EP2650599A1 - Light source strip, lighting module and luminaire - Google Patents

Light source strip, lighting module and luminaire Download PDF

Info

Publication number
EP2650599A1
EP2650599A1 EP12164127.8A EP12164127A EP2650599A1 EP 2650599 A1 EP2650599 A1 EP 2650599A1 EP 12164127 A EP12164127 A EP 12164127A EP 2650599 A1 EP2650599 A1 EP 2650599A1
Authority
EP
European Patent Office
Prior art keywords
light source
reflector
strip
support portion
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP12164127.8A
Other languages
German (de)
French (fr)
Inventor
Michel Cornelis Josephus Marie Vissenberg
Silvia Maria Booij
Antonius Petrus Marinus Dingemans
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Koninklijke Philips NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips NV filed Critical Koninklijke Philips NV
Priority to EP12164127.8A priority Critical patent/EP2650599A1/en
Priority to PCT/IB2013/052915 priority patent/WO2013153534A1/en
Publication of EP2650599A1 publication Critical patent/EP2650599A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/0008Reflectors for light sources providing for indirect lighting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S4/00Lighting devices or systems using a string or strip of light sources
    • F21S4/20Lighting devices or systems using a string or strip of light sources with light sources held by or within elongate supports
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S4/00Lighting devices or systems using a string or strip of light sources
    • F21S4/20Lighting devices or systems using a string or strip of light sources with light sources held by or within elongate supports
    • F21S4/28Lighting devices or systems using a string or strip of light sources with light sources held by or within elongate supports rigid, e.g. LED bars
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S8/00Lighting devices intended for fixed installation
    • F21S8/02Lighting devices intended for fixed installation of recess-mounted type, e.g. downlighters
    • F21S8/026Lighting devices intended for fixed installation of recess-mounted type, e.g. downlighters intended to be recessed in a ceiling or like overhead structure, e.g. suspended ceiling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S8/00Lighting devices intended for fixed installation
    • F21S8/04Lighting devices intended for fixed installation intended only for mounting on a ceiling or the like overhead structures

Definitions

  • the invention relates to a Light source strip, lighting module and luminaire.
  • Luminous ceiling panels also referred to as ceiling tiles, are widely available, mostly based on backlighting technology, either direct lit or side-lit.
  • US3409766 describes a fully luminous, sound absorbing ceiling, in which the light is generated by indirect lighting of sound-absorbing ceiling panels by TL tubes at the side of the panel.
  • known large-area ceiling sources are not widely applied, because they have several disadvantages.
  • creating a large area source with conventional luminaire materials is relatively expensive.
  • the large-area light-emitting ceilings interfere with other elements in the ceiling, such as sprinklers, sensors and air-conditioning vents.
  • the large-area light sources lead to unwanted acoustic reflections at the ceiling, thus deteriorating the comfort of the people in the room.
  • there is relatively very limited flexibility in the use of known luminaire ceiling panels as they have to be custom made to size to fit into a specific, existing false ceiling system.
  • the light source strip comprises at least one light source and/or means for accommodating a light source mounted on a base, for example a LED thus forming a LED strip, a support portion extending substantially parallel to the base and a reflector having a front side for reflecting at least part of the light issued by the LED during operation, and connecting the base and the support portion, the LED is located in a concave portion of the strip formed by at least the reflector and the base.
  • substantially parallel in this respect means that the base and the support portion may mutually be in an angled position of at the most 20°, preferably at the most 10°, more preferably at the most 5°.
  • a light source could be an array of LEDs, and means for accommodating a lamp could be electrical contacts.
  • Said concave portion of the strip could be formed by the base and the reflector, or by the base, the reflector and the support portion.
  • the LED strip is provided with electrical contacts for contacting to a power supply.
  • Said LED strip is of particular of use in false ceilings. In false ceilings ceiling tiles rest on a frame comprising elongated suspension brackets with a T-shaped cross section, said ceiling tiles can easily removed from the false ceiling via a tilt and shift movement.
  • the LED-strip of the invention can easily be installed in such a false ceiling, for example by lifting a ceiling tile at one side from the T-shaped bracket on which it usually rests, then subsequently insert the LED strip in between the bracket and the tile.
  • the LED strip rests with its base on the T-shaped bracket and carries the ceiling tile with its support portion, finally the LED strip is connected to a power supply.
  • a combination of at least two, mutually connected LED strips, forming a lighting module can be used in combination with a ceiling tile.
  • the combination of the LED strip/lighting module and ceiling tile forms a relatively unobtrusive luminaire.
  • the LED strip or lighting module when the LED strips are mutually joined via a joint located at the backside of the reflector or via a frame extending between the base and reflector at the front side of the reflector, is a slim, open structure, the visual impact is minimal, which enables a clean ceiling without much distinction between ceiling tiles with or without lighting function.
  • the LED strip or lighting module may be applied as a recessed fixture illuminating a slightly elevated conventional ceiling tile, as a surface mounted fixture illuminating a ceiling tile at the normal position, or as a pendant fixture illuminating multiple ceiling tiles.
  • the ceiling panel can be of any type.
  • Large ceiling area's or even the complete ceiling may be equipped with the LED strip or with the lighting module, since it enables the use of ceiling tiles comprising at least one device selected from the group consisting of sprinklers, sensors, narrow beam light sources, loud-speakers, ventilation grill, and air-conditioning vents. Furthermore, the acoustic properties of the suspended ceiling are not deteriorated, because the passage of sound to sound absorbing ceiling tiles is neither hindered by the LED strip nor by the open frame of the lighting module.
  • the indirect lighting module is powered by a low-voltage source, such as 36 V, or lower, for example 24V.
  • a low-voltage source such as 36 V, or lower, for example 24V.
  • the low-voltage source may be integrated into the dropped false ceiling, like in the Emerge standard, as applied in dropped ceilings by Armstrong.
  • the wiring is integrated in the T-bars.
  • the indirect lighting module may contain a mechanical and electrical connector to the T-bar, where the electrical connection is made to the conductor on the "bulb" of the T-bar.
  • the mechanical and electrical connection can be made to the conductor in the "reveal" (in the visible part of the T-bar). This allows for a very easy and flexible installation of the modules.
  • LED strip could equally be substituted by light source strip in which the light source could be an elongated low/high pressure gas discharge lamp or an elongated halogen lamp.
  • Fig. 1 shows a first, basic embodiment of the LED strip 1 according to the invention in perspective cross sectional view.
  • the LED strip comprises a plurality of LEDs 3 on a PCB 10 in a concave portion 5 of the strip 7 and mounted on a base 9, a support portion 11 extending parallel to the base, and a straight reflector 13 having a front side 15.
  • the reflector connects the base and the support portion.
  • Said reflector is coated with an optically effective coating 17, in the figure a diffuse reflective layer 19, for example, aluminium oxide to diffusely scatter light rays 4 issued by the LEDs and impinging on the layer.
  • the concave portion is formed by the base, reflector and support portion.
  • the strip is made in one part by cutting and folding aluminium metal sheet, but alternatively could be made of steel, or plastic if the PCB provides for sufficient cooling of the LEDs.
  • Fig. 2 shows a perspective view of a second embodiment of the LED strip 1 according to the invention, comprising only a single LED 3 mounted on a base 9.
  • the strip 7 is made in one piece via an extrusion process from synthetic resin material, for example PMMA or polyethylene, and comprises the base 9, a support portion 11 and a concavely shaped reflector 13 connecting the base and the support portion.
  • a concave portion 5 is formed by the base and the reflector.
  • Fig. 3 shows a perspective end view of a third embodiment of the LED strip 1 according to the invention.
  • the LED strip rests with its base 9 on a suspension bracket 23, said bracket having a T-shaped cross section.
  • On the base a plurality of LEDs 3 are mounted and arranged in a row, defining a length direction or length axis 25.
  • the LEDs 3 are located inside a concave portion 5 of the strip, said concave portion being formed by the base and the reflector 13.
  • the reflector has a cross-section transverse to the length direction shaped as a branch of a parabola 39, the LEDs being positioned in the vicinity of a focal point 41 of said parabola branch.
  • the LEDs may be positioned just before (closer to the reflector) or just behind the focal point, in order to aim the light slightly above or slightly below the horizon, respectively, above the horizon is mostly preferred to avoid looking into the source via the reflector.
  • the optical axis of the light will be horizontal after reflection, but the beam will be partly above and partly below the horizon.
  • the LED strip has an end face 31 which is closed by an end cap 33, in the figure made of translucent polyethylene.
  • the support portion and the reflector border a second concave portion 35, which second concave portion is located at a backside 37 of the reflector.
  • a LED strip 1 is shown having practically the same cross section as the LED strip of Fig. 3 , except for a further support portion 12, extending in a direction transverse to the support portion.
  • the support portion could be made bendable with respect to the base and reflector to adjust its position to the slanted orientation of the ceiling tile for better supporting said ceiling tile.
  • Fig 4 further shows that said second concave portion 35 enables the LED strip to rest with its support portion 11 on the T-shaped bracket 23, and thus forming a LED strip suspending and protruding from a false ceiling (not shown).
  • a light transmissive plate 43 is provided to the LED strip in a light emission window 51, said plate resting on the base 9 of the LED strip and practically abutting the LEDs 3.
  • Fig. 5 shows a cross-section of an embodiment of a lighting module 21 according to the invention.
  • the lighting module comprises two LED strips 1 connected to each other via a joint 45 at the backside 37 of the reflector 13, each LED strip being independently on/off switchable.
  • This embodiment is only suitable for suspended applications not as a recessed version.
  • the module rests via the support portions 11 from a T-shaped bracket 23, adjustable in height, and suspends from a false ceiling 47 of which only one T-shaped bracket and two ceiling panes 49 or ceiling tiles 49 are shown.
  • One side of each of the ceiling panes shown rests also on the T-shaped bracket.
  • plane P extend transverse to the plane of the drawing and through the light emission window 51.
  • Light rays 4 issued by the LEDs 3 and impinging on a specular reflective coating 17 of the reflector are either reflected to a respective ceiling panel or are reflected towards a light emission window 51 and subsequently to the exterior. Care should be taken that at least one diffusing step occurs for each ray issued by the LED before said light ray is issued to the exterior. This diffusion step could be either at the reflector, ceiling tile, or if not at none of these two, at a diffuser plate which then should be provided in the light emission window. In the figure light rays impinging on the ceiling pane are diffusely reflected to the light emission window by said ceiling pane, which thereto could be provided with a diffusely reflective coating.
  • the reflector is specular reflective, but a alternatively, the reflector could be provided with a diffuse reflective coating, or high gloss white surface as an intermediate between specular and diffuse reflective coating or as a further alternative a specular ripple as an anisotropic diffuse reflector specular in the direction of the cross-section, and diffuse in extrusion direction.
  • Fig. 6 shows a cross section of an embodiment of a luminaire 53 according to the invention, said luminaire being formed by a combination of a lighting module 21, comprising two LED strips 1 connected to each other via a frame 55 connecting the front side 15 of the reflectors 13 of the respective LED strips, and at least one ceiling tile 49.
  • the lighting module rests with it support portion 11 on the T-shaped brackets 23, the ceiling tile on its turn rests on the support portions of the LED strips.
  • the LED strips each have a further support portion 12 that confines the ceiling tile and limits the possibility of the LED strips getting tilted with respect to the plane P of the false ceiling 47.
  • the luminaire further has a light transmissive plate 43 provided in the light emission window 51.
  • Fig. 7-9 each shows a cross section of a part of a false ceiling comprising various embodiments of luminaire according to the invention.
  • the luminaire 53 suspends and protrudes from the false ceiling 47 because its rests with its support portions 11 on the T-shaped-brackets 23, the T-shaped brackets form a grid and are all being suspended from the real ceiling at the same height.
  • a smooth transition between the plane P of the false ceiling and the light emission window 51 of the luminaire has been attained by a slanted position of an adjacent ceiling tile 50 by making it rest with one side on an extension 57 of the base 9.
  • a luminaire 53 according to the invention is shown which is in a recessed position with respect to the plane P of the false ceiling.
  • the originally present ceiling pane 49 has been lifted somewhat with respect to the T-shaped brackets 23 and the luminaire has been inserted in between.
  • a light transmissive plate 43 in the figure a lamellae like, open grid structure, has been inserted.
  • the ceiling tile rests on the support portion 11, the luminaire rests on the plate and the plate rests on the T-shaped bracket.
  • the ceiling tile is an acoustic tile, i.e. it has an open, more or less porous structure, to enable air and sound/noise to pass and to reflect light, and further comprises a device 59, in the figure a motion sensor.
  • Fig. 9 shows in cross section an asymmetric luminaire 53, with an elongated, low pressure, mercury, fluorescent, discharge lamp 3 as a light source.
  • the light source strip 1 is inserted in between the ceiling tile 49 and the T-shaped bracket 23 at only one side of a ceiling tile, resulting in the ceiling tile to assume a slanted orientation with respect to the plane P of the false ceiling.
  • the light source illuminates the ceiling tile from one side 59.
  • the asymmetric luminaire creates a lighting effect similar to that of a traditional "factory roof', i.e. slanted roof panels with light entering the room by vertical windows between the slanted roof elements.
  • the orientation of the slanted ceiling tile enables use by an interior designer or architect to create a specific, desired effect in the room.
  • Fig. 10a-c show a cross-sectional view of a lighting module 21 with two LED strips 1 mutually connected via a joint 45 located at the backside 37 of the reflector 13 at their bases 9 at various stages of their mounting on the T-shaped bracket 23 of the false ceiling.
  • the LED strips are made of flexible bendable or resilient material to enable insertion of the T-shaped bracket into the second concave portion 35.
  • the lighting module can either rest with its support portion 11 or with its base on the T-shaped bracket.
  • Fig. 11 show a part of a false ceiling 47 with only one installed LED strip 1, which LED strip is provided with two flaps 61 on either end face 31 of the LED strip.
  • the false ceiling comprises a grid 65 of T-shaped brackets on which the ceiling tiles rest. By insertion of one LED strip in between the T-shaped bracket and the ceiling tile (said ceiling tile is not shown), said ceiling tile is somewhat lifted, thus leaving an opening 63 between said ceiling tile and the grid of T-shaped brackets.
  • the flaps in the figure of a triangular shape, are bendable attached to the end caps of the LED strip and are oriented in a transverse direction to the length direction 25 of the LED strip to function as a lid and to close these openings.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

Light source strip comprising at least one light source (3) located in a concave portion (5) of the strip (7) and mounted on a base (9). The light source strip further comprises a support portion (11) extending substantially parallel to the base and a reflector having a front side (15) for reflecting at least part of the light issued by the light source during operation, and connecting the base and the support portion. Two mutually connected light source strips (7) form a lighting module (21). A combination of a ceiling tile with a light source strip or lighting module forms a luminaire (53).

Description

    FIELD OF THE INVENTION
  • The invention relates to a Light source strip, lighting module and luminaire.
  • BACKGROUND OF THE INVENTION
  • Currently, the reduced cost and improved performance of LEDs enable their use for general illumination. The small size of LEDs allows for easy integration of LEDs into building materials and furniture. Combining these trends, the general illumination of an indoor space may be done by a luminous ceiling, rather than by discrete fixtures in a dark ceiling or suspending from a dark ceiling. Such diffuse, large-area and low-brightness ceiling sources provide comfortable lighting with low glare and almost no shadows, while creating an aesthetic, clean ceiling without disturbing fixtures. Luminous ceiling panels, also referred to as ceiling tiles, are widely available, mostly based on backlighting technology, either direct lit or side-lit. US3409766 describes a fully luminous, sound absorbing ceiling, in which the light is generated by indirect lighting of sound-absorbing ceiling panels by TL tubes at the side of the panel. Yet, known large-area ceiling sources are not widely applied, because they have several disadvantages. First of all, creating a large area source with conventional luminaire materials is relatively expensive. Furthermore, the large-area light-emitting ceilings interfere with other elements in the ceiling, such as sprinklers, sensors and air-conditioning vents. Frequently, the large-area light sources lead to unwanted acoustic reflections at the ceiling, thus deteriorating the comfort of the people in the room. Finally, there is relatively very limited flexibility in the use of known luminaire ceiling panels as they have to be custom made to size to fit into a specific, existing false ceiling system.
  • OBJECT AND SUMMARY OF THE INVENTION
  • 1/12/13/14. It is an object of the invention to provide a light source strip and/or luminaire in which at least one of the disadvantages of the known light source strips and/or luminaries is counteracted. Thereto the light source strip comprises at least one light source and/or means for accommodating a light source mounted on a base, for example a LED thus forming a LED strip, a support portion extending substantially parallel to the base and a reflector having a front side for reflecting at least part of the light issued by the LED during operation, and connecting the base and the support portion, the LED is located in a concave portion of the strip formed by at least the reflector and the base. The expression substantially parallel in this respect means that the base and the support portion may mutually be in an angled position of at the most 20°, preferably at the most 10°, more preferably at the most 5°. A light source could be an array of LEDs, and means for accommodating a lamp could be electrical contacts. Said concave portion of the strip could be formed by the base and the reflector, or by the base, the reflector and the support portion. Usually the LED strip is provided with electrical contacts for contacting to a power supply. Said LED strip is of particular of use in false ceilings. In false ceilings ceiling tiles rest on a frame comprising elongated suspension brackets with a T-shaped cross section, said ceiling tiles can easily removed from the false ceiling via a tilt and shift movement. The LED-strip of the invention can easily be installed in such a false ceiling, for example by lifting a ceiling tile at one side from the T-shaped bracket on which it usually rests, then subsequently insert the LED strip in between the bracket and the tile. The LED strip rests with its base on the T-shaped bracket and carries the ceiling tile with its support portion, finally the LED strip is connected to a power supply. Alternatively a combination of at least two, mutually connected LED strips, forming a lighting module, can be used in combination with a ceiling tile. Thus, the combination of the LED strip/lighting module and ceiling tile forms a relatively unobtrusive luminaire. Since the LED strip or lighting module, when the LED strips are mutually joined via a joint located at the backside of the reflector or via a frame extending between the base and reflector at the front side of the reflector, is a slim, open structure, the visual impact is minimal, which enables a clean ceiling without much distinction between ceiling tiles with or without lighting function. Furthermore, the LED strip or lighting module may be applied as a recessed fixture illuminating a slightly elevated conventional ceiling tile, as a surface mounted fixture illuminating a ceiling tile at the normal position, or as a pendant fixture illuminating multiple ceiling tiles. The ceiling panel can be of any type. Large ceiling area's or even the complete ceiling may be equipped with the LED strip or with the lighting module, since it enables the use of ceiling tiles comprising at least one device selected from the group consisting of sprinklers, sensors, narrow beam light sources, loud-speakers, ventilation grill, and air-conditioning vents. Furthermore, the acoustic properties of the suspended ceiling are not deteriorated, because the passage of sound to sound absorbing ceiling tiles is neither hindered by the LED strip nor by the open frame of the lighting module.
    • 2. In an embodiment the LED strip is characterized in that the base, the reflector and support portion are made in one piece. This enables the manufacture of a relatively cheap LED strip via, for example, a molding process using isostatic pressing, an extrusion process or from (metal) sheet material. Preferably the material of the LED strip is easily deformable and shapeable and good heat conductive, for example aluminum metal, thus simultaneously enabling easy manufacture and during operation efficient cooling of the LEDs mounted on said strip.
    • 3. In an embodiment the LED strip is characterized in that the reflector is concavely formed. By choosing a specific concave shape for the reflector, a specific desired light distribution from light issued by the LED strip can be obtained, for example in that only light is issued through a light emission window from the luminaire via the ceiling tile or that direct light is also issued. When viewed in cross section the concave shape of the reflector could be, for example, a complex shape or be shaped as a parabola, ellipse, or hemisphere.
    • 4. In an embodiment the LED strip is characterized in that the support portion and the reflector border a second concave portion, which second concave portion is located at a backside of the reflector. Thus it is enabled that the LED strip alternatively can rest at the T-shaped bracket via a backside of the support portion and not only rest on the T-shaped bracket by its base. Thus a flexible, applicable LED strip is obtained which enables an easy switch between application as an unobtrusive built-in LED strip in the false ceiling and application as a suspended LED strip from the false ceiling.
    • 5. In an embodiment the LED strip is characterized in that a further support portion is provided at an end of the support portion remote from the connection between reflector and support portion, said further support portion extending in a direction essentially transverse to the base. By this further support portion the risk of the LED strip of assuming a tilted position with respect to the plane of the false ceiling is counteracted as it will abut against a side face of the ceiling tile/panel that rests on the support portion. Essentially transverse in this respect means that said parts are mutually angled at an angle that should fall within a range of 90° ± 20°.
    • 6. In an embodiment the LED strip is characterized in that the base has an extension extending beyond the backside of the reflector. Extending beyond the backside in this respect should be understood as protruding from the backside of the reflector in a direction from front side of the reflector to backside of the reflector when viewed upon projection of the LED strip/Lighting module in the plane of the base along a normal vector to the plane of the base. Ceiling tiles adjacent to the luminaire formed by the combination of the LED strip/lighting module can then be in a slanted position with respect to the plane of the false ceiling. Such an extension thus enables a smooth transition from the plane of the false ceiling to a LED strip/light module suspended and protruding from said plane.
    • 7. In an embodiment the LED strip is characterized in that circuitry is comprised in the base, thus enabling easy connection of the LED strip to a control system and/or power supply.
    • 8/9. In an embodiment the LED strip is characterized in that the reflector is provided with an optically effective coating, preferably the optically effective coating is a diffusive coating and/or a (remote) phosphor. Alternatively the Led strip is characterized in that an optical element/dome extends between an end of the base and the connection between reflector and support portion, further referred to as the strip window, preferably said optical element is refractive, for example a Fresnel lens or prism, or a micro-lens optics, diffusive coating and/or a (remote) phosphor. In such embodiments the distinction by viewers/observers of discrete LEDs is counteracted as the light issued by a single LED is scattered and mixed with light issued by other LEDs before being issued through the strip window. The risk on glare thus is counteracted. Furthermore, UV/blue light emitting LEDs can be used which issue light through the strip window which is partly unconverted and partly converted by a (remote) phosphor to green, yellow, orange and/or red light.
    • 10/11. An embodiment of the LED strip is characterized in that it is provided with end caps extending transverse to a length direction of the strip as defined by the arrangement of the at least one LEDs for closing an end face transverse to the length direction of concave portion. Thus the potential occurrence of light losses, or undesired light issued at end portions of the LED strip is counteracted. Preferably said end faces are light reflective to further reduce said light losses. To yet further reduce light losses to above the false ceiling, the end cap is provided with a flap which functions as a lid for closing off the space between ceiling tile and the T-shaped bracket it originally rested on. When the LED strip is installed in the false ceiling, the respective ceiling tile is lifted, and leaves an opening between ceiling tile and the rest of the false ceiling. Said opening is covered by the flap which thereto extends from the end cap in a direction transverse to the length direction at a front side of the reflector and preferably is hingingly, resiliently or bendable be attached to the end cap. The flap preferably is reflective and could have a triangular shape or a rectangular shape.
    • 15. In an embodiment the luminaire of the invention is further characterized in that the light emission window which extends between either two bases or between one base and a ceiling tile, is provided with a light transmissive plate to further shape the light beam issued by the luminaire. The plate may be transparent, translucent, colored, straight or curved, may comprise optical structures, for example micro-lens optics, or acoustic transparent diffuser like glass fiber-based woven or non-woven cloth. Such a plate may have various aesthetic or practical purposes, comparable to the exit window plates used in conventional luminaries. However, it is noted that the added functionality of the luminaire by said plate involves extra costs and reduces the versatility of the module, since it can no longer be easily combined with other ceiling elements.
  • Preferably, the indirect lighting module is powered by a low-voltage source, such as 36 V, or lower, for example 24V. This allows for a minimal housing, since no electrical isolation measures are required. Furthermore, for reasons of cost it is preferred to have a single source for multiple lighting modules. The low-voltage source may be integrated into the dropped false ceiling, like in the Emerge standard, as applied in dropped ceilings by Armstrong. In this low voltage powered grid solution, the wiring is integrated in the T-bars. In the recessed application, the indirect lighting module may contain a mechanical and electrical connector to the T-bar, where the electrical connection is made to the conductor on the "bulb" of the T-bar. In a surface mounted or suspended application, the mechanical and electrical connection can be made to the conductor in the "reveal" (in the visible part of the T-bar). This allows for a very easy and flexible installation of the modules.
  • Generally in the application the expression LED strip is used, however, LED strip could equally be substituted by light source strip in which the light source could be an elongated low/high pressure gas discharge lamp or an elongated halogen lamp.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • These and other aspects of the invention are apparent from and will be elucidated with reference to the embodiments described hereinafter.
  • In the drawings:
    • Fig. 1 shows a first embodiment of a LED strip according to the invention in perspective cross sectional view;
    • Fig. 2 shows a perspective view of a second embodiment of a LED strip according to the invention;
    • Fig. 3 shows a perspective end view of a third embodiment of a LED strip according to the invention in a recessed configuration;
    • Fig. 4 shows a surface-mounted, fourth embodiment of a LED strip according to the invention in perspective cross section;
    • Fig. 5 shows a cross-section of an embodiment of a lighting module according to the invention;
    • Fig. 6 shows a cross section of an embodiment of a luminaire according to the invention;
    • Fig. 7-9 each shows a cross section of a part of a false ceiling comprising various embodiments of luminaire according to the invention.
    • Fig. 10a-c show a cross-sectional view of a lighting module with two LED strips mutually connected via a joint at their bases.
    • Fig. 11 show a part of a false ceiling with installed LED strip provided with flaps.
  • The figures are purely diagrammatic and not drawn to scale. Particularly for clarity, some dimensions are exaggerated strongly. Similar components in the figures are denoted by the same reference numerals as much as possible.
  • DESCRIPTION OF EMBODIMENTS
  • Fig. 1 shows a first, basic embodiment of the LED strip 1 according to the invention in perspective cross sectional view. The LED strip comprises a plurality of LEDs 3 on a PCB 10 in a concave portion 5 of the strip 7 and mounted on a base 9, a support portion 11 extending parallel to the base, and a straight reflector 13 having a front side 15. The reflector connects the base and the support portion. Said reflector is coated with an optically effective coating 17, in the figure a diffuse reflective layer 19, for example, aluminium oxide to diffusely scatter light rays 4 issued by the LEDs and impinging on the layer. The concave portion is formed by the base, reflector and support portion. The strip is made in one part by cutting and folding aluminium metal sheet, but alternatively could be made of steel, or plastic if the PCB provides for sufficient cooling of the LEDs.
  • Fig. 2 shows a perspective view of a second embodiment of the LED strip 1 according to the invention, comprising only a single LED 3 mounted on a base 9. The strip 7 is made in one piece via an extrusion process from synthetic resin material, for example PMMA or polyethylene, and comprises the base 9, a support portion 11 and a concavely shaped reflector 13 connecting the base and the support portion. A concave portion 5 is formed by the base and the reflector.
  • Fig. 3 shows a perspective end view of a third embodiment of the LED strip 1 according to the invention. The LED strip rests with its base 9 on a suspension bracket 23, said bracket having a T-shaped cross section. On the base a plurality of LEDs 3 are mounted and arranged in a row, defining a length direction or length axis 25. The LEDs 3 are located inside a concave portion 5 of the strip, said concave portion being formed by the base and the reflector 13. The reflector has a cross-section transverse to the length direction shaped as a branch of a parabola 39, the LEDs being positioned in the vicinity of a focal point 41 of said parabola branch. The LEDs may be positioned just before (closer to the reflector) or just behind the focal point, in order to aim the light slightly above or slightly below the horizon, respectively, above the horizon is mostly preferred to avoid looking into the source via the reflector. Right at the focal point, the optical axis of the light will be horizontal after reflection, but the beam will be partly above and partly below the horizon. With a first reflector end 27 the reflector is connected to the base and with a second reflector end 29 the reflector is connected to the support portion 11. The LED strip has an end face 31 which is closed by an end cap 33, in the figure made of translucent polyethylene. The support portion and the reflector border a second concave portion 35, which second concave portion is located at a backside 37 of the reflector. In Fig. 4 a LED strip 1 is shown having practically the same cross section as the LED strip of Fig. 3, except for a further support portion 12, extending in a direction transverse to the support portion. The support portion could be made bendable with respect to the base and reflector to adjust its position to the slanted orientation of the ceiling tile for better supporting said ceiling tile. Fig 4 further shows that said second concave portion 35 enables the LED strip to rest with its support portion 11 on the T-shaped bracket 23, and thus forming a LED strip suspending and protruding from a false ceiling (not shown). In fig. 4 further is shown that a light transmissive plate 43 is provided to the LED strip in a light emission window 51, said plate resting on the base 9 of the LED strip and practically abutting the LEDs 3.
  • Fig. 5 shows a cross-section of an embodiment of a lighting module 21 according to the invention. The lighting module comprises two LED strips 1 connected to each other via a joint 45 at the backside 37 of the reflector 13, each LED strip being independently on/off switchable. This embodiment is only suitable for suspended applications not as a recessed version. The module rests via the support portions 11 from a T-shaped bracket 23, adjustable in height, and suspends from a false ceiling 47 of which only one T-shaped bracket and two ceiling panes 49 or ceiling tiles 49 are shown. One side of each of the ceiling panes shown rests also on the T-shaped bracket. In the figure, plane P extend transverse to the plane of the drawing and through the light emission window 51. Light rays 4 issued by the LEDs 3 and impinging on a specular reflective coating 17 of the reflector are either reflected to a respective ceiling panel or are reflected towards a light emission window 51 and subsequently to the exterior. Care should be taken that at least one diffusing step occurs for each ray issued by the LED before said light ray is issued to the exterior. This diffusion step could be either at the reflector, ceiling tile, or if not at none of these two, at a diffuser plate which then should be provided in the light emission window. In the figure light rays impinging on the ceiling pane are diffusely reflected to the light emission window by said ceiling pane, which thereto could be provided with a diffusely reflective coating. Preferably, the reflector is specular reflective, but a alternatively, the reflector could be provided with a diffuse reflective coating, or high gloss white surface as an intermediate between specular and diffuse reflective coating or as a further alternative a specular ripple as an anisotropic diffuse reflector specular in the direction of the cross-section, and diffuse in extrusion direction.
  • Fig. 6 shows a cross section of an embodiment of a luminaire 53 according to the invention, said luminaire being formed by a combination of a lighting module 21, comprising two LED strips 1 connected to each other via a frame 55 connecting the front side 15 of the reflectors 13 of the respective LED strips, and at least one ceiling tile 49. The lighting module rests with it support portion 11 on the T-shaped brackets 23, the ceiling tile on its turn rests on the support portions of the LED strips. The LED strips each have a further support portion 12 that confines the ceiling tile and limits the possibility of the LED strips getting tilted with respect to the plane P of the false ceiling 47.The luminaire further has a light transmissive plate 43 provided in the light emission window 51.
  • Fig. 7-9 each shows a cross section of a part of a false ceiling comprising various embodiments of luminaire according to the invention. In Fig. 7 the luminaire 53 suspends and protrudes from the false ceiling 47 because its rests with its support portions 11 on the T-shaped-brackets 23, the T-shaped brackets form a grid and are all being suspended from the real ceiling at the same height. A smooth transition between the plane P of the false ceiling and the light emission window 51 of the luminaire has been attained by a slanted position of an adjacent ceiling tile 50 by making it rest with one side on an extension 57 of the base 9.
  • In Fig. 8 a luminaire 53 according to the invention is shown which is in a recessed position with respect to the plane P of the false ceiling. The originally present ceiling pane 49 has been lifted somewhat with respect to the T-shaped brackets 23 and the luminaire has been inserted in between. Between the luminaire and the T-shaped bracket a light transmissive plate 43, in the figure a lamellae like, open grid structure, has been inserted. Hence, the ceiling tile rests on the support portion 11, the luminaire rests on the plate and the plate rests on the T-shaped bracket. The ceiling tile is an acoustic tile, i.e. it has an open, more or less porous structure, to enable air and sound/noise to pass and to reflect light, and further comprises a device 59, in the figure a motion sensor.
  • Fig. 9 shows in cross section an asymmetric luminaire 53, with an elongated, low pressure, mercury, fluorescent, discharge lamp 3 as a light source. The light source strip 1 is inserted in between the ceiling tile 49 and the T-shaped bracket 23 at only one side of a ceiling tile, resulting in the ceiling tile to assume a slanted orientation with respect to the plane P of the false ceiling. The light source illuminates the ceiling tile from one side 59. The asymmetric luminaire creates a lighting effect similar to that of a traditional "factory roof', i.e. slanted roof panels with light entering the room by vertical windows between the slanted roof elements. The orientation of the slanted ceiling tile enables use by an interior designer or architect to create a specific, desired effect in the room.
  • Fig. 10a-c show a cross-sectional view of a lighting module 21 with two LED strips 1 mutually connected via a joint 45 located at the backside 37 of the reflector 13 at their bases 9 at various stages of their mounting on the T-shaped bracket 23 of the false ceiling. The LED strips are made of flexible bendable or resilient material to enable insertion of the T-shaped bracket into the second concave portion 35. The lighting module can either rest with its support portion 11 or with its base on the T-shaped bracket.
  • Fig. 11 show a part of a false ceiling 47 with only one installed LED strip 1, which LED strip is provided with two flaps 61 on either end face 31 of the LED strip. The false ceiling comprises a grid 65 of T-shaped brackets on which the ceiling tiles rest. By insertion of one LED strip in between the T-shaped bracket and the ceiling tile (said ceiling tile is not shown), said ceiling tile is somewhat lifted, thus leaving an opening 63 between said ceiling tile and the grid of T-shaped brackets. The flaps, in the figure of a triangular shape, are bendable attached to the end caps of the LED strip and are oriented in a transverse direction to the length direction 25 of the LED strip to function as a lid and to close these openings.

Claims (15)

  1. Light source strip comprising:
    - at least one light source and/or means for accommodating a light source mounted on a base;
    - a support portion extending substantially parallel to the base; and
    - a reflector having a front side for reflecting at least part of the light issued by the light source during operation, and connecting the base and the support portion,
    the light source is located in a concave portion of the strip formed by at least the reflector and the base.
  2. Light source strip as claimed in claim 1, characterized in that the base, the reflector and support portion are made in one piece.
  3. Light source strip as claimed in claim 1 or 2, characterized in that the reflector is concavely formed.
  4. Light source strip as claimed in claim 3, characterized in that the support portion and the reflector border a second concave portion, which second concave portion is located at a backside of the reflector.
  5. Light source strip as claimed in claim 1, 2, 3 or 4, characterized in that a further support portion is provided at an end of the support portion remote from the connection between reflector and support portion, said further support portion extending in a direction essentially transverse to the support portion.
  6. Light source strip as claimed in any one of the preceding claims, characterized in that the base has an extension extending beyond the backside of the reflector.
  7. Light source strip as claimed in claim 1, characterized in that the base comprises circuitry or a connector for connecting to a low-voltage source integrated into the dropped false ceiling.
  8. Light source strip as claimed in claim 1, characterized in that the reflector is provided with an optically effective coating, preferably the optically effective coating is a specular reflective coating and/or a (remote) phosphor.
  9. Light source strip as claimed in claim 1, characterized in that an optical element/dome extends between an end of the base and the connection between reflector and support portion, preferably said optical element is refractive, and/or provided with a diffusive surface structure and/or coating and/or a bulk diffuser and/or a (remote) phosphor and /or a lens array.
  10. Light source strip as claimed in claim 1, characterized in that it is provided with at least one end cap extending transverse to a length direction of the strip as defined by the arrangement of the at least light source for closing the length direction of concave portion.
  11. Light source strip as claimed in 10, characterized in that the at least one end cap is provided with a flap.
  12. Lighting module comprising a unit of at least two light source strips as claimed in any one of the preceding claims, the at least two light source strips being mutually joined via a joint located at the backside of the reflector or via a frame extending between the base and reflector at the front side of the reflector.
  13. Luminaire built up by a combination of at least one light source strip as claimed in any one of the preceding claims, and a false ceiling panel as an extended reflector.
  14. Luminaire as claimed in claim 13, characterized in that the ceiling panel comprises at least one device selected from the group consisting of sprinklers, sensors, narrow beam light sources, loud-speakers, ventilation grill, and air-conditioning vents.
  15. Luminaire as claimed in claim 13 or 14, characterized in that the light emission window is provided with a light transmissive plate.
EP12164127.8A 2012-04-13 2012-04-13 Light source strip, lighting module and luminaire Withdrawn EP2650599A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP12164127.8A EP2650599A1 (en) 2012-04-13 2012-04-13 Light source strip, lighting module and luminaire
PCT/IB2013/052915 WO2013153534A1 (en) 2012-04-13 2013-04-12 Light source strip, lighting module and luminaire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP12164127.8A EP2650599A1 (en) 2012-04-13 2012-04-13 Light source strip, lighting module and luminaire

Publications (1)

Publication Number Publication Date
EP2650599A1 true EP2650599A1 (en) 2013-10-16

Family

ID=46025509

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12164127.8A Withdrawn EP2650599A1 (en) 2012-04-13 2012-04-13 Light source strip, lighting module and luminaire

Country Status (2)

Country Link
EP (1) EP2650599A1 (en)
WO (1) WO2013153534A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015000864A1 (en) * 2013-07-04 2015-01-08 Koninklijke Philips N.V. Light-emitting device
WO2016069645A1 (en) * 2014-10-28 2016-05-06 Cree, Inc. Edge lit fixture
USD779699S1 (en) 2015-02-13 2017-02-21 Cree, Inc. Edge lit recessed linear fixture in ceiling
US20170082252A1 (en) * 2014-12-31 2017-03-23 Aron Lighting LLC T-bar Lighting Assembly
USD797976S1 (en) 2015-02-13 2017-09-19 Cree, Inc. Edge lit recessed linear fixture
US9939147B2 (en) 2013-11-18 2018-04-10 Philips Lighting Holding B.V. Acoustic lighting tile
WO2019217229A1 (en) 2018-05-08 2019-11-14 Jlc-Tech Ip, Llc Indirect led lighting for a suspended ceiling
US10774529B2 (en) 2017-12-29 2020-09-15 Certainteed Ceilings Corporation Ceiling tile with integrated lighting and ceiling system
US10859242B2 (en) 2018-02-07 2020-12-08 Aron Lighting LLC Downlight for ceiling system
USD921266S1 (en) 2018-11-16 2021-06-01 Aron Lighting LLC Lighting fixture in a ceiling tile arrangement
US11079076B2 (en) 2014-10-28 2021-08-03 Ideal Industries Lighting Llc Edge lit fixture
US11543092B2 (en) 2020-06-08 2023-01-03 Aron Lighting LLC Ceiling mounted assembly for electrical components
US11940121B2 (en) 2022-08-30 2024-03-26 Abl Ip Holding Llc Light fixture for ceiling grid

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023110670A1 (en) * 2021-12-13 2023-06-22 Signify Holding B.V. A tile light luminaire for a suspended tile light ceiling assembly, as well as such suspended tile light ceiling assembly

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3409766A (en) 1967-01-04 1968-11-05 Lithonia Lighting Inc Combination lighting and cooling system
WO2008146229A2 (en) * 2007-05-29 2008-12-04 Koninklijke Philips Electronics N.V. Illumination system, luminaire and backlighting unit
WO2011019753A1 (en) * 2009-08-13 2011-02-17 Intematix Corporation Led-based lamps
EP2375127A2 (en) * 2010-04-09 2011-10-12 Norbert Meier Profile element

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2405759T3 (en) * 2003-10-10 2013-06-03 Federal Signal Corporation Light assembly
US8113680B2 (en) * 2009-05-05 2012-02-14 Lightology, Llc Light fixture with directed LED light

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3409766A (en) 1967-01-04 1968-11-05 Lithonia Lighting Inc Combination lighting and cooling system
WO2008146229A2 (en) * 2007-05-29 2008-12-04 Koninklijke Philips Electronics N.V. Illumination system, luminaire and backlighting unit
WO2011019753A1 (en) * 2009-08-13 2011-02-17 Intematix Corporation Led-based lamps
EP2375127A2 (en) * 2010-04-09 2011-10-12 Norbert Meier Profile element

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015000864A1 (en) * 2013-07-04 2015-01-08 Koninklijke Philips N.V. Light-emitting device
US9939147B2 (en) 2013-11-18 2018-04-10 Philips Lighting Holding B.V. Acoustic lighting tile
US11079076B2 (en) 2014-10-28 2021-08-03 Ideal Industries Lighting Llc Edge lit fixture
WO2016069645A1 (en) * 2014-10-28 2016-05-06 Cree, Inc. Edge lit fixture
US11428373B2 (en) 2014-10-28 2022-08-30 Ideal Industries Lighting Llc Edge lit fixture
US10690305B2 (en) 2014-10-28 2020-06-23 Ideal Industries Lighting Llc Edge lit fixture
US20170082252A1 (en) * 2014-12-31 2017-03-23 Aron Lighting LLC T-bar Lighting Assembly
US10808896B2 (en) * 2014-12-31 2020-10-20 Aron Lighting LLC T-bar lighting assembly
US11085600B2 (en) 2014-12-31 2021-08-10 Aron Lighting LLC T-bar lighting assembly
USD779699S1 (en) 2015-02-13 2017-02-21 Cree, Inc. Edge lit recessed linear fixture in ceiling
USD797976S1 (en) 2015-02-13 2017-09-19 Cree, Inc. Edge lit recessed linear fixture
US10774529B2 (en) 2017-12-29 2020-09-15 Certainteed Ceilings Corporation Ceiling tile with integrated lighting and ceiling system
US10859242B2 (en) 2018-02-07 2020-12-08 Aron Lighting LLC Downlight for ceiling system
WO2019217229A1 (en) 2018-05-08 2019-11-14 Jlc-Tech Ip, Llc Indirect led lighting for a suspended ceiling
EP3775679A4 (en) * 2018-05-24 2021-05-12 JLC-Tech IP, LLC Indirect led lighting for a suspended ceiling
USD921266S1 (en) 2018-11-16 2021-06-01 Aron Lighting LLC Lighting fixture in a ceiling tile arrangement
US11543092B2 (en) 2020-06-08 2023-01-03 Aron Lighting LLC Ceiling mounted assembly for electrical components
US11940121B2 (en) 2022-08-30 2024-03-26 Abl Ip Holding Llc Light fixture for ceiling grid

Also Published As

Publication number Publication date
WO2013153534A1 (en) 2013-10-17

Similar Documents

Publication Publication Date Title
EP2650599A1 (en) Light source strip, lighting module and luminaire
US8882298B2 (en) LED module for light distribution
US4939627A (en) Indirect luminaire having a secondary source induced low brightness lens element
US7261435B2 (en) Light fixture and lens assembly for same
EP1843084B1 (en) Semi-recessed luminaire
US4569003A (en) Interior indirect lighting
US10480736B2 (en) Daylighting system
US9182091B2 (en) LED panel light fixture
KR101993361B1 (en) Blade of light luminaire
RU2690832C2 (en) Units and modules of ceiling plafond, which create patterns of natural lighting and illumination of inlet zone
KR102228150B1 (en) Hidden line lighting molding for easy lighting embedding
US9297506B2 (en) LED-based light fixture
US20220162856A1 (en) Configurable linear lighting module for suspended ceiling grid assemblies
KR20150060361A (en) Lighting apparatus
KR20150027521A (en) Ceiling Type LED Lighting Lamp
JP2012069357A (en) Lighting system for condominium
US7232239B2 (en) Ergonomic ceiling mounted lamp
CN220598965U (en) Assembled anti-dazzle furred ceiling structure
CN215951176U (en) Linear lamps and lanterns of multi-angle light-emitting
TW201411045A (en) Lighting apparatus and lighting apparatus unit using the same
CN219995207U (en) Adjustable LED classroom lamp
CN218954762U (en) Line lamp
CN215569991U (en) Support lamp
CN217603955U (en) Lighting lamp
US20230408066A1 (en) Lighting fixture with peripheral light emission feature

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20140417