EP2650698B1 - Improvement of the integrity concept of a satellite navigation system - Google Patents

Improvement of the integrity concept of a satellite navigation system Download PDF

Info

Publication number
EP2650698B1
EP2650698B1 EP13001777.5A EP13001777A EP2650698B1 EP 2650698 B1 EP2650698 B1 EP 2650698B1 EP 13001777 A EP13001777 A EP 13001777A EP 2650698 B1 EP2650698 B1 EP 2650698B1
Authority
EP
European Patent Office
Prior art keywords
satellite
integrity
satellites
determined
determining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13001777.5A
Other languages
German (de)
French (fr)
Other versions
EP2650698A3 (en
EP2650698A2 (en
Inventor
Hans L. Dr. Trautenberg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Airbus DS GmbH
Original Assignee
Airbus DS GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Airbus DS GmbH filed Critical Airbus DS GmbH
Publication of EP2650698A2 publication Critical patent/EP2650698A2/en
Publication of EP2650698A3 publication Critical patent/EP2650698A3/en
Application granted granted Critical
Publication of EP2650698B1 publication Critical patent/EP2650698B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/20Integrity monitoring, fault detection or fault isolation of space segment

Definitions

  • the invention relates to a method and a device for determining the integrity risk at an alarm barrier of a position solution determined by a satellite navigation system according to claim 1 or 7.
  • Integrity is becoming increasingly important for satellite navigation systems, especially for safety-critical applications such as satellite navigation-based air navigation.
  • One concept for providing integrity in a satellite navigation system is to continuously monitor the satellites from the ground and to transmit data on the monitored satellites, for example, with the navigation signals radiated by the satellites, to usage systems of the satellite navigation system.
  • a usage system can be enabled by this data to calculate its individual integrity risk and, for example, issue a warning or cancel a navigation operation or not even begin.
  • the data for the monitored satellites can be statistical descriptions of characteristics of the signals emitted by the satellites SIS (Signal-In-Space).
  • the statistical descriptions may relate to distributions of SIS errors so that a utilization system can estimate an integrity risk based on this distribution.
  • an integrity data stream will be available that will allow system or satellite failures to be signaled to utilization systems.
  • faulty satellite signals can be provided with integrity warnings (system warning mechanism). It is also intended to provide statistical descriptions of SIS properties with the integrity data stream so that use systems can determine their integrity risk (user integrity concept).
  • Galileo Integrity Concept foresees that Galileo's Ground Processing Segment will predict the accuracy of navigation signals. This prediction is a statistical description of the signal error and is referred to as expected signal error or In Space Accuracy (SISA) signal.
  • SISA In Space Accuracy
  • the actual errors of the individual satellite signals or Signal In Space Errors (SISE) are estimated by observations of the monitoring network of the Galileo system.
  • the estimated errors are referred to as estimated SISE (eSISE).
  • a satellite over an IF (Integrity Flag) alarm will be set to unusable as soon as the estimated signal error (eSISE) of that satellite is greater than an Integrity Alarm Threshold (TH: Threshold).
  • eSISE estimated signal error
  • Threshold Threshold
  • SISMA Signal-In-Space Monitoring
  • Galileo integrity concept In the Galileo integrity concept, it is planned to transfer the two statistical descriptions SISA and SISMA to utilization systems, which then use these values to calculate their individual integrity risk within the framework of the user integrity concept.
  • the prefactor k pfa is determined by the allowed false alarm rate.
  • Integrity risk is now considered to be the weighted average of the n + 1 possible states (n states 2 where each of the n satellites is assumed to be in state 2 and 1 state 1 where all satellites are considered to be in state 1)
  • n states 2 where each of the n satellites is assumed to be in state 2
  • 1 state 1 where all satellites are considered to be in state 1
  • the weight for the state in which all satellites are in state 1 is often assumed to be 1
  • the weight for each of the n states in which one satellite is in state 2 is assumed to be p_failed Is accepted.
  • the integrity risk from the other possible states of the system is taken into account with a constant additive term in the integrity risk at the alarm gate. With large SISMA, however, this leads to a reduced availability.
  • the EP 2 402 785 A1 discloses a RAIM algorithm for determining an integrity risk in a GNSS by processing a plurality of signals received from satellites of the GNSS with the following actions: determining multiple health risks on an alarm barrier for different error states of the signals, and determining an overall integrity risk at the alarm barrier from the determined plurality of integrity risks ,
  • the unweighted contribution to integrity risk at the alarm gate is calculated under two different assumptions, assuming that satellite j is faulty, and the minimum used both calculated contributions.
  • the first integrity risk at the alarm gate is calculated using the classic and initial assumptions that satellite j is assumed to be state 2.
  • the second integrity risk at the alarm gate is calculated as follows: the difference between the position solution with all satellites and the position solution with the satellite j removed from the position solution is subtracted from the alarm gate, and then the integrity risk with the n-1 satellites passing through Condition 1, calculated at the reduced alarm limit.
  • the integrity risk at the alarm barrier can be identified, in particular using the minimum of the first and the second integrity risk, as an unweighted contribution according to the User Integrity Concept of the Galileo satellite navigation system.
  • statistical descriptions of signal errors of each satellite provided by the satellite navigation system can be processed by determining therefrom for a faulty satellite a fundamental error which is evaluated as faulty for the classification of a satellite.
  • a further embodiment of the invention relates to a computer program with program code for carrying out all method steps according to the invention and as described above, when the computer program is executed in a computer.
  • an embodiment of the invention relates to a data carrier on which the computer-executable program code of the computer program according to the invention and as described above is stored.
  • the invention relates to a device for determining the integrity risk at an alarm barrier from a position solution determined by a satellite navigation system, wherein the device for processing signals received from satellites of the satellite navigation system is designed to determine the position solution and is characterized by first means for calculating a first integrity risk at the alarm barrier assuming that a satellite j of the satellites is faulty, second means for determining a first position solution with the signals received from all the satellites, third means for determining a second position solution with the signals received by all the satellites other than the signal received by the satellite j, fourth means for determining a difference between the first and second position solutions, fifth means for forming a reduced alarm barrier by subtracting the determined difference from the alarm barrier, sixth means for calculating a second integrity risk at the reduced alarm barrier with the signals received from all the satellites other than the signal received from the satellite j and seventh means for determining the integrity risk at the alarm barrier using the minimum of the first and second integrity risks.
  • the first to seventh means may be implemented, at least in part, by a programmable processor and a program stored in a memory for configuring the programmable processor to perform one or more steps of a method according to the invention and as described above.
  • an embodiment of the invention relates to a position determining device for determining a position based on signals of a satellite navigation system and for determining an integrity risk at an alarm gate for the determined position, wherein the A position determining device comprises an apparatus for determining the integrity risk at an alarm barrier from a position solution according to the invention determined by a satellite navigation system and as described above and having an output means for outputting a determined integrity risk.
  • the dispensing means may in particular comprise one or more of the following means: a display device; a data output interface; an audio output unit.
  • Fig. 1 shows in a flow chart the sequence of the method according to the invention for determining the integrity risk at an alarm barrier from a position solution determined using a satellite navigation system.
  • a position determining device 26 for example an aircraft navigation device, receives signals 340, 360, 380 and 400 from four satellites 34, 36, 38 and 40, respectively, of a satellite navigation system such as Galileo and for determining the position and determining an integrity risk processed an alarm barrier.
  • the signals 340, 360, 380 and 400 transmit the usual data provided by satellite navigation systems for position determination, such as transmission time, orbital data of the transmitting satellite, ephemeris of all satellites, etc. Further, as with Galileo integrity data such as SISA and SISMA, the satellite signals are transmitted in an integrity data stream with the signals.
  • the position determining device 26 includes a (not explicitly shown) receiver for the signals 340, 360, 380 and 400, which decodes the data transmitted with the signals in the usual and known manner and for further processing, in particular for position determination by a (not provided) controller provided.
  • the controller is for this purpose configured to determine the current position of the device 26 based on the data.
  • the position thus determined is referred to as a positional solution in the context of the present invention.
  • the device 26 has a device 10 for determining the integrity risk at an alarm barrier.
  • the device 10 may, for example, be implemented in hardware in the form of an integrated circuit, or by a programmable processor configured by software implementing the method according to the invention is that he can determine the integrity risk at an alarm barrier according to the invention.
  • the device can in principle also be realized by the controller, which is provided for the determination of the position solution.
  • a firmware of the position determination device 26 may be designed such that it contains additional functions for determining the integrity risk at an alarm barrier.
  • the device 10 implements several functions of an algorithm for determining the integrity risk at an alarm gate, which will now be described with reference to FIG Fig. 1 shown flowchart is described.
  • the algorithm determines in step S10 a satellite j, which is assumed to be faulty, that is, in the initially described state 2 according to the Galileo integrity concept. For further explanation, it is assumed that the satellite 36 is assumed to be faulty.
  • the algorithm calculates a first integrity risk PHMI (AL) at a predetermined alarm threshold AL, which may be, for example, at step S12 in particular, can be specified by a user depending on the application in which the position solution is to be used.
  • AL integrity risk
  • the integrity risk can be calculated according to the Galileo user integrity concept explained in the introduction, as described in the publication " The Galileo Integrity Concept, V. Oehler, F. Luongo, J.- P. Boyero, R. Stalford, HL Trautenberg, ION GNSS 17th International Technical Meeting of the Satellite Division, 21-24 Sept. 2004, Long Beach, CA.
  • first integrity calculation means 12 can be provided for this purpose, which can be implemented, for example, in the form of a special calculation unit in hardware or in software.
  • a first position solution Pos1 is determined with the signals 340, 360, 380 and 400 received from all four satellites 34, 36, 28 and 40, ie including the signal 360 of the satellite 36 classified as having errors device 10 may be performed by first position determining means 14, which in turn may be implemented in hardware or software.
  • a second position solution Pos2 is also determined without the signal 360 of the satellite 36 classified as having errors, ie only with the three signals 340, 380 and 400 of the satellites 34, 38 and 40, respectively. Also for the step S16 second position determining means 16 may be provided, which may be implemented in hardware or software.
  • Both the first and second position determining means 14 and 16 may be implemented by the controller mentioned above.
  • step S18 a difference ⁇ Pos is calculated from the two determined position solutions Pos1 and Pos2. This step may be performed by position difference calculating means 18 of the apparatus 10, which may be implemented in hardware or software.
  • step S20 The difference ⁇ Pos is subtracted from the set alarm limit AL in step S20, so that a reduced alarm limit ALred is obtained.
  • alarm barrier forming means 20 implemented in hardware or software may be provided in device 10.
  • a second integrity risk PHMI (ALred) is calculated with the three satellites 34, 38 and 40 described by state 1 at the reduced alarm limit ALred in step S22, which may be performed by second integrity calculation means 22.
  • the second integrity risk can again be determined according to the Galileo user integrity concept described in the introduction and described in the aforementioned publications.
  • the minimum of the two calculated integrity risks PHMI (AL) and PHMI (ALred) is determined. For this purpose, it is checked in step S24 whether the first integrity risk PHMI (AL) is greater than the second integrity risk PHMI (ALred). If so, the process proceeds to step S26 and the second integrity risk PHMI (ALred) is used to determine the integrity risk at the alarm gate. If the first integrity risk PHMI (AL) is less than the second integrity risk PHMI (ALred), then in step S28 the first integrity risk PHMI (AL) is used to determine the integrity risk at the alarm barrier. Steps D24, S26, and S28 may be performed by hardware or software implemented integrity risk averaging means 24 of device 10.
  • the smaller of the two integrity risks determined by the position determination device 26 can be output via output means, in particular displayed on a display device 28 such as an LCD display, via an audio output unit 32, for example as a warning tone and / or via a data output interface 30 for further processing by other devices or control of other devices.
  • satellite navigation based controls such as autopilot or pilot assistance systems or System for further processing of the determined position are influenced by the issued integrity risk.
  • automatic navigation may be discontinued if the integrity risk is too high, or navigation instruments based on satellite navigation may be switched over to operation that is independent of satellite navigation if the integrity risk is too high.
  • the present invention makes it possible to increase the availability of a position solution with a satellite navigation system with an integrity risk at an alarm gate by calculating the unweighted contribution to the integrity risk at the alarm barrier under the assumption that a satellite is faulty under two different assumptions and the minimum the two calculated contributions is used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Description

Die Erfindung betrifft ein Verfahren und eine Vorrichtung zum Ermitteln des Integritätsrisikos an einer Alarmschranke von einer mit einem Satellitennavigationssystem ermittelten Positionslösung gemäß Anspruch 1 bzw. 7.The invention relates to a method and a device for determining the integrity risk at an alarm barrier of a position solution determined by a satellite navigation system according to claim 1 or 7.

Integrität gewinnt für Satellitennavigationssysteme immer mehr an Bedeutung, insbesondere für sicherheitskritische Anwendungen wie eine auf Satellitennavigation basierende Flugnavigation. Ein Konzept zur Bereitstellung von Integrität bei einem Satellitennavigationssystem besteht darin, die Satelliten vom Boden aus kontinuierlich zu überwachen und Daten zu den überwachten Satelliten beispielsweise mit den von den Satelliten ausgestrahlten Navigationssignalen an Nutzungssysteme des Satellitennavigationssystems zu übertragen. Ein Nutzungssystem kann durch diese Daten in die Lage versetzt werden, sein individuelles Integritätsrisiko zu berechnen und beispielsweise eine Warnung auszugeben oder eine Navigationsoperation abzubrechen oder erst gar nicht zu beginnen.Integrity is becoming increasingly important for satellite navigation systems, especially for safety-critical applications such as satellite navigation-based air navigation. One concept for providing integrity in a satellite navigation system is to continuously monitor the satellites from the ground and to transmit data on the monitored satellites, for example, with the navigation signals radiated by the satellites, to usage systems of the satellite navigation system. A usage system can be enabled by this data to calculate its individual integrity risk and, for example, issue a warning or cancel a navigation operation or not even begin.

Die Daten zu den überwachten Satelliten können vor allem statistische Beschreibungen von Eigenschaften der ausgestrahlten Signale der Satelliten SIS (Signal-In-Space) sein. Insbesondere können die statistischen Beschreibungen Verteilungen von SIS-Fehlern betreffen, so dass ein Nutzungssystem ein Integritätsrisiko anhand dieser Verteilung abschätzen kann.Above all, the data for the monitored satellites can be statistical descriptions of characteristics of the signals emitted by the satellites SIS (Signal-In-Space). In particular, the statistical descriptions may relate to distributions of SIS errors so that a utilization system can estimate an integrity risk based on this distribution.

Beispielsweise wird im zukünftigen europäischen Satellitennavigationssystem Galileo ein Integritätsdatenstrom bereit stehen, der es ermöglicht, System- oder Satellitenausfälle an Nutzungssysteme zu signalisieren. Insbesondere können fehlerhafte Satellitensignale mit Integritätswarnungen versehen werden (System-Warnmechanismus). Weiterhin ist vorgesehen, statistische Beschreibungen von SIS-Eigenschaften mit dem Integritätsdatenstrom zu übertragen, so dass Nutzungssysteme ihr Integritätsrisiko ermitteln können (Nutzer-Integritätskonzept).For example, in the future European satellite navigation system, Galileo, an integrity data stream will be available that will allow system or satellite failures to be signaled to utilization systems. In particular, faulty satellite signals can be provided with integrity warnings (system warning mechanism). It is also intended to provide statistical descriptions of SIS properties with the integrity data stream so that use systems can determine their integrity risk (user integrity concept).

Das Integritätskonzepts von Galileo und dessen Grundzüge sind in der Veröffentlichung " The Galileo Integrity Concept", V. Oehler, F. Luongo, J.-P. Boyero, R. Stalford, H. L. Trautenberg, ION GNSS 17th International Technical Meeting of the Satellite Division, 21-24 Sept. 2004, Long Beach, CA , in der veröffentlichten europäischen Patentanmeldung EP 1 637 899 A1 und dem erteilten europäischen Patent EP 1 792 196 B1 im Detail beschrieben. Im Folgenden werden für das Verständnis der vorliegenden Erfindung hilfreiche Details des Galileo-Integritätskonzeptes nochmals erläutert.The concept of integrity of Galileo and its main features are described in the publication " The Galileo Integrity Concept, V. Oehler, F. Luongo, J.- P. Boyero, R. Stalford, HL Trautenberg, ION GNSS 17th International Technical Meeting of the Satellite Division, 21-24 Sept. 2004, Long Beach, CA. in the published European patent application EP 1 637 899 A1 and the granted European patent EP 1 792 196 B1 described in detail. In the following, useful details of the Galileo integrity concept will be explained again for the understanding of the present invention.

Das Galileo-Integritätskonzept sieht vor, dass die "Processing Facility" des Bodensegments von Galileo eine Vorhersage über die Genauigkeit von Navigationssignalen macht. Diese Vorhersage ist eine statistische Beschreibung des Signalfehlers und wird als erwarteter Signalfehler oder Signal In Space Accuracy (SISA) bezeichnet.The Galileo Integrity Concept foresees that Galileo's Ground Processing Segment will predict the accuracy of navigation signals. This prediction is a statistical description of the signal error and is referred to as expected signal error or In Space Accuracy (SISA) signal.

Die tatsächlichen Fehler der einzelnen, von Satelliten ausgesandten Navigationssignale oder Signal In Space Errors (SISE) werden durch Beobachtungen des Monitoring-Netzwerkes des Galileo-Systems geschätzt. Die geschätzten Fehler werden als estimated SISE (eSISE) bezeichnet.The actual errors of the individual satellite signals or Signal In Space Errors (SISE) are estimated by observations of the monitoring network of the Galileo system. The estimated errors are referred to as estimated SISE (eSISE).

Im Rahmen des Galileo-Integritätskonzepts ist nun vorgesehen, dass ein Satellit über einen Alarm (IF: Integrity Flag) auf nicht benutzbar gesetzt wird, sobald der geschätzte Signalfehler (eSISE) dieses Satelliten größer als eine Integritätsalarmschranke (TH: Threshold) ist. Solche Alarme werden an die Nutzungssysteme von Galileo als Systemwarnungen übertragen.Under the Galileo Integrity Concept, it is now envisaged that a satellite over an IF (Integrity Flag) alarm will be set to unusable as soon as the estimated signal error (eSISE) of that satellite is greater than an Integrity Alarm Threshold (TH: Threshold). Such alerts are transmitted to Galileo's usage systems as system alerts.

Da die Schätzung eSISE des SISE ein fehlerträchtiger Prozess ist, wird in der Regel angenommen, dass die Verteilung des aktuellen SISE um den Wert des geschätzten SISE eSISE mit einer Gaussverteilung mit der Standardabweichung beschrieben werden kann, die als Signal-In-Space-Monitoring-Accuracy (SISMA) bezeichnet wird. SISMA stellt demnach eine statistische Beschreibung der Genauigkeit der Schätzung eSISE des SISE für einen Satelliten dar.Since the eSISE estimate of the SISE is an error-prone process, it is generally assumed that the distribution of the current SISE can be described by the value of the estimated SISE eSISE with a Gaussian distribution with the standard deviation, which can be used as Signal-In-Space Monitoring. Accuracy (SISMA). SISMA therefore provides a statistical description of the accuracy of the eSISE estimate of the SISE for a satellite.

Beim Galileo-Integritätskonzept ist vorgesehen, die beiden statistischen Beschreibungen SISA und SISMA an Nutzungssysteme zu übertragen, die dann anhand dieser Werte ihr individuelles Integritätsrisiko im Rahmen des Nutzer-Integritätskonzeptes berechnen können.In the Galileo integrity concept, it is planned to transfer the two statistical descriptions SISA and SISMA to utilization systems, which then use these values to calculate their individual integrity risk within the framework of the user integrity concept.

Für das Galileo-Integritätskonzept und die Berechnung des Integritätsrisikos wird nun für jeden Satellit angenommen, dass ein Satellit in einem der folgenden Zustände ist:

  • Zustand 1: Der Satellit ist fehlerfrei und auch die statistische Beschreibung des fehlerfreien Satelliten ist korrekt. Das bedeutet im Fall von Galileo, dass der Fehlerwahrscheinlichkeitsverteilung des Satelliten durch den SISA-Wert von Galileo overbounded wird.
  • Zustand 2: Der Satellit ist fehlerbehaftet und bezüglich der statistischen Beschreibung des fehlerhaften Satelliten wird angenommen, dass der Satellit einen positiven oder negativen Grundfehler der Größe TH hat, sich der gesamte Fehler aus dem Grundfehler und einem Zusatzfehler zusammensetzt, und im Fall von Galileo die Wahrscheinlichkeitsverteilung des Zusatzfehlers durch den SISMA-Wert von Galileo overbounded wird. Beim Galileo-Integritätskonzept wird der Grundfehler bzw. die Integritätsalarmschranke TH als ein Produkt eines Vorfaktors und der Wurzel der Summe der Quadrate von SISA und SISMA wie folgt berechnet: TH = k pfa SISA 2 + SISMA 2
    Figure imgb0001
For the Galileo integrity concept and integrity risk calculation, it is now assumed for each satellite that a satellite is in one of the following states:
  • Condition 1: The satellite is error free and also the statistical description of the error free satellite is correct. This means in the case of Galileo that the satellite's probability of error distribution is overbounded by Galileo's SISA value.
  • State 2: The satellite is faulty, and for the statistical description of the faulty satellite, it is assumed that the satellite has a positive or negative fundamental error of magnitude TH, the total error is composed of the fundamental error and an additional error, and in the case of Galileo the probability distribution of the additional error is overbounded by the SISMA value of Galileo. In the Galileo integrity concept, the fundamental error or integrity alarm threshold TH is calculated as a product of a pre-factor and the root of the sum of the squares of SISA and SISMA as follows: TH = k pfa SISA 2 + SISMA 2
    Figure imgb0001

Der Vorfaktor kpfa wird hierbei durch die erlaubte Falschalarmrate bestimmt.The prefactor k pfa is determined by the allowed false alarm rate.

Als Nutzer-Integritätskonzept hat sich für Galileo die Berechnung des Integritätsrisikos an einer sogenannten Alarmschranke AL als praktikabel erwiesen (für den horizontalen und vertikalen Fall werden hierbei unterschiedliche Alarmschranken HAL bzw. VAL betrachtet). Hierfür wird angenommen, dass sich entweder alle n Satelliten, die ein Nutzungssystem verwendet, im Zustand 1 befinden, oder sich jeweils alle bis auf einen Satelliten im Zustand 1 befinden und sich der eine Satellit nur im Zustand 2 befindet.As a user-integrity concept, the calculation of the integrity risk at a so-called alarm barrier AL has proven to be practicable for Galileo (for the horizontal and vertical case, different alarm barriers HAL and VAL are considered here). For this, it is assumed that either all n satellites using a usage system are in state 1, or all but one satellite are in state 1 and one satellite is in state 2 only.

Das Integritätsrisiko wird nun als das gewichtete Mittel der n+1 möglichen Zustände (n Zustände 2, bei denen jeweils einer der n Satelliten als sich im Zustand 2 befindlich angenommen wird, und 1 Zustand 1, bei dem alle Satelliten als sich im Zustand 1 befindlich angenommen werden) berechnet, wobei zur Vereinfachung das Gewicht für den Zustand, in welchem sich alle Satelliten im Zustand 1 befinden, häufig als 1 angenommen wird und das Gewicht für jeden der n Zustände, in welchem jeweils ein Satellit in Zustand 2 ist, als p_failed angenommen wird. Das Integritätsrisiko aus den anderen möglichen Zuständen des Systems wird mit einem konstanten additiven Term im Integritätsrisiko an der Alarmschranke berücksichtigt. Bei großem SISMA führt dies jedoch zu einer verringerten Verfügbarkeit.Integrity risk is now considered to be the weighted average of the n + 1 possible states (n states 2 where each of the n satellites is assumed to be in state 2 and 1 state 1 where all satellites are considered to be in state 1) For simplicity, the weight for the state in which all satellites are in state 1 is often assumed to be 1 and the weight for each of the n states in which one satellite is in state 2 is assumed to be p_failed Is accepted. The integrity risk from the other possible states of the system is taken into account with a constant additive term in the integrity risk at the alarm gate. With large SISMA, however, this leads to a reduced availability.

Die EP 2 402 785 A1 offenbart einen RAIM-Algorithmus zur Bestimmung eines Integritätsrisikos in einem GNSS durch Verarbeiten mehrerer von Satelliten des GNSS empfangener Signale mit den folgenden Handlungen: Bestimmung mehrerer Integritätsrisiken bei einer Alarmschranke für unterschiedliche Fehlerzustände der Signale, und Bestimmen eines Gesamtintegritätsrisikos an der Alarmschranke aus den ermittelten mehreren Integritätsrisiken.The EP 2 402 785 A1 discloses a RAIM algorithm for determining an integrity risk in a GNSS by processing a plurality of signals received from satellites of the GNSS with the following actions: determining multiple health risks on an alarm barrier for different error states of the signals, and determining an overall integrity risk at the alarm barrier from the determined plurality of integrity risks ,

Es ist nun eine Aufgabe der vorliegenden Erfindung, ausgehend von dem vorstehend erläuterten Integritätskonzept die Verfügbarkeit einer mit einem Satellitennavigationssystem ermittelten Positionslösung mit einem Integritätsrisiko an einer Alarmschranke zu erhöhen.It is now an object of the present invention, on the basis of the integrity concept explained above, to increase the availability of a position solution determined with a satellite navigation system with an integrity risk at an alarm barrier.

Diese Aufgabe wird durch ein Verfahren und eine Vorrichtung zum Ermitteln des Integritätsrisikos an einer Alarmschranke von einer mit einem Satellitennavigationssystem ermittelten Positionslösung mit den Merkmalen von Anspruch 1 bzw. 7 gelöst. Weitere Ausgestaltungen der Erfindung sind Gegenstand der abhängigen Ansprüche.This object is achieved by a method and a device for determining the integrity risk at an alarm barrier from a position solution determined by means of a satellite navigation system having the features of claims 1 and 7, respectively. Further embodiments of the invention are the subject of the dependent claims.

Um die Verfügbarkeit einer mit einem Satellitennavigationssystem ermittelten Positionslösung mit einem Integritätsrisiko an einer Alarmschranke zu erhöhen, wird nach der Erfindung der ungewichtete Beitrag zum Integritätsrisiko an der Alarmschranke unter der Annahme, dass Satellit j fehlerbehaftet ist, unter zwei verschieden Annahmen berechnet, und das Minimum der beiden berechneten Beiträge verwendet. Das erste Integritätsrisiko an der Alarmschranke wird unter den klassischen und eingangs geschilderten Annahmen berechnet, dass der Satellit j als durch Zustand 2 beschrieben angenommen wird. Das zweite Integritätsrisiko an der Alarmschranke wird wie folgt berechnet: Die Differenz zwischen der Positionslösung mit allen Satelliten und der Positionslösung mit dem aus der Positionslösung entfernten Satelliten j wird von der Alarmschranke abgezogen, und dann wird das Integritätsrisiko mit den n-1 Satelliten, die durch Zustand 1 beschrieben sind, an der reduzierten Alarmschranke berechnet.In order to increase the availability of a position solution with a satellite navigation system with an integrity risk at an alarm gate, according to the invention the unweighted contribution to integrity risk at the alarm gate is calculated under two different assumptions, assuming that satellite j is faulty, and the minimum used both calculated contributions. The first integrity risk at the alarm gate is calculated using the classic and initial assumptions that satellite j is assumed to be state 2. The second integrity risk at the alarm gate is calculated as follows: the difference between the position solution with all satellites and the position solution with the satellite j removed from the position solution is subtracted from the alarm gate, and then the integrity risk with the n-1 satellites passing through Condition 1, calculated at the reduced alarm limit.

Eine Ausführungsform der Erfindung betrifft nun ein Verfahren zum Ermitteln des Integritätsrisikos an einer Alarmschranke von einer mit einem Satellitennavigationssystem ermittelten Positionslösung, wobei von Satelliten des Satellitennavigationssystems empfangene Signale zum Ermitteln der Positionslösung verarbeitet werden und das Verfahren durch die folgenden Schritte gekennzeichnet ist:

  • Berechnen eines ersten Integritätsrisikos an der Alarmschranke unter der Annahme, dass ein Satellit j der Satelliten fehlerbehaftet ist;
  • Ermitteln einer ersten Positionslösung mit den von allen Satelliten empfangenen Signalen;
  • Ermitteln einer zweiten Positionslösung mit den von allen Satelliten empfangenen Signalen außer dem vom Satelliten j empfangenen Signal;
  • Ermitteln einer Differenz zwischen der ersten und der zweiten Positionslösung;
  • Bilden einer reduzierten Alarmschranke durch Subtrahieren der ermittelten Differenz von der Alarmschranke;
  • Berechnen eines zweiten Integritätsrisikos an der reduzierten Alarmschranke mit den von allen Satelliten empfangenen Signalen außer dem vom Satelliten j empfangenen Signal; und
  • Ermitteln des Integritätsrisikos an der Alarmschranke unter Verwendung des Minimums des ersten und des zweiten Integritätsrisikos.
An embodiment of the invention now relates to a method for determining the integrity risk at an alarm barrier from a position solution determined by a satellite navigation system, where signals received from satellites of the satellite navigation system are processed to determine the position solution and the method is characterized by the following steps:
  • Calculating a first integrity risk at the alarm barrier assuming that a satellite j of the satellites is faulty;
  • Determining a first position solution with the signals received from all the satellites;
  • Determining a second position solution with the signals received from all the satellites other than the signal received from the satellite j;
  • Determining a difference between the first and second position solutions;
  • Forming a reduced alarm barrier by subtracting the determined difference from the alarm barrier;
  • Calculating a second integrity risk at the reduced alarm barrier with the signals received from all the satellites other than the signal received from the satellite j; and
  • Determine the integrity risk at the alarm barrier using the minimum of the first and second integrity risk.

Das Integritätsrisiko an der Alarmschranke kann vor allem unter Verwendung des Minimums des ersten und des zweiten Integritätsrisikos als ungewichteten Beitrag gemäß dem Nutzer-Integritätskonzept des Satellitennavigationssystems Galileo ermittelt werden.The integrity risk at the alarm barrier can be identified, in particular using the minimum of the first and the second integrity risk, as an unweighted contribution according to the User Integrity Concept of the Galileo satellite navigation system.

Weiterhin können vom Satellitennavigationssystem bereitgestellte statistische Beschreibungen bezüglich Signalfehlern jedes Satelliten verarbeitet werden, indem daraus für einen fehlerbehafteten Satelliten ein Grundfehler ermittelt wird, der für die Einstufung eines Satelliten als fehlerbehaftet ausgewertet wird.Furthermore, statistical descriptions of signal errors of each satellite provided by the satellite navigation system can be processed by determining therefrom for a faulty satellite a fundamental error which is evaluated as faulty for the classification of a satellite.

Als statistische Beschreibungen bezüglich Signalfehlern jedes Satelliten können
der erwartete Signalfehler bzw. der Signal In Space Accuracy SISA-Wert für jedes Satellitensignal und
die Genauigkeit der Schätzung des Signalfehlers bzw. der Signal-In-Space-Monitoring-Accuracy SISMA-Wert für jedes Satellitensignal
verarbeitet werden, indem für jeden Satelliten der Grundfehler TH gemäß der folgenden Gleichung berechnet wird: TH = k pfa SISA 2 + SISMA 2

Figure imgb0002
wobei der Vorfaktor kpfa durch eine erlaubte Falschalarmrate bestimmt wird.As statistical descriptions regarding signal errors of each satellite can
the expected signal error or Signal In Space Accuracy SISA value for each satellite signal and
the accuracy of the signal error estimation or the Signal-in-Space-Monitoring-Accuracy SISMA value for each satellite signal
are processed by calculating, for each satellite, the fundamental error TH according to the following equation: TH = k pfa SISA 2 + SISMA 2
Figure imgb0002
wherein the prefactor k pfa is determined by an allowable false alarm rate.

Eine weitere Ausführungsform der Erfindung betrifft ein Computerprogramm mit Programmcode zur Durchführung aller Verfahrensschritte nach der Erfindung und wie vorstehend beschrieben, wenn das Computerprogramm in einem Computer ausgeführt wird.A further embodiment of the invention relates to a computer program with program code for carrying out all method steps according to the invention and as described above, when the computer program is executed in a computer.

Ferner betrifft eine Ausführungsform der Erfindung einen Datenträger, auf dem der von einem Computer ausführbare Programmcode des Computerprogramms nach der Erfindung und wie vorstehend beschrieben gespeichert ist.Furthermore, an embodiment of the invention relates to a data carrier on which the computer-executable program code of the computer program according to the invention and as described above is stored.

In einer weiteren Ausführungsform betrifft die Erfindung eine Vorrichtung zum Ermitteln des Integritätsrisikos an einer Alarmschranke von einer mit einem Satellitennavigationssystem ermittelten Positionslösung, wobei die Vorrichtung zum Verarbeiten von von Satelliten des Satellitennavigationssystems empfangenen Signalen zum Ermitteln der Positionslösung ausgebildet ist und gekennzeichnet ist durch erste Mittel zum Berechnen eines ersten Integritätsrisikos an der Alarmschranke unter der Annahme, dass ein Satellit j der Satelliten fehlerbehaftet ist,
zweite Mittel zum Ermitteln einer ersten Positionslösung mit den von allen Satelliten empfangenen Signalen,
dritte Mittel zum Ermitteln einer zweiten Positionslösung mit den von allen Satelliten empfangenen Signalen außer dem vom Satelliten j empfangenen Signal,
vierte Mittel zum Ermitteln einer Differenz zwischen der ersten und der zweiten Positionslösung,
fünfte Mittel zum Bilden einer reduzierten Alarmschranke durch Subtrahieren der ermittelten Differenz von der Alarmschranke,
sechste Mittel zum Berechnen eines zweiten Integritätsrisikos an der reduzierten Alarmschranke mit den von allen Satelliten empfangenen Signalen außer dem vom Satelliten j empfangenen Signal und
siebte Mittel zum Ermitteln des Integritätsrisikos an der Alarmschranke unter Verwendung des Minimums des ersten und des zweiten Integritätsrisikos.
In a further embodiment, the invention relates to a device for determining the integrity risk at an alarm barrier from a position solution determined by a satellite navigation system, wherein the device for processing signals received from satellites of the satellite navigation system is designed to determine the position solution and is characterized by first means for calculating a first integrity risk at the alarm barrier assuming that a satellite j of the satellites is faulty,
second means for determining a first position solution with the signals received from all the satellites,
third means for determining a second position solution with the signals received by all the satellites other than the signal received by the satellite j,
fourth means for determining a difference between the first and second position solutions,
fifth means for forming a reduced alarm barrier by subtracting the determined difference from the alarm barrier,
sixth means for calculating a second integrity risk at the reduced alarm barrier with the signals received from all the satellites other than the signal received from the satellite j and
seventh means for determining the integrity risk at the alarm barrier using the minimum of the first and second integrity risks.

Die ersten bis siebten Mittel können zumindest teilweise durch einen programmierbaren Prozessor und ein in einem Speicher abgelegtes Programm zum Konfigurieren des programmierbaren Prozessors zum Durchführen eines oder mehrerer Schritte eines Verfahrens nach der Erfindung und wie oben beschrieben implementiert sein.The first to seventh means may be implemented, at least in part, by a programmable processor and a program stored in a memory for configuring the programmable processor to perform one or more steps of a method according to the invention and as described above.

Schließlich betrifft eine Ausführungsform der Erfindung eine Positionsbestimmungsvorrichtung zum Ermitteln einer Position anhand von Signalen eines Satellitennavigationssystems und zum Ermitteln eines Integritätsrisikos an einer Alarmschranke für die ermittelte Position, wobei die Positionsbestimmungsvorrichtung eine Vorrichtung zum Ermitteln des Integritätsrisikos an einer Alarmschranke von einer mit einem Satellitennavigationssystem ermittelten Positionslösung nach der Erfindung und wie vorstehend beschrieben und ein Ausgabemittel zum Ausgeben eines ermittelten Integritätsrisikos aufweist.Finally, an embodiment of the invention relates to a position determining device for determining a position based on signals of a satellite navigation system and for determining an integrity risk at an alarm gate for the determined position, wherein the A position determining device comprises an apparatus for determining the integrity risk at an alarm barrier from a position solution according to the invention determined by a satellite navigation system and as described above and having an output means for outputting a determined integrity risk.

Das Ausgabemittel kann insbesondere ein oder mehreres der folgenden Mittel aufweisen: eine Anzeigeeinrichtung; eine Datenausgabeschnittstelle; eine Audioausgabeeinheit.The dispensing means may in particular comprise one or more of the following means: a display device; a data output interface; an audio output unit.

Weitere Vorteile und Anwendungsmöglichkeiten der vorliegenden Erfindung ergeben sich aus der nachfolgenden Beschreibung in Verbindung mit den in den Zeichnungen dargestellten Ausführungsbeispielen.Further advantages and possible applications of the present invention will become apparent from the following description in conjunction with the embodiments illustrated in the drawings.

In der Beschreibung, in den Ansprüchen, in der Zusammenfassung und in den Zeichnungen werden die in der hinten angeführten Liste der Bezugszeichen verwendeten Begriffe und zugeordneten Bezugszeichen verwendet.In the description, in the claims, in the abstract and in the drawings, the terms and associated reference numerals used in the list of reference numerals recited below are used.

Die Zeichnungen zeigen in

  • Fig. 1 ein Flussdiagramm eines Ausführungsbeispiels eines Verfahrens zum Ermitteln des Integritätsrisikos an einer Alarmschranke von einer mit einem Satellitennavigationssystem ermittelten Positionslösung gemäß der Erfindung; und in
  • Fig. 2 ein Blockschaltbild einer Positionsbestimmungsvorrichtung gemäß der Erfindung, die Signale von vier Satelliten eines Satellitennavigationssystems empfängt und zur Positionsbestimmung auswertet.
The drawings show in
  • Fig. 1 a flowchart of an embodiment of a method for determining the integrity risk at an alarm barrier from a position solution determined by a satellite navigation system according to the invention; and in
  • Fig. 2 a block diagram of a positioning device according to the invention, the signals from four satellites of a satellite navigation system receives and evaluates for determining position.

In der folgenden Beschreibung können gleiche, funktional gleiche und funktional zusammenhängende Elemente mit den gleichen Bezugszeichen versehen sein. Absolute Werte sind im Folgenden nur beispielhaft angegeben und sind nicht als die Erfindung einschränkend zu verstehen.In the following description, identical, functionally identical and functionally connected elements may be provided with the same reference numerals. Absolute values are given below by way of example only and are not to be construed as limiting the invention.

Fig. 1 zeigt in einem Flussdiagramm den Ablauf des erfindungsgemäßen Verfahrens zum Ermitteln des Integritätsrisikos an einer Alarmschranke von einer mit einem Satellitennavigationssystem ermittelten Positionslösung. Die einzelnen Schritte des Verfahrens werden nun im Folgenden in Zusammenhang mit der in Fig. 2 gezeigten Situation erläutert, in der eine Positionsbestimmungsvorrichtung 26, beispielsweise eine Navigationsvorrichtung für Flugzeuge, Signale 340, 360, 380 und 400 von vier Satelliten 34, 36, 38 bzw. 40 eines Satellitennavigationssystems wie Galileo empfängt und für die Positionsbestimmung und die Ermittlung eines Integritätsrisikos an einer Alarmschranke verarbeitet. Fig. 1 shows in a flow chart the sequence of the method according to the invention for determining the integrity risk at an alarm barrier from a position solution determined using a satellite navigation system. The individual steps of the method will now be described in connection with the in Fig. 2 in which a position determining device 26, for example an aircraft navigation device, receives signals 340, 360, 380 and 400 from four satellites 34, 36, 38 and 40, respectively, of a satellite navigation system such as Galileo and for determining the position and determining an integrity risk processed an alarm barrier.

Mit den Signalen 340, 360, 380 und 400 werden die üblichen von Satellitennavigationssystemen zur Positionsbestimmung bereitgestellten Daten wie Sendezeit, Bahndaten des sendenden Satelliten, Ephemeriden aller Satelliten etc. übertragen. Ferner werden wie bei Galileo Integritätsdaten wie SISA und SISMA der Satellitensignale in einem Integritätsdatenstrom mit den Signalen übertragen.The signals 340, 360, 380 and 400 transmit the usual data provided by satellite navigation systems for position determination, such as transmission time, orbital data of the transmitting satellite, ephemeris of all satellites, etc. Further, as with Galileo integrity data such as SISA and SISMA, the satellite signals are transmitted in an integrity data stream with the signals.

Die Positionsbestimmungsvorrichtung 26 enthält einen (nicht explizit dargestellten) Empfänger für die Signale 340, 360, 380 und 400, der in der üblichen und an sich bekannten Weise die mit den Signalen übermittelten Daten dekodiert und zur weiteren Verarbeitung, insbesondere zu Positionsbestimmung durch einen (nicht dargestellten) Kontroller bereitgestellt. Der Kontroller ist hierzu derart konfiguriert, dass er anhand der Daten die aktuelle Position der Vorrichtung 26 ermittelt. Die so ermittelte Position wird im Kontext der vorliegenden Erfindung als Positionslösung bezeichnet.The position determining device 26 includes a (not explicitly shown) receiver for the signals 340, 360, 380 and 400, which decodes the data transmitted with the signals in the usual and known manner and for further processing, in particular for position determination by a (not provided) controller provided. The controller is for this purpose configured to determine the current position of the device 26 based on the data. The position thus determined is referred to as a positional solution in the context of the present invention.

Weiterhin weist die Vorrichtung 26 eine Vorrichtung 10 zum Ermitteln des Integritätsrisikos an einer Alarmschranke auf. Die Vorrichtung 10 kann beispielsweise in Hardware in Form einer integrierten Schaltung implementiert sein, oder durch eine programmierbaren Prozessor, der durch eine das erfindungsgemäße Verfahren implementierende Software derart konfiguriert wird, dass er das Integritätsrisikos an einer Alarmschranke gemäß der Erfindung ermitteln kann. Die Vorrichtung kann prinzipiell auch durch den Kontroller realisiert werden, der für die Ermittlung der Positionslösung vorgesehen ist. In diesem Fall kann beispielsweise eine Firmware der Positionsbestimmungsvorrichtung 26 derart ausgebildet sein, dass sie zusätzliche Funktionen zum Ermitteln des Integritätsrisikos an einer Alarmschranke enthält.Furthermore, the device 26 has a device 10 for determining the integrity risk at an alarm barrier. The device 10 may, for example, be implemented in hardware in the form of an integrated circuit, or by a programmable processor configured by software implementing the method according to the invention is that he can determine the integrity risk at an alarm barrier according to the invention. The device can in principle also be realized by the controller, which is provided for the determination of the position solution. In this case, for example, a firmware of the position determination device 26 may be designed such that it contains additional functions for determining the integrity risk at an alarm barrier.

Die Vorrichtung 10 implementiert mehrere Funktionen eines Algorithmus zum Ermitteln des Integritätsrisikos an einer Alarmschranke, der nun unter Bezug auf das in Fig. 1 dargestellt Flussdiagramm beschrieben wird.The device 10 implements several functions of an algorithm for determining the integrity risk at an alarm gate, which will now be described with reference to FIG Fig. 1 shown flowchart is described.

Der Algorithmus bestimmt in Schritt S10 einen Satelliten j, der als fehlerbehaftet angenommen wird, sich also im eingangs geschilderten Zustand 2 gemäß dem Galileo-Integritätskonzept befindet. Für die weitere Erläuterung sei angenommen, dass der Satellit 36 als fehlerbehaftet angenommen wird. Für die Einstufung eines Satelliten als fehlerbehaftet können beispielsweise die SISA- und SISMA-Werte ausgewertet werden, die vom Bodensegment des Satellitennavigationssystems ermittelt und mit dem Integritätsdatenstrom übertragen werden. Beispielsweise kann anhand der SISA- und SISMA-Werte für jeden Satelliten der entsprechende Grundfehler TH gemäß der folgenden Gleichung berechnet wird: TH = k pfa SISA 2 + SISMA 2

Figure imgb0003
wobei der Vorfaktor kpfa durch eine erlaubte Falschalarmrate bestimmt wird. Als fehlerbehafteter Satellit kann dann der Satellit mit dem größten Grundfehler ausgewählt werden.The algorithm determines in step S10 a satellite j, which is assumed to be faulty, that is, in the initially described state 2 according to the Galileo integrity concept. For further explanation, it is assumed that the satellite 36 is assumed to be faulty. To classify a satellite as having errors, for example, the SISA and SISMA values can be evaluated, which are determined by the ground segment of the satellite navigation system and transmitted with the integrity data stream. For example, based on the SISA and SISMA values for each satellite, the corresponding fundamental error TH is calculated according to the following equation: TH = k pfa SISA 2 + SISMA 2
Figure imgb0003
wherein the prefactor k pfa is determined by an allowable false alarm rate. The satellite with the largest basic error can then be selected as the faulty satellite.

Anschließend berechnet der Algorithmus unter der Annahme des fehlerbehafteten Satelliten 36 im Schritt S12 ein erstes Integritätsrisiko PHMI(AL) an einer vorher festgelegten Alarmschranke AL, die beispielsweise insbesondere von einem Nutzer abhängig von der Anwendung vorgegeben werden kann, in der die Positionslösung verwendet werden soll. Das Integritätsrisiko kann hierbei gemäß dem eingangs erläuterten Galileo-Nutzer-Integritätskonzept berechnet werden, wie es in der Veröffentlichung " The Galileo Integrity Concept", V. Oehler, F. Luongo, J.-P. Boyero, R. Stalford, H. L. Trautenberg, ION GNSS 17th International Technical Meeting of the Satellite Division, 21-24 Sept. 2004, Long Beach, CA , in der veröffentlichten europäischen Patentanmeldung EP 1 637 899 A1 und dem erteilten europäischen Patent EP 1 792 196 B1 im Detail beschrieben ist. In der Vorrichtung 10 können hierzu erste Integritätsberechnungsmittel 12 vorgesehen sein, die beispielsweise in Form einer speziellen Berechnungseinheit in Hardware oder in Software implementiert sein können.Then, assuming the faulty satellite 36, the algorithm calculates a first integrity risk PHMI (AL) at a predetermined alarm threshold AL, which may be, for example, at step S12 in particular, can be specified by a user depending on the application in which the position solution is to be used. The integrity risk can be calculated according to the Galileo user integrity concept explained in the introduction, as described in the publication " The Galileo Integrity Concept, V. Oehler, F. Luongo, J.- P. Boyero, R. Stalford, HL Trautenberg, ION GNSS 17th International Technical Meeting of the Satellite Division, 21-24 Sept. 2004, Long Beach, CA. in the published European patent application EP 1 637 899 A1 and the granted European patent EP 1 792 196 B1 is described in detail. In the apparatus 10, first integrity calculation means 12 can be provided for this purpose, which can be implemented, for example, in the form of a special calculation unit in hardware or in software.

Im nächsten Schritt S14 wird eine erste Positionslösung Pos1 mit den von allen vier Satelliten 34, 36, 28 und 40 empfangenen Signalen 340, 360, 380 und 400 ermittelt, also inklusive des Signals 360 des als fehlerbehaftet eingestuften Satelliten 36. Der Schritt S14 kann in der Vorrichtung 10 durch erste Positionsbestimmungsmittel 14 ausgeführt werden, die wiederum in Hard- oder Software implementiert sein können.In the next step S14, a first position solution Pos1 is determined with the signals 340, 360, 380 and 400 received from all four satellites 34, 36, 28 and 40, ie including the signal 360 of the satellite 36 classified as having errors device 10 may be performed by first position determining means 14, which in turn may be implemented in hardware or software.

Im Schritt S16 wird ferner eine zweite Positionslösung Pos2 ohne das Signal 360 des als fehlerbehaftet eingestuften Satelliten 36, also nur mit den drei Signalen 340, 380 und 400 der Satelliten 34, 38 bzw. 40 ermittelt. Auch für den Schritt S16 können zweite Positionsbestimmungsmittel 16 vorgesehen sein, die in Hard- oder Software implementiert sein können.In step S16, a second position solution Pos2 is also determined without the signal 360 of the satellite 36 classified as having errors, ie only with the three signals 340, 380 and 400 of the satellites 34, 38 and 40, respectively. Also for the step S16 second position determining means 16 may be provided, which may be implemented in hardware or software.

Sowohl die ersten als auch die zweiten Positionsbestimmungsmittel 14 und 16 können auch vom oben erwähnten Kontroller implementiert sein.Both the first and second position determining means 14 and 16 may be implemented by the controller mentioned above.

Im Schritt S18 wird nun eine Differenz ΔPos aus den beiden ermittelten Positionslösungen Pos1 und Pos2 berechnet. Dieser Schritt kann durch Positionsdifferenzberechnungsmittel 18 der Vorrichtung 10 ausgeführt werden, die in Hard- oder Software implementiert sein können.In step S18, a difference ΔPos is calculated from the two determined position solutions Pos1 and Pos2. This step may be performed by position difference calculating means 18 of the apparatus 10, which may be implemented in hardware or software.

Die Differenz ΔPos wird im Schritt S20 von der festgelegten Alarmschranke AL subtrahiert, so dass ein reduzierte Alarmschranke ALred erhalten wird. zur Durchführung des Schritts S20 können in der Vorrichtung 10 in Hard- oder Software implementierte Alarmschrankenbildungsmittel 20 vorgesehen sein.The difference ΔPos is subtracted from the set alarm limit AL in step S20, so that a reduced alarm limit ALred is obtained. In order to carry out step S20, alarm barrier forming means 20 implemented in hardware or software may be provided in device 10.

Nun wird ein zweites Integritätsrisiko PHMI(ALred) mit den drei Satelliten 34, 38 und 40, die durch den Zustand 1 beschrieben sind, an der reduzierten Alarmschranke ALred im Schritt S22 berechnet, der von zweiten Integritätsberechnungsmitteln 22 ausgeführt werden kann. Das zweite Integritätsrisiko kann wieder gemäß dem eingangs erläuterten und in den vorgenannten Veröffentlichungen beschriebenen Galileo-Nutzer-Integritätskonzept ermittelt werden.Now, a second integrity risk PHMI (ALred) is calculated with the three satellites 34, 38 and 40 described by state 1 at the reduced alarm limit ALred in step S22, which may be performed by second integrity calculation means 22. The second integrity risk can again be determined according to the Galileo user integrity concept described in the introduction and described in the aforementioned publications.

Im Folgenden wird das Minimum der beiden berechneten Integritätsrisiken PHMI(AL) und PHMI(ALred) ermittelt. Hierzu wird im Schritt S24 geprüft, ob das erste Integritätsrisiko PHMI(AL) größer als das zweite Integritätsrisiko PHMI(ALred) ist. Falls ja, wird mit Schritt S26 fortgefahren und das zweite Integritätsrisiko PHMI(ALred) für die Ermittlung des Integritätsrisikos an der Alarmschranke verwendet. Falls das erste Integritätsrisiko PHMI(AL) kleiner als das zweite Integritätsrisiko PHMI(ALred) ist, wird im Schritt S28 das erste Integritätsrisiko PHMI(AL) für die Ermittlung des Integritätsrisikos an der Alarmschranke verwendet. Die Schritte D24, S26 und S28 können von in Hard- oder Software implementierten Integritätsrisikoermittlungsmitteln 24 der Vorrichtung 10 durchgeführt werden.In the following, the minimum of the two calculated integrity risks PHMI (AL) and PHMI (ALred) is determined. For this purpose, it is checked in step S24 whether the first integrity risk PHMI (AL) is greater than the second integrity risk PHMI (ALred). If so, the process proceeds to step S26 and the second integrity risk PHMI (ALred) is used to determine the integrity risk at the alarm gate. If the first integrity risk PHMI (AL) is less than the second integrity risk PHMI (ALred), then in step S28 the first integrity risk PHMI (AL) is used to determine the integrity risk at the alarm barrier. Steps D24, S26, and S28 may be performed by hardware or software implemented integrity risk averaging means 24 of device 10.

Das von der Positionsbestimmungsvorrichtung 26 kleinere der beiden wie vorstehend beschrieben ermittelten Integritätsrisiken kann über Ausgabemittel ausgegeben werden, insbesondere auf einer Anzeigeeinrichtung 28 wie einem LCD-Display angezeigt, über eine Audioausgabeeinheit 32 beispielsweise als Warnton und/oder über eine Datenausgabeschnittstelle 30 zur Weiterverarbeitung durch andere Vorrichtungen oder Steuerung von anderen Vorrichtungen. Beispielsweise können auf Satellitennavigation basierende Steuerungen wie Autopiloten oder Pilotenassistenzsysteme oder System zur Weiterverarbeitung der ermittelten Position durch das ausgegebene Integritätsrisiko beeinflusst werden. Insbesondere kann beispielsweise eine automatische Navigation bei einem zu hohen Integritätsrisiko abgebrochen oder Navigationsinstrumente, die auf Satellitennavigation basieren, auf einen von der Satellitennavigation unabhängigen Betrieb bei einem zu hohen Integritätsrisiko umgeschaltet werden.The smaller of the two integrity risks determined by the position determination device 26 can be output via output means, in particular displayed on a display device 28 such as an LCD display, via an audio output unit 32, for example as a warning tone and / or via a data output interface 30 for further processing by other devices or control of other devices. For example, satellite navigation based controls such as autopilot or pilot assistance systems or System for further processing of the determined position are influenced by the issued integrity risk. In particular, for example, automatic navigation may be discontinued if the integrity risk is too high, or navigation instruments based on satellite navigation may be switched over to operation that is independent of satellite navigation if the integrity risk is too high.

Die vorliegende Erfindung ermöglicht es, die Verfügbarkeit einer mit einem Satellitennavigationssystem ermittelten Positionslösung mit einem Integritätsrisiko an einer Alarmschranke zu erhöhen, indem der ungewichtete Beitrag zum Integritätsrisiko an der Alarmschranke unter der Annahme, dass ein Satellit fehlerbehaftet ist, unter zwei verschieden Annahmen berechnet und das Minimum der beiden berechneten Beiträge verwendet wird.The present invention makes it possible to increase the availability of a position solution with a satellite navigation system with an integrity risk at an alarm gate by calculating the unweighted contribution to the integrity risk at the alarm barrier under the assumption that a satellite is faulty under two different assumptions and the minimum the two calculated contributions is used.

BEZUGSZEICHEN UND AKRONYMEReference Labels and Acrobones

1010
Vorrichtung zum Ermitteln des Integritätsrisikos an einer AlarmschrankeDevice for determining the integrity risk at an alarm barrier
1212
erste Integritätsberechnungsmittelfirst integrity calculation means
1414
erste Positionsbestimmungsmittelfirst position determining means
1616
zweite Positionsbestimmungsmittelsecond position determining means
1818
PositionsdifferenzberechnungsmittelPosition difference calculating means
2020
AlarmschrankenbildungsmittelAlarm barriers forming means
2222
zweite Integritätsberechnungsmittelsecond integrity calculation means
2424
IntegritätsrisikoermittlungsmittelIntegrity risk determination means
2626
PositionsbestimmungsvorrichtungPositioning device
2828
Anzeigeeinrichtungdisplay
3030
DatenausgabeschnittstelleOutput data interface
3232
AudioausgabeeinheitAudio output unit
3434
erster Satellitfirst satellite
340340
erstes Satellitensignalfirst satellite signal
3636
zweiter Satellitsecond satellite
360360
zweites Satellitensignalsecond satellite signal
3838
dritter Satellitthird satellite
380380
drittes Satellitensignalthird satellite signal
4040
vierter Satellitfourth satellite
400400
viertes Satellitensignalfourth satellite signal

Claims (10)

  1. A method for determining an integrity risk at an alert limit of a position solution determined by a satellite navigation system, wherein signals received from satellites of the satellite navigation system are processed for determining the position solution, the method comprising:
    - calculating a first integrity risk at the alert limit assuming that one satellite j of the satellites is faulty (S10, S12);
    - determining a first position solution is determined with signals received from all of the satellites (S14);
    - determining a second position solution with signals received from all of the satellites except for a signal received from the assumed faulty satellite j (S16);
    - determining a difference between the first and the second position solution (S18);
    - creating a reduced alert limit by subtracting the determined difference from the alert limit (S20);
    - calculating a second integrity risk at the reduced alert limit with the signals received from all satellites except the signal received from the assumed faulty satellite j (S22); and
    - determining the integrity risk at the alert limit using a lower of the first and second integrity risks (S24, S26, S28).
  2. The method in accordance with claim 1,
    characterized in that
    the integrity risk at the alert limit is determined using the minimum of the first and second integrity risks as an unweighted contribution in accordance with a user integrity concept of a Galileo satellite navigation system.
  3. The method in accordance with claim 1 or 2,
    characterized in that
    statistical descriptions provided by the satellite navigation system regarding signal errors of each satellite are processed and a basic error for an assumed faulty satellite is determined therefrom, and the basic error is evaluated as faulty for classification of a satellite.
  4. The method in accordance with claim 3,
    characterized in that
    - an expected signal error or Signal in Space Accuracy SISA value for each satellite signal and
    - an accuracy of the estimate of the signal error or a Signal in Space Monitoring Accuracy SISMA value for each satellite signal
    are processed as statistical descriptions of signal errors for each satellite,
    wherein for each satellite the basic error TH is calculated according to the following equation: TH = k pfa SISA 2 + SISMA 2
    Figure imgb0005
    wherein the prefactor kpfa is determined by an allowed false alert rate.
  5. A computer program having a program code for performing the method steps in accordance with the foregoing claims, when the computer program is run on a computer.
  6. A medium for storing the computer readable program code of the computer program in accordance with claim 5.
  7. An apparatus (10) for determining an integrity risk at an alert limit of a position solution determined by a satellite navigation system, wherein the apparatus is configured to process signals received from satellites of the satellite navigation system for determining the position solution, the apparatus comprising:
    - first means (12) configured to calculate a first integrity risk at the alert limit assuming that one satellite j of the satellites is faulty (S10, S12),
    - second means (14) configured to determine a first position solution is determined with signals received from all of the satellites (S14),
    - third means (16) configured to determine a second position solution with signals received from all of the satellites except for a signal received from the assumed faulty satellite j (S16),
    - fourth means (18) configured to determine a difference between the first and the second position solution (S18),
    - fifth means (20) configured to create a reduced alert limit by subtracting the determined difference from the alert limit (S20),
    - sixth means (22) configured to calculate a second integrity risk at the reduced alert limit with the signals received from all satellites except the signal received from the assumed faulty satellite j (S22), and
    - seventh means (24) configured to determine the integrity risk at the alert limit using a lower of the first and second integrity risks (S24, S26, S28).
  8. The apparatus in accordance with claim 9,
    characterized in that
    the first through seventh means are at least partially implemented, by a programmable processor and a program stored in a memory for configuring the programmable processor, to perform one or more of the steps of the method in accordance with one of claims 1 to 4.
  9. A position calculation device (26) configured to determine a position by signals of a satellite navigation system and to determine an integrity risk at an alarm limit for the determined position, wherein the position calculation device has an apparatus (10) in accordance with claim 7 or 8 and an output device (28, 30, 32) configured to output a determined integrity risk.
  10. The apparatus in accordance with claim 9,
    characterized in that
    the output device is a display unit (28), a data output interface (30) and/or an audio output unit (32).
EP13001777.5A 2012-04-12 2013-04-06 Improvement of the integrity concept of a satellite navigation system Active EP2650698B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102012007191A DE102012007191B3 (en) 2012-04-12 2012-04-12 Improvement of the integrity concept of a satellite navigation system

Publications (3)

Publication Number Publication Date
EP2650698A2 EP2650698A2 (en) 2013-10-16
EP2650698A3 EP2650698A3 (en) 2015-04-08
EP2650698B1 true EP2650698B1 (en) 2016-12-21

Family

ID=48050412

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13001777.5A Active EP2650698B1 (en) 2012-04-12 2013-04-06 Improvement of the integrity concept of a satellite navigation system

Country Status (3)

Country Link
US (1) US9429654B2 (en)
EP (1) EP2650698B1 (en)
DE (1) DE102012007191B3 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3008818B1 (en) * 2013-07-22 2015-08-14 Airbus Operations Sas DEVICE AND METHOD FOR PREDICTING THE PRECISION, THE INTEGRITY AND AVAILABILITY OF THE POSITION OF AN AIRCRAFT ALONG A TRACK.

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5760737A (en) * 1996-09-11 1998-06-02 Honeywell Inc. Navigation system with solution separation apparatus for detecting accuracy failures
EP1637899A1 (en) * 2004-09-20 2006-03-22 EADS Astrium GmbH Method and apparatus for providing integrity information for users of global navigation system
DE102006046001A1 (en) * 2006-09-27 2008-04-03 Eads Astrium Gmbh Method for setting the integrity alarm barrier in a satellite navigation system
DE102008037174B4 (en) * 2008-08-11 2011-07-07 Astrium GmbH, 82024 Method and device for optimizing the accuracy of the position determination and / or for reducing the integrity risk of a receiver in a global navigation satellite system
DE102008045323A1 (en) * 2008-09-02 2010-03-04 Astrium Gmbh Method and device for optimizing status notifications in a satellite navigation system
DE102009016337A1 (en) * 2009-04-06 2010-10-07 Astrium Gmbh Method and device for estimating the integrity risk in a satellite navigation system
EP2402785B1 (en) * 2010-06-23 2013-04-03 Astrium GmbH An improved RAIM algorithm

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
US9429654B2 (en) 2016-08-30
DE102012007191B3 (en) 2013-06-20
US20130271315A1 (en) 2013-10-17
EP2650698A3 (en) 2015-04-08
EP2650698A2 (en) 2013-10-16

Similar Documents

Publication Publication Date Title
EP2756332B1 (en) Method for selecting a satellite
EP2604478B2 (en) Method for recognising function errors of a multi-sensor assembly
EP3646184B1 (en) Method, apparatus and computer-readable storage medium having instructions for cancelling a redundancy of two or more redundant modules
EP3254136B1 (en) Processing sensor measurements of a vehicle environment with low transverse resolution
EP1728092B1 (en) Method and device for processing satellite signals
WO2015139864A1 (en) Method and device for operating a vehicle
EP1906198A2 (en) Method for adjusting the integrity alarm barrier in a satellite navigation device
DE10236900B4 (en) Method of performing a bit error rate test and bit error rate test system
EP2051093A1 (en) Method and device for monitoring the integrity of satellite navigation signals
DE102018005005A1 (en) Method for determining the position of a vehicle
DE102019124301A1 (en) Device and method for ensuring the fail-safe function of an autonomous driving system
DE102018222663A1 (en) Method for adaptively determining an integrity area of a parameter estimate
DE102008025064A1 (en) Method for improving continuity in a two-frequency satellite navigation system
EP0416370A2 (en) Method and device for detecting and indentifying sensor errors
EP2348334B1 (en) Improvement of the integrity communication in a satellite navigation system
EP2056118A1 (en) Method and device for improving the integrity communication in a satellite system
EP2239598B1 (en) Device and method for estimating the integrity risk in a satellite navigation system
EP2650698B1 (en) Improvement of the integrity concept of a satellite navigation system
EP2017636B1 (en) Method and device for calculating an integrity risk in a satellite referencing system
EP2159591A1 (en) Method and device for optimising status messages in a satellite navigation system
DE102019213916A1 (en) Method for determining an object position using various sensor information
EP4147943A1 (en) Measuring assembly
EP2196824B1 (en) Device and method for integrity communication in a satellite navigation system
DE102017201886B3 (en) Method for determining accuracy information of a position vector
EP1835299A1 (en) Interruption detection for a carrier phase measurement

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: G01S 19/20 20100101AFI20150304BHEP

17P Request for examination filed

Effective date: 20150821

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: AIRBUS DS GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160705

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 855958

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013005798

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161221

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20161221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161221

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170321

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161221

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161221

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161221

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170421

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161221

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161221

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161221

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170321

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161221

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170421

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161221

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013005798

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20170922

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161221

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170406

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502013005798

Country of ref document: DE

Representative=s name: WUESTHOFF & WUESTHOFF, PATENTANWAELTE PARTG MB, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502013005798

Country of ref document: DE

Owner name: AIRBUS DEFENCE AND SPACE GMBH, DE

Free format text: FORMER OWNER: AIRBUS DS GMBH, 82024 TAUFKIRCHEN, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161221

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170430

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170430

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170406

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170406

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170430

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161221

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 855958

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180406

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161221

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20220420

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230406

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240418

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240426

Year of fee payment: 12