EP2653658A1 - Guide blade assembly for an axial flow machine and method for laying the guide blade assembly - Google Patents

Guide blade assembly for an axial flow machine and method for laying the guide blade assembly Download PDF

Info

Publication number
EP2653658A1
EP2653658A1 EP12164299.5A EP12164299A EP2653658A1 EP 2653658 A1 EP2653658 A1 EP 2653658A1 EP 12164299 A EP12164299 A EP 12164299A EP 2653658 A1 EP2653658 A1 EP 2653658A1
Authority
EP
European Patent Office
Prior art keywords
axial flow
flow machine
vane
blades
guide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP12164299.5A
Other languages
German (de)
French (fr)
Inventor
Christoph Hermann Dr. Richter
Heinrich Dr. Stüer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP12164299.5A priority Critical patent/EP2653658A1/en
Priority to IN7604DEN2014 priority patent/IN2014DN07604A/en
Priority to JP2015506171A priority patent/JP6165841B2/en
Priority to PL13717223T priority patent/PL2805017T3/en
Priority to PCT/EP2013/057170 priority patent/WO2013156322A1/en
Priority to CN201380020389.XA priority patent/CN104246137B/en
Priority to EP13717223.5A priority patent/EP2805017B1/en
Priority to US14/391,876 priority patent/US9951648B2/en
Publication of EP2653658A1 publication Critical patent/EP2653658A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/04Antivibration arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/141Shape, i.e. outer, aerodynamic form
    • F01D5/142Shape, i.e. outer, aerodynamic form of the blades of successive rotor or stator blade-rows
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/10Anti- vibration means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/16Form or construction for counteracting blade vibration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/04Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector
    • F01D9/041Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector using blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/96Preventing, counteracting or reducing vibration or noise
    • F05D2260/961Preventing, counteracting or reducing vibration or noise by mistuning rotor blades or stator vanes with irregular interblade spacing, airfoil shape
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49316Impeller making
    • Y10T29/4932Turbomachine making

Definitions

  • the invention relates to a vane ring for an axial flow machine, the axial flow machine and a method for laying out the vane ring.
  • the steam turbine has a plurality of stages, each stage having a stator vane having a plurality of vanes and a rotor having a plurality of blades.
  • the blades are mounted on the shaft of the steam turbine and rotate during operation of the steam turbine, the vanes are mounted on the housing of the steam turbine and are fixed.
  • the blades can be excited to vibrate during operation of the steam turbine.
  • the oscillation is characterized in that a vibration node is arranged at the blade roots of the blades. The stress caused by the vibration is high, in particular at the blade roots, so that material fatigue can occur at the blade roots, which necessitates a cost-intensive replacement of the guide blades.
  • a flow channel is formed through which the steam flows during operation of the steam turbine.
  • the velocity distribution of the flow downstream of the vane ring has local velocity minima in the region of the trailing edges of the guide vanes, which are referred to as trailing dents.
  • the follower dents can excite the blades disposed downstream of the vane ring to vibrate.
  • the invention has the object of providing a stage for an axial turbomachine, the axial turbomachine with the stage and to provide a method of laying out the step, wherein the above problems are overcome and the blades of the stage have a long life.
  • Each vane is composed of the profile sections, each profile section being assigned a threading point and all profile sections having their threading points "threaded" onto a threading line. According to the invention, there is a displacement of the at least one profile section, so that the threading point of the at least one profile section no longer lies on the original threading line.
  • the pitch angle is the angle between two connecting lines that extend from a common point on the axis of the axial flow machine and are perpendicular to the axis and terminate at corresponding points on the surfaces of the two adjacent vanes.
  • the two corresponding points are two points that are the same radial distance from the axis of the Axialströmungsmaschine have and in each case at the same points of the guide vanes, that is, for example, a point either on the pressure side, on the suction side, on the leading edge or on the trailing edge of the respective vane, are arranged.
  • the pitch angle is the nominal pitch angle 2 * II / n, with the circle number ⁇ and n of the number of vanes arranged in the vane ring.
  • the blades may be exposed to two different vibrational excitation mechanisms, namely, flutter and forced-response.
  • Fluttering is a self-excited vibration in which energy is transferred from the flow to the vibrations of the blades.
  • the flutter is excited by small blade vibrations, which may be self-energizing, so that the blade vibrates more with each successive oscillation period. This can lead to a demolition of the blades.
  • By varying the pitch angle, with two adjacent channels another flow deflection angle results, whereby the inflow from the blade ring to the blade ring is irregular over the circumference of the axial flow machine. As a result, the load on the blades changes during one revolution, whereby the flutter is advantageously reduced.
  • the forced oscillation results from periodic excitation of the blades.
  • a channel is respectively arranged, through which a fluid of the axial flow machine can be flowed.
  • the trailing shafts assigned to the two channels have a different shape and circumferential position as a result of the changing pitch angle.
  • the downstream blades submerge in the trailing shafts, whereby the blades undergo a transient flow, which leads to a vibration excitation of Can guide blades. Due to the fact that the trailing shafts are inhomogenized over the circumference, the oscillation excitation takes place unperiodically, as a result of which the forced vibrations of the rotor blades are likewise advantageously weak.
  • the displacement of the at least one profile section is preferably carried out on a displacement path, which amounts to a maximum of 10% of the extent of the channel between the two guide vanes in the circumferential direction for each of the two adjacently arranged guide vanes.
  • the profile cuts are preferably shifted in such a way that the guide blade is inclined against a guide blade arranged adjacent to it. In this case, the pitch angle varies linearly over the blade height.
  • the profile sections are preferably displaced in such a way that at least one of two adjacently arranged guide vanes is curved.
  • the pitch angle varies non-linearly over the blade height.
  • the guide vanes, in which profile sections are shifted, are preferably arranged distributed symmetrically about the axis of the axial flow machine. Thus, the downstream flow from the vane ring is symmetrical.
  • the blades are preferably designed such that none of the natural frequencies of the blades match the rotational frequency of the axial flow machine or a multiple of the rotational frequency up to and including eight times the rotational frequency.
  • the coupling can lead to an increase in an energy input from the flow into the vibrations.
  • the profile sections on a cylindrical surface or a conical surface whose axes coincide with the axis of the axial flow machine are preferably located on an S 1 flow area or in a tangential plane of the axial flow machine.
  • the S 1 flow area extends in the circumferential direction and in the axial direction of the axial flow machine and describes a surface that follows an idealized flow.
  • the method preferably has the step of: adapting the at least one profile section to the aerodynamic boundary conditions changed after shifting.
  • the stage according to the invention is designed with the method according to the invention.
  • the axial flow machine according to the invention comprises the step, in particular as the last, downstream stage of the axial flow machine.
  • the blades in the last stage of the axial flow machine are the blades with the longest radial extensions in the axial flow machine and are thus particularly susceptible to vibration excitation. An unperiodic vibration excitation of the blades is thus advantageous, especially in the last stage.
  • an axial flow machine 1 has a vane ring 2 and a housing 7.
  • the vane ring 2 has a plurality of guide vanes 3, 4, wherein each of the guide vanes 3, 4 has a blade root 5, a blade tip 6, a pressure side 9 and a suction side 10.
  • Each of the vanes 3, 4 is with its blade tip 6 on the housing and with her Blade foot 5 fixedly attached to a hub ring 8.
  • a channel 14 is formed, in which a working fluid is flowable. Is shown in FIGS. 1 to 3 in each case the trailing edge of the guide vanes 3, 4.
  • FIG. 3 For example, a pitch angle 13 of the axial flow machine 1 is shown.
  • a surface point 15 is respectively shown on the trailing edges of the guide vanes 3, 4.
  • the two surface points 15 have the same distance from the axis 11 of the axial flow machine 1
  • FIG. 3 two connecting lines 16 are shown, each starting from the two surface points 15, perpendicular to the axis 11 of the axial flow machine 1 and each end at the same point on the axis 11 of the axial flow machine 1.
  • the two connecting lines 16 include the pitch angle 13.
  • FIGS. 1 to 3 the vane ring 2 is shown prior to a displacement of at least one profile section and after moving the at least one profile section. Shown are in the FIGS. 1 to 3 Guide vanes 3 before moving (solid lines) and vanes 4 after moving (dashed lines).
  • the vanes 3 are characterized in that they have the same pitch angle 13 for each vane 3 and for each surface point 15, namely the nominal pitch angle 12.
  • the nominal pitch angle 12 is 2 * ⁇ / n, where n is the number of vanes 3 in FIG the vane ring 2 and ⁇ is the circle number.
  • the profile sections are shifted in such a way that the guide vanes 4 are inclined in comparison to the guide vanes 3.
  • the guide vane ring 2 after shifting each have the same pairs of adjacently arranged guide vanes 4.
  • the pairs are characterized in that the blade root 5 of the one vane 4 of the pair in a circumferential direction of the vane ring 2 and the blade tip 6 is displaced in the other circumferential direction, which is directed counter to a circumferential direction.
  • the other vane 4 of the pair is inclined against the one vane 4 of the pair, ie the vane root 5 of the other vane 4 of the pair is displaced in the other circumferential direction and the vane tip 6 of the other vane 4 is displaced in the one circumferential direction.
  • the vane ring 2 off FIG. 2 also has pairs of vanes 4.
  • the vanes 4 of the pairs are curved such that the vanes 4 have a belly.
  • a guide vane 4 of the pair has a belly in one circumferential direction and the other vane 4 of the pair has a belly in the other circumferential direction.
  • the guide vanes 4 have a plurality of bellies, which are arranged either on the same side of the guide vanes 3 in the circumferential direction or on both sides of the guide vanes 4 in the circumferential direction.
  • the pitch angle 13 varies non-linearly across the blade height.
  • the vane ring 2 completely formed from the pairs and also here it is conceivable that between two pairs one or a plurality of Guide vanes 3 is arranged. It is also conceivable that alternately a curved running vane 4 and a stator blade 3 are arranged.
  • every other of the vanes 3, 4 in the vane ring 2 is inclined relative to the respective vanes 3.
  • the thus inclined guide vanes 4 are alternately shifted with their blade roots 5 in the one circumferential direction respectively in the other circumferential direction and with their blade tips 6 alternately in the other circumferential direction respectively in the one circumferential direction.
  • the deviations of the guide vanes 4 relative to the guide vanes 3 a maximum of 10% of the available extent of the channels 14 in the circumferential direction.
  • the deviations are obtained by displacing profile sections of the guide vanes 3 in the circumferential direction.
  • the profile sections of the guide vanes 3 can lie on a cylinder surface or conical surface symmetrical about the axis 11, in a tangential plane of the axial flow machine 1 or on an S 1 flow surface.
  • FIG. 4 a longitudinal section through the axial flow machine 1 with a main flow direction 21 and with the stage 22 according to the invention is shown.
  • the step 22 includes the vane ring 2 and a blade ring 20 disposed downstream of the vane ring 2. Shown are each a vane 18 and a blade 19. Also shown is a hub 17 which rotates about the axis 11 during operation of the axial flow machine 1. The vane 18 is attached to the housing 7, the blade 19 to the hub 17.
  • a flow with an inhomogeneous velocity distribution is formed downstream of the vane ring 2.
  • the load of the blades 19 changes during one revolution, whereby a flutter of the blades 19 is advantageously reduced.
  • the method for laying out a step 22 for an axial flow machine 1 comprising a vane ring 2 and a rotor blade 20 arranged downstream of the vane ring 2 is preferably carried out as follows:

Abstract

The method involves arranging multiple guide blades (3,4) regularly around the circumference of a guide blade ring (2) in an axial flow rotary machine (1), according to aerodynamic and mechanical boundary conditions. One profile section of the blades is moved to the circumferential direction of the blade ring, such that a pitch angle of the blades varies along the height of multiple blades of a rotor blade ring. A downstream discharge flow of working fluid is irregularly carried out through a channel (14) formed between the blades, such that oscillation excitation of the blades is low.

Description

Die Erfindung betrifft einen Leitschaufelkranz für eine Axialströmungsmaschine, die Axialströmungsmaschine und ein Verfahren zum Auslegen des Leitschaufelkranzes.The invention relates to a vane ring for an axial flow machine, the axial flow machine and a method for laying out the vane ring.

In einer Dampfturbine wird zur Erzeugung von Rotationsenergie Wasserdampf entspannt. Die Dampfturbine weist eine Mehrzahl von Stufen auf, wobei jede Stufe einen Leitschaufelkranz mit einer Mehrzahl an Leitschaufeln und einen Laufschaufelkranz mit einer Mehrzahl an Laufschaufeln aufweist. Die Laufschaufeln sind an der Welle der Dampfturbine angebracht und rotieren im Betrieb der Dampfturbine, die Leitschaufeln sind an dem Gehäuse der Dampfturbine angebracht und stehen fest. Die Schaufeln können im Betrieb der Dampfturbine zu einer Schwingung angeregt werden. Die Schwingung zeichnet sich dadurch aus, dass an den Schaufelfüßen der Schaufeln ein Schwingungsknoten angeordnet ist. Die Spannungsbelastung durch die Schwingung ist insbesondere an den Schaufelfüßen hoch, so dass es an den Schaufelfüßen zu einer Materialermüdung kommen kann, welche einen kostenintensiven Tausch der Leitschaufeln erforderlich macht.Steam is released in a steam turbine to generate rotational energy. The steam turbine has a plurality of stages, each stage having a stator vane having a plurality of vanes and a rotor having a plurality of blades. The blades are mounted on the shaft of the steam turbine and rotate during operation of the steam turbine, the vanes are mounted on the housing of the steam turbine and are fixed. The blades can be excited to vibrate during operation of the steam turbine. The oscillation is characterized in that a vibration node is arranged at the blade roots of the blades. The stress caused by the vibration is high, in particular at the blade roots, so that material fatigue can occur at the blade roots, which necessitates a cost-intensive replacement of the guide blades.

Zwischen jeweils zwei benachbart angeordneten Leitschaufeln ist ein Strömungskanal ausgebildet, durch welchen im Betrieb der Dampfturbine der Wasserdampf strömt. Die Geschwindigkeitsverteilung der Strömung stromab des Leitschaufelkranzes weist im Bereich der Hinterkanten der Leitschaufeln lokale Geschwindigkeitsminima auf, die als Nachlaufdellen bezeichnet werden. Die Nachlaufdellen können die dem Leitschaufelkranz stromab angeordneten Laufschaufeln zu der Schwingung anregen.Between each two adjacently arranged guide vanes, a flow channel is formed through which the steam flows during operation of the steam turbine. The velocity distribution of the flow downstream of the vane ring has local velocity minima in the region of the trailing edges of the guide vanes, which are referred to as trailing dents. The follower dents can excite the blades disposed downstream of the vane ring to vibrate.

Der Erfindung liegt die Aufgabe zugrunde, eine Stufe für eine Axialturbomaschine, die Axialturbomaschine mit der Stufe und ein Verfahren zum Auslegen der Stufe zu schaffen, wobei die oben genannten Probleme überwunden sind und die Laufschaufeln der Stufe eine lange Lebensdauer haben.The invention has the object of providing a stage for an axial turbomachine, the axial turbomachine with the stage and to provide a method of laying out the step, wherein the above problems are overcome and the blades of the stage have a long life.

Das erfindungsgemäße Verfahren zum Auslegen einer Stufe für eine Axialströmungsmaschine aufweisend einen Leitschaufelkranz und einen dem Leitschaufelkranz stromab angeordneten Laufschaufelkranz weist folgende Schritte auf: Profilieren eines Leitschaufelkranzes mit regelmäßig über den Umfang des Leitschaufelkranzes angeordneten Leitschaufeln gemäß aerodynamischer und mechanischer Randbedingungen; Verschieben von mindestens einem Profilschnitt von mindestens einer der Leitschaufeln in Umfangsrichtung derart, dass der Teilungswinkel für die mindestens eine Leitschaufel und einer ihr benachbart angeordneten Leitschaufel derart über die Schaufelhöhe variiert, dass im Betrieb der Axialströmungsmaschine die dem Leitschaufelkranz stromab ausgebildete Abströmung derart unregelmäßig über den Umfang der Axialströmungsmaschine ausgebildet ist, dass die Schwingungsanregung der Laufschaufeln des Laufschaufelkranzes gering ist.The method for laying out a step for an axial flow machine comprising a vane ring and a blade ring arranged downstream of the guide vane ring comprises the steps of: profiling a vane ring with regularly arranged along the circumference of the vane ring according to aerodynamic and mechanical constraints; Displacing at least one profile section of at least one of the vanes in the circumferential direction such that the pitch angle for the at least one vane and a vane adjacent thereto varies over the vane height such that during operation of the axial flow machine the outflow formed downstream of the vane ring is so irregular about the circumference is formed of the axial flow machine, that the vibration excitation of the blades of the blade ring is low.

Bei der Profilierung werden verschiedene Profilschnitte gemäß der Randbedingungen ausgelegt. Jede Leitschaufel setzt sich aus den Profilschnitten zusammen, wobei jedem Profilschnitt ein Fädelpunkt zugewiesen wird und alle Profilschnitte mit ihren Fädelpunkten auf einer Fädellinie "aufgefädelt" sind. Gemäß der Erfindung erfolgt eine Verschiebung des mindestens einen Profilschnitts, so dass der Fädelpunkt des mindestens einen Profilschnitts nicht mehr auf der ursprünglichen Fädellinie liegt.When profiling various profile sections are designed according to the boundary conditions. Each vane is composed of the profile sections, each profile section being assigned a threading point and all profile sections having their threading points "threaded" onto a threading line. According to the invention, there is a displacement of the at least one profile section, so that the threading point of the at least one profile section no longer lies on the original threading line.

Der Teilungswinkel ist der Winkel zwischen zwei Verbindungslinien, die von einem gemeinsamen Punkt auf der Achse der Axialströmungsmaschine ausgehen sowie senkrecht zu der Achse verlaufen und an entsprechenden Punkten auf den Oberflächen der beiden benachbart angeordneten Leitschaufeln enden. Bei den zwei entsprechenden Punkten handelt es sich um zwei Punkte, die den gleichen radialen Abstand von der Achse der Axialströmungsmaschine haben und jeweils an gleichen Stellen der Leitschaufeln, d.h. beispielsweise ein Punkt entweder auf der Druckseite, auf der Saugseite, auf der Vorderkante oder auf der Hinterkante der jeweiligen Leitschaufel, angeordnet sind. Bei dem Leitschaufelkranz mit regelmäßig über den Umfang angeordneten Leitschaufeln ist der Teilungswinkel der Nominalteilungswinkel 2*II/n, mit der Kreiszahl Π und n der Anzahl der in dem Leitschaufelkranz angeordneten Leitschaufeln.The pitch angle is the angle between two connecting lines that extend from a common point on the axis of the axial flow machine and are perpendicular to the axis and terminate at corresponding points on the surfaces of the two adjacent vanes. The two corresponding points are two points that are the same radial distance from the axis of the Axialströmungsmaschine have and in each case at the same points of the guide vanes, that is, for example, a point either on the pressure side, on the suction side, on the leading edge or on the trailing edge of the respective vane, are arranged. In the vane ring with regularly circumferentially arranged vanes, the pitch angle is the nominal pitch angle 2 * II / n, with the circle number Π and n of the number of vanes arranged in the vane ring.

Die Laufschaufeln können zwei verschiedenen Anregungsmechanismen für Schwingungen ausgesetzt sein, nämlich einem Flattern und einer erzwungenen Schwingung (englisch: "forced response"). Bei dem Flattern handelt es sich um eine selbsterregte Schwingung, bei der Energie von der Strömung in die Schwingungen der Laufschaufeln übertragen wird. Das Flattern wird durch kleine Schaufelschwingungen angeregt, die selbstverstärkend sein können, so dass die Schaufel mit jeder folgenden Schwingungsperiode stärker schwingt. Dies kann zu einem Abriss der Laufschaufeln führen. Dadurch, dass der Teilungswinkel variiert, ergibt sich bei zwei benachbart angeordneten Kanälen ein anderer Umlenkungswinkel der Strömung, wodurch sich die Zuströmung von dem Leitschaufelkranz zu dem Laufschaufelkranz unregelmäßig über den Umfang der Axialströmungsmaschine ausbildet. Dadurch ändert sich die Belastung der Laufschaufeln während einer Umdrehung, wodurch das Flattern vorteilhaft vermindert wird.The blades may be exposed to two different vibrational excitation mechanisms, namely, flutter and forced-response. Fluttering is a self-excited vibration in which energy is transferred from the flow to the vibrations of the blades. The flutter is excited by small blade vibrations, which may be self-energizing, so that the blade vibrates more with each successive oscillation period. This can lead to a demolition of the blades. By varying the pitch angle, with two adjacent channels, another flow deflection angle results, whereby the inflow from the blade ring to the blade ring is irregular over the circumference of the axial flow machine. As a result, the load on the blades changes during one revolution, whereby the flutter is advantageously reduced.

Die erzwungene Schwingung ergibt sich aufgrund einer periodischen Anregung der Laufschaufeln. Zwischen zwei benachbart angeordneten Leitschaufeln ist jeweils ein Kanal angeordnet, durch welchen ein Fluid der Axialströmungsmaschine strömbar ist. Die den beiden Kanälen zugeordneten Nachlaufdellen haben durch den sich ändernden Teilungswinkel eine unterschiedliche Form und Umfangslage. Im Betrieb der Axialströmungsmaschine tauchen die stromab angeordneten Laufschaufeln in die Nachlaufdellen ein, wodurch die Laufschaufeln eine instationäre Anströmung erfahren, die zu einer Schwingungsanregung der Laufschaufeln führen kann. Dadurch, dass die Nachlaufdellen über den Umfang inhomogenisiert sind, erfolgt die Schwingungsanregung unperiodisch, wodurch die erzwungenen Schwingungen der Laufschaufeln ebenfalls vorteilhaft schwach sind.The forced oscillation results from periodic excitation of the blades. Between two adjacently arranged guide vanes, a channel is respectively arranged, through which a fluid of the axial flow machine can be flowed. The trailing shafts assigned to the two channels have a different shape and circumferential position as a result of the changing pitch angle. During operation of the axial flow machine, the downstream blades submerge in the trailing shafts, whereby the blades undergo a transient flow, which leads to a vibration excitation of Can guide blades. Due to the fact that the trailing shafts are inhomogenized over the circumference, the oscillation excitation takes place unperiodically, as a result of which the forced vibrations of the rotor blades are likewise advantageously weak.

Das Verschieben des mindestens einen Profilschnitts erfolgt bevorzugt auf einem Verschiebeweg, der für jede der beiden benachbart angeordneten Leitschaufeln maximal 10% der Erstreckung des Kanals zwischen den beiden Leitschaufeln in Umfangsrichtung beträgt. Die Profilschnitte werden bevorzugt derart verschoben, dass die Leitschaufel gegen eine ihr benachbart angeordnete Leitschaufel geneigt wird. In diesem Fall variiert der Teilungswinkel linear über die Schaufelhöhe.The displacement of the at least one profile section is preferably carried out on a displacement path, which amounts to a maximum of 10% of the extent of the channel between the two guide vanes in the circumferential direction for each of the two adjacently arranged guide vanes. The profile cuts are preferably shifted in such a way that the guide blade is inclined against a guide blade arranged adjacent to it. In this case, the pitch angle varies linearly over the blade height.

Bevorzugtermaßen werden die Profilschnitte derart verschoben, dass mindestens eine von zwei benachbart angeordneten Leitschaufeln gekrümmt ausgeführt wird. Hier variiert der Teilungswinkel nichtlinear über die Schaufelhöhe. Die Leitschaufeln, in denen Profilschnitte verschoben sind, werden bevorzugt symmetrisch um die Achse der Axialströmungsmaschine verteilt angeordnet. Somit ist die stromabwärtige Strömung von dem Leitschaufelkranz symmetrisch.The profile sections are preferably displaced in such a way that at least one of two adjacently arranged guide vanes is curved. Here the pitch angle varies non-linearly over the blade height. The guide vanes, in which profile sections are shifted, are preferably arranged distributed symmetrically about the axis of the axial flow machine. Thus, the downstream flow from the vane ring is symmetrical.

Die Laufschaufeln werden bevorzugt derart ausgelegt, dass keine der Eigenfrequenzen der Laufschaufeln mit der Drehfrequenz der Axialströmungsmaschine oder einem Vielfachen der Drehfrequenz bis einschließlich dem Achtfachen der Drehfrequenz übereinstimmt. Somit ist vorteilhaft sichergestellt, dass es im Betrieb der Axialströmungsmaschine nicht zu einer Kopplung zwischen der Rotation der Axialströmungsmaschine und den Schwingungen der Laufschaufeln kommt. Die Kopplung kann zu einer Vergrößerung eines Energieeintrags von der Strömung in die Schwingungen führen.The blades are preferably designed such that none of the natural frequencies of the blades match the rotational frequency of the axial flow machine or a multiple of the rotational frequency up to and including eight times the rotational frequency. Thus, it is advantageously ensured that there is no coupling between the rotation of the axial flow machine and the vibrations of the rotor blades during operation of the axial flow machine. The coupling can lead to an increase in an energy input from the flow into the vibrations.

Bevorzugtermaßen liegen die Profilschnitte auf einer Zylinderfläche oder einer Kegelfläche, deren Achsen mit der Achse der Axialströmungsmaschine zusammenfallen, auf einer S1-Strö-mungsfläche oder in einer tangentialen Ebene der Axialströmungsmaschine. Die S1-Strömungsfläche erstreckt sich in Umfangsrichtung und in Axialrichtung der Axialströmungsmaschine und beschreibt eine Fläche, der eine idealisierte Strömung folgt. Das Verfahren weist bevorzugt den Schritt auf: Anpassen des mindestens einen Profilschnitts an die nach dem Verschieben geänderten aerodynamischen Randbedingungen.The profile sections on a cylindrical surface or a conical surface whose axes coincide with the axis of the axial flow machine are preferably located on an S 1 flow area or in a tangential plane of the axial flow machine. The S 1 flow area extends in the circumferential direction and in the axial direction of the axial flow machine and describes a surface that follows an idealized flow. The method preferably has the step of: adapting the at least one profile section to the aerodynamic boundary conditions changed after shifting.

Die erfindungsgemäße Stufe ist mit dem erfindungsgemäßen Verfahren ausgelegt. Die erfindungsgemäße Axialströmungsmaschine weist die Stufe auf, insbesondere als die letzte, stromab liegende Stufe der Axialströmungsmaschine. Die Laufschaufeln in der letzten Stufe der Axialströmungsmaschine sind die Laufschaufeln mit den längsten radialen Erstreckungen in der Axialströmungsmaschine und sind somit besonders anfällig für eine Schwingungsanregung. Eine unperiodische Schwingungsanregung der Laufschaufeln ist damit besonders in der letzten Stufe vorteilhaft.The stage according to the invention is designed with the method according to the invention. The axial flow machine according to the invention comprises the step, in particular as the last, downstream stage of the axial flow machine. The blades in the last stage of the axial flow machine are the blades with the longest radial extensions in the axial flow machine and are thus particularly susceptible to vibration excitation. An unperiodic vibration excitation of the blades is thus advantageous, especially in the last stage.

Im Folgenden werden bevorzugte Ausführungsformen der erfindungsgemäßen Stufe anhand der beigefügten schematischen Zeichnungen erläutert. Es zeigen

Figuren 1 bis 3
jeweils einen Ausschnitt einer Draufsicht einer der Ausführungsformen eines Leitschaufelkranzes einer erfindungsgemäßen Stufe und
Figur 4
einen Längsschnitt durch die erfindungsgemäße Stufe.
In the following, preferred embodiments of the stage according to the invention will be explained with reference to the attached schematic drawings. Show it
FIGS. 1 to 3
in each case a section of a plan view of one of the embodiments of a vane ring of a stage according to the invention and
FIG. 4
a longitudinal section through the stage according to the invention.

Wie es aus Figuren 1 bis 3 ersichtlich ist, weist eine Axialströmungsmaschine 1 einen Leitschaufelkranz 2 und ein Gehäuse 7 auf. Der Leitschaufelkranz 2 weist eine Mehrzahl an Leitschaufeln 3, 4 auf, wobei jede der Leitschaufeln 3, 4 einen Schaufelfuß 5, eine Schaufelspitze 6, eine Druckseite 9 und eine Saugseite 10 aufweist. Jede der Leitschaufeln 3, 4 ist mit ihrer Schaufelspitze 6 an dem Gehäuse und mit ihrem Schaufelfuß 5 an einem Nabenring 8 fest angebracht. Zwischen zwei benachbart angeordneten Leitschaufeln 3, 4 ist ein Kanal 14 ausgebildet, in dem ein Arbeitsfluid strömbar ist. Dargestellt ist in Figuren 1 bis 3 jeweils die Hinterkante der Leitschaufeln 3, 4.Like it out FIGS. 1 to 3 It can be seen that an axial flow machine 1 has a vane ring 2 and a housing 7. The vane ring 2 has a plurality of guide vanes 3, 4, wherein each of the guide vanes 3, 4 has a blade root 5, a blade tip 6, a pressure side 9 and a suction side 10. Each of the vanes 3, 4 is with its blade tip 6 on the housing and with her Blade foot 5 fixedly attached to a hub ring 8. Between two adjacently arranged guide vanes 3, 4, a channel 14 is formed, in which a working fluid is flowable. Is shown in FIGS. 1 to 3 in each case the trailing edge of the guide vanes 3, 4.

In Figur 3 ist beispielhaft ein Teilungswinkel 13 der Axialströmungsmaschine 1 dargestellt. An den beiden benachbart angeordneten Leitschaufeln 3, 4 ist jeweils ein Oberflächenpunkt 15 auf den Hinterkanten der Leitschaufeln 3, 4 dargestellt. Die beiden Oberflächenpunkte 15 haben dabei den gleichen Abstand zu der Achse 11 der Axialströmungsmaschine 1. Ebenso sind in Figur 3 zwei Verbindungslinien 16 gezeigt, die jeweils von den beiden Oberflächenpunkten 15 ausgehen, senkrecht zu der Achse 11 der Axialströmungsmaschine 1 verlaufen und jeweils auf demselben Punkt auf der Achse 11 der Axialströmungsmaschine 1 enden. Die beiden Verbindungslinien 16 schließen den Teilungswinkel 13 ein.In FIG. 3 For example, a pitch angle 13 of the axial flow machine 1 is shown. At the two adjacently arranged guide vanes 3, 4, a surface point 15 is respectively shown on the trailing edges of the guide vanes 3, 4. The two surface points 15 have the same distance from the axis 11 of the axial flow machine 1 FIG. 3 two connecting lines 16 are shown, each starting from the two surface points 15, perpendicular to the axis 11 of the axial flow machine 1 and each end at the same point on the axis 11 of the axial flow machine 1. The two connecting lines 16 include the pitch angle 13.

In Figuren 1 bis 3 ist der Leitschaufelkranz 2 vor einem Verschieben von mindestens einem Profilschnitt und nach dem Verschieben des mindestens einen Profilschnitts dargestellt. Gezeigt sind in den Figuren 1 bis 3 Leitschaufeln 3 vor dem Verschieben (durchgezogene Linien) und Leitschaufeln 4 nach dem Verschieben (gestrichelte Linien). Die Leitschaufeln 3 zeichnen sich dadurch aus, dass sie für jede Leitschaufel 3 und für jeden Oberflächenpunkt 15 den gleichen Teilungswinkel 13 aufweisen, nämlich den Nominalteilungswinkel 12. Der Nominalteilungswinkel 12 ergibt sich zu 2*Π/n, wobei n die Anzahl der Leitschaufeln 3 in dem Leitschaufelkranz 2 und Π die Kreiszahl ist.In FIGS. 1 to 3 the vane ring 2 is shown prior to a displacement of at least one profile section and after moving the at least one profile section. Shown are in the FIGS. 1 to 3 Guide vanes 3 before moving (solid lines) and vanes 4 after moving (dashed lines). The vanes 3 are characterized in that they have the same pitch angle 13 for each vane 3 and for each surface point 15, namely the nominal pitch angle 12. The nominal pitch angle 12 is 2 * Π / n, where n is the number of vanes 3 in FIG the vane ring 2 and Π is the circle number.

In Figur 1 sind die Profilschnitte derart verschoben, dass die Leitschaufeln 4 im Vergleich zu den Leitschaufeln 3 geneigt sind. Dabei weist der Leitschaufelkranz 2 nach dem Verschieben jeweils gleiche Paare von benachbart angeordneten Leitschaufeln 4 auf. Die Paare zeichnen sich dadurch aus, dass der Schaufelfuß 5 der einen Leitschaufel 4 des Paars in eine Umfangsrichtung des Leitschaufelkranzes 2 und die Schaufelspitze 6 in die andere Umfangsrichtung verschoben ist, die der einen Umfangsrichtung entgegen gerichtet ist. Die andere Leitschaufel 4 des Paars wird entgegen der einen Leitschaufel 4 des Paars geneigt, d.h. der Schaufelfuß 5 der anderen Leitschaufel 4 des Paars wird in die andere Umfangsrichtung verschoben und die Schaufelspitze 6 der anderen Leitschaufel 4 wird in die eine Umfangsrichtung verschoben. Die so angeordneten Leitschaufeln 4 führen zu einer linearen Variation des Teilungswinkels 13 über die Schaufelhöhe, d.h. in Abhängigkeit des radialen Abstands von der Achse 11 der Axialströmungsmaschine 1. In Figur 1 ist der Leitschaufelkranz 2 vollständig durch die gleichen Paare gebildet. Es ist ebenso denkbar, dass der Leitschaufelkranz 2 abwechselnd von den Paaren und von den Leitschaufeln 3 ohne verschobene Profilschnitte gebildet ist. Dabei können jeweils zwischen zwei Paaren eine Leitschaufel 3 oder eine Mehrzahl an Leitschaufeln 3 vorgesehen werden, wobei die Störung der aeroelastischen Kopplung effektiver ist, wenn nur eine Leitschaufel 3 vorgesehen wird.In FIG. 1 the profile sections are shifted in such a way that the guide vanes 4 are inclined in comparison to the guide vanes 3. In this case, the guide vane ring 2 after shifting each have the same pairs of adjacently arranged guide vanes 4. The pairs are characterized in that the blade root 5 of the one vane 4 of the pair in a circumferential direction of the vane ring 2 and the blade tip 6 is displaced in the other circumferential direction, which is directed counter to a circumferential direction. The other vane 4 of the pair is inclined against the one vane 4 of the pair, ie the vane root 5 of the other vane 4 of the pair is displaced in the other circumferential direction and the vane tip 6 of the other vane 4 is displaced in the one circumferential direction. The guide vanes 4 arranged in this way lead to a linear variation of the pitch angle 13 over the blade height, ie as a function of the radial distance from the axis 11 of the axial flow machine 1 FIG. 1 the vane ring 2 is completely formed by the same pairs. It is also conceivable that the vane ring 2 is formed alternately by the pairs and by the vanes 3 without displaced profile cuts. In this case, between each pair a vane 3 or a plurality of vanes 3 can be provided, wherein the disturbance of the aeroelastic coupling is more effective if only one vane 3 is provided.

Der Leitschaufelkranz 2 aus Figur 2 weist ebenfalls Paare von Leitschaufeln 4 auf. Die Leitschaufeln 4 der Paare sind derart gekrümmt, dass die Leitschaufeln 4 einen Bauch aufweisen. Dabei weist eine Leitschaufel 4 des Paars einen Bauch in die eine Umfangsrichtung und die andere Leitschaufel 4 des Paars einen Bauch in die andere Umfangsrichtung auf. Es ist ebenso denkbar, dass die Leitschaufeln 4 eine Mehrzahl an Bäuchen aufweisen, die entweder auf der gleichen Seite der Leitschaufeln 3 in Umfangsrichtung oder auf beiden Seiten der Leitschaufeln 4 in Umfangsrichtung angeordnet sind. Weiterhin ist es möglich, die Form des Bauches von Leitschaufel 4 zu Leitschaufel 4 zu variieren, um die aerolastische Kopplung besonders effektiv zu stören. Indem die Leitschaufeln 4 gekrümmt ausgeführt sind, variiert der Teilungswinkel 13 nichtlinear über die Schaufelhöhe. Auch in Figur 2 ist der Leitschaufelkranz 2 vollständig aus den Paaren gebildet und auch hier ist denkbar, dass zwischen zwei Paare eine oder eine Mehrzahl an Leitschaufeln 3 angeordnet ist. Ebenso ist denkbar, dass abwechselnd eine gekrümmt ausgeführte Leitschaufel 4 und eine Leitschaufel 3 angeordnet sind.The vane ring 2 off FIG. 2 also has pairs of vanes 4. The vanes 4 of the pairs are curved such that the vanes 4 have a belly. In this case, a guide vane 4 of the pair has a belly in one circumferential direction and the other vane 4 of the pair has a belly in the other circumferential direction. It is also conceivable that the guide vanes 4 have a plurality of bellies, which are arranged either on the same side of the guide vanes 3 in the circumferential direction or on both sides of the guide vanes 4 in the circumferential direction. Furthermore, it is possible to vary the shape of the belly from the guide vane 4 to the guide vane 4 in order to disturb the aerolastic coupling particularly effectively. By making the vanes 4 curved, the pitch angle 13 varies non-linearly across the blade height. Also in FIG. 2 is the vane ring 2 completely formed from the pairs and also here it is conceivable that between two pairs one or a plurality of Guide vanes 3 is arranged. It is also conceivable that alternately a curved running vane 4 and a stator blade 3 are arranged.

In Figur 3 ist jede zweite der Leitschaufeln 3, 4 in dem Leitschaufelkranz 2 im Vergleich zu den entsprechenden Leitschaufeln 3 geneigt. Die derart geneigten Leitschaufeln 4 sind mit ihren Schaufelfüßen 5 abwechselnd in die eine Umfangsrichtung respektive in die andere Umfangsrichtung und mit ihren Schaufelspitzen 6 abwechselnd in die andere Umfangsrichtung respektive in die eine Umfangsrichtung verschoben. In den Figuren 1 bis 3 betragen die Abweichungen der Leitschaufeln 4 gegenüber den Leitschaufeln 3 maximal 10% der verfügbaren Erstreckung der Kanäle 14 in Umfangsrichtung. Die Abweichungen werden erhalten, in dem Profilschnitte der Leitschaufeln 3 in Umfangsrichtung verschoben werden. Die Profilschnitte der Leitschaufeln 3 können dabei auf einer um die Achse 11 symmetrischen Zylinderfläche oder Kegelfläche, in einer tangentialen Ebene der Axialströmungsmaschine 1 oder auf einer S1-Strömungsfläche liegen.In FIG. 3 For example, every other of the vanes 3, 4 in the vane ring 2 is inclined relative to the respective vanes 3. The thus inclined guide vanes 4 are alternately shifted with their blade roots 5 in the one circumferential direction respectively in the other circumferential direction and with their blade tips 6 alternately in the other circumferential direction respectively in the one circumferential direction. In the FIGS. 1 to 3 the deviations of the guide vanes 4 relative to the guide vanes 3 a maximum of 10% of the available extent of the channels 14 in the circumferential direction. The deviations are obtained by displacing profile sections of the guide vanes 3 in the circumferential direction. The profile sections of the guide vanes 3 can lie on a cylinder surface or conical surface symmetrical about the axis 11, in a tangential plane of the axial flow machine 1 or on an S 1 flow surface.

In Figur 4 ist ein Längsschnitt durch die Axialströmungsmaschine 1 mit einer Hauptströmungsrichtung 21 und mit der erfindungsgemäßen Stufe 22 dargestellt. Die Stufe 22 weist den Leitschaufelkranz 2 und einen stromab von dem Leitschaufelkranz 2 angeordneten Laufschaufelkranz 20 auf. Gezeigt sind jeweils eine Leitschaufel 18 und eine Laufschaufel 19. Ebenfalls dargestellt ist eine Nabe 17, die sich im Betrieb der Axialströmungsmaschine 1 um die Achse 11 dreht. Die Leitschaufel 18 ist an dem Gehäuse 7, die Laufschaufel 19 an der Nabe 17 angebracht. Im Betrieb der Axialströmungsmaschine 1 bildet sich stromab des Leitschaufelkranzes 2 eine Strömung mit einer inhomogenen Geschwindigkeitsverteilung aus. Dadurch ändert sich die Belastung der Laufschaufeln 19 während einer Umdrehung, wodurch ein Flattern der Laufschaufeln 19 vorteilhaft vermindert wird.In FIG. 4 a longitudinal section through the axial flow machine 1 with a main flow direction 21 and with the stage 22 according to the invention is shown. The step 22 includes the vane ring 2 and a blade ring 20 disposed downstream of the vane ring 2. Shown are each a vane 18 and a blade 19. Also shown is a hub 17 which rotates about the axis 11 during operation of the axial flow machine 1. The vane 18 is attached to the housing 7, the blade 19 to the hub 17. During operation of the axial flow machine 1, a flow with an inhomogeneous velocity distribution is formed downstream of the vane ring 2. As a result, the load of the blades 19 changes during one revolution, whereby a flutter of the blades 19 is advantageously reduced.

Das Verfahren zum Auslegen einer Stufe 22 für eine Axialströmungsmaschine 1 aufweisend einen Leitschaufelkranz 2 und einen dem Leitschaufelkranz 2 stromab angeordneten Laufschaufelkranz 20 ist bevorzugt wie folgt durchzuführen: Profilieren eines Leitschaufelkranzes 2 mit regelmäßig über den Umfang des Leitschaufelkranzes 2 angeordneten Leitschaufeln 3 gemäß aerodynamischer und mechanischer Randbedingungen; Verschieben von mindestens einem Profilschnitt von mindestens einer der Leitschaufeln 3 in Umfangsrichtung derart, dass der Teilungswinkel 13 für die mindestens eine Leitschaufel 4 und einer ihr benachbart angeordneten Leitschaufel 4 derart über die Schaufelhöhe variiert, dass im Betrieb der Axialströmungsmaschine 1 die dem Leitschaufelkranz 2 stromab ausgebildete Abströmung derart unregelmäßig über den Umfang der Axialströmungsmaschine ausgebildet ist, dass die Schwingungsanregung der Laufschaufeln 19 des Laufschaufelkranzes 20 gering ist; Anpassen des mindestens einen Profilschnitts an die nach dem Verschieben geänderten aerodynamischen Randbedingungen.The method for laying out a step 22 for an axial flow machine 1 comprising a vane ring 2 and a rotor blade 20 arranged downstream of the vane ring 2 is preferably carried out as follows: Profiling of a vane ring 2 with regularly arranged over the circumference of the vane ring 2 guide vanes 3 according to aerodynamic and mechanical constraints ; Displacing at least one profile section of at least one of the guide vanes 3 in the circumferential direction such that the pitch angle 13 for the at least one guide vane 4 and a guide vane 4 arranged adjacent thereto varies over the vane height such that the axial direction of the vane ring 2 downstream Outflow is formed so irregularly over the circumference of the axial flow machine, that the vibration excitation of the blades 19 of the blade ring 20 is low; Adapting the at least one profile section to the changed aerodynamic boundary conditions after shifting.

Obwohl die Erfindung im Detail durch die bevorzugten Ausführungsbeispiele näher illustriert und beschrieben wurde, so ist die Erfindung nicht durch die offenbarten Beispiele eingeschränkt und andere Variationen können vom Fachmann hieraus abgeleitet werden, ohne den Schutzumfang der Erfindung zu verlassen.While the invention has been further illustrated and described in detail by the preferred embodiments, the invention is not limited by the disclosed examples, and other variations can be derived therefrom by those skilled in the art without departing from the scope of the invention.

Claims (10)

Verfahren zum Auslegen einer Stufe (22) für eine Axialströmungsmaschine (1) aufweisend einen Leitschaufelkranz (2) und einen dem Leitschaufelkranz (2) stromab angeordneten Laufschaufelkranz (20), mit den Schritten: - Profilieren eines Leitschaufelkranzes (2) mit regelmäßig über den Umfang des Leitschaufelkranzes (2) angeordneten Leitschaufeln (3) gemäß aerodynamischer und mechanischer Randbedingungen; - Verschieben von mindestens einem Profilschnitt von mindestens einer der Leitschaufeln (3) in Umfangsrichtung derart, dass der Teilungswinkel (13) für die mindestens eine Leitschaufel (4) und einer ihr benachbart angeordneten Leitschaufel (4) derart über die Schaufelhöhe variiert, dass im Betrieb der Axialströmungsmaschine (1) die dem Leitschaufelkranz (2) stromab ausgebildete Abströmung derart unregelmäßig über den Umfang der Axialströmungsmaschine ausgebildet ist, dass die Schwingungsanregung der Laufschaufeln (19) des Laufschaufelkranzes (20) gering ist. A method of laying out a step (22) for an axial flow machine (1) comprising a vane ring (2) and a blade ring (20) arranged downstream of the vane ring (2), comprising the steps of: - Profiling a vane ring (2) with regularly over the circumference of the vane ring (2) arranged vanes (3) according to aerodynamic and mechanical boundary conditions; - Moving at least one profile section of at least one of the guide vanes (3) in the circumferential direction such that the pitch angle (13) for the at least one vane (4) and a guide vane (4) arranged adjacent thereto varies over the blade height such that in operation the axial-flow machine (1) the outflow formed downstream of the guide vane ring (2) is formed so irregularly over the circumference of the axial flow machine, that the vibration excitation of the rotor blades (19) of the rotor blade ring (20) is low. Verfahren gemäß Anspruch 1,
wobei das Verschieben des mindestens einen Profilschnitts auf einem Verschiebeweg erfolgt, der für jede der beiden benachbart angeordneten Leitschaufeln (4) maximal 10% der Erstreckung des Kanals (14) zwischen den beiden Leitschaufeln (3) in Umfangsrichtung beträgt.
Method according to claim 1,
wherein the displacement of the at least one profile section takes place on a displacement path, which is for each of the two adjacently arranged guide vanes (4) a maximum of 10% of the extent of the channel (14) between the two guide vanes (3) in the circumferential direction.
Verfahren gemäß einem der Ansprüche 1 bis 2,
wobei die Profilschnitte derart verschoben werden, dass die Leitschaufel (4) gegen eine ihr benachbart angeordnete Leitschaufel (4) geneigt wird.
Method according to one of claims 1 to 2,
wherein the profile cuts are displaced such that the guide vane (4) is inclined against a guide vane (4) arranged adjacent to it.
Verfahren gemäß einem der Ansprüche 1 bis 3,
wobei die Profilschnitte derart verschoben werden, dass mindestens eine von zwei benachbart angeordneten Leitschaufeln (4) gekrümmt ausgeführt wird.
Method according to one of claims 1 to 3,
wherein the profile cuts are shifted such that at least one of two adjacently arranged guide vanes (4) is made curved.
Verfahren gemäß einem der Ansprüche 1 bis 4,
wobei die Leitschaufeln (4), in denen Profilschnitte verschoben sind, symmetrisch um die Achse (11) der Axialströmungsmaschine verteilt angeordnet werden.
Method according to one of claims 1 to 4,
wherein the guide vanes (4), in which profile sections are displaced, are arranged symmetrically distributed about the axis (11) of the axial flow machine.
Verfahren gemäß einem der Ansprüche 1 bis 5,
wobei die Leitschaufeln (3, 4) derart ausgelegt werden, dass keine der Eigenfrequenzen der Laufschaufeln (19) mit der Drehfrequenz der Axialströmungsmaschine (1) oder einem Vielfachen der Drehfrequenz bis einschließlich dem Achtfachen der Drehfrequenz übereinstimmt.
Method according to one of claims 1 to 5,
wherein the guide vanes (3, 4) are designed such that none of the natural frequencies of the blades (19) coincides with the rotational frequency of the axial flow machine (1) or a multiple of the rotational frequency up to eight times the rotational frequency.
Verfahren gemäß einem der Ansprüche 1 bis 6,
wobei die Profilschnitte auf einer Zylinderfläche oder einer Kegelfläche, deren Achsen mit der Achse (11) der Axialströmungsmaschine (1) zusammenfallen, auf einer S1-Strö-mungsfläche oder in einer tangentialen Ebene der Axialströmungsmaschine (1) liegen.
Method according to one of claims 1 to 6,
wherein the profile cuts on a cylindrical surface or a conical surface whose axes coincide with the axis (11) of the axial flow machine (1) lie on an S 1 flow area or in a tangential plane of the axial flow machine (1).
Verfahren gemäß einem der Ansprüche 1 bis 7,
mit dem Schritt: - Anpassen des mindestens einen Profilschnitts an die nach dem Verschieben geänderten aerodynamischen Randbedingungen.
Method according to one of claims 1 to 7,
with the step: - Adapting the at least one profile section to the changed after moving aerodynamic boundary conditions.
Stufe für eine Axialströmungsmaschine (1),
die mit einem Verfahren gemäß einem der Ansprüche 1 bis 8 ausgelegt ist.
Stage for an axial flow machine (1),
which is designed with a method according to one of claims 1 to 8.
Axialströmungsmaschine,
die eine Stufe (22) gemäß Anspruch 9 aufweist, insbesondere als letzte, stromab liegende Stufe der Axialströmungsmaschine (1).
axial flow,
which has a step (22) according to claim 9, in particular as the last, downstream stage of the axial flow machine (1).
EP12164299.5A 2012-04-16 2012-04-16 Guide blade assembly for an axial flow machine and method for laying the guide blade assembly Withdrawn EP2653658A1 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP12164299.5A EP2653658A1 (en) 2012-04-16 2012-04-16 Guide blade assembly for an axial flow machine and method for laying the guide blade assembly
IN7604DEN2014 IN2014DN07604A (en) 2012-04-16 2013-04-05
JP2015506171A JP6165841B2 (en) 2012-04-16 2013-04-05 Stator blade ring and design method of stator blade ring for axial flow fluid machine
PL13717223T PL2805017T3 (en) 2012-04-16 2013-04-05 Guide blade assembly for an axial flow machine and method for laying the guide blade assembly
PCT/EP2013/057170 WO2013156322A1 (en) 2012-04-16 2013-04-05 Guide blade ring for an axial turbomachine and method for designing the guide blade ring
CN201380020389.XA CN104246137B (en) 2012-04-16 2013-04-05 The rim of the guide blading for axial flow turbomachine and the method for shaping-orientation blade ring
EP13717223.5A EP2805017B1 (en) 2012-04-16 2013-04-05 Guide blade assembly for an axial flow machine and method for laying the guide blade assembly
US14/391,876 US9951648B2 (en) 2012-04-16 2013-04-05 Guide blade ring for an axial turbomachine and method for designing the guide blade ring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP12164299.5A EP2653658A1 (en) 2012-04-16 2012-04-16 Guide blade assembly for an axial flow machine and method for laying the guide blade assembly

Publications (1)

Publication Number Publication Date
EP2653658A1 true EP2653658A1 (en) 2013-10-23

Family

ID=48141941

Family Applications (2)

Application Number Title Priority Date Filing Date
EP12164299.5A Withdrawn EP2653658A1 (en) 2012-04-16 2012-04-16 Guide blade assembly for an axial flow machine and method for laying the guide blade assembly
EP13717223.5A Not-in-force EP2805017B1 (en) 2012-04-16 2013-04-05 Guide blade assembly for an axial flow machine and method for laying the guide blade assembly

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP13717223.5A Not-in-force EP2805017B1 (en) 2012-04-16 2013-04-05 Guide blade assembly for an axial flow machine and method for laying the guide blade assembly

Country Status (7)

Country Link
US (1) US9951648B2 (en)
EP (2) EP2653658A1 (en)
JP (1) JP6165841B2 (en)
CN (1) CN104246137B (en)
IN (1) IN2014DN07604A (en)
PL (1) PL2805017T3 (en)
WO (1) WO2013156322A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2775097A3 (en) * 2013-03-04 2017-06-21 Rolls-Royce plc Stator vane row

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITTO20110728A1 (en) * 2011-08-04 2013-02-05 Avio Spa STATIC PALLETED SEGMENT OF A GAS TURBINE FOR AERONAUTICAL MOTORS
ITTO20120517A1 (en) * 2012-06-14 2013-12-15 Avio Spa AERODYNAMIC PROFILE PLATE FOR A GAS TURBINE SYSTEM
US20180094833A1 (en) * 2016-09-30 2018-04-05 Haier Us Appliance Solutions, Inc. Water heater appliance
GB2574493A (en) 2019-01-22 2019-12-11 Rolls Royce Plc Stacking of rotor blade aerofoil sections to adjust resonant frequencies

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4253800A (en) * 1978-08-12 1981-03-03 Hitachi, Ltd. Wheel or rotor with a plurality of blades
US20020064458A1 (en) * 2000-11-30 2002-05-30 Matthew Montgomery Frequency-mistuned light-weight turbomachinery blade rows for increased flutter stability
US20090169371A1 (en) * 2005-11-29 2009-07-02 Ishikawajima-Harima Heavy Industries Co., Ltd. Stator cascade of turbo type fluid machine
US20100247310A1 (en) * 2009-03-26 2010-09-30 Frank Kelly Intentionally mistuned integrally bladed rotor
DE102009033618A1 (en) * 2009-07-17 2011-01-20 Mtu Aero Engines Gmbh Method for frequency detuning of rotor body of rotor of gas turbine, involves providing rotor raw body that is made of base material

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3883264A (en) * 1971-04-08 1975-05-13 Gadicherla V R Rao Quiet fan with non-radial elements
JPH0126068Y2 (en) 1980-12-11 1989-08-03
JPH0211802U (en) 1988-07-04 1990-01-25
JPH02118102U (en) 1989-03-09 1990-09-21
US5167489A (en) * 1991-04-15 1992-12-01 General Electric Company Forward swept rotor blade
GB9210421D0 (en) 1992-05-15 1992-07-01 Gec Alsthom Ltd Turbine blade assembly
JP3132944B2 (en) * 1993-03-17 2001-02-05 三菱重工業株式会社 Three-dimensional design turbine blade
JPH0861002A (en) 1994-08-24 1996-03-05 Mitsubishi Heavy Ind Ltd Diaphragm of stream turbine
JPH10184304A (en) 1996-12-27 1998-07-14 Toshiba Corp Turbine nozzle and turbine moving blade of axial flow turbine
JP2000045704A (en) 1998-07-31 2000-02-15 Toshiba Corp Steam turbine
JP2000328902A (en) * 1999-05-19 2000-11-28 Ishikawajima Harima Heavy Ind Co Ltd Gas turbine engine
JP4373629B2 (en) 2001-08-31 2009-11-25 株式会社東芝 Axial flow turbine
JP2004100553A (en) 2002-09-09 2004-04-02 Mitsubishi Heavy Ind Ltd Stationary blade structure of rotary machine
CN1828024A (en) * 2005-03-04 2006-09-06 徐大懋 Impeller mechanical vane design method capable of improving energy conversion efficiency
US7758306B2 (en) 2006-12-22 2010-07-20 General Electric Company Turbine assembly for a gas turbine engine and method of manufacturing the same
US8678752B2 (en) 2010-10-20 2014-03-25 General Electric Company Rotary machine having non-uniform blade and vane spacing
US20130094942A1 (en) * 2011-10-12 2013-04-18 Raymond Angus MacKay Non-uniform variable vanes
GB201303767D0 (en) * 2013-03-04 2013-04-17 Rolls Royce Plc Stator Vane Row

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4253800A (en) * 1978-08-12 1981-03-03 Hitachi, Ltd. Wheel or rotor with a plurality of blades
US20020064458A1 (en) * 2000-11-30 2002-05-30 Matthew Montgomery Frequency-mistuned light-weight turbomachinery blade rows for increased flutter stability
US20090169371A1 (en) * 2005-11-29 2009-07-02 Ishikawajima-Harima Heavy Industries Co., Ltd. Stator cascade of turbo type fluid machine
US20100247310A1 (en) * 2009-03-26 2010-09-30 Frank Kelly Intentionally mistuned integrally bladed rotor
DE102009033618A1 (en) * 2009-07-17 2011-01-20 Mtu Aero Engines Gmbh Method for frequency detuning of rotor body of rotor of gas turbine, involves providing rotor raw body that is made of base material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2775097A3 (en) * 2013-03-04 2017-06-21 Rolls-Royce plc Stator vane row

Also Published As

Publication number Publication date
US20150063985A1 (en) 2015-03-05
CN104246137A (en) 2014-12-24
IN2014DN07604A (en) 2015-05-15
JP6165841B2 (en) 2017-07-19
PL2805017T3 (en) 2017-04-28
EP2805017B1 (en) 2016-06-22
JP2015519501A (en) 2015-07-09
US9951648B2 (en) 2018-04-24
EP2805017A1 (en) 2014-11-26
CN104246137B (en) 2016-07-06
WO2013156322A1 (en) 2013-10-24

Similar Documents

Publication Publication Date Title
EP2805017B1 (en) Guide blade assembly for an axial flow machine and method for laying the guide blade assembly
EP2993357B1 (en) Radial compressor stage
DE10359917A1 (en) Method and device for tuning the natural frequency of turbine blades
WO1998044240A1 (en) Surface structure for the wall of a flow channel or a turbine blade
EP2921716B1 (en) stator blade GROUP
EP2725193B1 (en) Method for detuning the blades in a gas turbine engine and corresponding gas turbine engine.
EP2478186B1 (en) Rotor of a turbomachine
EP2921714A1 (en) Stator blade group
DE102014114916A1 (en) Turbine blade with tip rounding
EP3199758B1 (en) Rotor in blisk or bling structure of an aircraft engine
EP2993356A1 (en) Radial compressor stage
EP3404210A1 (en) Blade cascade segment for a turbomachine with non-axisymmetric platform surface, corresponding blade cascade, blade channel, platform, and turbomachine
EP3428393B1 (en) Rotor of a turbomachine
EP2746533A1 (en) Blade grid and turbomachine
EP3064706A1 (en) Guide blade assembly for a flow engine with axial flow
EP3078804A1 (en) Shroud assembly of a row of stator or rotor blades and corresponding turbine
EP3388626B1 (en) Contouring of a blade row platform
EP2410131B1 (en) Rotor of a turbomachine
EP3420199A1 (en) Turbine blade, associated device, turbomachine and use
EP2607625A1 (en) Turbomachine and stage of turbomachine
DE102014203604A1 (en) Blade row group
WO2011026468A2 (en) Turbomachine, and method for producing a structured abradable coating
EP3498972B1 (en) Turbine module for a turbomachine
WO2018069552A1 (en) Integrally cast turbomachine assembly, and method for producing a turbomachine assembly
EP2884052B1 (en) Rotor for a turbomachine having a closed flow contour ring and method for manufacturing the same

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20140424