EP2652189A1 - Milieu filtrant à fibres fines et procédés correspondants - Google Patents

Milieu filtrant à fibres fines et procédés correspondants

Info

Publication number
EP2652189A1
EP2652189A1 EP11864804.7A EP11864804A EP2652189A1 EP 2652189 A1 EP2652189 A1 EP 2652189A1 EP 11864804 A EP11864804 A EP 11864804A EP 2652189 A1 EP2652189 A1 EP 2652189A1
Authority
EP
European Patent Office
Prior art keywords
less
fiber web
polymeric material
microns
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP11864804.7A
Other languages
German (de)
English (en)
Other versions
EP2652189B1 (fr
EP2652189A4 (fr
Inventor
Stephen T. Cox
William S. Freeman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hollingsworth and Vose Co
Original Assignee
Hollingsworth and Vose Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/971,539 external-priority patent/US20120152824A1/en
Priority claimed from US12/971,594 external-priority patent/US20120152821A1/en
Application filed by Hollingsworth and Vose Co filed Critical Hollingsworth and Vose Co
Publication of EP2652189A1 publication Critical patent/EP2652189A1/fr
Publication of EP2652189A4 publication Critical patent/EP2652189A4/fr
Application granted granted Critical
Publication of EP2652189B1 publication Critical patent/EP2652189B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4382Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
    • D04H1/43838Ultrafine fibres, e.g. microfibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/56Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving in association with fibre formation, e.g. immediately following extrusion of staple fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged

Definitions

  • Fine fiber products including those suitable for use as filter media, as well as related assemblies, systems and methods, are described.
  • Filter media can be used to remove contamination in a variety of applications. Depending on the application, the filter media may be designed to have different performance characteristics.
  • filter media can be formed of a web of fibers. The fiber web provides a porous structure that permits fluid (e.g., a liquid or a gas) to flow through the filter media. Contaminant particles contained within the fluid may be trapped on the fibrous web.
  • Filter media characteristics such as fiber diameter and basis weight, affect filter performance including filter efficiency and resistance to fluid flow through the filter.
  • Fiber webs can be formed by different processes.
  • a fiber web may be formed by extruding a polymeric material through a die and then attenuating the resulting filaments with a heated, high-velocity air stream. This process may generate fine fibers that can be collected onto a moving collector belt where they intertwine with each other to form a fiber web.
  • Improvements in the extrusion process may lead to fiber webs having improved structural and performance characteristics, such as reduced fiber diameters, increased surface area, and/or reduced basis weight. Such improvements would find use in a number of different fields where fiber webs can be used, such as in filtration applications.
  • the disclosure generally relates to fine fiber products, as well as related assemblies, systems and methods.
  • a series of fiber webs are provided.
  • a fiber web includes a plurality of meltblown fibers formed of a polymeric material and having an average fiber diameter between about 0.1 microns and about 1.5 microns.
  • the fiber web has an air permeability between about 10 CFM and about 1800
  • the fiber web also has a surface density of particles formed of the polymeric material of less than about 1.6 particles/in , wherein each of the particles has a largest cross-sectional dimension of about 1.0 mm or greater.
  • a fiber web in another set of embodiments, includes a plurality of meltblown fibers formed of a polymeric material and having an average fiber diameter between about 0.1 microns and about 0.6 microns.
  • the fiber web has an air permeability between about 10 CFM and about 1800 CFM, a surface area between about 0.1 m /g and about
  • the fiber web also has a surface density of particles formed of the polymeric material of less than about 5 particles/in , wherein each of the particles has a largest cross-sectional dimension of about 1.0 mm or greater.
  • a fiber web in another set of embodiments, includes a plurality of meltblown fibers having an average fiber diameter between about 0.1 microns and about 1.5 microns.
  • the fiber web has an air permeability between about 10 and about 1800 CFM, a surface area greater than about 2.0 m 2 /g, a basis weight between about 1.0 g/m 2 and about 100 g/m , and a thickness between about 0.0005 inches and about 0.04 inches.
  • a series of methods of forming fiber webs includes introducing a polymeric material into an extrusion system including an extruder inlet, a die outlet, and a processing space between the extruder inlet and the die outlet, wherein the extrusion system comprises a extruder barrel having an inner diameter of about 4 inches or less, and processing the polymeric material in the extrusion system such that the polymeric material has a dwell time of less than about 85 minutes in the processing space.
  • the method also includes forming a plurality of meltblown fibers from the polymeric material, wherein the plurality of meltblown fibers have an average diameter between about 0.1 microns and about 1.5 microns, and forming a fiber web comprising the plurality of meltblown fibers.
  • a method of forming a fiber web includes introducing a polymeric material into an extrusion system including an extruder inlet, a die outlet, and a processing space between the extruder inlet and the die outlet having a volume of less than about 25,000 cm .
  • the method also includes forming a plurality of meltblown fibers from the polymeric material, wherein the plurality of meltblown fibers have an average diameter between about 0.1 microns and about 1.5 microns, and forming a fiber web comprising the plurality of meltblown fibers.
  • a method of forming a fiber web includes introducing a polymeric material into an extrusion system including an extruder inlet, a die outlet, and a processing space between the extruder inlet and the die outlet, and processing the polymeric material in the extrusion system such that the polymeric material has a dwell time in the processing space of less than about 30 minutes and a throughput of less than about 85 lbs/hr.
  • the method also includes forming a plurality of meltblown fibers from the polymeric material, wherein the plurality of meltblown fibers have an average diameter between about 0.1 microns and about 1.5 microns, and forming a fiber web comprising the plurality of meltblown fibers.
  • a method of forming a fiber web includes introducing a polymeric material into an extrusion system including an extruder inlet, a die outlet, and a processing space between the extruder inlet and the die outlet, and processing the polymeric material in the extrusion system such that the polymeric material has a dwell time in the processing space of less than about 50 minutes and a throughput of less than about 55 lbs/hr.
  • the method also includes forming a plurality of meltblown fibers from the polymeric material, wherein the plurality of meltblown fibers have an average diameter between about 0.1 microns and about 1.5 microns, and forming a fiber web comprising the plurality of meltblown fibers.
  • FIG. 1 is a schematic diagram showing a process for fiber formation according to one set of embodiments.
  • fiber webs described herein may include fine fibers and relatively low amounts of degraded polymer formed during a fiber extrusion process.
  • Polymer degradation may result in the formation of polymeric particles, which may lessen the properties of fiber webs used for filter media or other applications.
  • Polymer degradation may be decreased by, for example, decreasing the amount of time (e.g., dwell time) the polymeric material spends at relatively high temperatures and pressures in certain portions of the extrusion system. Factors influencing this decreased dwell time are balanced with the desire to form fibers having small diameters which in certain conventional processes are produced at longer dwell times.
  • fiber webs described herein have a relatively low air permeability and a relatively high surface area, which can lead to increased performance. Other advantages of the articles, methods and systems described herein are also provided.
  • This disclosure describes several methods for addressing some problems associated with certain polymer fiber extrusion processes.
  • One problem involves the formation of fibers having very small diameters.
  • the formation of fibers having very small diameters in certain extrusion processes uses a relatively low polymer throughput.
  • a low throughput may lead to the formation of degraded polymeric material in the form of particles during an extrusion process. This degradation may be caused by the polymeric material being subjected to the relatively high temperatures and pressures of the extrusion process for prolonged periods of time and/or to other conditions.
  • As the amount of degraded polymer increases less fiber is produced per unit of polymer.
  • this occurrence is not desirable as it may result in having to form fiber webs having a higher basis weight in order to achieve the same level of performance as fiber webs without degraded polymer, all other factors being equal.
  • FIG. 1 shows a system 1 that may be used in methods that form fine fibers according to certain embodiments described herein.
  • a polymeric material 10 such as a resin which may be in granular form
  • the polymeric material may then be transported in the direction of arrows 22 towards an inlet 24 of an extruder 25.
  • the extruder includes an extruder screw 26 that is mounted for rotation within an extruder barrel 27. Through the rotation of the screw, polymeric material is conveyed downstream within the extruder barrel, which may be heated to a desired temperature to create a fluid stream of polymeric material.
  • the polymer is heated (generally slowly) from the inlet of the extruder to the outlet of the extruder to allow the polymeric material to flow more easily.
  • the stream of polymeric material may then flow into one or more conduits 28 fluidically connecting the extruder to a die body 30 (e.g., connecting the extruder outlet to a die body inlet).
  • the volume between the extruder inlet and a die outlet 44 collectively define a processing space having a particular internal volume that can be used to calculate the dwell time of the polymeric material, as described in more detail below.
  • a melt pump 32 may be positioned between conduit 28 and the die body.
  • the melt pump can help control the amount of polymer throughput (lb/hr) delivered to the die body.
  • the die body has a die temperature which influences the temperature of the polymeric material in the die body, including the temperature of the polymer in a spin pack 40 connected to the die body.
  • the spin pack may include one or more channels 42 allowing the polymer to flow towards a die outlet 44 (e.g., a die tip) including one or more holes.
  • the spin pack also includes one or more additional channels 46 which can allow air or other gases to flow towards the die tip. As the melted polymer exits the one or more die outlets, the air flowing in channels 46 attenuates the polymer into fibers. Fiber formation can be controlled by modifying the process air temperature and process air volume.
  • the polymer exiting the one or more holes of the die outlet is formed into meltblown fibers 50 onto a collector table 60 which includes a collector belt 70.
  • the diameter of the fibers may be controlled in part by air or other gases introduced into channels 55, which can be used to quench the fibers.
  • the heated, high velocity air impinges the polymer on either side of the die outlet as the polymer exits out of the die outlet. This air may attenuate the fiber to the final fiber size. Quenching can be controlled by modifying the quench air temperature and quench air volume.
  • the fibers collected onto the collector belt may be pulled towards the collector table using a suction box 74.
  • the fibers collected onto the collector belt form a fiber web.
  • the distance 75 from the die tip to the collector table can be varied to control the density of the fiber web (e.g., as the distance is increased, the fiber velocity is decreased and the fiber temperature is reduced so packing of the fibers is less dense, resulting in a more lofty web). As the distance is increased, the velocity of the fiber is generally decreased, making a loftier fiber web.
  • the collector suction is also controlled, which also impacts the loft of the fiber web.
  • the basis weight and thickness of the fiber web can be varied by controlling the collector belt speed.
  • the collector belt transports the fiber web to a winder 80 where the fiber web can be further processed if desired.
  • a method of forming a fiber web may involve controlling the dwell time of the polymeric material in a processing space of a system such as the one shown in FIG. 1.
  • the dwell time is the time the polymeric material spends in a processing space, which includes the combined volume where the polymeric material can reside between an extruder inlet and a die outlet, within the temperature- and pressure- controlled confines of the extrusion process.
  • the combined volume may include, for example, the volume of the extruder (e.g., extruder barrel), die body, and any conduits fluidically connecting the extruder and die body.
  • the dwell time can be calculated using the formula:
  • Dwell time V-p / Th (1)
  • V is the volume of the processing space as defined above
  • p is the density of the polymeric material being extruded
  • Th is the throughput of the polymeric material through the die body.
  • relatively low throughputs may be used during the extrusion process.
  • Relatively low throughputs allow fibers having small diameters to be formed; however, low throughputs may also result in a certain amount of the polymeric material used to form the fibers to become degraded due to the polymeric material being subjected to the relatively high temperatures and pressures of the extrusion process for prolonged periods of time (i.e., a relatively high dwell time).
  • Degradation may result in the formation of small polymeric particles as described in more detail below, which may lessen the filtration properties of the fiber web. If relatively high throughputs are used, the dwell time of the polymeric material decreases; however, fibers having larger diameters may be formed. As a result, in some
  • a suitable process for forming fine fibers with low polymer degradation may involve balancing both the throughput and the dwell time of the polymeric material during the extrusion process.
  • one method for decreasing the dwell time of the polymeric material while obtaining small fiber diameters is to decrease the volume of the processing space.
  • the volume of the processing space may be decreased by, for example, decreasing the diameter and/or length of the extruder barrel, decreasing the number, diameter and/or length of any conduits connecting the extruder and die body, decreasing the internal volume of the die body, and combinations thereof.
  • Using a relatively low processing space volume during an extrusion process can allow, in some embodiments, a relatively low polymer throughput to be used, while still maintaining a relatively low dwell time. As such, fine fiber webs having relatively low polymer degradation may be formed.
  • the temperature of the polymeric material in the processing space may have relatively little effect on the amount of polymer degradation, e.g., compared to the dwell time.
  • One of ordinary skill in the art would have expected that polymer degradation was caused by the polymeric material being subjected to the relatively high temperatures (and pressures) during the extrusion process. Accordingly, to decrease the amount of polymer degradation, one of ordinary skill in the art would likely decrease the temperature of the polymeric material in the extruder and/or die body.
  • One of ordinary skill in the art would not have expected that low amounts of polymer degradation can be achieved while using relatively high processing temperatures in combination with modifying other parameters as described in certain methods provided herein.
  • a method of forming a fiber web may involve controlling the dwell time of the polymeric material in a processing space of an extrusion system.
  • the dwell time may range between about 1 minute and about 2,600 minutes.
  • the dwell time of the polymeric material may be between about 1 minute and about 1,500 minutes, between about 2 minutes and about 1,000 minutes, between about 2 minutes and about 500 minutes, between about 2 minutes and about 100 minutes, between about 3 minutes and about 90 minutes, between about 5 minutes and about 76 minutes, between about 5 minutes and about 50 minutes, between about 5 minutes and about 30 minutes, or between about 1 minute and about 15 minutes.
  • the dwell time of a polymeric material in a processing space is less than about 2,000 minutes, less than about 1,500 minutes, less than about 1,000 minutes, less than about 500 minutes, less than about 200 minutes, less than about 100 minutes, less than about 75 minutes, less than about 50 minutes, less than about 30 minutes, less than about 20 minutes, less than about 15 minutes, less than about 10 minutes, or less than about 5 minutes.
  • the polymer throughput may range, for example, between about 1 lb/hour and about 200 lbs/hour.
  • the polymer throughput may be between about lib/hour and 150 lbs/hours, between about 1 lb/hour and 100 lbs/hour, between about 2 lbs/hour and about 90 lbs/hour, between about 20 lbs/hour and about 85 lbs/hour, between about 20 lbs/hour and about 60 lbs/hour, between about 40 lbs/hour and about 85 lbs/hour, or between about 1 lb/hour and 20 lbs/hour.
  • the polymer throughput may be less than about 200 lbs/hour, less than about 150 lbs/hour, less than about 100 lbs/hour, less than about 85 lbs/hour, less than about 60 lbs/hour, less than about 40 lbs/hour, less than about 20 lbs/hour.
  • the polymer throughput may be greater than about 20 lbs/hour, greater than about 40 lbs/hour, greater than about 85 lbs/hour, greater than about 100 lbs/hour, greater than about 150 lbs/hour, or greater than about 200 lbs/hour. Other ranges and values of polymer throughput are also possible.
  • the volume of the processing space where polymeric material can reside may be varied in some embodiments, e.g., to achieve a particular dwell time.
  • the volume of the processing space may range, for example, between about 10 cm 3 and about 30,000 cm 3 , between about 10 cm 3 and about 25,000 cm 3 , between about 10 cm 3 and about 20,000 cm 3 , between about 10 cm 3 and about 15,000 cm 3 , between about 10 cm 3 and about
  • the volume of the processing space is less than about 30,000 cm , less than about 25,000 cm 3 , less than about 20,000 cm 3 , less than about 15,000 cm 3 , less than about 12,000 cm 3 , less than about 10,000 cm 3 , less than about 8,000 cm 3 , less than about 6,000 cm 3 , less than about 4,000 cm 3 , less than 2,000 cm 3 , less than about 1,000 cm 3 , or less than about 500 cm .
  • Other ranges and values of processing space volume are also possible.
  • the size of the extruder screw (e.g., screw diameter) may be varied in some embodiments, e.g., to achieve a particular processing space volume. In some
  • the extruder screw diameter may be between about 0.25 and about 6.0 inches.
  • the extruder screw diameter may be between about 0.25 inches and about 5.5 inches, between about 0.5 inches and about 5.0 inches, between about 1.0 inch and about 4.0 inches, between about 1.0 inch and about 3.5 inches, or between about 1.0 inch and about 3.0 inches.
  • extruder screw diameter may be about 6.0 inches or less, about 5.5 inches or less, about 5.0 inches or less, about 4.5 inches or less, about 4.0 inches or less, about 3.5 inches or less, about 3.0 inches or less, about 2.5 inches or less, about 2.0 inches or less, or about 1.5 inches or less.
  • Other ranges and values of extruder screw diameters are also possible.
  • the extruder barrel diameter (e.g., the inner diameter of the barrel) may be varied in some embodiments and may be chosen to match the size of the extruder screw.
  • an extruder screw having a 4 inch diameter may be matched with an extruder barrel having an inner diameter of about 4.0 inches.
  • the extruder barrel may have an inner diameter of between about 0.25 and about 6.0 inches.
  • the inner diameter of the extruder barrel may be between about 0.25 inches and about 5.5 inches, between about 0.5 inches and about 5.0 inches, between about 1.0 inch and about 4.0 inches, between about 1.0 inch and about 3.5 inches, or between about 1.0 inch and about 3.0 inches.
  • the inner diameter of the extruder barrel may be about 6.0 inches or less, about 5.5 inches or less, about 5.0 inches or less, about 4.5 inches or less, about 4.0 inches or less, about 3.5 inches or less, about 3.0 inches or less, about 2.5 inches or less, about 2.0 inches or less, or about 1.5 inches or less. Other ranges and values of extruder barrel inner diameters are also possible.
  • the length of the extruder barrel may be varied, e.g., to achieve a particular processing space volume.
  • the length of the extruder barrel may be between about 1 ft and about 15 ft.
  • the length of the extruder barrel may be between about 1 ft and about 12 ft, between about 1 ft and about 10 ft, between about 1 ft and about 8 ft, between about 1 ft and about 6 ft, between about 1 ft and about 5 ft, between about 1 ft and about 4 ft, or between about 1 ft and about 2 ft.
  • the length of the extruder barrel is about 15 ft or less, about 12 ft or less, about 10 ft or less, about 8 ft or less, about 6 ft or less, about 5 ft or less, about 4 ft or less, about 3 ft or less, or about 2 ft or less.
  • Other ranges and values of extruder barrel lengths are also possible.
  • the average diameter of one or more conduits between an extruder outlet and a die inlet may be varied, e.g., to achieve a particular processing space volume.
  • the average conduit diameter may be between about 0.1 and about 10.0 inches.
  • the average conduit diameter may be between about 0.3 inches and about 8.0 inches, between about 0.3 inches and about 5.0 inches, between about 0.1 inches and about 3.0 inches, between about 0.1 inches and about 2.0 inches, between about 0.5 inches and about 2.0 inches, between about 0.1 inches and about 1.8 inches, between about 0.1 inches and about 1.6 inches, between about 0.1 inches and about 1.4 inches, between about 0.1 inches and about 1.2 inches, between about 0.1 inches and about 1.0 inches, or between about 0.1 inches and about 0.8 inches.
  • the average conduit diameter is about 10.0 inches or less, about 8.0 inches or less, about 6.0 inches or less, about 4.0 inches or less, about 3.0 inches or less, about 2.0 inches or less, about 1.8 inches or less, about 1.6 inches or less, about 1.4 inches or less, about 1.2 inches or less, about 1.0 inches or less, about 0.8 inches or less, or about 0.7 inches or less.
  • Other ranges and values of average conduit diameters are also possible.
  • the combined length of one or more conduits between an extruder outlet and a die inlet may be varied, e.g., to achieve a particular processing space volume.
  • the combined conduit length may be between about 0.5 ft and about 75 ft.
  • the combined conduit length may be between about 5 ft and about 50 ft, between about 5 ft and about 40 ft, between about 5 ft and about 30 ft, between about 10 ft and about 25 ft, between about 5 ft and about 25 ft, between about 5 ft and about 20 ft, between about 5 ft and about 15 ft, between about 1 ft and about 12 ft, between about 1 ft and about 10 ft, between about 1 ft and about 8 ft.
  • the conduit length may be about 75 ft or less, about 50 ft or less, about 40 ft or less, about 30 ft or less, about 25 ft or less, about 20 ft or less, about 15 ft or less, about 12 ft or less, about 10 ft or less, about 8 ft or less, or about 6 ft or less.
  • Other ranges and values of combined conduit lengths are also possible.
  • the volume of the die body (including the spin pack) where polymeric material can reside may be varied in some embodiments.
  • the volume of the die body may range, for example, between about 300 cm 3 and about 15,000 cm 3 , between about 300 cm 3 and about 13,000 cm 3 , between about 300 cm 3 and about 11,000 cm 3 , between about 300 cm 3 and about 9,000 cm 3 , between about 300 cm 3 and about 6,000 cm 3 , between about 300 cm 3 and about 4,000 cm 3 , between about 300 cm 3 and about 2,000 cm 3 , between about
  • the volume of the die body is 15,000 cm 3 , less than about 13,000 cm 3 , less than about 10,000 cm 3 , less than about 8,000 cm 3 , less than about 6,000 cm 3 , less than about 4,000 cm 3 , less than 2,000 cm 3 , less than about 1,000 cm 3 , or less than about 600 cm 3.
  • Other ranges and values of die volume are also possible.
  • an extrusion process described herein may include a particular die temperature range or value.
  • the die temperature may be selected to suitably soften (e.g., melt) the polymeric material that is to be formed into fibers.
  • the die temperature is between about 400 °F and about 630 °F.
  • the die temperature may be between about 410 °F and about 600 °F, between about 410 °F and about 580 °F, between about 420 °F and about 550 °F, between about 420 °F and about 500 °F, or between about 530 °F and about 550 °F.
  • the die temperature may be greater than about 400 °F, greater than about 420 °F, greater than about 440 °F, greater than about 460 °F, greater than about 480 °F, or greater than about 500 °F. In other embodiments, the die temperature may be less than about 630 °F, less than about 550 °F, less than about 530 °F, less than about 520 °F, less than about 500 °F, or less than about 450 °F. Other ranges and values of die temperatures are also possible.
  • the temperature of the extruder barrel typically varies from the inlet of the extruder to the outlet of the extruder to allow the polymeric material to flow more easily.
  • the minimum temperature used to heat the polymer in the extruder barrel may be, for example, at least about 300 °F, at least about 350 °F, at least about 400 °F, or at least about 420 °F.
  • the maximum temperature of the extruder barrel may be, for example, between about 400 °F and about 630 °F.
  • the maximum temperature of the extruder barrel may be between about 410 °F and about 600 °F, between about 410 °F and about 580 °F, between about 420 °F and about 550 °F, between about 420 °F and about 480 °F, or between about 420 °F and about 500 °F. In certain embodiments, the maximum temperature of the extruder barrel may be greater than about 400 °F, greater than about 420 °F, greater than about 440 °F, greater than about 460 °F, greater than about 480 °F, or greater than about 500 °F.
  • the maximum temperature of the extruder barrel may be less than about 630 °F, less than about 550 °F, less than about 500 °F, or less than about 450 °F. In some embodiments, the maximum temperature of the extruder barrel is at least about 10 °F lower, at least about 20 °F lower, at least about 30 °F lower, or at least about 40 °F lower than the temperature of the die body. Other ranges and values of temperatures of the extruder barrel are also possible.
  • the process air temperature may also be varied. In some embodiments, the process air temperature may be between about 400 °F and about 630 °F.
  • the process air temperature may be between about 410 °F and about 600 °F, between about 410 °F and about 580 °F, between about 420 °F and about 550 °F, between about 440 °F and about 530 °F, or between about 420 °F and about 500 °F.
  • Other ranges and values of process air temperatures are also possible.
  • the process air is the heated air on either side of the die tip where the fibers are formed. This heated air (typically the same temperature as the die tip) impinges the fibers and helps attenuate the fibers to the final fiber size. It is believed that, in some embodiments, as the air volume increases, the fiber diameter can decrease.
  • the process air volume can be selected as appropriate. In some embodiments, the process air volume may be between about 1,000 pounds/hour- meter (lbs/hr-m) and about 4,000 lbs/hr-m.
  • the process air volume may be between about 1,500 lbs/hr-m and about 3,800 lbs/hr-m, between about 2,500 lbs/hr-m and about 3,750 lbs/hr-m, or between about 3,000 lbs/hr-m and about 3,500 lbs/hr-m. Other ranges and values of process air volumes are also possible.
  • the quench air temperature may also be varied. In some embodiments, the quench air temperature may be between about 0 °F and about 200 °F. For instance, the quench air temperature may be between about 0 °F and about 150 °F, between about 0 °F and about 100 °F, between about 0 °F and about 75 °F, between about 0 °F and about 50 °F, between about 0 °F and about 30 °F, or between about 0 °F and about 20 °F. Other ranges and values of quench air temperatures are also possible.
  • the quench air volume may be between about 0 pounds/hour (lbs/hr) and about 750 lbs/hr.
  • the quench air volume may be between about 0 lbs/hr and about 500 lbs/hr, between about 0 lbs/hr and about 250 lbs/hr, or between about 0 lbs/hr and about 150 lbs/hr.
  • Other ranges and values of quench air volumes are also possible.
  • the size of the die outlets (e.g., holes) and number of outlets per inch for the die can generally be selected as desired.
  • the die can have about 35 holes per inch with 0.0125" holes.
  • the die can have about 70 holes per inch with 0.007" holes.
  • the die can have from about 25 holes per inch to about 250 holes per inch.
  • the die may include about 35 holes per inch or greater, about 50 holes per inch or greater, or about 70 holes per inch or greater. Other dies can optionally be used.
  • the distance from the die tip to the collector may be varied.
  • the distance from the die tip to the collector may be, for example, between about 3 inches and about 80 inches.
  • the distance from the die tip to the collector may be between about 3 inches and about 50 inches, between about 4 inches and about 40 inches, between about 5 inches and about 25 inches, or between about 6 inches and about 15 inches.
  • Other ranges and values of distances from the die tip to the collector are also possible.
  • the vacuum level created by the suction box can be selected as appropriate.
  • the vacuum level may be between about 1 inches of water and about 60 inches of water.
  • the vacuum level may be between about 10 inches of water and about 50 inches of water, between about 20 inches of water and about 40 inches of water, between about 20 inches of water and about 30 inches of water, or between about 30 inches of water and about 40 inches of water.
  • the line speed at which the collector belt moves can be selected as desired to form a fiber web.
  • the collector belt may move at a line speed between about 1 ft/min and about 400 ft/min.
  • the collector belt may move at a line speed between about 10 ft/min and about 200 ft/min, between about 50 ft/min and about 150 ft/min, between about 50 ft/min and about 100 ft/min, or between about 75 ft/min and about 150 ft/min.
  • a relatively low dwell time and a relatively low throughput may be used to form fine fibers.
  • a method may include subjecting the polymeric material to a dwell time of less than about 30 minutes and a throughput of less than about 85 lbs/hr.
  • the polymeric material may have a dwell time of less than about 50 minutes and a throughput of less than about 55 lbs/hr.
  • fiber webs having relatively low surface densities of particles can be formed as described in more detail below.
  • varying the above-noted parameters during an extrusion process, and/or using one or more additives described herein may result in essentially none or relatively low amounts of polymer degradation during fiber formation.
  • such processes can be used to form fine fibers, such as ones having a diameter in one of the ranges described herein (e.g., an average diameter between about 0.1 and about 1.5 microns, or between about 0.1 and about 0.6 microns).
  • a diameter in one of the ranges described herein e.g., an average diameter between about 0.1 and about 1.5 microns, or between about 0.1 and about 0.6 microns.
  • Degradation may involve chain scission, i.e., shortening of the polymer chains to produce lower molecular weight polymers, and/or other forms of decomposition (e.g., chemical decomposition, thermal decomposition, ionization).
  • decomposition e.g., chemical decomposition, thermal decomposition, ionization
  • small polymeric particles may be formed. These particles may have the same chemical composition as the polymeric material used to form the fibers (but having a lower molecular weight), or may be a derivative of the polymeric material used to form the fibers.
  • the particles may be associated with the fiber web in various configurations. For instance, the particles may reside on the surface of the fibers, on the surface of the fiber web, in the center of the fiber web, or in combinations thereof.
  • the shape and size of the polymeric particles formed may vary, and in some cases, the particles can even agglomerate to form larger particles. It should be understood that the polymeric particles described herein are different from fibers.
  • the polymeric particles are non-fibrous, and generally have an aspect ratio (i.e., a length to largest cross-sectional dimension) of less than 50: 1 and a largest cross-sectional dimension of at least 0.2 mm.
  • a particle may have a largest cross- sectional dimension of about 0.2 mm or greater, about 0.5 mm or greater, about 1.0 mm or greater, about 1.5 mm or greater, about 2.0 mm or greater, about 2.5 mm or greater, about 3.0 mm or greater, about 3.5 mm or greater, about 4.0 mm or greater, about 4.5 mm or greater, about 5.0 mm or greater, about 5.5 mm or greater, about 6.0 mm or greater, about 6.5 mm or greater, about 7.0 mm or greater, about 7.5 mm or greater, about 8.0 mm or greater, about 8.5 mm or greater, about 9.0 mm or greater, about 9.5 mm or greater, or about 10.0 mm or greater.
  • Other values and ranges of particle size are also possible.
  • the average molecular weight of the particles formed during a fiber extrusion process may be less than about 1/2 the average molecular weight of the polymer used to form the fibers.
  • the average molecular weight of the particles formed during a fiber extrusion process may be less than about 1/8, less than about 1/64, or less than about 1/200 the average molecular weight of the polymer used to form the fibers.
  • Other values of molecular weight of the particles associated with a fiber web are also possible.
  • a fiber web described herein may include a relatively low number of or essentially no particles on its surface.
  • the amount of particles may be measured by determining the surface density of particles on the fiber web, i.e., the number of particles on a surface of the fiber web per unit area of the fiber web surface.
  • a fiber web may have a surface density of particles of less than about 12.0 particles/inch 2 , less than about 11.5 particles/inch 2 , less than about 11.0 particles/inch 2 , less than about 10.5 particles/inch 2 , less than about 10.0 particles/inch 2 , less than about
  • a fiber web has a surface density of particles of less than about 3.0 particles/inch , wherein each of the particles has a largest cross-sectional dimension of between about 0.2 mm or greater.
  • the fiber web may include some particles having a largest cross- sectional dimension smaller than about 0.2 mm, these particles are not accounted for in calculating the surface density of particles.
  • a fiber web has a surface density of particles of less than about 3.0 particles/inch , wherein each of the particles has a largest cross- sectional dimension of about 1.0 mm or greater.
  • the fiber web may include some particles having a largest cross-sectional dimension smaller than about 1.0 mm, these particles are not accounted for in calculating the surface density of particles.
  • Other surface densities of particles in a particular size range or value are also possible.
  • the number of particles per area of fiber web can be determined as follows.
  • a sample of fiber web can be layered together with carbon paper and a white sheet of standard copy paper, where the carbon paper is positioned between the fiber web and the copy paper.
  • the composite structure can be placed in a continuous belt press where the following conditions are employed: a line speed of 2.5 m/min, a pressure of 6 bar, and a temperature of about 68 °F - 80 °F (room temperature). After exposure to these conditions, the degraded polymer particles, if present, may lie at an elevated position compared to the fibers, and appear as small "dots" on the underlying copy paper. If a darker image is needed for detection, the copy paper can be photocopied with a standard copier to darken the carbon image.
  • This copy paper image can be scanned using standard imaging software, and software (e.g., ImageJ software available for download at http://rsbweb.nih.gov/ii/) can be used to determine the number of "dots" on the image.
  • These "dots” may be measured in pixels, and each pixel can be correlated to a certain size to determine the size and number of particles. For instance, 1 pixel may correspond to 0.2646 mm, so a "dot" having a size of 1 pixel on the image may correspond to 1 particle having a largest dimension of 0.2646 mm; a "dot” having a size of 4 pixels on the image may correspond to 1 particle having a largest dimension of 1.1 mm.
  • Pixel sizes may vary depending on the imaging hardware and/or software used.
  • fiber webs having a value or range of surface density of particles described above can also have one or more of the values and ranges of the features and performance characteristics described below.
  • At least 5% e.g., at least 7%, at least 10%, at least 15%, at least 20%, at least 25%, at least 50%, at least 60%, or at least 75%) of the fibers in a layer of a fiber web extend a distance of at least 0.3 microns in a direction substantially perpendicular to a surface of the layer,
  • a fiber web described herein may be formed of fibers having an average diameter between about 0.1 microns and about 1.5 microns.
  • the fiber web may include fibers (e.g., meltblown fibers) having an average diameter of between about 0.1 microns and about 1.3 microns, between about 0.1 microns and about 1.2 microns, between about 0.1 microns and about 1.0 microns, between about 0.25 microns and about 1.0 microns, between about 0.1 microns and about 0.8 microns, between about 0.1 microns and about 0.7 microns, between about 0.1 microns and about 0.6 microns, between about 0.1 microns and about 0.5 microns, or between about 0.1 microns and about 0.4 microns.
  • fibers e.g., meltblown fibers
  • the average diameter of the fibers (e.g., meltblown fibers) in a fiber web may be about 1.5 microns or less, about 1.4 microns or less, about 1.3 microns or less, about 1.2 microns or less, about 1.1 microns or less, about 1.0 microns or less, about 0.9 microns or less, about 0.8 microns or less, about 0.7 microns or less, about 0.6 microns or less, about 0.5 microns or less, about 0.4 microns or less, or about 0.3 microns or less.
  • the average diameter of the fibers (e.g., meltblown fibers) in a fiber web may be greater than about 0.2 microns, greater than about 0.4 microns, greater than about 0.6 microns, greater than about 0.8 microns, greater than about 1.0 microns, or greater than about 1.2 microns.
  • fiber diameter is measured using scanning electron microscopy.
  • a particular fiber used in a fiber web described herein (e.g., a meltblown fiber having an average fiber diameter of about 1.0 microns) generally has a standard deviation of fiber diameter associated with it.
  • the standard deviation of fiber diameter may depend on the particular process used to form the fiber.
  • the standard deviation of fiber diameter for meltblown fibers is generally greater than about 0.20 microns (e.g., typically greater than about 0.70 microns)
  • the standard deviation of fiber diameter for electrospun fibers is generally less than about 0.20 microns (e.g., typically less than about 0.10 microns).
  • the standard deviation of fiber diameter for a fiber described herein may be greater than about 0.15 microns, greater than about 0.20 microns, greater than about 0.25 microns, greater than about 0.30 microns, greater than about 0.35 microns, greater than about 0.40 microns, greater than about 0.45 microns, greater than about 0.50 microns, greater than about 0.55 microns, greater than about 0.60 microns, greater than about 0.65 microns, greater than about 0.70 microns, greater than about 0.75 microns, or greater than about 0.80 microns.
  • the standard deviation of fiber diameter for a fiber described herein may be less than about 1.0 microns, less than about 0.90 microns, less than about 0.80 microns, less than about 0.70 microns, less than about 0.60 microns, less than about 0.50 microns, less than about 0.40 microns, less than about 0.30 microns, or less than about 0.20 microns. Other ranges are also possible. Combinations of the above-noted ranges are also possible (e.g., a standard deviation of greater than about 0.15 microns and less than about 0.70 microns).
  • the standard deviation may be calculated using a total number of samples of at least 18 in some embodiments. In other embodiments, the total number of samples used to calculate standard deviation may be at least 25, at least 50, or at least 100.
  • a fiber described herein (e.g., meltblown fibers) has a particular ratio of average fiber diameter to standard deviation of fiber diameter. For instance, a fiber having an average diameter of 0.38 microns with a standard deviation of 0.53 microns would have a ratio of average fiber diameter to standard deviation of fiber diameter of 1 : 1.4.
  • a fiber described herein may have a ratio of average fiber diameter to standard deviation of fiber diameter of less than about 5.0: 1.0 (e.g., 4.5: 1.0), less than about 4.0: 1.0, less than about 3.0: 1.0, less than about 2.0: 1.0, or less than about 1.0: 1.0 (e.g., 0.7: 1.0).
  • a fiber described herein may have a ratio of average fiber diameter to standard deviation of fiber diameter of greater than about 0.5: 1.0, greater than about 0.6: 1.0, greater than about 0.7: 1.0, greater than about 0.8: 1.0, greater than about 0.9: 1.0, greater than about 1.0: 1.0, greater than about 1.5: 1.0.
  • Other ranges are also possible. Combinations of the above-noted ranges are also possible (e.g., a ratio of less than about 5.0: 1.0 and greater than about 0.7: 1.0).
  • the fiber web can generally have any suitable thickness.
  • the fiber web has a thickness between about 0.0005 inches and about 0.040 inches.
  • the thickness of the fiber web may be between about 0.001 inches and about 0.030 inches, between about 0.001 inches and about 0.020 inches, between about 0.002 inches and about 0.010 inches, or between about 0.002 inches and about 0.020 inches.
  • the thickness of the fiber web may be less than about 0.040 inches, less than about 0.030 inches, less than about 0.020 inches, or less than about 0.010 inches.
  • the thickness of the fiber web may be greater than about 0.0010 inches, greater than about 0.0050 inches, greater than about 0.010 inches, greater than about 0.020 inches, or greater than about 0.030 inches. As referred to herein, thickness is determined according to the standard ASTM D1777.
  • the fiber webs described herein have a relatively high consistency (low variability) of thickness across the fiber web.
  • the variability of thickness across the fiber web may be about 6.0 standard deviations or less, about 5.5 standard deviations or less, about 5.0 standard deviations or less, about 4.5 standard deviations or less, about 4.0 standard deviations or less, about 3.5 standard deviations or less, about 3.0 standard deviations or less, about 2.5 standard deviations or less, about 2.0 standard deviations or less, about 1.5 standard deviations or less, about 1.0 standard deviations or less, or about 0.5 standard deviations or less.
  • Other values of thickness variability are also possible.
  • the variability of thickness may be determined by taking a statistically significant number of measurements across the fiber web.
  • the basis weight of the fiber web can typically be selected as desired.
  • the basis weight of the fiber web may be between about 1.0 g/m and about 100 g/m .
  • the basis weight of the fiber web may be between about
  • the basis weight of the fiber web is greater than about 1 g/m (e.g., greater than about 2.0 g/m 2 , greater than about 3.0 g/m 2 , greater than about 4.0 g/m 2 , greater than about 5.0 g/m 2 , greater than about 10 g/m 2 , greater than about 25 g/m 2 ), and/or less than about 100 g/m 2 (e.g., less than about 90 g/m 2 , less than about 75 g/m 2 , less than about 30 g/m 2 , less than about 20 g/m 2 , less than about 10 g/m 2 ).
  • basis weight is determined according to ASTM D3776.
  • the fiber webs described herein have a relatively high consistency (low variability) of basis weight across the fiber web.
  • the variability of basis weight across the fiber web may be about 6.0 standard deviations or less, about 5.5 standard deviations or less, about 5.0 standard deviations or less, about 4.5 standard deviations or less, about 4.0 standard deviations or less, about 3.5 standard deviations or less, about 3.0 standard deviations or less, about 2.5 standard deviations or less, about 2.0 standard deviations or less, about 1.5 standard deviations or less, about 1.0 standard deviations or less, or about 0.5 standard deviations or less.
  • Other values of basis weight variability are also possible.
  • the variability of basis weight may be determined by taking a statistically significant number of measurements across the fiber web.
  • the fiber webs described herein may have a relatively high surface area.
  • a fiber web may have a surface area between about O. l m 2/g and about 6.0 m 2 /g.
  • a fiber web may have a surface area between about O.
  • l m 2/g and about 6.0 m 2 /g between about 0.5 m 2 /g and about 6.0 m 2 /g, between about 1.0 m 2 /g and about 6.0 m 2 /g, between about 1.3 m 2 /g and about 6.0 m 2 /g, between about 1.5 m 2 /g and about 6.0 m 2 /g, between about 1.7 m 2 /g and about 6.0 m 2 /g, between about 1.8 m 2 /g and about 6.0 m 2 /g, between about 2.0 m 2 /g and about 6.0 m 2 /g, or between about 2.5 m 2 /g and about 6.0 m 2 /g.
  • a fiber web has a surface area of about 1.0 m 2 /g or greater, about 1.3 m 2 /g or greater, 1.5 m 2 /g or greater, about 1.6 m 2 /g or greater, about 1.7 m 2 /g or greater, about 1.8 m 2 /g or greater, about 1.9 m 2 /g or greater, about 2.0 m 2 /g or greater, about 2.1 m 2 /g or greater, 2.2 m 2 /g or greater, about
  • surface area is measured through use of a standard BET surface area measurement technique.
  • the BET surface area is measured according to section 10 of Battery Council International Standard BCIS-03A,
  • the BET surface area is measured via adsorption analysis using a BET surface analyzer (e.g., Micromeritics Gemini III 2375 Surface Area Analyzer) with nitrogen gas; the sample amount is between 0.5 and 0.6 grams in a 3/4" tube; and, the sample is allowed to degas at 75 degrees C for a minimum of 3 hours.
  • the mean pore size of the fiber web may also vary. In some embodiments, a fiber web has a mean pore size between about 1 micron and about 30 microns.
  • the mean pore size may be between about 1 micron and about 20 microns, between about 1 micron and about 15 microns, between about 5 microns and about 15 microns, between about 1 micron and about 10 microns, or between about 5 microns and about 15 microns. In certain embodiments, the mean pore size may be less than about 30 microns, less than about 25 microns, less than about 20 microns, less than about 15 microns, less than about 10 microns, or less than about 5 microns. In other
  • the mean pore size may be greater than about 5 microns, greater than about 10 microns, greater than about 15 microns, greater than about 20 microns, greater than about 25 microns, or greater than about 30 microns. Other values and ranges of mean pore size are also possible. As used herein, mean pore size is measured according to the standard ASTM F-316-80 Method B, BS6410, e.g., using a Capillary Flow Porometer made by Porous Materials Inc.
  • the fiber web is formed of one or more polymers.
  • exemplary polymers include polyolefins (e.g., polypropylenes), polyesters (e.g., polybutylene terephthalate, polybutylene naphthalate), polyamides (e.g., nylons), polycarbonates, polyphenylene sulfides, polystyrenes, polyurethanes (e.g., thermoplastic polyurethanes).
  • the polymer(s) may contain fluorine atoms. Examples of such polymers include PVDF and PTFE. Examples of specific polymers that may be used include a polypropylene manufactured by LyondellBasell (MF650Y), a polypropylene
  • the fiber web includes one or more additives such as a binder, a lubricant, a slip agent, a surfactant, a coupling agent, a crosslinking agent, amongst others.
  • one or more additives can be used to reduce or eliminate the number of polymeric particles formed on or in a fiber web.
  • the fiber web includes a small weight percentage of an additive.
  • the fiber web may include less than about 10%, less than about 8%, less than about 6%, less than about 5%, or less than about 4% of an additive.
  • the fiber web may include between about 1% and about 10%, between about 1% and about 8%, between about 1% and about 5% of an additive, or between about 1% and about 2.5% of an additive.
  • the fiber web may include less than about 5%, less than about 3%, less than about 2%, or less than about 1% of a fatty acid additive as described below.
  • the additive may be added to the polymer material used to form the fibers when the polymeric material is in a molten (e.g., melted) state. In other embodiments, the additive coats the fibers after the fibers have been formed.
  • a fiber web may include an additive (e.g., a slip agent or other type of additive) in the form of a lipid.
  • the additive comprises a fatty acid (e.g., a saturated fatty acid, an unsaturated fatty acid, a mono-unsaturated fatty acid, a poly-unsaturated fatty acid).
  • the fatty acid includes an amide group (e.g., a fatty acid amide).
  • Non-limiting examples of fatty acid amides include stearamide, behenamide, erucamide, N-(2-hdriethyl) erucamide, lauramide, ⁇ , ⁇ '- ethylene-bis-oleamide, ⁇ , ⁇ '-ethylene bissteamide, oleamide, oleyl palmitamide, stearyl erucamide, tallow amide, arachidonylethanolamide, N-arachidonylmaleimide, mixtures thereof, and derivatives thereof.
  • additives examples include an additive provided by Standridge Color Corp., having a supplier part no.: 22686, and an additive containing provided by Standridge Color Corp., having a supplier part no. 10SAM1044.
  • the additive is in the form of a fatty acid having a C n (carbon) chain, where n is an integer. In some cases, n is 2 or greater, 4 or greater, 6 or greater, 8 or greater, 10 or greater, 12 or greater, 14 or greater, 16 or greater, 18 or greater, 20 or greater, 22 or greater, 24 or greater, 26 or greater, 28 or greater, 30 or greater, 32 or greater, 34 or greater, 36 or greater, 38 or greater, or 40 or greater.
  • n is less than or equal to 50, less than or equal to 45, less than or equal to 40, less than or equal to 35, less than or equal to 40, less than or equal to 35, less than or equal to 30, less than or equal to 25, less than or equal to 20, less than or equal to 15, less than or equal to 10, or less than or equal to 5.
  • the fiber webs described herein may have various performance characteristics.
  • the fiber webs have performance characteristics that enable them to be suitable for use as filter media.
  • methods described herein for forming meltblown fibers can result in a fiber web having a relatively low air permeability.
  • the air permeability of a fiber web may be less than about 1,800 ft 3 /min/ft 2 (CFM), less than about 1,500 CFM, less than about 1,300 CFM, less than about 1,000 CFM, less than about 900 CFM, less than about 800 CFM, less than about 750 CFM, less than about 700 CFM, less than about 600 CFM, less than about 500 CFM, less than about 400 CFM, less than about 300 CFM, less than about 200 CFM, less than about 100 CFM, or less than about 50 CFM.
  • CFM 1,800 ft 3 /min/ft 2
  • the air permeability of the fiber web can vary between about 10 CFM and about 1800 CFM (e.g., between about 10 CFM and about 1,500 CFM, between about 10 CFM and about 1,000 CFM, between about 10 CFM and about 750 CFM, between about 40 CFM and about 750 CFM, between about 10 CFM and about 600 CFM, between about 10 CFM and about 500 CFM, between about 10 CFM and about 400 CFM, between about 10 CFM and about 300 CFM, between about 10 CFM and about 200 CFM, between about 10 CFM and about 100 CFM, or between about 10 CFM and about 50 CFM). Other ranges are also possible. As used herein, air permeability is measured according to the standard ASTM D737-75.
  • the fiber webs described herein may have different ranges of NaCl particle filtration efficiencies.
  • the NaCl particle filtration efficiency is [1-(C/Co)]*100%, where C is the NaCl particle concentration after passage through the fiber web and Co is the NaCl particle concentration before passage through the filter.
  • a 100 cm surface area of the fiber web can be tested with NaCl (sodium chloride) particles having a 0.26 micron mass mean diameter with a geometric standard deviation less than 1.83, a concentration of 15 to 20 mg/cm , and a face velocity of 5.3 cm/s by a TSI 8130 CertiTest(TM) automated filter testing unit from TSI, Inc. equipped with a sodium chloride generator. The instrument measures a pressure drop
  • Instantaneous readings can be defined as 1 pressure drop/penetration measurement. This test is described in ASTM D2 986-91.
  • a fiber web described herein may have a NaCl particle filtration efficiency between about 0.0001 and about 99.97%.
  • the NaCl particle filtration efficiency may be between about 0.001% and about 99.97%, between about 0.01% and about 99.97%, between about 0.1% and about 99.97%, between about 1% and about 99.97%, between about 10.0% and about 99.97%, between about 40.0% and about 99.97%, between about 60.0% and about 99.97%, or between about 85.0% and about 99.97%.
  • the NaCl particle filtration efficiency is greater than about 10.0%, greater than about 20.0%, greater than about 30.0%, greater than about 40.0%, greater than about 50.0%, greater than about 60.0%, greater than about 70.0%, greater than about 80.0%, greater than about 90.0%, greater than about 95.0%, greater than about 97.0%, greater than about 98.0%, greater than about 99.0%, greater than about 99.5%, greater than about 99.9%, or greater than about 99.97%. Other ranges and values of NaCl particle filtration efficiency are also possible.
  • a fiber web described herein may have an airflow resistance between about 0.1 mm H 2 0 and about 50.0 mm H 2 0.
  • the air flow resistance may be between about 0.1 mm H 2 0 and about 40.0 mm H 2 0, between about 0.1 mm H 2 0 and about 30.0 mm H 2 0, between about 0.1 mm H 2 0 and about 20.0 mm H 2 0, between about 0.1 mm H 2 0 and about 10.0 mm H 2 0, between about 0.3 mm H 2 0 and about 5.0 mm H 2 0, between about 0.3 mm H 2 0 and about 3.5 mm H 2 0, between about 0.3 mm H 2 0 and about 3.0 mm H 2 0, between about 0.1 mm H 2 0 and about 2.5 mm H 2 0, or between about 0.1 mm H 2 0 and about 2.0 mm H 2 0.
  • the air flow resistance of a fiber web is less than about 50.0 mm H 2 0, less than about 40.0 mm H 2 0, less than about 30.0 mm H 2 0, less than about 20.0 mm H 2 0, less than about 10.0 mm H 2 0, less than about 5.0 mm H 2 0, or less than about 2.5 mm H 2 0. In other cases, the air flow resistance of a fiber web is greater than about 1.0 mm H 2 0, greater than about 2.5 mm H 2 0, greater than about 5.0 mm H 2 0, greater than about 10.0 mm H 2 0, greater than about 20.0 mm H 2 0, greater than about 30.0 mm H 2 0, or greater than about 40.0 mm H 2 0, Other ranges and values of air flow resistance are also possible. As used herein, air flow resistance is measured according to the standard ASTM D2 986-91 as described above.
  • fiber webs described herein having the values and ranges of the features and performance characteristics described above may be formed using different combinations of the parameters described above to control fiber formation during an extrusion process.
  • a method involving subjecting the polymeric material used to form the fibers to a dwell time of less than about 85 minutes, and using an extruder barrel having an inner diameter of about 4 inches or less may lead to fibers having small diameters (e.g., average diameter of about 1.0 microns or less, about 0.8 microns or less, or about 0.6 microns or less), fiber webs having relatively high surface areas (e.g., about 1.8 m /g or greater, about 2.0 m 2 /g or greater, or about 2.2 m 2 /g or greater), and/or to fiber webs having relatively low amounts of polymer degradation (e.g., a surface density of polymeric particles of less than about 5.0 particles/in 2 , less than about 3.0 particles/in 2 , less than about 2.0 particles
  • a method of forming fibers involving subjecting the polymeric material used to form the fibers to a processing space having a volume less than about 25,000 cm 3 , less than about 15,000 cm 3 , or less than about 9,000 cm 3 may lead to fibers and/or fiber webs having these characteristics.
  • the fiber webs described herein may have a single layer or multiple layers.
  • each layer of the fiber web may be formed by a process described herein.
  • at least one layer, or at least two layers, of the fiber web may be formed by a process described herein.
  • each layer of the fiber web may have one or more characteristics (e.g., surface density of particles, fiber diameter, standard deviation of fiber diameter, thickness, variability of thickness across the fiber web, basis weight, variability of basis weight across the fiber web, surface area, mean pore size, polymer type, presence of an additive, or a performance characteristic) in one or more of the ranges described herein.
  • characteristics e.g., surface density of particles, fiber diameter, standard deviation of fiber diameter, thickness, variability of thickness across the fiber web, basis weight, variability of basis weight across the fiber web, surface area, mean pore size, polymer type, presence of an additive, or a performance characteristic
  • At least one layer, or at least two layers of the fiber web may have one or more characteristics (e.g., surface density of particles, fiber diameter, standard deviation of fiber diameter, thickness, variability of thickness across the fiber web, basis weight, variability of basis weight across the fiber web, surface area, mean pore size, polymer type, presence of an additive, or a performance characteristic) in one or more of the ranges described herein.
  • characteristics e.g., surface density of particles, fiber diameter, standard deviation of fiber diameter, thickness, variability of thickness across the fiber web, basis weight, variability of basis weight across the fiber web, surface area, mean pore size, polymer type, presence of an additive, or a performance characteristic
  • a fiber web described herein may be combined with one or more other components such as a substrate and/or a scrim, optionally with an adhesive.
  • a substrate and/or a scrim optionally with an adhesive.
  • substrates, scrims and adhesives are described in U.S.
  • a fiber web or a composite including a fiber web can be charged.
  • any of a variety of techniques can be used to charge the fiber web and or a composite including the fiber web to form an electret web. Examples include AC and/or DC corona discharge.
  • the composite is subjected to a discharge of at least 1 kV/cm (e.g., at least 5 kV/cm, at least 10 kV/cm), and/or at most 30 kV/cm (e.g., at most 25 kV/cm, at most 20 kV/cm).
  • the composite can be subjected to a discharge of from 1 kV/cm to 30 kV/cm (e.g., from 5 kV/cm to 25 kV/cm, from 10 kV/cm to 20 kV/cm).
  • Exemplary processes are disclosed, for example, in U.S. Pat. No. 5,401,446, which, to the extent it is not inconsistent with the present disclosure, is incorporated herein by reference.
  • a fiber web described herein can be a part of a filter element.
  • filter elements include gas turbine filter elements, heavy duty air filter elements, automotive air filter elements, HVAC air filter elements, HEP A filter elements, vacuum bag filter elements, fuel filter elements, and oil filter elements.
  • Such filter elements can be incorporated into corresponding filter systems (gas turbine filter systems, heavy duty air filter systems, automotive air filter systems, HVAC air filter systems, HEPA filter systems, vacuum bag filter systems, fuel filter systems, and oil filter systems).
  • Vacuum filter bag systems are commonly used in home vacuum cleaners.
  • a filter medium can optionally be prepared by coating a paper with the meltblown material.
  • a filter medium can be prepared using a wet laid or dry laid product (e.g., cellulose, polymer, glass).
  • a filter medium can optionally be pleated into any of a variety of configurations (e.g., panel, cylindrical). Examples of filter media are described in more detail in U.S. Publication No. 2009/0120048, filed November 07, 2008, and entitled “Meltblown Filter Medium", which is incorporated herein by reference in its entirety for all purposes.
  • Examples 1-10 show that various process parameters of an extrusion process be varied to form fiber webs having small fiber diameters, high surface area, low air permeabilities, and/or low levels of polymer degradation according to certain embodiments described herein.
  • a total of 80 experiments were conducted in which different fiber webs were formed with either polypropylene or polyester (polybutyleneterephthalate) fibers using a process similar to the one shown in FIG. 1, while varying various process conditions including extruder barrel inner diameter, die body temperature, and polymer throughput.
  • Performance characteristics and physical properties of the resulting fiber webs including air permeability, level of polymer degradation (e.g., surface density of particles), surface area, and fiber size were measured, and the values were compiled and input into modeling software, where mathematical modeling of these properties was performed. The models were refined (through reduction) until an acceptable accountability of the combined effect was obtained.
  • a response calculation for each of the performance characteristics and physicals properties was determined.
  • extruder temperature profile (ramping) of 300 °F, 325 °F, 350 °F, 375 °F, 400 °F, 425 °F, 450 °F; the process air temperature being the same as that of the die body temperature; a process air setting of 3150 lbs/hr; a die to collector distance of 8.0 inches; a quench air rate of 225 lbs/hr; and a vacuum level of 17,500 ft .
  • the particles refer to ones having a largest cross-sectional dimension of 1.0 mm or greater.
  • Examples 1-3 show that by reducing the extruder barrel inner diameter, extruder barrel length and conduit diameter, and increasing the polymer throughput, the dwell times of the polymer in the processing space can be reduced. The surface density of particles of degraded polymer in fiber webs produced by processes under such conditions would be reduced compared to that of Comparative Example 1, where the dwell time is relatively higher. Examples 1-3 also show that by decreasing the volume of the processing space (e.g., by reducing the extruder barrel length and conduit diameter), relatively high throughputs can be used and can be used to form fiber media having similar performance characteristics (e.g., air permeability) as media formed by the processing conditions shown for Comparative Example 1 (e.g., lower throughputs but higher processing space volumes). Higher throughputs may result in lower
  • the particles refer to ones having a largest cross-sectional dimension of 1.0 mm or greater.
  • Examples 4-7 show that by reducing the extruder barrel inner diameter, extruder barrel length and conduit diameter, the dwell time of the polymer in the processing space can be reduced.
  • the surface density of particles of degraded polymer in fiber webs produced by processes under such conditions would be reduced compared to that of Comparative Example 2, where the dwell time is relatively higher.
  • the processing conditions shown in Examples 4-7 can also result in fiber webs having lower air permeabilities and higher surface areas. Smaller fiber diameters (Example 7) can also be produced. Table 3
  • the particles refer to ones having a largest cross-sectional dimension of 1.0 mm or greater.
  • Examples 8-10 show that by reducing the extruder barrel inner diameter, extruder barrel length and conduit diameter, the dwell time of the polymer in the processing space can be reduced.
  • the surface density of particles of degraded polymer in fiber webs produced by processes under such conditions would be reduced compared to that of Comparative Example 2, where the dwell time is relatively higher.
  • the processing conditions shown in Examples 8-10 can also result in fiber webs having lower air permeabilities, higher surface areas, and smaller fiber diameters.

Abstract

La présente invention porte sur des produits à fibres fines comprenant des nappes de fibres ainsi que sur des ensembles, des systèmes et des procédés correspondants. Dans certaines formes de réalisation, les nappes de fibres décrites peuvent comprendre des fibres fines et des quantités relativement faibles de polymère dégradé formé pendant un processus d'extrusion de fibre. Les nappes de fibres peuvent être utilisées pour des applications de milieu filtrant.
EP11864804.7A 2010-12-17 2011-12-16 Milieu filtrant à fibres fines et procédés correspondants Not-in-force EP2652189B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/971,539 US20120152824A1 (en) 2010-12-17 2010-12-17 Fine fiber filter media and processes
US12/971,594 US20120152821A1 (en) 2010-12-17 2010-12-17 Fine fiber filter media and processes
PCT/US2011/065499 WO2012150964A1 (fr) 2010-12-17 2011-12-16 Milieu filtrant à fibres fines et procédés correspondants

Publications (3)

Publication Number Publication Date
EP2652189A1 true EP2652189A1 (fr) 2013-10-23
EP2652189A4 EP2652189A4 (fr) 2015-11-04
EP2652189B1 EP2652189B1 (fr) 2018-02-14

Family

ID=47107984

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11864804.7A Not-in-force EP2652189B1 (fr) 2010-12-17 2011-12-16 Milieu filtrant à fibres fines et procédés correspondants

Country Status (3)

Country Link
EP (1) EP2652189B1 (fr)
CN (1) CN103339307B (fr)
WO (1) WO2012150964A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013192392A1 (fr) * 2012-06-20 2013-12-27 Hollingsworth & Vose Company Couche filtrante à fibres fines et procédés associés

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4824451A (en) * 1985-12-31 1989-04-25 Kimberly-Clark Corporation Melt-blown filter medium
US5401446A (en) 1992-10-09 1995-03-28 The University Of Tennessee Research Corporation Method and apparatus for the electrostatic charging of a web or film
US5529844A (en) * 1994-04-29 1996-06-25 Pall Corporation Aramid fiber filtration sheet
WO2001068658A2 (fr) * 2000-03-15 2001-09-20 Hollingsworth & Vose Company Filtre hepa composite sous-vide pour fusion-soufflage
US20030003834A1 (en) * 2000-11-20 2003-01-02 3M Innovative Properties Company Method for forming spread nonwoven webs
US6605248B2 (en) * 2001-05-21 2003-08-12 E. I. Du Pont De Nemours And Company Process and apparatus for making multi-layered, multi-component filaments
US7501085B2 (en) * 2004-10-19 2009-03-10 Aktiengesellschaft Adolph Saurer Meltblown nonwoven webs including nanofibers and apparatus and method for forming such meltblown nonwoven webs
US7902096B2 (en) * 2006-07-31 2011-03-08 3M Innovative Properties Company Monocomponent monolayer meltblown web and meltblowing apparatus
US8202340B2 (en) 2007-02-28 2012-06-19 Hollingsworth & Vose Company Waved filter media and elements
US7989372B2 (en) * 2007-06-22 2011-08-02 3M Innovative Properties Company Molded respirator comprising meltblown fiber web with staple fibers
US8608817B2 (en) 2007-11-09 2013-12-17 Hollingsworth & Vose Company Meltblown filter medium

Also Published As

Publication number Publication date
CN103339307A (zh) 2013-10-02
WO2012150964A1 (fr) 2012-11-08
EP2652189B1 (fr) 2018-02-14
CN103339307B (zh) 2017-02-22
EP2652189A4 (fr) 2015-11-04

Similar Documents

Publication Publication Date Title
US11458427B2 (en) Fine fiber filter media and processes
US10653986B2 (en) Fine fiber filter media and processes
US20120152824A1 (en) Fine fiber filter media and processes
US9694306B2 (en) Filter media including polymer compositions and blends
JP4785928B2 (ja) 凝集ろ材および方法
EP1848582B1 (fr) Matiere filtrante permettant de fitlrer une matiere particulaire de flux gazeux
KR101997482B1 (ko) 혼섬 부직포와 이것을 사용해서 이루어지는 여재
US20180236385A1 (en) Electret-containing filter media
US10252200B2 (en) Filter media including a filtration layer comprising synthetic fibers
TW201311342A (zh) 聚四氟乙烯多孔質膜及空氣過濾器濾材
US10851476B2 (en) Method for producing a pleatable textile fabric with electrostatically charged fibers
EP1471176B1 (fr) Procede de production d'electret
EP2864014B1 (fr) Couche filtrante à fibres fines et procédés associés
US20200179848A1 (en) Nanofibers comprising nanoparticles
US20180093459A1 (en) Method of manufacturing composite film
EP2652189B1 (fr) Milieu filtrant à fibres fines et procédés correspondants
KR102466690B1 (ko) 일렉트릿 섬유 시트
EP3804832A1 (fr) Milieu filtrant et unité filtrante comprenant celui-ci
JP6957472B2 (ja) 不織布
WO2013141070A1 (fr) Filtre à air pour appareil de dépôt chimique en phase vapeur et appareil de dépôt chimique en phase vapeur équipé de celui-ci
EP3812026A1 (fr) Milieu filtrant et unité de filtre équipée par celui-ci
IT202100030029A1 (it) Dispositivo filtrante e metodo per la sua realizzazione
de Barros et al. Characterization and efficiency evaluation of regenerated filter media
WO2018175556A1 (fr) Matériaux filtrants comprenant une couche de filtration ondulée

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130712

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
RA4 Supplementary search report drawn up and despatched (corrected)

Effective date: 20151007

RIC1 Information provided on ipc code assigned before grant

Ipc: D04H 1/00 20060101AFI20151001BHEP

17Q First examination report despatched

Effective date: 20161006

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170821

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 969895

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180315

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602011045683

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180214

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 969895

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180214

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180214

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180514

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180214

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180214

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180214

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180214

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180214

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180514

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180515

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180214

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180214

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180214

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180214

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180214

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180214

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602011045683

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180214

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180214

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180214

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180214

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20181115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180214

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181216

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180214

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20181231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181216

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181231

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180214

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20200102

Year of fee payment: 9

Ref country code: DE

Payment date: 20191231

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20111216

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180614

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602011045683

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20201216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210701

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201216