werden, enthalten in der Regel jedoch nachteilig unerwünscht hohe Verunreinigungen, in Form von Eisen-, Kupfer- und Zink-Legierungsanteilen ( EP1111077A1 ). Dies führt nicht nur zu einem reduzierten Duktilitätspotential, sondern kann auch negative Einflüsse auf Festigkeit sowie Abschreckempfindlichkeit der Druckgusslegierung haben. Verschiedenste Maßnahmen zur gegenseitigen Gewichtung der Legierungselemente, sowie diverse Vorschläge für Zulegierungen sind aus dem Stand der Technik bekannt - insbesondere um damit die negativen Einflüsse der Verunreinigungen zu kompensieren.
  • So ist aus der JP9-003610 eine Druckgusslegierung mit 5 bis 13 Gew.-% Si, mit maximal 0,5 Gew.-% Mg, mit 0,1 bis 1,0 Gew.-% Mn und mit 0,1 bis 2,0 Gew.-% Fe bekannt. Mn soll dabei etwa die Ausbildung von Al-Fe-Si-Nadelkristallen unterdrücken, um eine Festigkeitsreduktion zu vermeiden. Des Weiteren soll, um die Gusseigenschaften zu erhalten, Mg auf einem möglichst geringen Gehalt von maximal 0,5 Gew.-% gehalten werden. Cu- und Zn-Verunreinigungen, wie diese bei Sekundäraluminium üblicherweise in erheblichen Mengen vorkommen, berücksichtigt die Druckgusslegierung in der JP9-00361 0 nicht.
  • Die DE102004013777B4 schlägt eine Gusslegierung mit 5 bis 18 Gew.-% Si, mit 0,15 bis 0,45 Gew.-% Mn, mit 0,2 bis 0,6 Gew.-% Fe, mit 0,3 bis 0,5 Gew.-% Mg, mit eventuell 0,1 bis 0,5 Gew.-% Cu und mit 4 bis 5 Gew.-% Zn vor. Der Gehalt von maximal 0,5 Gew.-% Magnesium soll die Entstehung von Mg-Fe-'pi'-Phasen vermeiden, um damit die Dehnbarkeit zu erhalten. Cu soll die Warmfestigkeit der Legierung verbessern, wobei der Gehalt an Zink auf 4 bis 5 Gew.-% beschränkt werden soll, um so die Festigkeit und Abschreckempfindlichkeit der Legierung einzustellen. Nachteilig kann eine derartige Komposition an Legierungselementen, insbesondere durch den vergleichsweise hohen Zinkgehalt, jedoch eine geringe Korrosionsbeständigkeit aufweisen, was zu sicherheitstechnischen Einschränkungen von daraus hergestellten Druckgussteilen führen kann.
  • Des Weitern ist aus der DE102009012073A1 eine Druckgusslegierung mit 9 bis 11 Gew.-% Si, mit maximal 0,6 Gew.-% Fe, mit 0,2 bis 0,6 Gew.-% Mn, mit 0,05 bis 0,4 Gew.-% Cu, mit 0,2 bis 0,35 Gew.-% Mg und mit maximal 0,35 Gew.-% Zn bekannt. Zwar beschäftigt sich die DE102009012073A1 mit Sekundäraluminium - durch die vergleichsweise niedrig angesetzten Untergrenzen an zulässigen Cu- und Zn-Gehalten ist die Bandbreite an verwendbarem Sekundäraluminium vergleichsweise beschränkt. Außerdem kann eine derartige Zusammensetzung keine vergleichsweise hohe Festigkeit, Duktilität und Gießbarkeit ermöglichen, zumal Zn als Verunreinigung auf ein geringes Maß begrenzt werden soll. Ähnliches ist auch aus der DE102005061668A1 bekannt, gemäß der der Zn-Gehalt in der Druckgusslegierung unter 0,05 Gew.-% zu halten ist.
  • Es ist daher die Aufgabe der Erfindung, ausgehend vom eingangs geschilderten Stand der Technik, eine Druckgusslegierung auf Al-Si-Basis zu schaffen, die trotz Verwendung von Sekundäraluminium Druckgussteile mit hohen Ansprüchen hinsichtlich Festigkeit, Duktilität und chemischer Reaktionsbeständigkeit, insbesondere Korrosionsbeständigkeit, ermöglichen kann. Außerdem soll diese Druckgusslegierung druckgusstechnisch sowohl komplexes Verformen, als auch exzellente Entformbarkeit sicherstellen können sowie bei den daraus hergestellten Bauteilen exzellente Verarbeitbarkeit bieten.
  • Die Erfindung löst die gestellte Aufgabe dadurch, dass die Druckgusslegierung
    6 bis 12 Gew.-% Silizium (Si),
    mindestens 0,3 Gew.-% Eisen (Fe),
    mindestens 0,25 Gew.-% Mangan (Mn),
    mindestens 0,1 Gew.-% Kupfer (Cu),
    0,24 bis 0,8 Gew.-% Magnesium (Mg) und
    0,40 bis 1,5 Gew.-% Zink (Zn) aufweist
    und dass die Druckgusslegierung
    50 bis 300 ppm Strontium (Sr) und/oder
    20 bis 250 ppm Natrium (Na) und/oder
    20 bis 350 ppm Antimon (Sb),
    sowie wenigstens einen der folgenden Bestandteile zu
    maximal 0,2 Gew.-% Titan (Ti);
    maximal 0,3 Gew.-% Zirkon;
    maximal 0,3 Gew.-% Vanadium (V);
    und als Rest Aluminium sowie herstellungsbedingt unvermeidbare Verunreinigungen aufweist,
    wobei der Gesamtanteil von Fe und Mn an der Druckgusslegierung zusammen maximal 1,5 Gew.-%, der Quotient der Gewichtsprozente von Fe und Mn 0,35 bis 1,5 und der Quotient der Gewichtsprozente von Cu und Mg 0,2 bis 0,8 betragen.
  • Durch ein Zulassen von vergleichsweise hohen Gew.-% an Verunreinigungen, wie dies erfindungsgemäß für Eisen, Kupfer und Zink auch vorgeschlagen wird, kann eine kostengünstige Druckgusslegierung auf Al-Si-Basis zur Verfügung gestellt werden, weil im Wesentlichen der Anteil an Primäraluminium reduziert bzw. sogar darauf verzichtet bzw. damit Sekundäraluminium zur Erzeugung von Gussteilen erhöht eingesetzt werden kann. Dies wird allerdings erst möglich, indem die Legierungsbestandteile der Gusslegierung erfindungsgemäß in besondere Gehaltsgrenzen gezwungen werden, um sich damit den von Primäraluminium bekannte Parametern (z.B.: Festigkeitswerte, Duktilitätswerte, chemische Reaktionsbeständigkeit, Verarbeitbarkeit und/oder Gießbarkeit) anzunähern.
  • Fe, Mn:
  • So kann ein Quotient der Gewichtsprozente von Fe und Mn 0,35 bis 1,5 dazu führen, dass trotz eines vergleichsweise hohen Eisengehaltes die Bildung der β-Phase (z.B.: Al5FeSilAl8.9Fe2Si2) im Gefüge, welche sich in Form feiner Nadeln ausscheidet, deutlich verringert werden kann. Mit einem vermehrten Auftreten der α-Phase kann gerechnet werden, die aufgrund des erfindungsgemäßen Mangangehalts von mindestens 0,25 Gew.-% als Al15(FeMn)3Si2 vorliegen kann. Diese α-Phase kristallisiert in globulitischer Form und kann durch ihre kompakte Struktur einen deutlich günstigeren Einfluss auf die Duktilität nehmen, als dies von den nadelförmigen β-Phasen bekannt ist. Eine Druckgusslegierung mit einer vergleichsweise hohen Duktilität kann so sichergestellt werden. Im Allgemeinen wird noch erwähnt, dass durch dieses Verhältnis von Fe/Mn in Kombination mit hohen Abkühlgeschwindigkeiten (z.B.: durch eine beschleunigte Kühlung) deren Phasen und damit deren Einfluss auf das Gefüge vergleichsweise gering gehalten werden kann. Wird zusätzlich der Gesamtanteil von Fe und Mn an der Druckgusslegierung auf maximal 1,5 Gew.-% beschränkt, kann auch die Ausbildung grober α-Phasen weiter reduziert werden, selbst wenn die bei Druckgussverfahren üblicherweise durchgeführten hohen Abkühlgeschwindigkeiten angewendet werden. Die Konzentrationsvorschriften zu Fe und Mn können daher besonders der Duktilität der Druckgusslegierung förderlich sein.
  • Cu, Mg:
  • Durch ein Einbringen und/oder Einstellen eines Magnesiumüberschusses, indem der Quotient der Gewichtsprozente von Cu und Mg 0,2 bis 0,8 beträgt, und unter Berücksichtigung, dass mindestens 0,1 Gew.-% Cu und 0,24 bis 0,8 Gew.-% Mg vorgesehen werden, kann im Wesentlichen das vorhandene Kupfer in der sich bevorzugt bildenden Q-Phase (Al5Cu2Mg8Si6) gebunden werden. Diese Konzentrationsvorschrift kann daher die Bildung korrosionsanfälliger Phasen, wie beispielsweise die Tao-Phase (Al5Cu4Zn) oder die Theta-Phase (Al2Cu), im Gefüge verhindern, so dass trotz vergleichsweise hoher Gewichtsprozente an Cu, was erfindungsgemäß zur Verbesserung der Warmaushärtung der Druckgusslegierung genützt wird, auch eine hohe Korrosionsbeständigkeit beibehalten werden kann. Außerdem kann durch diesen Magnesiumüberschuss der Aushärtemechanismus der Legierung verbessert werden, weil ein Teil des Mg in der Q-Phase (Al5Cu2M98Si6) gebunden wird und damit diesbezüglich bekannte Grenzen überwunden werden können, die sich durch eine übermäßige Ausscheidung von Mg2Si Vorphasen einstellen. Die Konzentrationsvorschriften zu Cu und Mg können daher besonders hohen Ansprüchen der Druckgusslegierung hinsichtlich Festigkeit und chemischer Reaktionsbeständigkeit genügen. Zudem konnte durch das vorgeschlagene Konzentrationsverhältnis von Cu und Mg eine verbesserte Verarbeitbarkeit, beispielsweise hinsichtlich Schweiß- und Nietbarkeit von Bauteilen aus dieser Druckgusslegierung, erreicht werden.
  • Mg, Fe, Mn:
  • Zudem konnte festgestellt werden, dass das Einbringen und/oder Einstellen des vorgenannten Magnesiumüberschusses gegenüber Cu auch dazu genützt werden kann, den erhöhten Fe-Gehalt der Druckgusslegierung in einer pi-Phase (Al8FeMg3Si6) zu binden. Damit kann auf der einen Seite die, die Duktilität beeinträchtigende β-Phase (z.B.: Al5FeSi/Al8.9Fe2Si2) reduziert werden, weil weniger Fe zur Bildung dieser β-Phase zur Verfügung steht, insbesondere aber konnte damit auf der anderen Seite auch der Mn-Gehalt in der Druckgusslegierung reduziert werden, weil die pi-Phase (z.B.: Al8FeMg3Si6) zur Aufnahme von Fe herangezogen werden kann. Druckgießprobleme, meist in Kauf zu nehmen aufgrund eines erhöhten Mn-Gehalts zur Kompensation von Fe Effekten, können so reduziert werden. Ein komplexes Verformen und auch eine exzellente Entformbarkeit können durch die besonderen Gehaltsgrenzen von Mg, Fe, Mn in Verbindung mit deren Konzentrationsvorschriften sichergestellt werden.
  • Zn:
  • Die Festigkeit der Legierung, zum Beispiel durch ein Zusammenwirken der Vorphasen Mg2Si und Q-Phase (Al5Cu2Mg8Si6) geprägt, kann durch Mischkristallhärtung mit Hilfe einer Zinkeinlagerung noch weiter verbessert werden. Hierfür ist Zink in den Gehaltsgrenzen von 0,40 bis 1,5 Gew.-% einzustellen. Zudem kann dies der Duktilität der Druckgusslegierung förderlich sein. Bei der Druckgusslegierung kann damit ein eventueller negativer Einfluss eines vergleichsweise hohen Mg-Gehalts auf ihre Duktilität verringert werden. Außerdem können sich die erfindungsgemäßen Gehaltsgrenzen an Zn bei der Verbesserung der Gießbarkeit der Druckgusslegierung auszeichnen, wodurch diesbezügliche Beeinträchtigungen aufgrund der vorgeschlagenen Gehaltsgrenzen an Mn in der Druckgusslegierung weitgehend kompensiert werden können.
  • Die in den Legierungsbestandteilen Fe, Mn, Cu, Mg und Zn ausgewogene Druckgusslegierung auf Al-Si-Basis kann daher eine vergleichsweise hohe Duktilität, Korrosionsbeständigkeit, Festigkeit, Gießbarkeit und Verarbeitbarkeit miteinander kombinieren und so aus dem Stand der Technik bekannte Parametergrenzen überwinden, selbst wenn die Druckgusslegierung Sekundäraluminium aufweist und/oder dieser zugefügt wird bzw. dadurch vergleichsweise hohe Gehalte an Verunreinigungen führt.
  • Zu Zwecken der Dauerveredelung kann die Druckgusslegierung 50 bis 300 ppm Strontium (Sr) und/oder 20 bis 250 ppm Natrium (Na) und/oder 20 bis 350 ppm Antimon (Sb) aufweisen. Optional zur Kornfeinung der Druckgusslegierung können sich maximal 0,2 Gew.-% Titan (Ti) und/oder maximal 0,3 Gew.-% Zirkon und/oder maximal 0,3 Gew.-% Vanadium (V) als vorteilhaft herausstellen. Die Druckgusslegierung kann jeweils auf 100 Gew.-% mit Al ergänzt werden, wobei diese Druckgusslegierung auch herstellungsbedingt unvermeidbare Verunreinigungen führen kann. Im Allgemeinen wird erwähnt, dass die Druckgusslegierung Verunreinigungen mit jeweils maximal 0,1 Gew.-% und gesamt höchstens 1 Gew.-% aufweisen kann.
  • Der Vollständigkeit halber wird erwähnt, dass als Sekundäraluminium Aluminium bzw. eine Aluminiumlegierung, gewonnen aus Aluminiumschrott, verstanden werden kann.
  • Festigkeit, Duktilität, Verarbeitbarkeit und chemischer Reaktionsbeständigkeit der Druckgusslegierung können weiter verbessert werden, wenn diese 0,3 bis 1,0 Gew.-% Eisen (Fe), 0,25 bis 1,0 Gew.-% Mangan (Mn) und 0,1 bis 0,6 Gew.-% Kupfer (Cu) aufweist.
  • Erfüllt die Druckgusslegierung in ihrer Zusammensetzung die Ordnungsrelation Gew . - % Mg > 0 , 2 + 0 , 12 × Gew . - % Fe / Gew . - % Mn
    Figure imgb0001

    kann eine einfache Verfahrensvorschrift zur Erhöhung des Anteils an pi-Phase (z.B.: Al8FeMg3Si6) im Gefüge der Druckgusslegierung gegeben werden. Erhöhte Fe-Anteile können so kompensiert werden, wodurch mit vermindertem Mn-Anteil beste Gießbarkeit der Druckgusslegierung gewahrt bleiben kann. Außerdem kann diese pi-Phase mit einem Lösungsglühen in eine für die geforderten Eigenschaften der Druckgusslegierung harmlose α-Phase umgewandelt werden.
  • Die Druckgusslegierung kann hinsichtlich ihrer erreichbaren Duktilitäts-, Festigkeits- und Korrosionsbeständigkeit weiter verbessert werden, wenn der Gesamtanteil von Fe und Mn an der Druckgusslegierung zusammen maximal 1,2 Gew.-%, der Quotient der Gewichtsprozente von Fe und Mn 0,5 bis 1,25 und der Quotient der Gewichtsprozente von Cu und Mg 0,2 bis 0,5 betragen.
  • Weist die Druckgusslegierung 9,5 bis 11,5 Gew.-% Silizium (Si) und/oder 0,35 bis 0,6 Gew.-% Eisen (Fe) und/oder 0,3 bis 0,75 Gew.-% Mangan (Mn) und/oder 0,1 bis 0,4 Gew.-% Kupfer (Cu) und/oder 0,24 bis 0,5 Gew.-% Magnesium (Mg) und/oder 0,40 bis 1,0 Zink (Zn) auf, ergeben sich engere Grenzbereiche für eine in ihrer mechanischen und/oder chemischen Beständigkeit verbesserten Durchgusslegierung auf Al-Si Basis. Im Allgemeinen wird erwähnt, dass durch den vorgeschlagenen Gehalt an Si die Fließeigenschaften der Schmelze verbessert und spröde Primärsiliziumphasen vermieden werden können. Dadurch kann es auch möglich werden, selbst vergleichsweise dünnwandige Bauteile druckzugießen. Hierzu kann sich 9,5 bis 11,5 Gew.-% Silizium (Si) besonders vorteilhaft herausstellen.
  • Im Folgenden wird die Erfindung beispielsweise anhand von Ausführungsbeispielen näher erläutert:
    • Zum Nachweis der erzielten Effekte wurden aus verschiedenen Druckgusslegierungen dünnwandige Gussbauteile im Druckgussverfahren hergestellt. Die Zusammensetzungen der untersuchten Legierungen sind in der Tabelle 1 angeführt.
    Tabelle 1: Übersicht zu den untersuchten Legierungen
    Legierungs-Nr. Zusammensetzung Fe/Mn Cu/Mg
    1 AlSi10Mn0,5Fe0,1Mg0,4 0,2 0
    2 AlSi10Mn0,5Fe0,5Mg0,4Cu0,25Zn0,75 1 0,63
  • Bei der Legierung 1 handelt es sich um eine Druckgusslegierung aus Primäraluminium mit geringem Verunreinigungsgrad. Legierung 2 hingegen zeigt einen erheblichen Grad an Verunreinigungen an Eisen- und Kupfer-Legierungsanteilen, welche beispielsweise durch Sekundäraluminium eingetragen werden können.
  • Die Legierungen bzw. die daraus hergestellten Druckgussteile bzw. Prüfkörper wurde einer T7-Wärmebehandlung mit einer Stunde bei 460°C Lösungsglühen, einem Abschrecken mit Wasser und einer zweistündigen Warmauslagerung bei 220°C unterworfen. Die fertigen Prüfkörper wurden schließlich auf ihre mechanischen Eigenschaften hin untersucht. Hierzu wurden die Zugfestigkeit Rm, die Streckgrenze Rp0,2 und die Bruchdehnung A5 im Zugversuch bestimmt. Die erhaltenen Messwerte sind in der Tabelle 2 zusammengefasst. Tabelle 2: Mechanische Kennwerte der untersuchten Legierungen
    Legierungs-Nr. Rp0,2 [MPa] Rm [MPa] A5 [%]
    1 155 230 14,3
    2 160 240 13,8
  • Untersuchungen an der Druckgusslegierung Nr. 2 zeigten, dass durch den eingestellten Eisenanteil und Mangangehalt die Bildung einer unerwünschten Betaphase bei der Erstarrung vermieden werden kann. Auch der Kupferanteil kann durch einen Magnesiumanteil vollständig in der Q-Phase gebunden werden, wodurch vergleichsweise hohe Korrosionsbeständigkeit erreicht wird. Aufgrund dieser Elementkombinationen können trotz eines Eisengehaltes von 0,5 Gew.-% eine erhöhte Festigkeit und Bruchdehnung von 13,8% erreicht werden. Der vergleichsweise hohe Zinkgehalt führt zu einer Festigkeitssteigerung, ohne die mechanischen Eigenschaften negativ zu beeinflussen.
  • Wie nun im Vergleich der beiden Druckgusslegierungen 1 und 2 nach Tabelle 2 erkannt werden kann, zeigen diese beiden Legierungen ähnliche mechanische Eigenschaften, obwohl Legierung 2 einen deutlich höheren Eisen- und Kupfergehalt gegenüber Legierung 1 aufweist.
  • Es ist somit gezeigt, dass die erfindungsgemäß vorgeschlagenen Konzentrationsverhältnisse für eine Druckgusslegierung es zulassen, vergleichsweise hohe Duktilität, Korrosionsbeständigkeit, Festigkeit, Gießbarkeit und Verarbeitbarkeit sicherzustellen.

Claims (10)

  1. Druckgusslegierung auf Al-Si-Basis, aufweisend insbesondere Sekundäraluminium, dadurch gekennzeichnet, dass
    die Druckgusslegierung 6 bis 12 Gew.-% Silizium (Si), mindestens 0,3 Gew.-% Eisen (Fe), mindestens 0,25 Gew.-% Mangan (Mn), mindestens 0,1 Gew.-% Kupfer (Cu), 0,24 bis 0,8 Gew.-% Magnesium (Mg) und 0,40 bis 1,5 Gew.-% Zink (Zn) aufweist und dass
    die Druckgusslegierung 50 bis 300 ppm Strontium (Sr) und/oder 20 bis 250 ppm Natrium (Na) und/oder 20 bis 350 ppm Antimon (Sb),
    sowie wenigstens einen der folgenden Bestandteile zu maximal 0,2 Gew.-% Titan (Ti); maximal 0,3 Gew.-% Zirkon; maximal 0,3 Gew.-% Vanadium (V);
    und als Rest Aluminium sowie herstellungsbedingt unvermeidbare Verunreinigungen aufweist,
    wobei der Gesamtanteil von Fe und Mn an der Druckgusslegierung zusammen maximal 1,5 Gew.-%, der Quotient der Gewichtsprozente von Fe und Mn 0,35 bis 1,5 und der Quotient der Gewichtsprozente von Cu und Mg 0,2 bis 0,8 betragen.
  2. Druckgusslegierung nach Anspruch 1, dadurch gekennzeichnet, dass die Druckgusslegierung 0,3 bis 1,0 Gew.-% Eisen (Fe), 0,25 bis 1,0 Gew.-% Mangan (Mn) und 0,1 bis 0,6 Gew.-% Kupfer (Cu) aufweist.
  3. Druckgusslegierung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Druckgusslegierung in ihrer Zusammensetzung die Ordnungsrelation Gew . - % Mg > 0 , 2 + 0 , 12 × Gew . - % Fe / Gew . - % Mn
    Figure imgb0002
    erfüllt.
  4. Druckgusslegierung nach Anspruch 1, 2 oder 3, dadurch gekennzeichnet, dass der Gesamtanteil von Fe und Mn an der Druckgusslegierung zusammen maximal 1,2 Gew.-%, der Quotient der Gewichtsprozente von Fe und Mn 0,5 bis 1,25 und der Quotient der Gewichtsprozente von Cu und Mg 0,2 bis 0,5 betragen.
  5. Druckgusslegierung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Druckgusslegierung 9,5 bis 11,5 Gew.-% Silizium (Si) aufweist.
  6. Druckgusslegierung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Druckgusslegierung 0,35 bis 0,6 Gew.-% Eisen (Fe) aufweist.
  7. Druckgusslegierung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Druckgusslegierung 0,3 bis 0,75 Gew.-% Mangan (Mn) aufweist.
  8. Druckgusslegierung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Druckgusslegierung 0,1 bis 0,4 Gew.-% Kupfer (Cu) aufweist.
  9. Druckgusslegierung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Druckgusslegierung 0,24 bis 0,5 Gew.-% Magnesium (Mg) aufweist.
  10. Druckgusslegierung nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die Druckgusslegierung 0,40 bis 1,0 Gew.-% Zink (Zn) aufweist.
EP12165829.8A 2012-04-26 2012-04-26 Druckgusslegierung auf Al-Si-Basis, aufweisend insbesondere Sekundäraluminium Active EP2657360B1 (de)

Priority Applications (8)

Application Number Priority Date Filing Date Title
PL12165829T PL2657360T3 (pl) 2012-04-26 2012-04-26 Stop na bazie Al-Si odlewany pod ciśnieniem, zawierający zwłaszcza aluminium wtórne
EP12165829.8A EP2657360B1 (de) 2012-04-26 2012-04-26 Druckgusslegierung auf Al-Si-Basis, aufweisend insbesondere Sekundäraluminium
SI201230032T SI2657360T1 (sl) 2012-04-26 2012-04-26 Zlitina za tlačno litje na osnovi Al-Si, ki obsega še zlasti sekundarni aluminij
ES12165829.8T ES2466345T3 (es) 2012-04-26 2012-04-26 Aleación de colada a presión a base de Al-Si que presenta, en particular, aluminio secundario
CN201380022231.6A CN104350165B (zh) 2012-04-26 2013-04-10 具有特别是再生铝的、基于铝‑硅的压铸合金
PCT/EP2013/057521 WO2013160108A2 (de) 2012-04-26 2013-04-10 Druckgusslegierung auf al-si-basis, aufweisend insbesondere sekundäraluminium
CA2871260A CA2871260C (en) 2012-04-26 2013-04-10 Diecasting alloy based on al-si, comprising particularly secondary aluminium
US14/396,810 US20150098859A1 (en) 2012-04-26 2013-04-10 Diecasting alloy based on al-si, comprising particularly secondary aluminum

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP12165829.8A EP2657360B1 (de) 2012-04-26 2012-04-26 Druckgusslegierung auf Al-Si-Basis, aufweisend insbesondere Sekundäraluminium

Publications (2)

Publication Number Publication Date
EP2657360A1 EP2657360A1 (de) 2013-10-30
EP2657360B1 true EP2657360B1 (de) 2014-02-26

Family

ID=48170438

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12165829.8A Active EP2657360B1 (de) 2012-04-26 2012-04-26 Druckgusslegierung auf Al-Si-Basis, aufweisend insbesondere Sekundäraluminium

Country Status (8)

Country Link
US (1) US20150098859A1 (de)
EP (1) EP2657360B1 (de)
CN (1) CN104350165B (de)
CA (1) CA2871260C (de)
ES (1) ES2466345T3 (de)
PL (1) PL2657360T3 (de)
SI (1) SI2657360T1 (de)
WO (1) WO2013160108A2 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3342890A1 (de) 2016-12-28 2018-07-04 Befesa Aluminio, S.L. Aluminiumgusslegierung
EP3342889A1 (de) 2016-12-28 2018-07-04 Befesa Aluminio, S.L. Aluminiumgusslegierung
EP3342888A1 (de) 2016-12-28 2018-07-04 Befesa Aluminio, S.L. Aluminiumgusslegierung

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105624479B (zh) * 2015-11-26 2017-10-03 新疆众和股份有限公司 一种焊接用铝硅系合金杆及其生产方法
EP3235917B1 (de) * 2016-04-19 2018-08-15 Rheinfelden Alloys GmbH & Co. KG Druckgusslegierung
EP3235916B1 (de) 2016-04-19 2018-08-15 Rheinfelden Alloys GmbH & Co. KG Gusslegierung
US20180010214A1 (en) * 2016-07-05 2018-01-11 GM Global Technology Operations LLC High strength high creep-resistant cast aluminum alloys and hpdc engine blocks
CN111051549B (zh) * 2017-04-05 2022-02-22 阿马格铸造公司 原材料及其应用和使用此原材料的增材制造方法
CN107858565A (zh) * 2017-12-13 2018-03-30 浙江诺达信汽车配件有限公司 一种高强高韧性的压铸用铝合金材料
CN111139371A (zh) * 2018-11-06 2020-05-12 临沂利信铝业有限公司 一种绿色低成本再生铝合金制备方法及装备
CN110106458B (zh) * 2019-04-30 2020-06-19 中国科学院合肥物质科学研究院 一种锻造态锰铜减振合金的热处理方法
CN110541094A (zh) * 2019-09-30 2019-12-06 中信戴卡股份有限公司 一种压铸铝合金及车用部件
MX2022004016A (es) * 2019-10-01 2022-05-02 Ahresty Corp Aleacion de aluminio fundida, unidad de fundicion y metodo para producir la misma.
PL3825428T3 (pl) * 2019-11-25 2023-03-20 Amag Casting Gmbh Element odlewany ciśnieniowo i sposób wytwarzania elementu odlewanego ciśnieniowo
CN111004947B (zh) * 2019-11-25 2020-12-22 连云港星耀材料科技有限公司 一种铝合金轮毂的制备方法
DE102020100688A1 (de) * 2020-01-14 2021-07-15 Audi Aktiengesellschaft Verfahren zum Herstellen einer Kraftwagenfelge aus einer Aluminiumlegierung für ein Rad eines Kraftfahrzeugs sowie entsprechende Kraftwagenfelge
US20230002863A1 (en) * 2021-07-02 2023-01-05 Magna International Inc. Low cost high ductility cast aluminum alloy
CN115161521B (zh) * 2022-07-14 2023-09-08 山西瑞格金属新材料有限公司 一种免热处理压铸铝硅锌合金

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH093610A (ja) 1995-06-15 1997-01-07 Nippon Light Metal Co Ltd 寸法精度及び延性に優れた薄肉アルミダイカスト製品及び製造方法
EP1111077A1 (de) 1999-12-24 2001-06-27 ALUMINIUM RHEINFELDEN GmbH Aluminiumbasislegierung aus Schrottmetall und daraus hergestellte Gusslegierung
DE60231046D1 (de) * 2001-07-25 2009-03-19 Showa Denko Kk Aluminiumlegierung mit hervorragender zerspanbarkeit und aluminiumlegierungsmaterial und herstellungsverfahren dafür
DE102004013777B4 (de) 2004-03-20 2005-12-29 Hydro Aluminium Deutschland Gmbh Verfahren zur Herstellung eines Gussteils aus einer AL/Si-Gusslegierung
JP2006183122A (ja) 2004-12-28 2006-07-13 Denso Corp ダイカスト用アルミニウム合金およびアルミニウム合金鋳物の製造方法
US9353429B2 (en) * 2007-02-27 2016-05-31 Nippon Light Metal Company, Ltd. Aluminum alloy material for use in thermal conduction application
CN101363091B (zh) * 2008-09-08 2010-06-02 营口华润有色金属制造有限公司 一种高硅铝合金及其制备方法
DE102009012073B4 (de) 2009-03-06 2019-08-14 Andreas Barth Verwendung einer Aluminiumgusslegierung
JP2011208253A (ja) * 2010-03-30 2011-10-20 Honda Motor Co Ltd 車両材料用アルミダイカスト合金
US20120027639A1 (en) * 2010-07-29 2012-02-02 Gibbs Die Casting Corporation Aluminum alloy for die casting

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3342890A1 (de) 2016-12-28 2018-07-04 Befesa Aluminio, S.L. Aluminiumgusslegierung
EP3342889A1 (de) 2016-12-28 2018-07-04 Befesa Aluminio, S.L. Aluminiumgusslegierung
EP3342888A1 (de) 2016-12-28 2018-07-04 Befesa Aluminio, S.L. Aluminiumgusslegierung

Also Published As

Publication number Publication date
CA2871260A1 (en) 2013-10-31
CN104350165A (zh) 2015-02-11
CN104350165B (zh) 2017-06-16
SI2657360T1 (sl) 2014-07-31
WO2013160108A2 (de) 2013-10-31
EP2657360A1 (de) 2013-10-30
US20150098859A1 (en) 2015-04-09
CA2871260C (en) 2020-09-22
ES2466345T3 (es) 2014-06-10
WO2013160108A3 (de) 2013-12-19
PL2657360T3 (pl) 2014-09-30

Similar Documents

Publication Publication Date Title
EP2657360B1 (de) Druckgusslegierung auf Al-Si-Basis, aufweisend insbesondere Sekundäraluminium
EP3235916B1 (de) Gusslegierung
EP2735621B1 (de) Aluminium-Druckgusslegierung
EP3235917B1 (de) Druckgusslegierung
EP1718778B1 (de) Werkstoff auf der basis einer aluminium-legierung, verfahren zu seiner herstellung sowie verwendung hierfür
AT413035B (de) Aluminiumlegierung
EP1682688A1 (de) Al-mg-si-aluminium-gusslegierung mit scandium
DE202006006518U1 (de) Aluminiumgusslegierung
DE602005005509T2 (de) Aluminiumformplatte mit hoher härte und verfahren zur herstellung dieser platte
DE102016219711B4 (de) Aluminiumlegierung zum Druckgießen und Verfahren zu ihrer Hitzebehandlung
EP3176275B2 (de) Aluminium-silizium-druckgusslegierung, verfahren zur herstellung eines druckgussbauteils aus der legierung und karosseriekomponente mit einem druckgussbauteil
DE112011101836T5 (de) Aluminiumlegierung und Aluminiumlegierungsgussteil
DE102019205267B3 (de) Aluminium-Druckgusslegierung
EP3196324B1 (de) Aushärtbare aluminiumlegierung auf al-mg-si-basis
EP2705171B1 (de) Verfahren zur raffination und gefügemodifikation von almgsi- legierungen
AT412726B (de) Aluminiumlegierung, bauteil aus dieser und verfahren zur herstellung des bauteiles
DE60310316T2 (de) Gegen Schwefelsäure und Nassverfahrensphosphorsäure resistente Ni-Cr-Mo-Cu-Legierungen
EP2455505A1 (de) Zylinderkopf für Verbrennungsmotoren aus einer Aluminiumlegierung
DE102011112005A1 (de) Aluminium-Silizium-Legierung
EP3072985B1 (de) Ag-freie al-cu-mg-li-legierung
DE2023446A1 (de) Aluminiumgußlegierung von hoher Festigkeit
DE102009019269A1 (de) Aluminium-Silizium-Druckgusslegierung für dünnwändige Strukturbauteile
DE202015100698U1 (de) Gusslegierung
WO2000043560A1 (de) Aluminium-magnesium-silizium-legierung
EP3670691B1 (de) Magnesiumbasislegierung und verfahren zur herstellung derselben

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130227

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

INTG Intention to grant announced

Effective date: 20131210

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RIN1 Information on inventor provided before grant (corrected)

Inventor name: FRAGNER, WERNER

Inventor name: HUMMEL, MARC

Inventor name: BOESCH, DOMINIK

Inventor name: HOEPPEL, HEINZ WERNER

Inventor name: UGGOWITZER, PETER, PROF. DR.

Inventor name: BOETTCHER, HOLM

Inventor name: SUPPAN, HELMUT

Inventor name: HAUCK, JAN

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: AMAG CASTING GMBH

Owner name: AUDI AG

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 653661

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140315

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012000387

Country of ref document: DE

Effective date: 20140410

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2466345

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20140610

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ISLER AND PEDRAZZINI AG, CH

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20140226

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140526

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140626

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140226

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140226

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140626

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140226

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140226

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 16590

Country of ref document: SK

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140226

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140226

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140226

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140226

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140226

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502012000387

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140226

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140426

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

26N No opposition filed

Effective date: 20141127

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E021732

Country of ref document: HU

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502012000387

Country of ref document: DE

Effective date: 20141127

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140226

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140527

Ref country code: RS

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140226

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140226

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190426

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230530

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230428

Year of fee payment: 12

Ref country code: FR

Payment date: 20230417

Year of fee payment: 12

Ref country code: ES

Payment date: 20230517

Year of fee payment: 12

Ref country code: DE

Payment date: 20230418

Year of fee payment: 12

Ref country code: CZ

Payment date: 20230417

Year of fee payment: 12

Ref country code: CH

Payment date: 20230502

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SK

Payment date: 20230418

Year of fee payment: 12

Ref country code: SI

Payment date: 20230417

Year of fee payment: 12

Ref country code: PL

Payment date: 20230406

Year of fee payment: 12

Ref country code: HU

Payment date: 20230419

Year of fee payment: 12

Ref country code: AT

Payment date: 20230414

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20230417

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230420

Year of fee payment: 12