EP2655801B1 - Rotary piston machine operating as a pump, a compressor or a motor - Google Patents

Rotary piston machine operating as a pump, a compressor or a motor Download PDF

Info

Publication number
EP2655801B1
EP2655801B1 EP11768006.6A EP11768006A EP2655801B1 EP 2655801 B1 EP2655801 B1 EP 2655801B1 EP 11768006 A EP11768006 A EP 11768006A EP 2655801 B1 EP2655801 B1 EP 2655801B1
Authority
EP
European Patent Office
Prior art keywords
rotor
counter
wall
control opening
housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11768006.6A
Other languages
German (de)
French (fr)
Other versions
EP2655801A2 (en
Inventor
Sando Kunath
Oliver Laforsch
Dieter Amesoeder
Marian Kacmar
Evgenij Skrynski
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP2655801A2 publication Critical patent/EP2655801A2/en
Application granted granted Critical
Publication of EP2655801B1 publication Critical patent/EP2655801B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C3/00Rotary-piston machines or engines with non-parallel axes of movement of co-operating members
    • F01C3/06Rotary-piston machines or engines with non-parallel axes of movement of co-operating members the axes being arranged otherwise than at an angle of 90 degrees
    • F01C3/08Rotary-piston machines or engines with non-parallel axes of movement of co-operating members the axes being arranged otherwise than at an angle of 90 degrees of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/08Rotary-piston machines or engines of intermeshing engagement type, i.e. with engagement of co- operating members similar to that of toothed gearing
    • F01C1/082Details specially related to intermeshing engagement type machines or engines
    • F01C1/084Toothed wheels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/08Rotary-piston machines or engines of intermeshing engagement type, i.e. with engagement of co- operating members similar to that of toothed gearing
    • F01C1/082Details specially related to intermeshing engagement type machines or engines
    • F01C1/086Carter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/08Rotary pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/18Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet

Definitions

  • the present invention relates to a rotary piston machine which works as a pump, compressor or motor, with a rotor and a counter rotor.
  • a rotary piston machine that works as a pump, compressor or motor.
  • combs of teeth of a rotating drive part to delimit working spaces run on a cycloid surface of a likewise toothed output part and in the process drive this output part.
  • the working spaces mentioned are formed between the teeth of the drive part and the driven part and are enlarged or reduced for their work during the rotation of the parts in order to generate the conveying effect on a gaseous or liquid medium.
  • Such drive and output parts run in a common housing, the interior of which is spherical.
  • the housing is divided in such a way that the parting plane contains the center point of the spherical interior, so that a first housing part with a hemispherical interior with a first center and a second housing part with a hemispherical interior and a second center result.
  • special attention must be paid to the design of the separating surfaces of the two housing parts in such a way that, in the assembled state, the first and second center points of the spherical interior spaces of the housing parts coincide. Since the two center points coincide by chance for manufacturing reasons, the gap resulting between the drive part or output part and the housing is adapted to the manufacturing technology and correspondingly generously dimensioned.
  • a rotary piston machine that works as a pump, compressor or motor has a rotor and a counter-rotor, the counter-rotor being arranged opposite the rotor.
  • the rotor has a first end face with a first toothing and the counter rotor has a second end face with a second toothing, the first and the second toothing each being formed from at least one tooth and one tooth gap.
  • the toothings are in engagement with one another in such a way that by meshing the teeth of the first toothing and the teeth of the second toothing, working spaces are formed, with volumes formed by the working spaces being changed by the meshing of the teeth.
  • the rotor has a first axis of rotation and the counter rotor has a second axis of rotation.
  • the first axis of rotation and the second axis of rotation enclose an angle that is not equal to 0 degrees.
  • the rotor has a first spherical inner wall and the counter rotor has a first spherical outer contour which is complementary to the first spherical inner wall of the rotor.
  • the counter-rotor has a second spherical-ring-shaped inner wall and the rotor has a second spherical-ring-shaped outer contour which is designed to be complementary to the second spherical-ring-shaped inner wall of the counter-rotor.
  • the gap now resulting between the spherical ring-shaped inner wall and the spherical ring-shaped outer contour can be made as small as possible. This largely eliminates gap losses. Due to the high-precision manufacture of the rotors, an adjustment process by means of grinding in or adjustment with respect to the rotor and counter-rotor can therefore be dispensed with. Since the first spherical inner wall now rotates and does not stand still, as is the case with the housing inner wall of the stationary housing, a gaseous or liquid medium to be compressed is exposed to less wall friction than on this housing inner wall.
  • the laminar flow that forms on this inner wall is subjected to less dynamics. This can lead to a distance between the first spherical inner wall of the rotor and an interface that separates the laminar flow from a turbulent flow being greater than in the case of a housing inner wall from a stationary housing.
  • the gap size being the shortest distance between the outer wall of the counter-rotor and the inner wall of the rotor or the shortest distance between the outer wall of the known rotor-counter-rotor arrangement and the inner wall of the housing.
  • the rotor of the rotary piston machine has a first wall area delimited by the first spherical inner wall and by a first outer wall.
  • the first outer wall is designed as a first straight circular cylinder.
  • a first housing, in which the rotor is rotatably mounted, has a first housing inner wall which, at least in a partial area of the rotor, has the shape of a second straight circular cylinder.
  • the first straight circular cylinder is at least partially enclosed by the second straight circular cylinder.
  • the housing no longer has to have a spherical interior, but can instead be made in the form of a straight circular cylinder.
  • This is a geometric shape that is easy to produce and can be manufactured with almost any diameter and within any tolerance. In the simplest case, this shape could even be made by drilling.
  • the end of the housing can be locked in a rotationally fixed manner with a cover in which the counter rotor is rotatably mounted.
  • the storage can be done, for example, by roller or plain bearings.
  • the bearings are designed in such a way that they can absorb the forces generated radially and axially by the counter rotor during operation.
  • the counter-rotor can be pre-assembled with the rotor in order to finally close the housing with the cover, or the counter-rotor can be pre-assembled with the cover in order to attach this pre-assembled combination to the front of the housing attach.
  • a medium to be compressed can be fed radially to the housing and / or removed radially from the housing.
  • the counter rotor has a second wall area delimited by the second spherical ring-shaped inner wall and a second outer wall.
  • the second outer wall is designed as a third straight circular cylinder, with a second housing, in which the counter rotor is rotatably mounted, having a second housing inner wall which, at least in a partial area of the counter rotor, has the shape of a fourth straight circular cylinder, the third straight circular cylinder from the fourth straight circular cylinder is at least partially enclosed.
  • At least one first control opening is formed in the wall area transversely to the axis of rotation of the rotary piston machine.
  • This first control opening can be formed either in the first wall area of the rotor or in the second wall area of the counter-rotor.
  • This first control opening can be designed as a bore or as an elongated hole in the wall area, wherein the elongated hole can extend either along the axis of rotation or transversely to the axis of rotation.
  • at least two first control openings are formed in the wall area in order to supply the medium to be compressed to the at least one working space and to remove the compressed medium from the at least one working space.
  • the gap resulting between the outer wall and the inner wall of the housing can be made as small as possible.
  • the housing and associated rotor or counter-rotor can be manufactured in such a way that the gap required between the rotor or counter-rotor and housing is as small as possible.
  • the second wall area of the counter-rotor is arranged in a radial bearing, the radial bearing being supported on the second inner wall of the housing.
  • This radial bearing can be designed both as a roller bearing and as a plain bearing.
  • plain bearings as well as roller bearings
  • tight manufacturing tolerances must be maintained for the bores receiving the bearings in order to achieve precise concentricity of the rotor and counter-rotor.
  • corresponding first control openings can be provided in the plain bearing in order to supply the medium to be compressed to the working spaces or to remove the compressed working medium from the working spaces.
  • an end face is formed on the second wall region of the counter rotor of the rotary piston machine on a side facing away from the second toothing.
  • the end of the second housing can be locked in a rotationally fixed manner with a cover.
  • An axial bearing is arranged between the cover and the end face.
  • the axial bearing can be designed both as a roller bearing and as a plain bearing.
  • the axial bearing absorbs the axial forces occurring on the counter rotor during operation and introduces them into the cover, the cover being connected to the housing in such a way that these forces can be absorbed by the housing.
  • the axial bearing can be connected to the cover in a rotationally fixed manner for easier assembly with the cover, particularly in the case of the plain bearing design.
  • the cover has at least one inlet opening arranged parallel to the second axis of rotation of the counter-rotor, the axial bearing at least one second inlet control opening and the end face at least a third one Entry control opening on.
  • a medium to be transported can be fed through the inlet opening and the second inlet control opening to the third inlet control opening.
  • the medium to be transported can also be removed through the third entry control opening, the second entry control opening and the entry opening. Furthermore, it is possible to form an outlet opening in the cover parallel to the inlet opening, a second outlet control opening in the axial bearing parallel to the second inlet control opening and a third outlet control opening parallel to the third inlet control opening in the end face of the counter rotor.
  • the inlet opening, the second inlet control opening and the at least one third inlet control opening as well as the outlet opening, the second outlet opening and the at least one third outlet control opening are connected to one another in a fluid-communicating manner.
  • the inlet opening, the second inlet control opening and the third inlet control opening are separated from the outlet control opening, the second outlet control opening and the third outlet control opening in a fluid-tight manner.
  • the counter-rotor has at least one inlet control channel which is connected in a fluid-communicating manner to the third inlet control opening and at least one of the tooth gaps such that the medium can be fed to the at least one working space.
  • the opening does not necessarily have to be made in a tooth gap, but can also be formed in the area of the tooth flank.
  • the spherical ring-shaped outer contour is clasped by the spherical ring-shaped inner wall.
  • Clasp is to be understood as meaning that the spherical ring-shaped inner wall extends at least partially into a spherical ring-shaped outer contour that tapers in the direction of a shaft of the rotor or counter-rotor, the shaft being arranged on a side facing away from the respective toothing.
  • a first diameter at the entry of the spherical ring-shaped inner wall is smaller than a second largest diameter of the spherical ring-shaped outer contour.
  • the rotor and / or counter-rotor are formed from plastic, it may be possible to move the two rotors into the rotor-counter-rotor arrangement due to the high modulus of elasticity of plastics and the associated elastic deformability as well as a force acting along the axes of rotation of the rotor and counter-rotor bring. Due to this modulus of elasticity, it may also be possible to separate the rotor and counter-rotor from one another by applying force.
  • the rotor and / or counter-rotor can also be made in several parts in order to achieve this clasping effect in rotors made in particular of metal, since metal generally has a considerably lower modulus of elasticity than the aforementioned modulus of elasticity of the plastics used here.
  • a fraction of the compressed medium is used to exert a force on the face of the counter-rotor in the axial direction, which counteracts the force that is exerted on the counter-rotor by the medium to be compressed.
  • This ensures that when the teeth of the rotors are meshed, there are no gaps that go beyond a predetermined amount.
  • the start-up phase that is to say at the start of the rotation of the rotors, there is no or at least insufficient pressure of the medium on the face of the counter-rotor.
  • the counter rotor would be pushed out by the rotor through the medium to be compressed beyond the predetermined gap size of the teeth without being clasped.
  • At least one component from the group of rotor, counter-rotor and housing is formed in one piece.
  • At least one component from the group of rotor, counter rotor and housing is made of plastic.
  • At least one component from the group of rotor, counter-rotor and housing is designed as an injection-molded part.
  • Fig. 1 shows a rotary piston machine which does not fall within the scope of the claim but is useful for the description and understanding of the invention and which operates as a pump, compressor or motor with a rotor 2 and a counter rotor 4, the rotor 2 being arranged opposite the counter rotor 4.
  • the rotor 2 has on its first end face 6 a first toothing 8, which in the present case is designed as a cycloid toothing, but can also be, for example, a trochoidal toothing.
  • the first toothing 8 is formed by at least one first tooth 10 and at least one first tooth gap 12.
  • the counter rotor 4 has a second toothing 16 on its second end face 14.
  • the second toothing 16 is formed by at least one second tooth 18 and at least one second tooth gap 20 formed.
  • the two toothings 8, 16 are in engagement with one another in such a way that working spaces 24 are formed by meshing the teeth 10, 18. Furthermore, the rotor 2 has a first axis of rotation I and the counter-rotor 4 has a second axis of rotation II. The first axis of rotation I and the second axis of rotation II enclose an angle ⁇ that is not equal to 0 °. By combing the teeth 10, 18, volumes formed by the first working spaces 24 are changed.
  • the rotor 2 has a first spherical ring-shaped inner wall 26.
  • the counter rotor 4 has a first spherical ring-shaped outer contour 28.
  • the first spherical ring-shaped outer contour 28 is complementary to the first spherical ring-shaped inner wall 26 of the rotor 2.
  • the rotor 2 is driven by a motor, of which only its drive shaft 30 is shown.
  • the drive shaft 30 engages in a bore 31 formed on the rotor 2.
  • the rotor 2 and the counter rotor 4 are jointly surrounded by a first housing 32.
  • the first housing 32 is closed in a fluid-tight manner at the end by a first cover 36.
  • the rotor 2 has a first wall area 40 delimited by the first spherical inner wall 26 and by a first outer wall 38.
  • the first outer wall 38 is designed as a first straight circular cylinder 44.
  • the first housing 32 has a first housing inner wall 42, which is shaped as a second straight circular cylinder 46 in the area of the rotor 2.
  • the first straight circular cylinder 44 is enclosed by the second straight circular cylinder 46.
  • a rotor shaft 54 extending in a direction facing away from the first toothing 8 is integrally formed on the rotor 2, the rotor shaft 54 being received by a roller bearing 34 which is supported on the first housing 32.
  • the rotor 2 is thus rotatably supported with respect to the first housing 32.
  • the counter-rotor 4 can be rotated in that the cover 36 is provided with a bearing receptacle 48 which has the shape of a fifth straight circular cylinder 50.
  • a counter-rotor shaft 52 extending in a direction facing away from the second toothing 16 is integrally formed on the counter-rotor 4 and is received by at least one further roller bearing 34, in the present case by two roller bearings 34.
  • the two roller bearings 34 are supported in the bearing receptacle 48 of the cover 36, the cover 36 being non-rotatably connected to the housing 32.
  • a first gap 55 which forms between the first outer wall 38 of the rotor 2 and the first inner wall 42 of the housing 32 is so small that liquid or gaseous medium can be fed to the at least one working space 24 via a feed channel 56 integrated in the housing 32 without the supplied medium mixes with the compressed medium to be discharged, which is removed from the working space 24 by means of a discharge channel 58 formed in the housing 32.
  • the working space 24 is delimited on the one hand by the first 10 and second tooth 18 and the first 12 and second tooth gap 20 a support surface 61 arranged on the rotor 2 symmetrically to its axis of rotation I and shaped complementary to the spherical cap 59, as well as through the first spherical inner wall 26 of the rotor 2.
  • the support surface 61 is in the counter rotor 4 and the spherical cap 59 in the rotor 2, as shown in Figure 3 is shown.
  • a fluid to be compressed is supplied to the opening working spaces 24 via the supply channel 56 and is compressed by means of closing working spaces 24.
  • the compressed fluid is removed from the working spaces 24 by means of the discharge channel 58 and fed to a consumer, not shown here.
  • Fig. 2 shows the off Fig. 1 known rotor 2 and counter rotor 4 in a 3D view.
  • the first outer wall 38 shaped as a second straight circular cylinder 44, is clearly visible.
  • At least one first control opening 60 is formed in the first wall region 40 transversely to the first axis of rotation I.
  • this first control opening 60 is designed as a bore perpendicular to the first axis of rotation I.
  • This at least one first control opening 60 can also be designed as an elongated hole which runs either along or transversely to the first axis of rotation I.
  • the fluid supplied via the supply channel 56 passes through this at least one first control opening 60 into the at least one first working chamber 24 in order to be removed from this at least one working chamber 24 via the at least one first control opening 60 by means of the discharge channel 58 after the compression process.
  • Fig. 3 shows an embodiment of the rotary piston machine in longitudinal section.
  • the counter rotor 4 has a second spherical ring-shaped inner wall 62 and the rotor 2 has a second spherical ring-shaped outer contour 64.
  • the second spherical ring-shaped outer contour 64 is designed to be complementary to the second spherical ring-shaped inner wall 62.
  • the second spherical ring-shaped inner wall 62 of the counter-rotor 4 is extended by a clasping area 65. This clasping area 65 surrounds the second, second spherical outer contour 64 of the rotor 2, which tapers toward the rotor shaft 54.
  • This clasping area 65 is also designed to be complementary to the second spherical inner wall 62 of the counter-rotor 4. By clasping or embracing, the rotor 2 is fitted into the counter-rotor 4 and vice versa.
  • a first diameter d forming at an inlet 67 to the second spherical ring-shaped inner wall 62 is smaller than a second largest diameter D of the spherical ring-shaped outer wall 62
  • Rotor 2 and the counter rotor 4 are mounted, the two rotors 2, 4 cannot be separated or only with an increased force that would have to be applied along the first I and second axis of rotation II due to the clasping by the clasping area 65.
  • the increased force is not achieved by the fluid compressed to a final pressure, so that the compressed fluid cannot push the rotor 2 and / or the counter rotor 4 apart to such an extent that the rotor 2 and / or the counter rotor 4 leaves the clasping area 65.
  • the rotor 2 and the counter-rotor 4 are surrounded by a second housing 66, which is closed on the end face by a second cover 74 in a rotationally fixed and fluid-tight manner.
  • the rotor 2 is mounted on its rotor shaft 54 in a first slide bearing 68, the slide bearing 68 being supported on the second housing 66.
  • the slide bearing 68 absorbs radial and axial forces acting on the rotor 2.
  • the counter rotor 4 has a second wall region 78 delimited by the second spherical ring-shaped inner wall 62 and a second outer wall 76.
  • the second outer wall 76 is designed as a third straight circular cylinder 82.
  • the second housing 66 has a second housing inner wall 80 which, at least in a partial area of the counter-rotor 4, has the shape of a fourth straight circular cylinder 84.
  • the third straight circular cylinder 82 is enclosed by the fourth straight circular cylinder 84.
  • the second wall area 78 is arranged in a radial bearing designed as a second slide bearing 70, the second slide bearing 70 being supported on the second inner wall 80 of the housing.
  • an end face 88 is formed on the second wall region 78 on a side facing away from the second toothing 16.
  • a bearing receptacle 86 is formed on an inner side of the second cover 74 and receives an axial bearing designed as a third slide bearing 72.
  • the axial forces acting on the counter rotor 4 are absorbed by the clasping of the clasping area 65. If, for example, the axial forces should rise above a predetermined amount due to a malfunction, these axial forces can be introduced into the slide bearing 72 via the end face 88 of the counter-rotor 4.
  • the rotor 2 and the counter rotor 4 are spaced apart from one another by a predetermined second gap dimension 69. This is achieved in that a portion of the compressed fluid is directed onto the end face 88 of the counter-rotor 4.
  • the force that the fluid exerts on the The rotor 2 and the counter rotor 4 are compensated by the fact that the end face 88 of the counter rotor 4 is also acted upon by a force.
  • the fluid to be compressed can thus push the counter rotor 4 away from the rotor 2 beyond the predetermined second gap dimension 69 during the compression process.
  • the clasping in the clasping area 65 prevents the fluid from pushing the counter-rotor 4 away from the rotor 2 beyond the predetermined second gap dimension during the start-up of the rotary piston machine during the compression process.
  • a stable operating state is achieved in which the compressed fluid has received its predetermined final pressure.
  • the clasp has the effect that the fluid reaches its final pressure in a shorter time than would be the case without the clasp.
  • FIG Fig. 2 The supply and discharge of the fluid can take place here as it is in FIG Fig. 2 has been described. However, in the embodiment claimed, the fluid is supplied and discharged in the axial direction along the second axis of rotation II Figures 4 and 5 are explained in more detail.
  • Fig. 4 shows the components of the Fig. 3 shown as a 3D exploded view.
  • Fig. 5 shows these components in longitudinal section.
  • a fluid to be compressed is fed to the working spaces 24 via an inlet opening 90 arranged in the second cover 74 parallel to the second axis of rotation II.
  • the fluid flows through a second inlet control opening 92 integrated in the third slide bearing 72 and subsequently formed in the end face 88 third inlet control openings 94 which are connected in a fluid-communicating manner to at least one inlet control channel (not shown here), the inlet control channel with at least one in a second tooth flank 22 of the second toothing 16 formed opening 104 is connected in fluid communication.
  • This opening 104 can also be formed in the second tooth gap 20 of the second toothing 16.
  • the medium to be compressed enters the opening working spaces 24 through these openings 104. After the fluid has been compressed, this is via at least one further opening 104, which is connected to at least one third outlet control opening 96 by means of an outlet control channel (not visible here), is discharged from the rotary piston engine via a second outlet control opening 98 formed in the third slide bearing 72 and an outlet opening 102 formed parallel to the inlet opening 90 in the second cover 74. So that the fluid can be compressed in the rotary piston machine, the supplied fluid has essentially no connection to the discharged fluid within the rotary piston machine.
  • the second inlet control opening 92 is therefore separated from the second outlet control opening 98 by means of webs 100 which are integrated in the third slide bearing 72.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Hydraulic Motors (AREA)

Description

Stand der TechnikState of the art

Die vorliegende Erfindung betrifft eine Drehkolbenmaschine, die als Pumpe, Verdichter oder Motor arbeitet, mit einem Rotor und einem Gegenrotor.The present invention relates to a rotary piston machine which works as a pump, compressor or motor, with a rotor and a counter rotor.

Aus der DE 42 41 320 A1 ist eine Drehkolbenmaschine bekannt, die als Pumpe, Verdichter oder Motor arbeitet. Bei dieser laufen Kämme von Zähnen eines rotierenden Antriebsteils zur Begrenzung von Arbeitsräumen auf einer zykloiden Fläche eines ebenfalls verzahnten Abtriebsteils und treiben dabei dieses Abtriebsteil an. Zwischen den Zähnen von Antriebsteil und Abtriebsteil werden die genannten Arbeitsräume gebildet, die während des Rotierens der Teile für ihre Arbeit vergrößert bzw. verkleinert werden, um die Förderwirkung auf ein gasförmiges oder flüssiges Medium zu erzeugen.From the DE 42 41 320 A1 a rotary piston machine is known that works as a pump, compressor or motor. In this case, combs of teeth of a rotating drive part to delimit working spaces run on a cycloid surface of a likewise toothed output part and in the process drive this output part. The working spaces mentioned are formed between the teeth of the drive part and the driven part and are enlarged or reduced for their work during the rotation of the parts in order to generate the conveying effect on a gaseous or liquid medium.

Aus der US 758 214 A ist eine weitere Drehkolbenmaschine bekannt. Auch bei dieser laufen Kämme von Zähnen eines rotierenden Antriebsteils zur Begrenzung von Arbeitsräumen auf einer Fläche eines ebenfalls verzahnten Abtriebsteils und treiben dabei dieses Abtriebsteil an. Zwischen den Zähnen von Antriebsteil und Abtriebsteil werden die genannten Arbeitsräume gebildet, die während des Rotierens der Teile für ihre Arbeit vergrößert bzw. verkleinert werden, um die Förderwirkung auf ein Medium zu erzeugen. Antriebsteil und Abtriebsteil weisen eine Kugelkappe und eine komplementär ausgeformte Stützfläche zur gegenseitigen Lagerung auf.From the US 758 214 A another rotary piston machine is known. In this, too, combs of teeth of a rotating drive part to delimit working spaces run on a surface of a likewise toothed output part and in the process drive this output part. The working spaces mentioned are formed between the teeth of the drive part and the driven part and are enlarged or reduced in size for their work during the rotation of the parts in order to generate the conveying effect on a medium. The drive part and the driven part have a spherical cap and a complementarily shaped support surface for mutual support.

Derartige Antriebs- und Abtriebsteile laufen in einem gemeinsamen Gehäuse, dessen Innenraum kugelförmig ausgebildet ist. Zur Montage dieser Teile ist das Gehäuse derart geteilt, dass die Trennungsebene den Mittelpunkt des kugelförmigen Innenraums enthält, so dass ein erstes Gehäuseteil mit einem halbkugelförmigen Innenraum mit einem ersten Mittelpunkt und ein zweites Gehäuseteil mit einem halbkugelförmigen Innenraum und einem zweiten Mittelpunkt entsteht. Dadurch ist ein besonderes Augenmerk auf die Gestaltung der Trennflächen der beiden Gehäuseteile dergestalt zu richten, dass in montiertem Zustand sich der erste und der zweite Mittelpunkt der kugelförmigen Innenräume der Gehäuseteile decken. Da aus fertigungstechnischen Gründen ein Zusammenfallen der beiden Mittelpunkte eher zufällig erfolgt, wird der sich zwischen dem Antriebsteil bzw. Abtriebsteil und dem Gehäuse ergebende Spalt an die Fertigungstechnologie angepasst und entsprechend großzügig dimensioniert.Such drive and output parts run in a common housing, the interior of which is spherical. To assemble these parts, the housing is divided in such a way that the parting plane contains the center point of the spherical interior, so that a first housing part with a hemispherical interior with a first center and a second housing part with a hemispherical interior and a second center result. As a result, special attention must be paid to the design of the separating surfaces of the two housing parts in such a way that, in the assembled state, the first and second center points of the spherical interior spaces of the housing parts coincide. Since the two center points coincide by chance for manufacturing reasons, the gap resulting between the drive part or output part and the housing is adapted to the manufacturing technology and correspondingly generously dimensioned.

Zusammenfassung der ErfindungSummary of the invention

Es kann ein Bedürfnis bestehen, eine Drehkolbenmaschine anzugeben, bei der der Spalt zwischen dem Gehäuse und dem Antriebsteil bzw. Abtriebsteil minimiert ist.There may be a need to specify a rotary piston machine in which the gap between the housing and the drive part or output part is minimized.

Dieses Bedürfnis kann durch den jeweiligen Gegenstand der unabhängigen Ansprüche gelöst werden. Vorteilhafte Ausgestaltungen sind in den abhängigen Ansprüchen angegeben.This need can be solved by the respective subject matter of the independent claims. Advantageous refinements are given in the dependent claims.

Eine Drehkolbenmaschine, die als Pumpe, Verdichter oder Motor arbeitet, weist einen Rotor und einen Gegenrotor auf, wobei der Gegenrotor dem Rotor gegenüberliegend angeordnet ist. Der Rotor weist eine erste Stirnfläche mit einer ersten Verzahnung auf und der Gegenrotor weist eine zweite Stirnfläche mit einer zweiten Verzahnung auf, wobei die erste und die zweite Verzahnung je aus zumindest einem Zahn und einer Zahnlücke gebildet sind. Die Verzahnungen stehen miteinander derart in Eingriff, dass durch Kämmen der Zähne der ersten Verzahnung und der Zähne der zweiten Verzahnung Arbeitsräume ausgebildet werden, wobei durch die Arbeitsräume gebildete Volumina durch das Kämmen der Zähne verändert werden. Der Rotor weist eine erste Drehachse und der Gegenrotor eine zweite Drehachse auf. Die erste Drehachse und die zweite Drehachse schließen einen Winkel ein, der ungleich 0 Grad ist. In einem Ausführungsbeispiel, das nicht in den Schutzumfang des Anspruchs fällt, weist der Rotor eine erste kugelringförmige Innenwandung und der Gegenrotor eine erste kugelringförmige Außenkontur auf, die komplementär zu der ersten kugelringförmigen Innenwandung des Rotors ausgebildet ist.A rotary piston machine that works as a pump, compressor or motor has a rotor and a counter-rotor, the counter-rotor being arranged opposite the rotor. The rotor has a first end face with a first toothing and the counter rotor has a second end face with a second toothing, the first and the second toothing each being formed from at least one tooth and one tooth gap. The toothings are in engagement with one another in such a way that by meshing the teeth of the first toothing and the teeth of the second toothing, working spaces are formed, with volumes formed by the working spaces being changed by the meshing of the teeth. The rotor has a first axis of rotation and the counter rotor has a second axis of rotation. The first axis of rotation and the second axis of rotation enclose an angle that is not equal to 0 degrees. In an embodiment that does not fall within the scope of protection of the claim, the rotor has a first spherical inner wall and the counter rotor has a first spherical outer contour which is complementary to the first spherical inner wall of the rotor.

Erfindungsgemäß weist der Gegenrotor eine zweite kugelringförmige Innenwandung und der Rotor eine zweite kugelringförmige Außenkontur aufweist, die komplementär zu der zweiten kugelringförmigen Innenwandung des Gegenrotors ausgebildet ist.According to the invention, the counter-rotor has a second spherical-ring-shaped inner wall and the rotor has a second spherical-ring-shaped outer contour which is designed to be complementary to the second spherical-ring-shaped inner wall of the counter-rotor.

Im folgenden werden die Vorteile der Erfindung anhand der nicht in den Schutzumfang des Anspruchs fallenden Drehkolbenmaschine, also anhand des Rotors mit der ersten kugelringförmigen Innenwandung und des Gegenrotors mit der ersten kugelringförmigen Außenkontur erklärt. Diese Vorteile ergeben sich ebenfalls in einer Ausführung, bei der der Gegenrotor eine zweite kugelringförmige Innenwandung und der Rotor eine zweite kugelringförmige Außenkontur aufweist. Es kann als ein Vorteil der Erfindung angesehen werden, dass die ursprünglich vorgesehene Begrenzung des Arbeitsraumes durch eine Gehäuseinnenwandung des Gehäuses nun durch den Rotor erfolgt. Somit kann die ursprünglich notwendige Anzahl zur Begrenzung des Arbeitsraumes von drei Komponenten, nämlich Rotor, Gegenrotor und Gehäuse, auf lediglich zwei Komponenten, nämlich Rotor und Gegenrotor, reduziert werden. Die zur Funktion der Drehkolbenmaschine erforderliche ursprünglich im Gehäuse realisierte kugelringförmige Gehäuseinnenwandung ist nunmehr in dem Rotor realisiert. Da eine Rotor-Gegenrotor-Anordnung relativ kompakt und kleiner als das Gehäuse ausgebildet sind, ist eine Formgenauigkeit leichter umsetzbar. Rotor und Gegenrotor werden aufgrund der Anforderung an die Topographie bereits formgenau aus hochwertigem Material, vorzugsweise hochwertigen Kunststoffen, hergestellt. Somit kann der sich nunmehr zwischen der kugelringförmigen Innenwandung und der kugelringförmigen Außenkontur ergebende Spalt kleinstmöglich ausgebildet werden. Damit werden Spaltverluste weitestgehend eliminiert. Aufgrund der hochpräzisen Herstellung der Rotoren kann ein Anpassungsprozess mittels Einschleifen oder Einstellen bezüglich des Rotors und Gegenrotors daher entfallen. Da nunmehr die erste kugelringförmige Innenwandung rotiert und nicht stillsteht, wie dies bei der Gehäuseinnenwandung des feststehenden Gehäuses der Fall ist, wird ein zu verdichtendes gasförmiges oder flüssiges Medium einer geringeren Wandreibung ausgesetzt als an eben dieser Gehäuseinnenwandung. Durch die Rotation der ersten kugelringförmigen Innenwandung wird die sich an dieser Innenwandung ausbildende laminare Strömung einer geringeren Dynamik unterworfen. Dies kann dazu führen, dass ein Abstand zwischen der ersten kugelringförmigen Innenwandung des Rotors und einer Grenzfläche, die die laminare Strömung von einer turbulenten Strömung trennt, größer ist als bei einer Gehäuseinnenwandung von einem feststehenden Gehäuse. Da die laminare Strömung energieärmer als die turbulente Strömung ist, könnten sich allein aufgrund dieser strömungsmechanischen Zusammenhänge geringere Spaltverluste bei der vorgeschlagenen Lösung gegenüber der bisher bekannten Lösung bereits bei gleichem Spaltmaß ergeben, wobei unter Spaltmaß der kürzeste Abstand der Außenwandung des Gegenrotors zu der Innenwandung des Rotors bzw. der kürzeste Abstand der Außenwandung der bekannten Rotor-Gegenrotor-Anordnung zu der Gehäuseinnenwandung.In the following, the advantages of the invention are explained using the rotary piston machine, which does not fall within the scope of protection of the claim, ie using the rotor with the first spherical inner wall and the counter-rotor with the first spherical outer contour. These advantages also result in an embodiment in which the counter rotor has a second spherical ring-shaped inner wall and the rotor has a second spherical ring-shaped outer contour. It can be seen as an advantage of the invention that the originally intended delimitation of the working space by an inner wall of the housing is now effected by the rotor. In this way, the number originally necessary to limit the working space of three components, namely rotor, counter-rotor and housing, can be reduced to just two components, namely rotor and counter-rotor. The spherical ring-shaped housing inner wall which was originally implemented in the housing and required for the functioning of the rotary piston machine is now implemented in the rotor. Since a rotor-counter-rotor arrangement is designed to be relatively compact and smaller than the housing, dimensional accuracy can be implemented more easily. Due to the topography requirement, the rotor and counter rotor are already made of high quality material, preferably high quality plastics, with an accurate shape. Thus, the gap now resulting between the spherical ring-shaped inner wall and the spherical ring-shaped outer contour can be made as small as possible. This largely eliminates gap losses. Due to the high-precision manufacture of the rotors, an adjustment process by means of grinding in or adjustment with respect to the rotor and counter-rotor can therefore be dispensed with. Since the first spherical inner wall now rotates and does not stand still, as is the case with the housing inner wall of the stationary housing, a gaseous or liquid medium to be compressed is exposed to less wall friction than on this housing inner wall. As a result of the rotation of the first spherical ring-shaped inner wall, the laminar flow that forms on this inner wall is subjected to less dynamics. This can lead to a distance between the first spherical inner wall of the rotor and an interface that separates the laminar flow from a turbulent flow being greater than in the case of a housing inner wall from a stationary housing. Since the laminar flow is less energetic than the turbulent flow, due to these fluid mechanical relationships alone, lower gap losses could result in the proposed solution compared to the previously known solution with the same gap size, with the gap size being the shortest distance between the outer wall of the counter-rotor and the inner wall of the rotor or the shortest distance between the outer wall of the known rotor-counter-rotor arrangement and the inner wall of the housing.

In einem nicht in den Umfang des Anspruchs fallenden Ausführungsbeispiel weist der Rotor der Drehkolbenmaschine einen von der ersten kugelringförmigen Innenwandung und von einer ersten Außenwandung begrenzten ersten Wandbereich auf. Die erste Außenwandung ist als ein erster gerader Kreiszylinder ausgebildet. Ein erstes Gehäuse, in dem der Rotor drehbar gelagert ist, weist eine erste Gehäuseinnenwandung auf, die zumindest in einem Teilbereich des Rotors eine Form eines zweiten geraden Kreiszylinders aufweist. Der erste gerade Kreiszylinder ist von dem zweiten geraden Kreiszylinder zumindest teilweise umschlossen.In an exemplary embodiment that does not fall within the scope of the claim, the rotor of the rotary piston machine has a first wall area delimited by the first spherical inner wall and by a first outer wall. The first outer wall is designed as a first straight circular cylinder. A first housing, in which the rotor is rotatably mounted, has a first housing inner wall which, at least in a partial area of the rotor, has the shape of a second straight circular cylinder. The first straight circular cylinder is at least partially enclosed by the second straight circular cylinder.

Zur Aufnahme des Rotors muss das Gehäuse nun nicht mehr einen kugelförmig gestalteten Innenraum erhalten, sondern kann stattdessen in der Form eines geraden Kreiszylinders hergestellt werden. Hierbei handelt es sich um eine einfach herzustellende geometrische Form, die mit nahezu beliebigen Durchmessern und in beliebigen Toleranzen fertigbar ist. Im einfachsten Fall könnte diese Form sogar durch Bohren hergestellt werden.To accommodate the rotor, the housing no longer has to have a spherical interior, but can instead be made in the form of a straight circular cylinder. This is a geometric shape that is easy to produce and can be manufactured with almost any diameter and within any tolerance. In the simplest case, this shape could even be made by drilling.

In der Erfindung ist das Gehäuse stirnseitig mit einem Deckel drehfest verschließbar, in dem der Gegenrotor drehbar gelagert ist. Die Lagerung kann beispielsweise durch Wälz- oder Gleitlager erfolgen. In der Regel werden die Lager so gestaltet sein, dass sie während des Betriebes die durch den Gegenrotor radial und axial erzeugten Kräfte aufnehmen können. Zudem kann in dieser Konfiguration bei einem bereits im Gehäuse montierten Rotor entweder der Gegenrotor mit dem Rotor vormontiert werden, um abschließend das Gehäuse mit dem Deckel zu verschließen, oder der Gegenrotor kann mit dem Deckel vormontiert werden, um diese vormontierte Kombination stirnseitig an dem Gehäuse zu befestigen.In the invention, the end of the housing can be locked in a rotationally fixed manner with a cover in which the counter rotor is rotatably mounted. The storage can be done, for example, by roller or plain bearings. As a rule, the bearings are designed in such a way that they can absorb the forces generated radially and axially by the counter rotor during operation. In addition, in this configuration, with a rotor already mounted in the housing, either the counter-rotor can be pre-assembled with the rotor in order to finally close the housing with the cover, or the counter-rotor can be pre-assembled with the cover in order to attach this pre-assembled combination to the front of the housing attach.

In einem nicht in den Umfang des Anspruchs fallenden Ausführungsbeispiel ist ein zu verdichtendes Medium dem Gehäuse radial zuführbar und/oder radial von dem Gehäuse abführbar.In an exemplary embodiment not falling within the scope of the claim, a medium to be compressed can be fed radially to the housing and / or removed radially from the housing.

In der Erfindung weist der Gegenrotor einen von der zweiten kugelringförmigen Innenwandung und einer zweiten Außenwandung begrenzten zweiten Wandbereich auf. Die zweite Außenwandung ist als ein dritter gerader Kreiszylinder ausgebildet, wobei ein zweites Gehäuse, in dem der Gegenrotor drehbar gelagert ist, eine zweite Gehäuseinnenwandung aufweist, die zumindest in einem Teilbereich des Gegenrotors eine Form eines vierten geraden Kreiszylinder aufweist, wobei der dritte gerade Kreiszylinder von dem vierten geraden Kreiszylinder zumindest teilweise umschlossen ist.In the invention, the counter rotor has a second wall area delimited by the second spherical ring-shaped inner wall and a second outer wall. The second outer wall is designed as a third straight circular cylinder, with a second housing, in which the counter rotor is rotatably mounted, having a second housing inner wall which, at least in a partial area of the counter rotor, has the shape of a fourth straight circular cylinder, the third straight circular cylinder from the fourth straight circular cylinder is at least partially enclosed.

Weiter oben wurde bereits erläutert, mit welch geringem Aufwand sich derartige kreiszylindrische Formen herstellen lassen.It has already been explained above that such circular cylindrical shapes can be produced with little effort.

In einem weiteren Ausführungsbeispiel der Erfindung ist in dem Wandbereich quer zu der Drehachse der Drehkolbenmaschine wenigstens eine erste Steueröffnung ausgebildet.In a further exemplary embodiment of the invention, at least one first control opening is formed in the wall area transversely to the axis of rotation of the rotary piston machine.

Diese erste Steueröffnung kann entweder in dem ersten Wandbereich des Rotors oder in dem zweiten Wandbereich des Gegenrotors ausgebildet sein. Diese erste Steueröffnung kann als Bohrung oder auch als Langloch in dem Wandbereich ausgeführt sein, wobei sich das Langloch entweder längs zur Drehachse oder quer zur Drehachse erstrecken kann. Meist werden in dem Wandbereich mindestens zwei erste Steueröffnungen ausgebildet sein, um das zu verdichtende Medium dem wenigstens einen Arbeitsraum zuzuführen und das verdichtete Medium dem wenigstens einen Arbeitsraum zu entnehmen. Um Verluste zwischen den Medium zuführenden und Medium abführenden Steueröffnungen zu vermeiden, kann der sich zwischen der Außenwandung und der Gehäuseinnenwandung ergebende Spalt möglichst gering ausgeführt sein. Durch die bereits erwähnte vorteilhafte Ausgestaltung der Außenwandung und der Gehäuseinnenwandung als gerader Kreiszylinder lassen sich das Gehäuse und dazugehörige Rotor bzw. Gegenrotor derart fertigen, dass der zwischen Rotor bzw. Gegenrotor und Gehäuse notwendige Spalt geringstmöglich ausgebildet ist.This first control opening can be formed either in the first wall area of the rotor or in the second wall area of the counter-rotor. This first control opening can be designed as a bore or as an elongated hole in the wall area, wherein the elongated hole can extend either along the axis of rotation or transversely to the axis of rotation. Usually at least two first control openings are formed in the wall area in order to supply the medium to be compressed to the at least one working space and to remove the compressed medium from the at least one working space. In order to avoid losses between the control openings supplying the medium and discharging the medium, the gap resulting between the outer wall and the inner wall of the housing can be made as small as possible. Due to the already mentioned advantageous design of the outer wall and the inner wall of the housing as a straight circular cylinder, the housing and associated rotor or counter-rotor can be manufactured in such a way that the gap required between the rotor or counter-rotor and housing is as small as possible.

In der Erfindung ist der zweite Wandbereich des Gegenrotors in einem Radiallager angeordnet, wobei sich das Radiallager an der zweiten Gehäuseinnenwandung abstützt.In the invention, the second wall area of the counter-rotor is arranged in a radial bearing, the radial bearing being supported on the second inner wall of the housing.

Dieses Radiallager kann sowohl als Wälzlager als auch als Gleitlager ausgeführt sein. Sowohl bei der Verwendung von Gleitlagern als auch von Wälzlagern sind für die die Lager aufnehmenden Bohrungen enge Fertigungstoleranzen einzuhalten, um einen präzisen Rundlauf von Rotor und Gegenrotor zu erreichen. Gerade eine Gestaltung, dass alle verwendeten Komponenten wie Lager, diese Lager aufnehmende Gehäuseinnenwandung sowie die Außenwandung von Rotor als auch Gegenrotor als gerade Kreiszylinder mit engsten Fertigungstoleranzen herstellbar sind, stellt eine präzise Lage von Rotor und Gegenrotor relativ zum Gehäuse sicher. Insbesondere bei einer Verwendung eines Gleitlagers als Lagerung des Gegenrotors in dem Gehäuse können in dem Gleitlager entsprechende erste Steueröffnungen vorgesehen werden, um das zu verdichtende Medium den Arbeitsräumen zuzuführen bzw. das verdichtete Arbeitsmedium aus den Arbeitsräumen abzuführen.This radial bearing can be designed both as a roller bearing and as a plain bearing. When using plain bearings as well as roller bearings, tight manufacturing tolerances must be maintained for the bores receiving the bearings in order to achieve precise concentricity of the rotor and counter-rotor. A design in which all components used, such as bearings, the inner wall of the housing accommodating these bearings, and the outer wall of the rotor and the counter-rotor can be manufactured as a straight circular cylinder with the tightest manufacturing tolerances, ensures a precise position of the rotor and counter-rotor relative to the housing. In particular when using a plain bearing to support the counter rotor in the housing, corresponding first control openings can be provided in the plain bearing in order to supply the medium to be compressed to the working spaces or to remove the compressed working medium from the working spaces.

In der Erfindung ist an dem zweiten Wandbereich des Gegenrotors der Drehkolbenmaschine auf einer der zweiten Verzahnung abgewandten Seite eine Stirnseite ausgebildet. Das zweite Gehäuse ist stirnseitig mit einem Deckel drehfest verschließbar. Zwischen dem Deckel und der Stirnseite ist ein Axiallager angeordnet.In the invention, an end face is formed on the second wall region of the counter rotor of the rotary piston machine on a side facing away from the second toothing. The end of the second housing can be locked in a rotationally fixed manner with a cover. An axial bearing is arranged between the cover and the end face.

Das Axiallager kann sowohl als Wälzlager als auch als Gleitlager ausgebildet sein. Das Axiallager nimmt die während des Betriebs an dem Gegenrotor auftretenden Axialkräfte auf und leitet diese in den Deckel ein, wobei der Deckel mit dem Gehäuse derart verbunden ist, dass diese Kräfte durch das Gehäuse aufgenommen werden können. Das Axiallager kann zur leichteren Montage mit dem Deckel, insbesondere bei der Gleitlagerausführung, drehfest mit dem Deckel verbunden sein.The axial bearing can be designed both as a roller bearing and as a plain bearing. The axial bearing absorbs the axial forces occurring on the counter rotor during operation and introduces them into the cover, the cover being connected to the housing in such a way that these forces can be absorbed by the housing. The axial bearing can be connected to the cover in a rotationally fixed manner for easier assembly with the cover, particularly in the case of the plain bearing design.

In der Erfindung weist der Deckel wenigstens eine zu der zweiten Drehachse des Gegenrotors parallel angeordnete Eintrittsöffnung, das Axiallager wenigstens eine zweite Eintrittssteueröffnung und die Stirnfläche wenigstens eine dritte Eintrittssteueröffnung auf. Ein zu transportierendes Medium ist durch die Eintrittsöffnung und die zweite Eintrittssteueröffnung der dritten Eintrittssteueröffnung zuführbar.In the invention, the cover has at least one inlet opening arranged parallel to the second axis of rotation of the counter-rotor, the axial bearing at least one second inlet control opening and the end face at least a third one Entry control opening on. A medium to be transported can be fed through the inlet opening and the second inlet control opening to the third inlet control opening.

Das zu transportierende Medium kann auch durch die dritte Eintrittssteueröffnung, die zweite Eintrittssteueröffnung und die Eintrittsöffnung entnommen werden. Weiterhin ist es möglich, in dem Deckel parallel zu der Eintrittsöffnung eine Austrittsöffnung, im Axiallager parallel zu der zweiten Eintrittssteueröffnung eine zweite Austrittssteueröffnung und parallel zu der dritten Eintrittssteueröffnung in der Stirnfläche des Gegenrotors eine dritte Austrittssteueröffnung auszuformen. Hierbei sind die Eintrittsöffnung, die zweite Eintrittssteueröffnung und die wenigstens eine dritte Eintrittssteueröffnung sowie die Austrittsöffnung, die zweite Austrittsöffnung und die wenigstens eine dritte Austrittssteueröffnung miteinander fluidkommunizierend verbunden. Jedoch sind die Eintrittsöffnung, die zweite Eintrittssteueröffnung und die dritte Eintrittssteueröffnung von der Austrittssteueröffnung, der zweiten Austrittssteueröffnung und der dritten Austrittssteueröffnung fluiddicht getrennt. Mittels einer derartigen Anordnung kann ein zu verdichtendes Medium in axialer Richtung, also parallel zur zweiten Drehachse des Gegenrotors dem wenigstens einen Arbeitsraum zugeführt werden und das verdichtete Medium in ebenfalls axialer Richtung dem wenigstens einen Arbeitsraum entnommen werden.The medium to be transported can also be removed through the third entry control opening, the second entry control opening and the entry opening. Furthermore, it is possible to form an outlet opening in the cover parallel to the inlet opening, a second outlet control opening in the axial bearing parallel to the second inlet control opening and a third outlet control opening parallel to the third inlet control opening in the end face of the counter rotor. Here, the inlet opening, the second inlet control opening and the at least one third inlet control opening as well as the outlet opening, the second outlet opening and the at least one third outlet control opening are connected to one another in a fluid-communicating manner. However, the inlet opening, the second inlet control opening and the third inlet control opening are separated from the outlet control opening, the second outlet control opening and the third outlet control opening in a fluid-tight manner. By means of such an arrangement, a medium to be compressed can be fed to the at least one working space in the axial direction, i.e. parallel to the second axis of rotation of the counter-rotor, and the compressed medium can be removed from the at least one working space in a likewise axial direction.

In einem Ausführungsbeispiel der Erfindung weist der Gegenrotor wenigstens einen Eintrittssteuerkanal auf, der mit der dritten Eintrittssteueröffnung und wenigstens einer der Zahnlücken fluidkommunizierend verbunden ist, derart, dass das Medium dem wenigstens einen Arbeitsraum zuführbar ist.In one embodiment of the invention, the counter-rotor has at least one inlet control channel which is connected in a fluid-communicating manner to the third inlet control opening and at least one of the tooth gaps such that the medium can be fed to the at least one working space.

Hierdurch wird sichergestellt, dass das zu verdichtende Fluid in die sich öffnenden Arbeitsräume gelangt und anschließend in verdichtetem Zustand die sich schließenden Arbeitsräume verlässt. Hierbei muss die Öffnung nicht zwangsweise in einer Zahnlücke eingebracht sein, sondern sie kann auch im Bereich der Zahnflanke ausgeformt sein.This ensures that the fluid to be compressed reaches the opening working spaces and then leaves the closing working spaces in a compressed state. The opening does not necessarily have to be made in a tooth gap, but can also be formed in the area of the tooth flank.

In einem Ausführungsbeispiel der Erfindung ist die kugelringförmige Außenkontur durch die kugelringförmige Innenwandung umklammert.In one embodiment of the invention, the spherical ring-shaped outer contour is clasped by the spherical ring-shaped inner wall.

Unter Umklammerung ist zu verstehen, dass sich die kugelringförmige Innenwandung zumindest teilweise in eine sich in Richtung eines Schafts des Rotors bzw. Gegenrotors verjüngende kugelringförmige Außenkontur erstreckt, wobei der Schaft an einer von der jeweiligen Verzahnung abgewandten Seite angeordnet ist. Durch das Umklammern oder Umfassen ist der Rotor in den Gegenrotor eingepasst und umgekehrt. Anders ausgedrückt ist ein erster Durchmesser am Eintritt der kugelringförmigen Innenwandung kleiner als ein zweiter größter Durchmesser der kugelringförmigen Außenkontur. Somit lässt sich eine montierte Rotor-Gegenrotor-Anordnung entweder nicht mehr oder nur unter Krafteinwirkung entlang der Drehachsen voneinander trennen. Insbesondere bei einer Ausformung des Rotors und/oder Gegenrotors aus Kunststoff kann es möglich sein, aufgrund des hohen Elastizitätsmoduls von Kunststoffen und der damit verbundenen elastischen Verformbarkeit sowie einer Krafteinwirkung entlang der Drehachsen von Rotor und Gegenrotor die beiden Rotoren in die Rotor-Gegenrotor-Anordnung zu bringen. Aufgrund dieses Elastizitätsmoduls kann es auch möglich sein, unter Kraftaufwand Rotor und Gegenrotor voneinander zu trennen. Der Rotor und/oder Gegenrotor kann auch mehrteilig ausgeführt sein, um diesen Umklammerungseffekt bei insbesondere aus Metall gefertigten Rotoren zu realisieren, da Metall in der Regel ein erheblich geringeres Elastizitätsmodul aufweist als das eingangs erwähnte Elastizitätsmodul der hier verwendeten Kunststoffe.Clasp is to be understood as meaning that the spherical ring-shaped inner wall extends at least partially into a spherical ring-shaped outer contour that tapers in the direction of a shaft of the rotor or counter-rotor, the shaft being arranged on a side facing away from the respective toothing. By clasping or grasping the rotor is fitted into the counter rotor and vice versa. In other words, a first diameter at the entry of the spherical ring-shaped inner wall is smaller than a second largest diameter of the spherical ring-shaped outer contour. Thus, a mounted rotor-counter-rotor arrangement can either no longer be separated from one another or can only be separated from one another under the action of force along the axes of rotation. Particularly when the rotor and / or counter-rotor are formed from plastic, it may be possible to move the two rotors into the rotor-counter-rotor arrangement due to the high modulus of elasticity of plastics and the associated elastic deformability as well as a force acting along the axes of rotation of the rotor and counter-rotor bring. Due to this modulus of elasticity, it may also be possible to separate the rotor and counter-rotor from one another by applying force. The rotor and / or counter-rotor can also be made in several parts in order to achieve this clasping effect in rotors made in particular of metal, since metal generally has a considerably lower modulus of elasticity than the aforementioned modulus of elasticity of the plastics used here.

In der Regel wird ein Bruchteil des verdichteten Mediums genutzt, um auf die Stirnfläche des Gegenrotors in axialer Richtung eine Kraft auszuüben, die der Kraft entgegenwirkt, die durch das zu verdichtende Medium auf den Gegenrotor ausgeübt wird. Hierdurch wird sichergestellt, dass beim Kämmen der Zähne der Rotoren keine Spalten entstehen, die über ein vorbestimmtes Maß hinausgehen. Jedoch steht in der Anlaufphase, also bei Beginn des Rotierens der Rotoren, kein oder zumindest kein ausreichender Druck des Mediums an der Stirnseite des Gegenrotors an. Somit würde ohne Umklammerung der Gegenrotor von dem Rotor durch das zu verdichtende Medium über das vorbestimmte Spaltmaß der Zähne hinausgedrückt. Somit würde es eine gewisse Zeit benötigen, bis das zu verdichtende Medium mit dem vorbestimmten Druck beaufschlagt ist, so dass dieses Medium auf die Stirnfläche derart drücken kann, dass der Gegenrotor in Richtung des Rotors auf das vorbestimmte Spaltmaß gedrückt ist. Durch die Umklammerung wird dieser Effekt weitestgehend vermieden, da das zu verdichtende Medium den Gegenrotor von dem Rotor lediglich soweit wegdrücken kann, bis der Rotor bzw. Gegenrotor an dieser Umklammerung anliegt. Somit wird das Maß, auf das das zu verdichtende Medium den Gegenrotor von dem Rotor wegdrücken kann, nicht durch das Axiallager bestimmt, sondern vielmehr durch die Umklammerung. Durch diese Umklammerung erreicht das zu verdichtende Medium bereits nach wenigen Umdrehungen der Rotor-Gegenrotor-Kombination seinen Enddruck.As a rule, a fraction of the compressed medium is used to exert a force on the face of the counter-rotor in the axial direction, which counteracts the force that is exerted on the counter-rotor by the medium to be compressed. This ensures that when the teeth of the rotors are meshed, there are no gaps that go beyond a predetermined amount. However, in the start-up phase, that is to say at the start of the rotation of the rotors, there is no or at least insufficient pressure of the medium on the face of the counter-rotor. Thus, the counter rotor would be pushed out by the rotor through the medium to be compressed beyond the predetermined gap size of the teeth without being clasped. Thus it would take a certain time until the medium to be compressed is subjected to the predetermined pressure so that this medium can press on the end face in such a way that the counter rotor is pressed towards the rotor to the predetermined gap. Through the Clamping, this effect is largely avoided, since the medium to be compressed can only push the counter-rotor away from the rotor until the rotor or counter-rotor rests against this clasping. Thus, the extent to which the medium to be compressed can push the counter rotor away from the rotor is not determined by the axial bearing, but rather by the clasping. Due to this grip, the medium to be compressed reaches its final pressure after just a few rotations of the rotor-counter-rotor combination.

In einem weiteren Ausführungsbeispiel der Erfindung ist wenigstens eine Komponente aus der Gruppe Rotor, Gegenrotor und Gehäuse einstückig ausgebildet.In a further exemplary embodiment of the invention, at least one component from the group of rotor, counter-rotor and housing is formed in one piece.

In einem weiteren Ausführungsbeispiel der Erfindung ist wenigstens eine Komponente aus der Gruppe Rotor, Gegenrotor und Gehäuse aus Kunststoff gefertigt.In a further exemplary embodiment of the invention, at least one component from the group of rotor, counter rotor and housing is made of plastic.

In einem weiteren Ausführungsbeispiel der Erfindung ist wenigstens eine Komponente aus der Gruppe Rotor, Gegenrotor und Gehäuse als ein Spritzgussteil ausgebildet.In a further exemplary embodiment of the invention, at least one component from the group of rotor, counter-rotor and housing is designed as an injection-molded part.

Ausführungsformen der Erfindung werden nachfolgend mit Bezug auf die beigefügten Figuren beschrieben. Die Figuren sind lediglich schematisch und nicht maßstabsgetreu.Embodiments of the invention are described below with reference to the accompanying figures. The figures are only schematic and not true to scale.

Kurze Beschreibung der Zeichnungen

Fig. 1
zeigt eine Drehkolbenmaschine im Längsschnitt, die nicht in den Umfang des Anspruchs fällt, aber zweckdienlich für die Beschreibung und das Verständnis der Erfindung ist,
Fig. 2
zeigt eine 3D-Ansicht von Rotor und Gegenrotor aus Fig. 1 in Betriebsstellung,
Fig. 3
zeigt eine Drehkolbenmaschine gemäß der beanspruchten Erfindung im Längsschnitt,
Fig. 4
zeigt eine Explosionszeichnung der Komponenten aus Fig. 3 und
Fig. 5
zeigt einen Querschnitt der in Fig. 4 dargestellten Komponenten.
Brief description of the drawings
Fig. 1
shows a rotary piston machine in longitudinal section, which does not fall within the scope of the claim, but is useful for the description and understanding of the invention,
Fig. 2
shows a 3D view of the rotor and counter rotor Fig. 1 in operating position,
Fig. 3
shows a rotary piston machine according to the claimed invention in longitudinal section,
Fig. 4
shows an exploded view of the components Fig. 3 and
Fig. 5
shows a cross section of the in Fig. 4 illustrated components.

Detaillierte Beschreibung beispielhafter AusführungsformenDetailed description of exemplary embodiments

An dieser Stelle soll vorausgeschickt werden, dass gleiche Teile in den einzelnen Figuren gleiche Bezugszeichen aufweisen.At this point it should be pointed out that the same parts in the individual figures have the same reference symbols.

Fig. 1 zeigt eine nicht in den Umfang des Anspruchs fallende, aber für die Beschreibung und das Verständnis der Erfindung zweckdienliche Drehkolbenmaschine, die als Pumpe, Verdichter oder Motor arbeitet mit einem Rotor 2 und einem Gegenrotor 4, wobei der Rotor 2 dem Gegenrotor 4 gegenüberliegend angeordnet ist. Der Rotor 2 besitzt an seiner ersten Stirnfläche 6 eine erste Verzahnung 8, die in dem hier vorliegenden Fall als eine Zykloidenverzahnung ausgebildet ist, jedoch auch beispielsweise eine Trochoidenverzahnung sein kann. Die erste Verzahnung 8 wird gebildet durch wenigstens einen ersten Zahn 10, sowie wenigstens einer ersten Zahnlücke 12. Der Gegenrotor 4 besitzt an seiner zweiten Stirnfläche 14 eine zweite Verzahnung 16. Die zweite Verzahnung 16 wird durch wenigstens einen zweiten Zahn 18 sowie wenigstens einer zweiten Zahnlücke 20 gebildet. Die beiden Verzahnungen 8, 16 stehen miteinander derart in Eingriff, dass durch Kämmen der Zähne 10, 18 Arbeitsräume 24 ausgebildet werden. Weiterhin weist der Rotor 2 eine erste Drehachse I und der Gegenrotor 4 eine zweite Drehachse II auf. Die erste Drehachse I und die zweite Drehachse II schließen einen Winkel ϕ ein, der ungleich 0° ist. Durch das Kämmen der Zähne 10, 18 werden durch die ersten Arbeitsräume 24 gebildete Volumina verändert. Der Rotor 2 besitzt eine erste kugelringförmige Innenwandung 26. Der Gegenrotor 4 besitzt eine erste kugelringförmige Außenkontur 28. Hierbei ist die erste kugelringförmige Außenkontur 28 komplementär zu der ersten kugelringförmigen Innenwandung 26 des Rotors 2 ausgebildet. Der Rotor 2 wird in dem hier vorliegenden Ausführungsbeispiel von einem Motor angetrieben, von dem lediglich dessen Antriebswelle 30 dargestellt ist. Die Antriebswelle 30 greift in eine am Rotor 2 ausgebildete Bohrung 31 ein. Der Rotor 2 sowie der Gegenrotor 4 werden gemeinsam von einem ersten Gehäuse 32 umgeben. Das erste Gehäuse 32 ist stirnseitig durch einen ersten Deckel 36 fluiddicht verschlossen. Der Rotor 2 besitzt einen von der ersten kugelringförmigen Innenwandung 26 und von einer ersten Außenwandung 38 begrenzten ersten Wandbereich 40. Hierbei ist die erste Außenwandung 38 als ein erster gerader Kreiszylinder 44 ausgebildet. Das erste Gehäuse 32 besitzt eine erste Gehäuseinnenwandung 42, die im Bereich des Rotors 2 als ein zweiter gerader Kreiszylinder 46 ausgeformt ist. Hierbei wird der erste gerade Kreiszylinder 44 von dem zweiten geraden Kreiszylinder 46 umschlossen. An dem Rotor 2 ist ein sich in einer von der ersten Verzahnung 8 abgewandten Richtung erstreckender Rotorschaft 54 angeformt, wobei der Rotorschaft 54 von einem Wälzlager 34 aufgenommen ist, welches sich an dem ersten Gehäuse 32 abstützt. Somit ist der Rotor 2 gegenüber dem ersten Gehäuse 32 drehbar gelagert. Eine Drehbarkeit des Gegenrotors 4 wird dadurch erreicht, dass der Deckel 36 mit einer Lageraufnahme 48 versehen ist, die die Form eines fünften geraden Kreiszylinders 50 besitzt. An dem Gegenrotor 4 ist ein sich in einer von der zweiten Verzahnung 16 abgewandten Richtung erstreckender Gegenrotorschaft 52 angeformt, der durch wenigstens ein weiteres Wälzlager 34, in dem hier vorliegenden Fall durch zwei Wälzlager 34, aufgenommen ist. Die beiden Wälzlager 34 stützen sich in der Lageraufnahme 48 des Deckels 36 ab, wobei der Deckel 36 drehfest mit dem Gehäuse 32 verbunden ist. Ein sich zwischen der ersten Außenwandung 38 des Rotors 2 und der ersten Gehäuseinnenwandung 42 des Gehäuses 32 ausbildender erster Spalt 55 ist so gering, dass über einen im Gehäuse 32 integrierten Zuführkanal 56 flüssiges oder gasförmiges Medium dem wenigstens einen Arbeitsraum 24 zugeführt werden kann, ohne dass sich das zugeführte Medium mit dem verdichteten abzuführenden Medium mischt, das dem Arbeitsraum 24 mittels eines in dem Gehäuse 32 ausgebildeten Abführkanals 58 entnommen wird. Der Arbeitsraum 24 ist zum einen begrenzt durch den ersten 10 und zweiten Zahn 18 sowie die erste 12 und zweite Zahnlücke 20. Zum anderen ist der Arbeitsraum 24 begrenzt durch eine an dem Gegenrotor 4 symmetrisch zu dessen Drehachse II ausgebildete Kugelkappe 59, die in Eingriff mit einer an dem Rotor 2 symmetrisch zu dessen Drehachse I angeordneten und zur Kugelkappe 59 komplementär ausgeformten Stützfläche 61 steht, sowie durch die erste kugelringförmige Innenwandung 26 des Rotors 2. Gemäß der beanspruchten Erfindung ist die Stützfläche 61 aber im Gegenrotor 4 und die Kugelkappe 59 im Rotor 2 ausgebildet, so wie dies in Figur 3 dargestellt ist. Fig. 1 shows a rotary piston machine which does not fall within the scope of the claim but is useful for the description and understanding of the invention and which operates as a pump, compressor or motor with a rotor 2 and a counter rotor 4, the rotor 2 being arranged opposite the counter rotor 4. The rotor 2 has on its first end face 6 a first toothing 8, which in the present case is designed as a cycloid toothing, but can also be, for example, a trochoidal toothing. The first toothing 8 is formed by at least one first tooth 10 and at least one first tooth gap 12. The counter rotor 4 has a second toothing 16 on its second end face 14. The second toothing 16 is formed by at least one second tooth 18 and at least one second tooth gap 20 formed. The two toothings 8, 16 are in engagement with one another in such a way that working spaces 24 are formed by meshing the teeth 10, 18. Furthermore, the rotor 2 has a first axis of rotation I and the counter-rotor 4 has a second axis of rotation II. The first axis of rotation I and the second axis of rotation II enclose an angle ϕ that is not equal to 0 °. By combing the teeth 10, 18, volumes formed by the first working spaces 24 are changed. The rotor 2 has a first spherical ring-shaped inner wall 26. The counter rotor 4 has a first spherical ring-shaped outer contour 28. The first spherical ring-shaped outer contour 28 is complementary to the first spherical ring-shaped inner wall 26 of the rotor 2. In the present exemplary embodiment, the rotor 2 is driven by a motor, of which only its drive shaft 30 is shown. The drive shaft 30 engages in a bore 31 formed on the rotor 2. The rotor 2 and the counter rotor 4 are jointly surrounded by a first housing 32. The first housing 32 is closed in a fluid-tight manner at the end by a first cover 36. The rotor 2 has a first wall area 40 delimited by the first spherical inner wall 26 and by a first outer wall 38. The first outer wall 38 is designed as a first straight circular cylinder 44. The first housing 32 has a first housing inner wall 42, which is shaped as a second straight circular cylinder 46 in the area of the rotor 2. Here, the first straight circular cylinder 44 is enclosed by the second straight circular cylinder 46. A rotor shaft 54 extending in a direction facing away from the first toothing 8 is integrally formed on the rotor 2, the rotor shaft 54 being received by a roller bearing 34 which is supported on the first housing 32. The rotor 2 is thus rotatably supported with respect to the first housing 32. The counter-rotor 4 can be rotated in that the cover 36 is provided with a bearing receptacle 48 which has the shape of a fifth straight circular cylinder 50. A counter-rotor shaft 52 extending in a direction facing away from the second toothing 16 is integrally formed on the counter-rotor 4 and is received by at least one further roller bearing 34, in the present case by two roller bearings 34. The two roller bearings 34 are supported in the bearing receptacle 48 of the cover 36, the cover 36 being non-rotatably connected to the housing 32. A first gap 55 which forms between the first outer wall 38 of the rotor 2 and the first inner wall 42 of the housing 32 is so small that liquid or gaseous medium can be fed to the at least one working space 24 via a feed channel 56 integrated in the housing 32 without the supplied medium mixes with the compressed medium to be discharged, which is removed from the working space 24 by means of a discharge channel 58 formed in the housing 32. The working space 24 is delimited on the one hand by the first 10 and second tooth 18 and the first 12 and second tooth gap 20 a support surface 61 arranged on the rotor 2 symmetrically to its axis of rotation I and shaped complementary to the spherical cap 59, as well as through the first spherical inner wall 26 of the rotor 2. According to the claimed invention, however, the support surface 61 is in the counter rotor 4 and the spherical cap 59 in the rotor 2, as shown in Figure 3 is shown.

Ein zu verdichtendes Fluid wird über den Zuführkanal 56 den sich öffnenden Arbeitsräumen 24 zugeführt und mittels sich schließender Arbeitsräume 24 verdichtet. Das verdichtete Fluid wird mittels des Abführkanals 58 den Arbeitsräumen 24 entnommen und einem hier nicht dargestellten Verbraucher zugeführt.A fluid to be compressed is supplied to the opening working spaces 24 via the supply channel 56 and is compressed by means of closing working spaces 24. The compressed fluid is removed from the working spaces 24 by means of the discharge channel 58 and fed to a consumer, not shown here.

Fig. 2 zeigt den aus Fig. 1 bekannten Rotor 2 und Gegenrotor 4 in einer 3D-Ansicht. Deutlich sichtbar ist die als zweiter gerader Kreiszylinder 44 ausgeformte erste Außenwandung 38. Hierbei ist in dem ersten Wandbereich 40 quer zu der ersten Drehachse I wenigstens eine erste Steueröffnung 60 ausgebildet. Diese erste Steueröffnung 60 ist in dem hier vorliegenden Ausführungsbeispiel als eine senkrecht auf die erste Drehachse I stehende Bohrung ausgebildet. Diese wenigstens eine erste Steueröffnung 60 kann auch als Langloch ausgebildet sein, das entweder längs der oder quer zur ersten Drehachse I verläuft. Durch diese wenigstens eine erste Steueröffnung 60 gelangt das über den Zuführkanal 56 zugeführte Fluid in den wenigstens einen ersten Arbeitsraum 24, um nach dem Verdichtungsvorgang diesem wenigstens einen Arbeitsraum 24 über die wenigstens eine erste Steueröffnung 60 mittels des Abführkanals 58 entnommen zu werden. Fig. 2 shows the off Fig. 1 known rotor 2 and counter rotor 4 in a 3D view. The first outer wall 38, shaped as a second straight circular cylinder 44, is clearly visible. At least one first control opening 60 is formed in the first wall region 40 transversely to the first axis of rotation I. In the present exemplary embodiment, this first control opening 60 is designed as a bore perpendicular to the first axis of rotation I. This at least one first control opening 60 can also be designed as an elongated hole which runs either along or transversely to the first axis of rotation I. The fluid supplied via the supply channel 56 passes through this at least one first control opening 60 into the at least one first working chamber 24 in order to be removed from this at least one working chamber 24 via the at least one first control opening 60 by means of the discharge channel 58 after the compression process.

Fig. 3 zeigt ein Ausführungsbeispiel der Drehkolbenmaschine im Längsschnitt. Der Hauptunterschied gegenüber dem in Fig. 1 beschriebenen Beispiel besteht darin, dass der Gegenrotor 4 eine zweite kugelringförmige Innenwandung 62 und der Rotor 2 eine zweite kugelringförmige Außenkontur 64 besitzt. Hierbei ist die zweite kugelringförmige Außenkontur 64 komplementär zu der zweiten kugelringförmigen Innenwandung 62 ausgebildet. Weiterhin ist die zweite kugelringförmige Innenwandung 62 des Gegenrotors 4 um einen Umklammerungsbereich 65 verlängert. Dieser Umklammerungsbereich 65 umgreift die zweite sich zum Rotorschaft 54 hin verjüngende zweite kugelringförmige Außenkontur 64 des Rotors 2. Dieser Umklammerungsbereich 65 ist ebenfalls komplementär zu der zweiten kugelringförmigen Innenwandung 62 des Gegenrotors 4 ausgebildet. Durch das Umklammern oder Umfassen ist der Rotor 2 in den Gegenrotor 4 eingepasst und umgekehrt. Anders ausgedrückt ist ein sich an einem Eingang 67 zu der zweiten kugelringförmigen Innenwandung 62 ausbildender erster Durchmesser d kleiner als ein zweiter größter Durchmesser D der kugelringförmigen Außenwandung 62. Wenn der Rotor 2 und der Gegenrotor 4 montiert sind, können aufgrund der Umklammerung durch den Umklammerungsbereich 65 die beiden Rotoren 2, 4 nicht oder nur unter einer erhöhten Kraft, die entlang der ersten I und zweiten Drehachse II aufgebracht werden müsste, getrennt werden. Hierbei wird die erhöhte Kraft durch das auf einem Enddruck verdichtete Fluid nicht erreicht, so dass das verdichtete Fluid den Rotor 2 und/oder den Gegenrotor 4 nicht soweit auseinander drücken kann, dass der Rotor 2 und/oder Gegenrotor 4 den Umklammerungsbereich 65 verlässt. Der Rotor 2 und der Gegenrotor 4 sind von einem zweiten Gehäuse 66 umgeben, welches stirnseitig durch einen zweiten Deckel 74 drehfest und fluiddicht verschlossen ist. Der Rotor 2 ist an seinem Rotorschaft 54 in einem ersten Gleitlager 68 gelagert, wobei sich das Gleitlager 68 am zweiten Gehäuse 66 abstützt. Das Gleitlager 68 nimmt auf den Rotor 2 wirkenden Radial- und Axialkräfte auf. Der Gegenrotor 4 besitzt einen von der zweiten kugelringförmigen Innenwandung 62 und einer zweiten Außenwandung 76 begrenzten zweiten Wandbereich 78. Die zweite Außenwandung 76 ist als ein dritter gerader Kreiszylinder 82 ausgebildet. Das zweite Gehäuse 66 weist eine zweite Gehäuseinnenwandung 80 auf, die zumindest in einem Teilbereich des Gegenrotors 4 die Form eines vierten geraden Kreiszylinders 84 besitzt. Hierbei ist der dritte gerade Kreiszylinder 82 von dem vierten geraden Kreiszylinder 84 umschlossen. Der zweite Wandbereich 78 ist in einem als zweites Gleitlager 70 ausgebildeten Radiallager angeordnet, wobei sich das zweite Gleitlager 70 an der zweiten Gehäuseinnenwandung 80 abstützt. Weiterhin ist an dem zweiten Wandbereich 78 auf einer der zweiten Verzahnung 16 abgewandten Seite eine Stirnfläche 88 ausgebildet. An einer Innenseite des zweiten Deckels 74 ist eine Lageraufnahme 86 ausgeformt, die ein als drittes Gleitlager 72 ausgebildetes Axiallager aufnimmt. In der Regel werden die auf den Gegenrotor 4 wirkenden Axialkräfte durch die Umklammerung des Umklammerungsbereichs 65 aufgenommen. Sollte beispielsweise aufgrund einer Betriebsstörung ein Anstieg der Axialkräfte über ein vorbestimmtes Maß hinaus erfolgen, können diese Axialkräfte über die Stirnfläche 88 des Gegenrotors 4 in das Gleitlager 72 eingeleitet werden. Fig. 3 shows an embodiment of the rotary piston machine in longitudinal section. The main difference from the in Fig. 1 described example consists in that the counter rotor 4 has a second spherical ring-shaped inner wall 62 and the rotor 2 has a second spherical ring-shaped outer contour 64. Here, the second spherical ring-shaped outer contour 64 is designed to be complementary to the second spherical ring-shaped inner wall 62. Furthermore, the second spherical ring-shaped inner wall 62 of the counter-rotor 4 is extended by a clasping area 65. This clasping area 65 surrounds the second, second spherical outer contour 64 of the rotor 2, which tapers toward the rotor shaft 54. This clasping area 65 is also designed to be complementary to the second spherical inner wall 62 of the counter-rotor 4. By clasping or embracing, the rotor 2 is fitted into the counter-rotor 4 and vice versa. In other words, a first diameter d forming at an inlet 67 to the second spherical ring-shaped inner wall 62 is smaller than a second largest diameter D of the spherical ring-shaped outer wall 62 Rotor 2 and the counter rotor 4 are mounted, the two rotors 2, 4 cannot be separated or only with an increased force that would have to be applied along the first I and second axis of rotation II due to the clasping by the clasping area 65. In this case, the increased force is not achieved by the fluid compressed to a final pressure, so that the compressed fluid cannot push the rotor 2 and / or the counter rotor 4 apart to such an extent that the rotor 2 and / or the counter rotor 4 leaves the clasping area 65. The rotor 2 and the counter-rotor 4 are surrounded by a second housing 66, which is closed on the end face by a second cover 74 in a rotationally fixed and fluid-tight manner. The rotor 2 is mounted on its rotor shaft 54 in a first slide bearing 68, the slide bearing 68 being supported on the second housing 66. The slide bearing 68 absorbs radial and axial forces acting on the rotor 2. The counter rotor 4 has a second wall region 78 delimited by the second spherical ring-shaped inner wall 62 and a second outer wall 76. The second outer wall 76 is designed as a third straight circular cylinder 82. The second housing 66 has a second housing inner wall 80 which, at least in a partial area of the counter-rotor 4, has the shape of a fourth straight circular cylinder 84. Here, the third straight circular cylinder 82 is enclosed by the fourth straight circular cylinder 84. The second wall area 78 is arranged in a radial bearing designed as a second slide bearing 70, the second slide bearing 70 being supported on the second inner wall 80 of the housing. Furthermore, an end face 88 is formed on the second wall region 78 on a side facing away from the second toothing 16. A bearing receptacle 86 is formed on an inner side of the second cover 74 and receives an axial bearing designed as a third slide bearing 72. As a rule, the axial forces acting on the counter rotor 4 are absorbed by the clasping of the clasping area 65. If, for example, the axial forces should rise above a predetermined amount due to a malfunction, these axial forces can be introduced into the slide bearing 72 via the end face 88 of the counter-rotor 4.

Im Betrieb sind der Rotor 2 und der Gegenrotor 4 auf ein vorbestimmtes zweites Spaltmaß 69 voneinander beabstandet. Dies wird dadurch erreicht, dass eine Teilmenge des verdichteten Fluids auf die Stirnfläche 88 des Gegenrotors 4 geleitet wird. Somit wird die Kraft, die das Fluid während des Verdichtens auf den Rotor 2 und den Gegenrotor 4 dadurch kompensiert, dass die Stirnfläche 88 des Gegenrotors 4 ebenfalls mit einer Kraft beaufschlagt ist. Während der Anlaufphase steht noch kein verdichtetes Fluid zur Verfügung, dessen Druck auf die Stirnfläche 88 gelenkt werden könnte. Somit kann das zu verdichtende Fluid während des Verdichtungsvorganges den Gegenrotor 4 über das vorbestimmte zweite Spaltmaß 69 hinaus von dem Rotor 2 wegdrücken. Um nun einen konstanten Betriebszustand zu erreichen, dauert es etliche Umdrehungen des Rotors 2, bis ein vorbestimmter Enddruck des Fluids erreicht werden kann. Die Umklammerung in dem Umklammerungsbereich 65 verhindert, dass während des Anlaufens der Drehkolbenmaschine das Fluid während des Verdichtungsvorganges den Gegenrotor 4 über das vorbestimmte zweite Spaltmaß hinaus von dem Rotor 2 wegdrückt. Somit wird bereits nach wenigen Umdrehungen des Rotors 2 ein stabiler Betriebszustand erreicht, bei dem das verdichtete Fluid seinen vorbestimmten Enddruck erhalten hat. Somit bewirkt die Umklammerung, dass das Fluid in kürzerer Zeit seinen Enddruck erreicht als dies ohne Umklammerung der Fall wäre.In operation, the rotor 2 and the counter rotor 4 are spaced apart from one another by a predetermined second gap dimension 69. This is achieved in that a portion of the compressed fluid is directed onto the end face 88 of the counter-rotor 4. Thus, the force that the fluid exerts on the The rotor 2 and the counter rotor 4 are compensated by the fact that the end face 88 of the counter rotor 4 is also acted upon by a force. During the start-up phase, there is still no compressed fluid available, the pressure of which could be directed onto the end face 88. The fluid to be compressed can thus push the counter rotor 4 away from the rotor 2 beyond the predetermined second gap dimension 69 during the compression process. In order to achieve a constant operating state, it takes several revolutions of the rotor 2 until a predetermined final pressure of the fluid can be reached. The clasping in the clasping area 65 prevents the fluid from pushing the counter-rotor 4 away from the rotor 2 beyond the predetermined second gap dimension during the start-up of the rotary piston machine during the compression process. Thus, after just a few revolutions of the rotor 2, a stable operating state is achieved in which the compressed fluid has received its predetermined final pressure. Thus, the clasp has the effect that the fluid reaches its final pressure in a shorter time than would be the case without the clasp.

Die Zufuhr und die Abfuhr des Fluids kann hierbei derart erfolgen, wie es in Fig. 2 beschrieben worden ist. Jedoch erfolgt im beanspruchten Ausführungsbeispiel die Zu- und Abfuhr des Fluids in axialer Richtung entlang der zweiten Drehachse II. Dies soll in den Figuren 4 und 5 näher erläutert werden.The supply and discharge of the fluid can take place here as it is in FIG Fig. 2 has been described. However, in the embodiment claimed, the fluid is supplied and discharged in the axial direction along the second axis of rotation II Figures 4 and 5 are explained in more detail.

Fig. 4 zeigt die Komponenten der Fig. 3 als eine 3D-Explosionszeichnung dargestellt. Fig. 5 zeigt diese Komponenten im Längsschnitt. Ein zu verdichtendes Fluid wird über eine in dem zweiten Deckel 74 parallel zu der zweiten Drehachse II angeordneten Eintrittsöffnung 90 den Arbeitsräumen 24 zugeführt. Hierbei durchfließt das Fluid eine in dem dritten Gleitlager 72 integrierte zweite Eintrittssteueröffnung 92 und im Anschluss in der Stirnfläche 88 ausgebildete dritte Eintrittssteueröffnungen 94, die mit wenigstens einem hier nicht dargestellten Eintrittssteuerkanal fluidkommunizierend verbunden ist, wobei der Eintrittssteuerkanal mit wenigstens einer in einer zweiten Zahnflanke 22 der zweiten Verzahnung 16 ausgeformten Öffnung 104 fluidkommunizierend verbunden ist. Diese Öffnung 104 kann auch in der zweiten Zahnlücke 20 der zweiten Verzahnung 16 ausgebildet sein. Das zu verdichtende Medium tritt durch diese Öffnungen 104 in die sich öffnenden Arbeitsräume 24 ein. Nachdem das Fluid verdichtet worden ist, wird dieses über wenigstens eine weitere Öffnung 104, die mittels eines hier nicht sichtbaren Austrittssteuerkanals mit wenigstens einer dritten Austrittssteueröffnungen 96 verbunden ist, über eine in dem dritten Gleitlager 72 ausgebildete zweite Austrittssteueröffnung 98 und eine in dem zweiten Deckel 74 zu der Eintrittsöffnung 90 parallel ausgebildete Austrittsöffnung 102 aus der Drehkolbenmaschine abgeführt. Damit das Fluid in der Drehkolbenmaschine verdichtet werden kann, weist das zugeführte Fluid innerhalb der Drehkolbenmaschine im Wesentlichen keine Verbindung zu dem abgeführten Fluid auf. Daher ist die zweite Eintrittssteueröffnung 92 von der zweiten Austrittssteueröffnung 98 mittels Stege 100, die in dem dritten Gleitlager 72 integriert sind, getrennt. Fig. 4 shows the components of the Fig. 3 shown as a 3D exploded view. Fig. 5 shows these components in longitudinal section. A fluid to be compressed is fed to the working spaces 24 via an inlet opening 90 arranged in the second cover 74 parallel to the second axis of rotation II. Here, the fluid flows through a second inlet control opening 92 integrated in the third slide bearing 72 and subsequently formed in the end face 88 third inlet control openings 94 which are connected in a fluid-communicating manner to at least one inlet control channel (not shown here), the inlet control channel with at least one in a second tooth flank 22 of the second toothing 16 formed opening 104 is connected in fluid communication. This opening 104 can also be formed in the second tooth gap 20 of the second toothing 16. The medium to be compressed enters the opening working spaces 24 through these openings 104. After the fluid has been compressed, this is via at least one further opening 104, which is connected to at least one third outlet control opening 96 by means of an outlet control channel (not visible here), is discharged from the rotary piston engine via a second outlet control opening 98 formed in the third slide bearing 72 and an outlet opening 102 formed parallel to the inlet opening 90 in the second cover 74. So that the fluid can be compressed in the rotary piston machine, the supplied fluid has essentially no connection to the discharged fluid within the rotary piston machine. The second inlet control opening 92 is therefore separated from the second outlet control opening 98 by means of webs 100 which are integrated in the third slide bearing 72.

Claims (1)

  1. Rotary piston machine operating as a pump, compressor or motor,
    - having a rotor (2) and a counter rotor (4), wherein the counter rotor (4) is arranged facing the rotor (2),
    - wherein the rotor (2) has a first face surface (6) with a first toothing (8), wherein the counter rotor (4) has a second face surface (14) with a second toothing (16), and wherein the first toothing (8) and the second toothing (16) are each formed from at least one tooth (10, 18) and one tooth space (12, 20),
    - wherein the toothings (8, 16) engage with one another such that meshing of the teeth (10) of the first toothing (8) and of the teeth (18) of the second toothing (16) causes working chambers (24) to be formed, wherein volumes formed by the working chambers (24) are varied by the meshing of the teeth (10, 18),
    - wherein the rotor (2) has a first axis of rotation (I), wherein the counter rotor (4) has a second axis of rotation (II), wherein the first axis of rotation (I) and the second axis of rotation (II) enclose an angle (ϕ) that differs from 0°,
    - wherein the counter rotor (4) has a first spherical ring-shaped internal wall (62), and the rotor (2) has a first spherical ring-shaped external contour (64), which is formed in a complementary manner with respect to the first spherical ring-shaped internal wall (62) of the counter rotor (4),
    - wherein the counter rotor (4) has a wall region (78) which is delimited by the first spherical ring-shaped internal wall (62) and an external wall (76), wherein the external wall (76) is in the form of a rectilinear circular cylinder (82), wherein a housing (66) in which the counter rotor (4) is rotatably mounted has a housing internal wall (80) which, at least in a partial region of the counter rotor (4), is in the form of a rectilinear circular cylinder (84), wherein the rectilinear circular cylinder (82) is at least partially enclosed by the rectilinear circular cylinder (84),
    characterized in that
    - the wall region (78) is arranged in a radial bearing (70), wherein the radial bearing (70) is supported on the housing internal wall (80),
    - wherein a face side (88) is formed on the wall region (78) on a side facing away from the second toothing (16), wherein the second housing (66) is closable on the face side by a cover (74) for rotation therewith, wherein an axial bearing (72) is arranged between the cover (74) and the face side (88),
    - wherein the cover (74) has at least one inlet opening (90) arranged parallel to the second axis of rotation (II) of the counter rotor (4), the axial bearing (72) has at least one inlet control opening (92) and the face surface (88) has at least one inlet control opening (94), wherein a medium which is to be transported can be supplied through the inlet opening (90), the inlet control opening (92) and the inlet control opening (94),
    - wherein the cover (74) has an outlet opening (102) parallel to the inlet opening (90), the axial bearing (72) has an outlet control opening (98) parallel to the inlet control opening (92), and the face surface (88) of the counter rotor (4) has at least one outlet control opening (96) parallel to the inlet control opening (94), wherein a medium which is to be transported can be conducted away through the at least one outlet control opening (96), the outlet control opening (98) and the outlet opening (102),
    - wherein the inlet control opening (92) is separated from the outlet control opening (98) by means of webs (100) which are integrated in the axial bearing (72).
EP11768006.6A 2010-12-20 2011-10-12 Rotary piston machine operating as a pump, a compressor or a motor Active EP2655801B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010063522A DE102010063522A1 (en) 2010-12-20 2010-12-20 Pump, compressor or motor
PCT/EP2011/067783 WO2012084289A2 (en) 2010-12-20 2011-10-12 Pump, compressor, or motor

Publications (2)

Publication Number Publication Date
EP2655801A2 EP2655801A2 (en) 2013-10-30
EP2655801B1 true EP2655801B1 (en) 2020-12-30

Family

ID=44789470

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11768006.6A Active EP2655801B1 (en) 2010-12-20 2011-10-12 Rotary piston machine operating as a pump, a compressor or a motor

Country Status (3)

Country Link
EP (1) EP2655801B1 (en)
DE (1) DE102010063522A1 (en)
WO (1) WO2012084289A2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015139554A1 (en) * 2014-03-18 2015-09-24 西安正安环境技术有限公司 Anti-locking mechanism of spherical compressor rotor, anti-locking power mechanism of spherical compressor, and spherical compressor
DE102020124825A1 (en) 2020-09-23 2022-03-24 Kolektor Group D.O.O. motor-pump unit
DE102021103306A1 (en) 2021-02-12 2022-08-18 Kolektor Group D.O.O. Hand-held hydraulic fluid device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US758214A (en) * 1902-04-09 1904-04-26 Jens Nielsen Rotary motor.
FR374153A (en) * 1907-02-02 1907-06-06 Albert Keller Dorian Rotary pump which can also be used as a compressor or rotary motor, either for liquids or for fluids
DE1551081A1 (en) * 1967-06-06 1970-04-16 Walter Bietzig Rotary ball machine
DE3221994A1 (en) * 1982-06-11 1983-12-15 Rudi 2000 Hamburg Werner Rotary piston machine
US5513969A (en) 1991-12-09 1996-05-07 Arnold; Felix Rotary piston machine having engaging cycloidal gears
US5755196A (en) * 1995-03-09 1998-05-26 Outland Design Technologies, Inc. Rotary positive displacement engine
US6497564B2 (en) * 2000-01-07 2002-12-24 James B. Klassen Balanced rotors positive displacement engine and pump method and apparatus
US20100104462A1 (en) * 2007-03-13 2010-04-29 Cor Pumps + Compressors Ag Pump or motor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
WO2012084289A3 (en) 2013-05-10
WO2012084289A2 (en) 2012-06-28
EP2655801A2 (en) 2013-10-30
DE102010063522A1 (en) 2012-06-21

Similar Documents

Publication Publication Date Title
EP1292773A1 (en) Pump
WO2000039465A1 (en) Pump assembly comprising two hydraulic pumps
EP1828611A1 (en) Vane pump
WO2009092719A2 (en) Variable-volume internal gear pump
EP2655801B1 (en) Rotary piston machine operating as a pump, a compressor or a motor
DE19952167A1 (en) Pump arrangement with two hydraulic pumps
WO2007039405A1 (en) Vane pump
EP2672119B1 (en) Geared machine with hydrodynamic and hydrostatic bearing pins
EP1664540B1 (en) Rotating piston machine
WO2005024237A1 (en) Rotating piston machine
EP2625386B1 (en) Pump, compressor or motor, multi-stage or multi-channel
EP0509077B1 (en) Piston pump, especially a radial piston pump
EP2655802B1 (en) Gear machine with a small diameter-to-length ratio
EP1211419A2 (en) Device for pumping fluids, especially fuel
WO2020020902A1 (en) Fluid delivery device
DE4008522A1 (en) WING CELL COMPRESSORS
DE102006060433B4 (en) Vane pump
DE102014105613A1 (en) Vane pump with adjustable delivery volume
DE2418032C3 (en)
WO2014048587A1 (en) Camshaft adjuster
WO2009019101A1 (en) Positive-displacement pump
EP2655803B1 (en) Multi-stage or multi-channel pump, compressor or motor
DE102006036439A1 (en) Conveying unit e.g. roller vane pump, has pressure channel loading rear groove chamber with pressure at outlet during zero to five degree rotation of rotor from point of time at which working chamber is not connected with inlet
DE102014211624A1 (en) Internal gear motor with Hohlradaussparung
WO2009049879A2 (en) Hydraulic motor in an annular ring design with a distributor plate which is integrated into the rotor housing

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20131111

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20171128

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ROBERT BOSCH GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200925

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011017027

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1350099

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210330

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20201230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210430

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210430

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011017027

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

26N No opposition filed

Effective date: 20211001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210430

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20211031

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20211012

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211012

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211012

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211012

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211012

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1350099

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211012

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211012

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20111012

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231031

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231218

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230