EP2647435A1 - Fluid cell with a tempering chamber - Google Patents

Fluid cell with a tempering chamber Download PDF

Info

Publication number
EP2647435A1
EP2647435A1 EP20120163321 EP12163321A EP2647435A1 EP 2647435 A1 EP2647435 A1 EP 2647435A1 EP 20120163321 EP20120163321 EP 20120163321 EP 12163321 A EP12163321 A EP 12163321A EP 2647435 A1 EP2647435 A1 EP 2647435A1
Authority
EP
European Patent Office
Prior art keywords
flow cell
tempering
fluid
cell according
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP20120163321
Other languages
German (de)
French (fr)
Other versions
EP2647435B1 (en
Inventor
Lutz Weber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thinxxs Microtechnology GmbH
Original Assignee
Thinxxs Microtechnology GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thinxxs Microtechnology GmbH filed Critical Thinxxs Microtechnology GmbH
Priority to EP12163321.8A priority Critical patent/EP2647435B1/en
Priority to US13/856,194 priority patent/US9149802B2/en
Publication of EP2647435A1 publication Critical patent/EP2647435A1/en
Application granted granted Critical
Publication of EP2647435B1 publication Critical patent/EP2647435B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502707Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the manufacture of the container or its components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L7/00Heating or cooling apparatus; Heat insulating devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L7/00Heating or cooling apparatus; Heat insulating devices
    • B01L7/52Heating or cooling apparatus; Heat insulating devices with provision for submitting samples to a predetermined sequence of different temperatures, e.g. for treating nucleic acid samples
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0684Venting, avoiding backpressure, avoid gas bubbles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0816Cards, e.g. flat sample carriers usually with flow in two horizontal directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0877Flow chambers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0887Laminated structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/18Means for temperature control
    • B01L2300/1805Conductive heating, heat from thermostatted solids is conducted to receptacles, e.g. heating plates, blocks
    • B01L2300/1822Conductive heating, heat from thermostatted solids is conducted to receptacles, e.g. heating plates, blocks using Peltier elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/18Means for temperature control
    • B01L2300/1838Means for temperature control using fluid heat transfer medium
    • B01L2300/185Means for temperature control using fluid heat transfer medium using a liquid as fluid
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/6416With heating or cooling of the system
    • Y10T137/6579Circulating fluid in heat exchange relationship

Definitions

  • the invention relates to a flow cell with a tempering chamber receiving a fluid to be tempered, the boundary wall of which is formed at least partially by a thin film transferring heat between a tempering element and the fluid.
  • Microfluidic flow cells in particular as disposable products, are increasingly used in analytics and diagnostics or in medicine for the conditioning of liquids before they are applied to the human body, as well as for synthesis purposes. While the function of a flow cell can exhaust itself in the temperature control of a fluid, tempering devices often only form components of flow cells with far greater functionality. Particularly in flow cells for carrying out molecular genetic analyzes, including PCR or other nucleic acid amplifying processes, the temperature control function is of great importance in that the amplification reaction requires constant or changing, above ambient reaction temperatures, typically between 30 ° C and 95 ° C.
  • a flow cell with a tempering of the type mentioned is from the US 6,613,560 B1 known.
  • the flow cell is used to carry out the PCR process.
  • a reaction chamber for the PCR process simultaneously forms the tempering chamber.
  • the tempering chamber is bounded by a recess in a substrate and the aforementioned thin, heat-transferring film which covers the recess.
  • a disadvantage of the tempering process is the low thermal conductivity of plastics, which is why films with a low film thickness in the range of 50-200 ⁇ m are preferred. The production, handling and assembly of such thin films is very expensive.
  • the disadvantage is that the cover film does not form an exact plane due to its low mechanical rigidity.
  • the invention has for its object to provide a new flow cell with tempering, which can be produced as an inexpensive mass product with reproducible Temperleiterseigenschaften.
  • the flow cell according to the invention which achieves this object is characterized in that the film has a plurality of interconnected layers as a composite film, wherein the layer facing the fluid is a plastic layer and wherein at least one further layer consists of a metal.
  • the metal layer of the film due to its high thermal conductivity, which is typically about 1000 times higher than that of the plastic, also ensures lateral thermal propagation, also lateral, ie parallel to the film plane. Therefore, even with only a partial application of a tempering of the film, the film takes on the temperature of the tempering sufficiently quickly and uniformly and transmits it further to the fluid. Manufacturing-related fluctuations in the size of the contact surface between tempering and film are not significant.
  • the plastic layer facing the fluid consists of a plastic compatible with the amplification reaction, preferably an olefin polymer, such as PP, PE, COC or PC.
  • the at least one metal layer preferably comprises aluminum or a magnetizable metal, e.g. Nickel, up.
  • a magnetizable metal e.g. Nickel
  • the film layer of the composite film facing the tempering element may also consist of a plastic, in particular that plastic from which the layer facing the fluid is also produced.
  • the layer facing the tempering element expediently consists of a material which counteracts an adhesive adhesion of the film to the tempering element.
  • the thickness of the layers forming the film is in each case between 1 ⁇ m and 100 ⁇ m.
  • the tempering exclusively from the thin composite film, for example by two deep-drawn in opposite directions, welded together or glued together foil parts or a deep-drawn film part welded to a flat undeformed film part
  • the tempering by a with the composite film covered recess formed in a preferably produced under inexpensive injection molding substrate and the composite film bonded to the substrate, preferably welded or glued.
  • the film is connected to a flat, adjacent to the recess surface of the substrate.
  • the substrate may consist of the same plastic as the layer of the composite film facing the fluid, and thus the entire tempering chamber may be formed of only one material, which is compatible with the fluids to be tempered.
  • the tempering has a fixed, for heat transfer against the composite film can be applied tempering or a composite film wetting, preferably flowing parallel to the composite film, liquid or gaseous tempering.
  • the tempering element can only be provided in an edge region adjoining the tempering chamber, in which the composite film is e.g. is connected to the surface of the substrate, abut.
  • the film is supported in the edge region in such a way that the tempering element can be applied to the film under high contact pressure.
  • the tempering chamber is hermetically sealed during tempering, the application of the tempering element to only a part of the tempering chamber-forming composite film has the advantage that a pressure build-up produced by heating and associated expansion of the fluid in the chamber is caused by an expansion of the composite film and thus accompanying enlargement of the volume of the tempering chamber can be at least partially compensated.
  • the thus prevented pressure build-up in the temperature control chamber in turn reduces the requirements for valves which may be necessary for a hermetic completion of the chamber.
  • the composite foil may be stretchable through the tempering element in the temperature-control chamber, preferably up to a limit-limiting stop. This elongation results in a reproducible thermal contact between tempering element and foil. In addition, further, separate from the tempering chamber spaces into which the composite film is stretchable, could be provided.
  • means for sucking the composite film may be formed on the tempering.
  • the tempering body can be provided with a permanent magnet or electromagnet in order to improve the pressure of the tempering body against the foil by magnetic interaction.
  • the composite film is deformed, in particular deep-drawn, by enlarging its surface contacting the fluid.
  • the composite foil can fulfill additional functions within the flow cell, eg covering functions or a valve function.
  • the flow cell with the tempering chamber can have an inflow and outflow for the fluid, possibly for the passage of the fluid through the chamber during the temperature control.
  • the flow cell may further include channel structures, mixing and distribution elements for the fluids, liquid reservoirs, reaction and detection chambers, and the like elements commonly used in the art for performing analyzes and syntheses in microfluidic flow cells.
  • the composite film extends only over the portion of the flow cell, which includes the tempering to ensure that during the tempering no or little heat flows into the remaining areas of the flow cell.
  • the temperature control of a fluid in a temperature-control chamber is always associated with a change in the volume of the fluid, it may be advantageous for the temperature-control chamber to be hermetically sealed against adjacent channel and / or functional areas during the temperature-control process. This may be necessary in particular for heating to near the boiling temperature of the fluid. As a result, a resulting from volume change and / or partial vapor formation outflow of the fluid is prevented from the temperature control. Due to the solubility of the closure, the fluid can be transported, processed or processed after the tempering process, or, as described in US Pat. in molecular genetic analyzes.
  • valve seat in the channel-shaped inflow and outflow of the tempering chamber, wherein in the region of the valve seat, the composite film is not firmly connected to the substrate, but loosely and flat against the substrate.
  • the extensibility of the composite foil allows fluid under pressure to pass between the valve seat and the composite foil before or after the tempering process and be transported out into the chamber or out of the chamber.
  • the tempering chamber according to the invention can also serve as a liquid storage, for example, to store a reagent prior to its use in the flow cell.
  • the volume of the stored reagent can be smaller than that of the tempering and storage chamber, so that the chamber completely or, for example, before a temperature control with a fluid to be analyzed and mixed with the reagent can be partially filled.
  • the tempering chamber as a storage chamber can advantageously a channel-shaped inflow and outflow of the tempering interrupted geometrically and in the interrupted channel region, the composite film firmly connected to the substrate, for example by welding to form a seal closing the channel. After opening the sealing seam, the fluids can be transported into and out of the chamber by means of pressure, and the closure points can henceforth be used as valves.
  • the metal layer in the storage chamber bounding composite foil prevents liquid or gas passage through the chamber wall during storage.
  • a temperature-receiving chamber 3 receiving a fluid is formed.
  • the tempering chamber 3 is connected via channels 4 and 5, each with an inlet / outlet 6 and 7 in combination. It is self-evident that the tempering chamber could be connected or connectable with other chambers provided in the flow cell for other purposes.
  • the film 2 consists in the embodiment shown of a composite of several layers, an inner layer 8 of a compatible with amplification reactions plastic, a metal layer 9, in the example shown from a layer of aluminum, and an outer layer 10, which is like the inner layer 8 made of plastic ,
  • the inner layer 9 and the substrate 1 may be formed of the same material, which facilitates the fluid-tight welding of the film 2 to the substrate 1.
  • a tempering element 11 is applied to the wall of the tempering chamber 3 formed by the film 2, which is held at a temperature which corresponds to the desired temperature of the fluid in the tempering chamber 3.
  • the tempering element 11 may be a heating or cooling element. In the former case, heat is transferred from the temperature control element 11 to the fluid in the temperature control chamber 3, in the second case, heat flows from the fluid to the temperature control element 11.
  • the tempering element 11 can not rest on the film 2 in such a way that results in a uniform heat transfer over the entire contact surface. Due to the high thermal conductivity of the metal layer 9 contained in the film 2, however, which is capable of heat conduction in a lateral direction parallel to the film plane, there is still a rapid heat exchange between the temperature control element 11 and the fluid in the temperature control chamber 3, wherein at uniform heating of the fluid whose temperature equalizes the temperature of the tempering 11.
  • Temperierelement shown 11a has suction channels 12, through which a film 2a against the tempering 11a pulling negative pressure can be generated, so that there is a uniform over the contact surface heat transfer between the tempering 11a and the film 2a.
  • a tempering chamber 3b is essentially formed by a cap or chamber-like deformation 13 of a composite foil 2b.
  • An annular tempering element 11b abuts around the deformation 13 against the film 2b connected to a substrate 1b.
  • the support of the film 2b by the substrate 1b allows an increased contact force of the tempering 11b against the film 2b. Heat therefore spreads more uniformly and is guided laterally into the middle by the metal layer contained in the film 2b, so that a temperature compensation between a fluid contained in the tempering chamber 3b and the tempering element 11b can take place in a short time.
  • FIG. 5 shown embodiment used as the embodiment of Fig. 4 , an annular tempering 11c.
  • a tempering chamber 3c is, as in the embodiments of Fig. 1 to 3 formed by a recess in a substrate 1 c.
  • a composite foil 2c covering the recess has a deformation 14 in the region of the recess, which enlarges the surface of the foil 2c adjoining the fluid while increasing the heat transfer capacity, so that in comparison with the exemplary embodiment of FIG Fig. 4 an even faster alignment of the temperature of the fluid in the temperature-control chamber 3c to the temperature of the temperature-control element 11c results.
  • Fig. 6 shows an embodiment with a film 2d, which is in a region in which it forms a wall of a temperature control chamber 3d, by a tempering 1 1 d in a temperature control chamber 3d forming recess in a substrate 1 d in stretchable.
  • a stop 15 at the bottom of the tempering chamber 3d limits the strain.
  • expansion state is the tempering 11d uniformly against the elastically or plastically stretchable film 2d, so that there is a uniform over the entire contact surface heat transfer and temperature exchange between the tempering and the fluid.
  • An arrangement of the temperature-control element 11d and further temperature-control elements 11d 'and 11d " can be moved according to arrow 16 so that either one of the tempering 1 1 d, 11 d', 11d" according to arrow 17 under extension of the film 2d extendable to the stop 15 is.
  • the fluid can then be heated differently in succession according to temperatures T1, T2 and T3 of the temperature-control elements 11d, 11d ', 11d ".
  • FIG. 7 An in Fig. 7 The illustrated embodiment for a flow cell comprises a substrate 24 which is welded or glued to an assembly of composite foils 2e and 2e '.
  • the composite foils 2e, 2e ' are also joined together by welding or gluing.
  • both composite films 2e, 2e 'as in Fig. 1 shown film formed with a metal layer.
  • the film 2e facing the tempering element 11e could also be designed as such a composite film.
  • Fig. 8 shows an embodiment of a flow cell with a tempering 3f forth.
  • the tempering chamber 3f is formed from two composite foils 2f and 2f 'welded or glued together. While the composite foil 2f is flat, the composite foil 2f 'has a deformation 13f formed by deep drawing and is further connected to inlets / outlets 6f, 7f.
  • a tempering element 11f which can be moved in accordance with arrow 17f is offset by two tempering elements 26 and 27 which can be moved in the opposite direction and can be attached to the composite film 2f '. While the tempering element 11f covers the entire side of the tempering chamber 3f facing it and adjacent areas, the tempering elements 26, 27 abut only against regions adjacent to the tempering chamber 3f. Accordingly, heat is conducted laterally into the tempering chamber.
  • the free region formed by the deep-drawn deformation 13f can expand when the pressure builds up in the temperature-control chamber 3f with partial compensation of the pressure.
  • Fig. 9 shows an embodiment of a flow cell with a substrate 1 g and a film 2g and a tempering chamber 3g, the flow cell of Fig. 1 equivalent.
  • a tempering element 1 1 g is not formed in the embodiment shown, as in the previous embodiments, by a fixed tempering, but includes a symmetrical to the tempering chamber 3 g arranged chamber 18 for receiving a tempering fluid.
  • the chamber 18 is located in a recess in a substrate 19, which is connected to the composite film 2g in the same way as the substrate 1 g.
  • the chamber 18 receives a fluid held at a certain temperature, which in the embodiment shown passes through an inlet 20 and a channel 21 into the chamber 18 and flows through a channel 22 and an outlet 23.
  • the substrate 1 g and the substrate 19 are made of the same material.
  • An inner layer 8g of the film 2g is similar in the material of the outer layer 10g facing the substrate 19.
  • FIG. 10 An in Fig. 10
  • the flow cell shown differs from the flow cell of Fig. 1 in that in each case a valve with an actuator element 28 or 29 is provided in channels 4h and 5h which are connected to a temperature-control chamber 3h.
  • the respective actuator element presses a composite foil 2h in the closed state of the valve against a valve seat 30 or 31.
  • a tempering element 11h In the middle of its tempering surface, which can be applied against the film 2h, a tempering element 11h has a recess 32, into which the composite film 2h can expand during a tempering process with increasing internal pressure in the tempering chamber 3h.
  • the actuators 28, 29 may be integrally connected to the tempering 11h and be movable together with this.
  • Fig. 11 shows a flow cell with a chamber 3i, which initially serves as a storage chamber for a reagent 33. At predetermined breaking points at 34 and 35 can form openings that allow access to the reagent 33 and the further use of the chamber 3i as tempering.

Abstract

The flow cell has a moderate temperature chamber (3) to maintain fluid in moderate temperature. A boundary wall is formed between moderate temperature element and fluid transmitting film (2). The fluid transmitting film is formed of several interconnected layers with inner plastic layer (8), metal layer (9) and outer plastic layer (10). The metal layer is formed between inner plastic layer and outer plastic layer. The plastic layer is made of polypropylene, polyethylene, cyclic olefin copolymer or propylene carbonate. The metal layer is made of aluminum or nickel.

Description

Die Erfindung betrifft eine Flusszelle mit einer ein zu temperierendes Fluid aufnehmenden Temperierkammer, deren Begrenzungswand wenigstens teilweise durch eine dünne, Wärme zwischen einem Temperierelement und dem Fluid übertragende Folie gebildet ist.The invention relates to a flow cell with a tempering chamber receiving a fluid to be tempered, the boundary wall of which is formed at least partially by a thin film transferring heat between a tempering element and the fluid.

Mikrofluidische Flusszellen werden, insbesondere als Einwegprodukte, in zunehmendem Maße in der Analytik und Diagnostik oder in der Medizin zur Konditionierung von Flüssigkeiten, bevor sie in den menschlichen Körper appliziert werden, sowie auch zu Synthesezwecken eingesetzt.
Während sich die Funktion einer Flusszelle in der Temperierung eines Fluids erschöpfen kann, bilden Temperiereinrichtungen häufig nur Bestandteile von Flusszellen mit weitaus umfangreicherer Funktionalität. Insbesondere in Flusszellen zur Durchführung molekulargenetischer Analysen einschließlich von PCR- oder anderer Nukleinsäure amplifizierender Prozessen ist die Temperierfunktion von großer Bedeutung, indem die Amplifikationsreaktion konstante oder wechselnde, über der Umgebungstemperatur liegende Reaktionstemperaturen, typischerweise zwischen 30°C und 95°C, erfordert. Die Herstellung temperaturbeständiger Flusszellen mit reproduzierbaren Temperierungseigenschaften, welche einen besonders schnellen und homogenen Temperaturübergang zwischen einem aktiven Temperierelement und dem zu temperierenden Fluid erlauben, insbesondere die Herstellung solcher Flusszellen als preiswerte Einwegprodukte, stellt die Fertigung vor erhebliche Probleme.
Microfluidic flow cells, in particular as disposable products, are increasingly used in analytics and diagnostics or in medicine for the conditioning of liquids before they are applied to the human body, as well as for synthesis purposes.
While the function of a flow cell can exhaust itself in the temperature control of a fluid, tempering devices often only form components of flow cells with far greater functionality. Particularly in flow cells for carrying out molecular genetic analyzes, including PCR or other nucleic acid amplifying processes, the temperature control function is of great importance in that the amplification reaction requires constant or changing, above ambient reaction temperatures, typically between 30 ° C and 95 ° C. The production of temperature-resistant flow cells with reproducible Temperierungseigenschaften, which allow a particularly fast and homogeneous temperature transition between an active tempering and the fluid to be tempered, in particular the production of such flow cells as inexpensive disposable products, the production of significant problems.

Eine Flusszelle mit einer Temperiereinrichtung der eingangs erwähnten Art ist aus der US 6,613,560 B1 bekannt. Die Flusszelle dient der Durchführung des PCR-Prozesses. Eine Reaktionskammer für den PCR-Prozess bildet gleichzeitig die Temperierkammer. Die Temperierkammer ist durch eine Ausnehmung in einem Substrat und die eingangs genannte dünne, wärmeübertragende Folie begrenzt, welche die Ausnehmung abdeckt. Nachteilig für den Temperierungsprozess ist die geringe Wärmeleitfähigkeit von Kunststoffen, daher sind Folien mit geringer Foliendicke im Bereich von 50-200µm bevorzugt. Die Herstellung, Handhabung und Montage solcher dünnen Folien ist sehr aufwendig. Nachteilig bildet die Abdeckfolie aufgrund ihrer geringen mechanischen Steifigkeit keine exakte Ebene. Ebenso können thermische und mechanische Einflüsse bei der Montage der Folie mittels Klebe- oder Schweißprozessen leicht zu Verformungen der Folie und damit zu Abweichungen von der Ebene im Bereich von einigen 10-100 µm führen. Dies erschwert das Einkoppeln von Wärme durch Andrücken eines Temperierelements, wobei vor allem verbleibende Luftspalte den Wärmübergang beeinträchtigen und einen schnellen Ausgleich zwischen der Temperatur des Temperierelements und der Temperatur des Fluids in der Temperierkammer, insbesondere dessen gleichmäßige Erwärmung oder Abkühlung, verhindern. Reproduzierbare Temperierungseigenschaften lassen sich insbesondere unter den Bedingungen einer preisgünstigen Massenfertigung dieser Flusszelle nicht erreichen.A flow cell with a tempering of the type mentioned is from the US 6,613,560 B1 known. The flow cell is used to carry out the PCR process. A reaction chamber for the PCR process simultaneously forms the tempering chamber. The tempering chamber is bounded by a recess in a substrate and the aforementioned thin, heat-transferring film which covers the recess. A disadvantage of the tempering process is the low thermal conductivity of plastics, which is why films with a low film thickness in the range of 50-200 μm are preferred. The production, handling and assembly of such thin films is very expensive. The disadvantage is that the cover film does not form an exact plane due to its low mechanical rigidity. Likewise, thermal and mechanical influences during assembly of the film by means of adhesive or welding processes can easily lead to deformations of the film and thus deviations from the plane in the range of a few 10-100 microns. This complicates the coupling of heat by pressing a Temperierelements, in particular remaining air gaps affect the heat transfer and prevent a quick balance between the temperature of the Temperierelements and the temperature of the fluid in the temperature control chamber, in particular its uniform heating or cooling. Reproducible Temperierungseigenschaften can not be achieved, especially under the conditions of inexpensive mass production of this flow cell.

Der Erfindung liegt die Aufgabe zugrunde, eine neue Flusszelle mit Temperierfunktion zu schaffen, die sich als preiswertes Massenprodukt mit reproduzierbaren Temperierungseigenschaften herstellen lässt.The invention has for its object to provide a new flow cell with tempering, which can be produced as an inexpensive mass product with reproducible Temperierungseigenschaften.

Die diese Aufgabe lösende Flusszelle nach der Erfindung ist dadurch gekennzeichnet, dass die Folie als Verbundfolie mehrere miteinander verbundene Schichten aufweist, wobei die dem Fluid zugewandte Schicht eine Kunststoffschicht ist und wobei wenigstens eine weitere Schicht aus einem Metall besteht.The flow cell according to the invention which achieves this object is characterized in that the film has a plurality of interconnected layers as a composite film, wherein the layer facing the fluid is a plastic layer and wherein at least one further layer consists of a metal.

Erfindungsgemäß sorgt die Metallschicht der Folie aufgrund ihrer hohen, im Vergleich zum Kunststoff typischerweise ca. 1000fach höheren Wärmeleitfähigkeit für eine schnelle Wärmeausbreitung auch lateral, d.h. parallel zur Folienebene. Selbst bei nur teilweisem Anliegen eines Temperierelements an der Folie nimmt die Folie daher ausreichend schnell und gleichmäßig die Temperatur des Temperierelements an und überträgt sie weiter auf das Fluid. Fertigungsbedingte Schwankungen der Größe der Kontaktfläche zwischen Temperierelement und Folie fallen nicht ins Gewicht.According to the invention, the metal layer of the film, due to its high thermal conductivity, which is typically about 1000 times higher than that of the plastic, also ensures lateral thermal propagation, also lateral, ie parallel to the film plane. Therefore, even with only a partial application of a tempering of the film, the film takes on the temperature of the tempering sufficiently quickly and uniformly and transmits it further to the fluid. Manufacturing-related fluctuations in the size of the contact surface between tempering and film are not significant.

In einer bevorzugten Ausführungsform der Erfindung besteht die dem Fluid zugewandte Kunststoffschicht aus einem mit der Amplifikationsreaktion kompatiblen Kunststoff, vorzugsweise einem Olefinpolymer, wie PP, PE, COC oder PC.In a preferred embodiment of the invention, the plastic layer facing the fluid consists of a plastic compatible with the amplification reaction, preferably an olefin polymer, such as PP, PE, COC or PC.

Die wenigstens eine Metallschicht weist vorzugsweise Aluminium oder ein magnetisierbares Metall, wie z.B. Nickel, auf. In letzterem Fall lässt sich durch Magnetkraft die Anhaftung eines Temperierelements an der Folie und damit der Wärmeübergang zwischen dem Temperierelement und der Folie verbessern.The at least one metal layer preferably comprises aluminum or a magnetizable metal, e.g. Nickel, up. In the latter case, the adhesion of a tempering element to the film and thus the heat transfer between the tempering element and the film can be improved by magnetic force.

Auch die dem Temperierelement zugewandte Folienschicht der Verbundfolie kann aus einem Kunststoff bestehen, insbesondere demjenigen Kunststoff, aus dem auch die dem Fluid zugewandte Schicht hergestellt ist. Zweckmäßig besteht die dem Temperierelement zugewandte Schicht aus einem Material, das einer Klebeanhaftung der Folie am Temperierelement entgegenwirkt.The film layer of the composite film facing the tempering element may also consist of a plastic, in particular that plastic from which the layer facing the fluid is also produced. The layer facing the tempering element expediently consists of a material which counteracts an adhesive adhesion of the film to the tempering element.

In der bevorzugten Ausführungsform der Erfindung liegt die Dicke der die Folie bildenden Schichten jeweils zwischen 1 µm und 100 µm.In the preferred embodiment of the invention, the thickness of the layers forming the film is in each case between 1 μm and 100 μm.

Während es möglich wäre, die Temperierkammer ausschließlich aus der dünnen Verbundfolie herzustellen, beispielsweise durch zwei in entgegengesetzten Richtungen tiefgezogene, miteinander verschweißte oder verklebte Folienteile oder ein tiefgezogenes Folienteil verschweißt mit einem ebenen unverformten Folienteil, ist in der bevorzugten Ausführungsform der Erfindung die Temperierkammer durch eine mit der Verbundfolie abgedeckte Ausnehmung in einem bevorzugt unter preiswertem Spritzgießen hergestellten Substrat gebildet und die Verbundfolie mit dem Substrat verbunden, vorzugsweise verschweißt oder verklebt.While it would be possible to produce the tempering exclusively from the thin composite film, for example by two deep-drawn in opposite directions, welded together or glued together foil parts or a deep-drawn film part welded to a flat undeformed film part, in the preferred embodiment of the invention, the tempering by a with the composite film covered recess formed in a preferably produced under inexpensive injection molding substrate and the composite film bonded to the substrate, preferably welded or glued.

Vorzugsweise ist die Folie mit einer ebenen, an die Ausnehmung grenzenden Oberfläche des Substrats verbunden.Preferably, the film is connected to a flat, adjacent to the recess surface of the substrate.

Das Substrat kann aus dem gleichen Kunststoff wie die dem Fluid zugewandte Schicht der Verbundfolie bestehen und somit die gesamte Temperierkammer aus nur einem Material gebildet sein, welches mit den zu temperierenden Fluiden kompatibel ist.The substrate may consist of the same plastic as the layer of the composite film facing the fluid, and thus the entire tempering chamber may be formed of only one material, which is compatible with the fluids to be tempered.

In einer Ausführungsform der Erfindung weist das Temperierelement einen festen, zur Wärmeübertragung gegen die Verbundfolie anlegbaren Temperierkörper oder ein die Verbundfolie benetzendes, vorzugsweise parallel zur Verbundfolie strömendes, flüssiges oder gasförmiges Temperierfluid auf.In one embodiment of the invention, the tempering has a fixed, for heat transfer against the composite film can be applied tempering or a composite film wetting, preferably flowing parallel to the composite film, liquid or gaseous tempering.

Das Temperierelement kann in einer Ausführungsform der Erfindung nur in einem an die Temperierkammer angrenzenden Randbereich, in dem die Verbundfolie z.B. mit der Oberfläche des Substrats verbunden ist, anliegen. Zweckmäßig ist die Folie in dem Randbereich derart abgestützt, dass das Temperierelement unter hohem Anpressdruck an die Folie anlegbar ist. Ist die Temperierkammer während der Temperierung hermetisch abgeschlossen, so hat das Anlegen des Temperierelements nur an einen Teil der die Temperierkammer bildenden Verbundfolie den Vorteil, dass ein durch Erwärmung und damit verbundene Ausdehnung des Fluids in der Kammer erzeugter Druckaufbau durch eine Ausdehnung der Verbundfolie und die damit einhergehende Vergrößerung des Volumens der Temperierkammer wenigstens teilweise kompensiert werden kann. Der dadurch verhinderte Druckaufbau in der Temperierkammer verringert wiederum die Anforderungen an Ventile die ggf. für einen hermetischen Abschluss der Kammer notwendig sind.In one embodiment of the invention, the tempering element can only be provided in an edge region adjoining the tempering chamber, in which the composite film is e.g. is connected to the surface of the substrate, abut. Suitably, the film is supported in the edge region in such a way that the tempering element can be applied to the film under high contact pressure. If the tempering chamber is hermetically sealed during tempering, the application of the tempering element to only a part of the tempering chamber-forming composite film has the advantage that a pressure build-up produced by heating and associated expansion of the fluid in the chamber is caused by an expansion of the composite film and thus accompanying enlargement of the volume of the tempering chamber can be at least partially compensated. The thus prevented pressure build-up in the temperature control chamber in turn reduces the requirements for valves which may be necessary for a hermetic completion of the chamber.

Die Verbundfolie kann durch das Temperierelement in der Temperierkammer hinein dehnbar sein, vorzugsweise bis zu einem die Dehnung begrenzenden Anschlag. Durch diese Dehnung ergibt sich ein reproduzierbarer Wärmekontakt zwischen Temperierelement und Folie. Zusätzlich könnten weitere, von der Temperierkammer getrennte Räume, in welche hinein die Verbundfolie dehnbar ist, vorgesehen sein.The composite foil may be stretchable through the tempering element in the temperature-control chamber, preferably up to a limit-limiting stop. This elongation results in a reproducible thermal contact between tempering element and foil. In addition, further, separate from the tempering chamber spaces into which the composite film is stretchable, could be provided.

In weiterer Ausgestaltung der Erfindung können Einrichtungen zum Ansaugen der Verbundfolie an den Temperierkörper gebildet sein. Durch festeren Andruck des Temperierkörpers gegen die Folie verbessert sich der Wärmekontakt. Besitzt die Verbundfolie eine magnetisierbare Metallschicht, kann der Temperierkörper mit einem Dauer- oder Elektromagneten versehen sein, um den Andruck des Temperierkörpers gegen die Folie durch magnetischer Wechselwirkung zu verbessern.In a further embodiment of the invention, means for sucking the composite film may be formed on the tempering. By firmer pressure of the tempering against the film improves the thermal contact. If the composite foil has a magnetizable metal layer, the tempering body can be provided with a permanent magnet or electromagnet in order to improve the pressure of the tempering body against the foil by magnetic interaction.

In einer Ausführungsform der Erfindung ist die Verbundfolie unter Vergrößerung ihrer das Fluid kontaktierenden Oberfläche verformt, insbesondere tiefgezogen.In one embodiment of the invention, the composite film is deformed, in particular deep-drawn, by enlarging its surface contacting the fluid.

Die Verbundfolie kann innerhalb der Flusszelle weitere Funktionen erfüllen, z.B. Abdeckfunktionen oder eine Ventilfunktion.The composite foil can fulfill additional functions within the flow cell, eg covering functions or a valve function.

Es versteht sich, dass die Flusszelle mit der Temperierkammer einen Zu- und Abfluss für das Fluid, ggf. zum Durchfluss des Fluids durch die Kammer während der Temperierung, aufweisen kann. Ebenso kann die Flusszelle ferner Kanalstrukturen, Misch- und Verteilerelemente für die Fluide, Flüssigkeitsspeicher, Reaktions- und Detektionskammern und dergleichen Elemente aufweisen, welche nach dem Stand der Technik für die Durchführung von Analysen und Synthesen in mikrofluidischen Flusszellen gebräuchlich sind. Zweckmäßig erstreckt sich die Verbundfolie nur über den Teilbereich der Flusszelle, welcher die Temperierkammer beinhaltet, um zu sichern, dass während des Temperierprozesses keine oder wenig Wärme in die übrigen Bereiche der Flusszelle abfließt.It is understood that the flow cell with the tempering chamber can have an inflow and outflow for the fluid, possibly for the passage of the fluid through the chamber during the temperature control. Likewise, the flow cell may further include channel structures, mixing and distribution elements for the fluids, liquid reservoirs, reaction and detection chambers, and the like elements commonly used in the art for performing analyzes and syntheses in microfluidic flow cells. Suitably, the composite film extends only over the portion of the flow cell, which includes the tempering to ensure that during the tempering no or little heat flows into the remaining areas of the flow cell.

Da das Temperieren eines Fluids in einer Temperierkammer immer mit einer Veränderung des Volumens des Fluids verbunden ist, kann es vorteilhaft sein, dass sich die Temperierkammerwährend des Temperierprozesses hermetisch gegenüber angrenzenden Kanal- oder/und Funktionsbereichen verschließen lässt. Dies kann insbesondere bei Erwärmungen bis nahe an die Siedetemperatur des Fluids erforderlich sein. Dadurch wird ein aus Volumenänderung und/oder partieller Dampfbildung resultierender Abgang des Fluids aus der Temperierkammer unterbunden. Durch Lösbarkeit des Verschlusses kann das Fluid nach dem Temperierprozess weitertransportiert, -verarbeitet oder, wie z.B. bei molekulargenetischen Analysen, analysiert werden. Zum Verschließen ist es vorteilhaft, im kanalförmigen Zu- und Abfluss der Temperierkammer einen Ventilsitz zu bilden, wobei im Bereich des Ventilsitzes die Verbundfolie nicht fest mit dem Substrat verbunden ist, sondern lose und eben am Substrat anliegt. Die Dehnbarkeit der Verbundfolie erlaubt es, dass ein Fluid unter Druck vor oder nach dem Temperierprozess zwischen dem Ventilsitz und der Verbundfolie hindurchtreten und in die Kammer oder aus der Kammer heraustransportiert werden kann. Während der Temperierung werden der Zu- und Ablauf hermetisch verschlossen, indem mechanische Stempel einer externen Aktuierungseinrichtung an die im Bereich der Ventilsitze an dem Substrat anliegende Verbundfolie angedrückt werden.Since the temperature control of a fluid in a temperature-control chamber is always associated with a change in the volume of the fluid, it may be advantageous for the temperature-control chamber to be hermetically sealed against adjacent channel and / or functional areas during the temperature-control process. This may be necessary in particular for heating to near the boiling temperature of the fluid. As a result, a resulting from volume change and / or partial vapor formation outflow of the fluid is prevented from the temperature control. Due to the solubility of the closure, the fluid can be transported, processed or processed after the tempering process, or, as described in US Pat. in molecular genetic analyzes. For closing it is advantageous to form a valve seat in the channel-shaped inflow and outflow of the tempering chamber, wherein in the region of the valve seat, the composite film is not firmly connected to the substrate, but loosely and flat against the substrate. The extensibility of the composite foil allows fluid under pressure to pass between the valve seat and the composite foil before or after the tempering process and be transported out into the chamber or out of the chamber. During the temperature control of the inlet and outlet are hermetically sealed by mechanical stamps of an external actuator are pressed against the voltage applied to the substrate in the region of the valve seat foil.

Die erfindungsgemäße Temperierkammer kann ferner als Flüssigkeitsspeicher dienen, um z.B. ein Reagenz vor dessen Verwendung in der Flusszelle zu speichern. Das Volumen der gespeicherten Reagenz kann dabei kleiner als das der Temperier- und Speicherkammer sein, sodass die Kammer z.B. vor einer Temperierung noch mit einem zu analysierenden und mit dem Reagenz zu mischenden Fluid vollständig oder teilweise aufgefüllt werden kann. Bei Nutzung der Temperierkammer als Speicherkammer kann vorteilhaft ein kanalförmiger Zu- und Abfluss der Temperierkammer geometrisch unterbrochen und im unterbrochenen Kanalbereich die Verbundfolie fest mit dem Substrat z.B. durch Schweißen unter Bildung einer den Kanal verschließenden Siegelnaht verbunden werden. Nach Öffnen der Siegelnaht lassen sich die Fluide mittels Druck in die Kammer hinein- und aus dieser heraustransportieren und die Verschlussstellen fortan als Ventile nutzen. Die Metallschicht in der die Speicherkammer begrenzenden Verbundfolie verhindert einen Flüssigkeits- oder Gasdurchtritt durch die Kammerwand während der Lagerung.The tempering chamber according to the invention can also serve as a liquid storage, for example, to store a reagent prior to its use in the flow cell. The volume of the stored reagent can be smaller than that of the tempering and storage chamber, so that the chamber completely or, for example, before a temperature control with a fluid to be analyzed and mixed with the reagent can be partially filled. When using the tempering chamber as a storage chamber can advantageously a channel-shaped inflow and outflow of the tempering interrupted geometrically and in the interrupted channel region, the composite film firmly connected to the substrate, for example by welding to form a seal closing the channel. After opening the sealing seam, the fluids can be transported into and out of the chamber by means of pressure, and the closure points can henceforth be used as valves. The metal layer in the storage chamber bounding composite foil prevents liquid or gas passage through the chamber wall during storage.

Die Erfindung wird nachfolgend anhand von Ausführungsbeispielen und der beiliegenden, sich auf diese Ausführungsbeispiele beziehenden Zeichnungen weiter erläutert. Es zeigen:

Fig. 1
einen Ausschnitt aus einer erfindungsgemäßen, eine Temperierkammer aufweisenden Flusszelle,
Fig. 2
die Flusszelle von Fig. 1 mit einem angesetzten Temperierelement,
Fig. 3
die Flusszelle von Fig. 1 mit einem Ansaugkanäle aufweisenden Temperierelement,
Fig. 4
ein Ausführungsbeispiel einer Flusszelle nach der Erfindung mit einer tiefgezogen Folie,
Fig. 5
ein weiteres Ausführungsbeispiel für eine Flusszelle nach der Erfindung mit einer tiefgezogenen Folie,
Fig. 6
ein Ausführungsbeispiel einer erfindungsgemäßen Flusszelle mit einer in eine Ausnehmung in einem Substrat hinein dehnbaren Folie,
Fig. 7
ein Ausführungsbeispiel einer erfindungsgemäßen Flusszelle mit einer aus zwei dehnbaren Verbundfolien durch Auslenkung des Temperierelements gebildeten Temperierkammer,
Fig. 8
ein Ausführungsbeispiel einer erfindungsgemäßen Flusszelle mit einer aus zwei dehnbaren Verbundfolien gebildeten Temperierkammer mit Temperierelementen auf einander gegenüberliegenden Seiten,
Fig. 9
eine Flusszelle gemäß Fig. 1 mit einem ein Temperierfluid führenden Temperierelement,
Fig. 10
eine Flusszelle nach der Erfindung mit sich an eine Temperierkammer anschließenden Ventilbereichen, und
Fig. 11
eine Flusszelle nach der Erfindung mit einer als Speicherkammer dienenden Temperierkammer.
The invention will be explained below with reference to embodiments and the accompanying, relating to these embodiments drawings. Show it:
Fig. 1
a section of a flow cell according to the invention, having a tempering chamber,
Fig. 2
the flow cell of Fig. 1 with an attached tempering element,
Fig. 3
the flow cell of Fig. 1 having a tempering element with an intake duct,
Fig. 4
An embodiment of a flow cell according to the invention with a deep-drawn film,
Fig. 5
a further embodiment of a flow cell according to the invention with a thermoformed film,
Fig. 6
An embodiment of a flow cell according to the invention with a stretchable into a recess in a substrate in the film,
Fig. 7
An embodiment of a flow cell according to the invention with a two-stretchable composite films formed by deflection of the tempering temperature control,
Fig. 8
An embodiment of a flow cell according to the invention with a temperature control chamber formed from two stretchable composite films with tempering on opposite sides,
Fig. 9
a flow cell according to Fig. 1 with a tempering fluid leading tempering,
Fig. 10
a flow cell according to the invention with adjoining a temperature control valve areas, and
Fig. 11
a flow cell according to the invention with a temperature chamber serving as a storage chamber.

Eine in Fig. 1 ausschnittsweise dargestellte mikrofluidische Flusszelle, die in dem gezeigten Ausführungsbeispiel der Durchführung eines Amplifikationsprozesses dient, umfasst ein plattenförmiges Substrat 1 und eine mit dem Substrat 1 fluiddicht verschweißte oder verklebte Folie 2.An in Fig. 1 A microfluidic flow cell which is shown in sections and which in the exemplary embodiment shown serves to carry out an amplification process comprises a plate-shaped substrate 1 and a foil 2 which is welded or glued to the substrate 1 in a fluid-tight manner.

Durch eine Ausnehmung in dem Substrat 1 und der Folie 2, welche diese Ausnehmung abdeckt, ist eine ein Fluid aufnehmende Temperierkammer 3 gebildet. Die Temperierkammer 3 steht über Kanäle 4 und 5 mit je einem Ein-/ Auslass 6 bzw. 7 in Verbindung. Es versteht sich, dass die Temperierkammer hiervon abweichend mit anderen, in der Flusszelle zu anderen Zwecken vorgesehenen Kammern verbunden oder verbindbar sein könnte.Through a recess in the substrate 1 and the film 2, which covers this recess, a temperature-receiving chamber 3 receiving a fluid is formed. The tempering chamber 3 is connected via channels 4 and 5, each with an inlet / outlet 6 and 7 in combination. It is self-evident that the tempering chamber could be connected or connectable with other chambers provided in the flow cell for other purposes.

Die Folie 2 besteht in dem gezeigten Ausführungsbeispiel aus einem Verbund mehrerer Schichten, einer Innenschicht 8 aus einem mit Amplifikationsreaktionen verträglichen Kunststoff, einer Metallschicht 9, in dem gezeigten Beispiel aus einer Schicht Aluminium, und einer Außenschicht 10, die wie die Innenschicht 8 aus Kunststoff besteht. Die Innenschicht 9 und das Substrat 1 können aus dem gleichen Material gebildet sein, was die fluiddichte Verschweißung der Folie 2 mit dem Substrat 1 erleichtert.The film 2 consists in the embodiment shown of a composite of several layers, an inner layer 8 of a compatible with amplification reactions plastic, a metal layer 9, in the example shown from a layer of aluminum, and an outer layer 10, which is like the inner layer 8 made of plastic , The inner layer 9 and the substrate 1 may be formed of the same material, which facilitates the fluid-tight welding of the film 2 to the substrate 1.

In den nachfolgenden Figuren 2 bis 6 ist die aus mehreren Schichten bestehende Verbundfolie 2 der Einfachheit halber ohne die einzelnen Schichten dargestellt.In the following FIGS. 2 to 6 For reasons of simplicity, the multilayer composite film 2 is shown without the individual layers.

Um ein in der Temperierkammer 3 befindliches Fluid auf eine gewünschte, z.B. im Rahmen der Gesamtfunktion der Flusszelle erforderliche Reaktionstemperatur zu bringen, wird gemäß Fig. 2 an die durch die Folie 2 gebildete Wand der Temperierkammer 3 ein Temperierelement 11 angelegt, das auf einer Temperatur gehalten wird, die der gewünschten Temperatur des Fluids in der Temperierkammer 3 entspricht.In order to bring a fluid located in the temperature control chamber 3 to a desired reaction temperature, for example, within the framework of the overall function of the flow cell, is carried out according to Fig. 2 a tempering element 11 is applied to the wall of the tempering chamber 3 formed by the film 2, which is held at a temperature which corresponds to the desired temperature of the fluid in the tempering chamber 3.

Je nach gewünschter Fluidtemperatur kann es sich bei dem Temperierelement 11 um ein Heiz- oder Kühlelement handeln. In ersterem Fall geht Wärme vom Temperierelement 11 auf das Fluid in der Temperierkammer 3 über, im zweiten Fall fließt umgekehrt Wärme vom Fluid zum Temperierelement 11.Depending on the desired fluid temperature, the tempering element 11 may be a heating or cooling element. In the former case, heat is transferred from the temperature control element 11 to the fluid in the temperature control chamber 3, in the second case, heat flows from the fluid to the temperature control element 11.

Infolge hoher Flexibilität der dünnen Folie 2, deren Gesamtschichtdicke sich im Bereich zwischen 3 µm und 300 µm bewegt, kann das Temperierelement 11 an der Folie 2 nicht derart plan anliegen, dass sich ein über die gesamte Anlagefläche gleichmäßiger Wärmeübergang ergibt. Durch die hohe Wärmeleitfähigkeit der in der Folie 2 enthaltenen Metallschicht 9 jedoch, die vor allem zur Wärmeleitung in lateraler Richtung parallel zur Folienebene imstande ist, kommt es dennoch zu einem schnellen Wärmeaustausch zwischen dem Temperierelement 11 und dem Fluid in der Temperierkammer 3, wobei sich bei gleichmäßiger Erwärmung des Fluids dessen Temperatur der Temperatur des Temperierelements 11 angleicht.As a result of high flexibility of the thin film 2 whose total layer thickness is in the range between 3 μm and 300 μm, the tempering element 11 can not rest on the film 2 in such a way that results in a uniform heat transfer over the entire contact surface. Due to the high thermal conductivity of the metal layer 9 contained in the film 2, however, which is capable of heat conduction in a lateral direction parallel to the film plane, there is still a rapid heat exchange between the temperature control element 11 and the fluid in the temperature control chamber 3, wherein at uniform heating of the fluid whose temperature equalizes the temperature of the tempering 11.

Es versteht sich, dass das Fluid während der Temperierung in der Temperierkammer 3 stillstehen oder die Temperierkammer 3 mit einer den Temperaturausgleich zulassenden Geschwindigkeit durchströmen kann.It is understood that the fluid during the temperature control in the temperature control chamber 3 stand still or the temperature control chamber 3 can flow with a temperature compensation allowing speed.

Ein in Fig. 3 gezeigtes Temperierelement 11a weist Saugkanäle 12 auf, durch die ein die Folie 2a gegen das Temperierelement 11a ziehender Unterdruck erzeugt werden kann, sodass sich ein über die Anlagefläche gleichmäßiger Wärmeübergang zwischen dem Temperierelement 11a und der Folie 2a ergibt.An in Fig. 3 Temperierelement shown 11a has suction channels 12, through which a film 2a against the tempering 11a pulling negative pressure can be generated, so that there is a uniform over the contact surface heat transfer between the tempering 11a and the film 2a.

In den nachfolgenden Figuren sind gleiche oder gleichwirkende Teile mit derselben Bezugszahl wie in den vorangehenden Figuren bezeichnet, wobei der betreffenden Bezugszahl der Buchstabe a, b usw. beigefügt ist.In the following figures, the same or equivalent parts are designated by the same reference numerals as in the preceding figures, wherein the relevant reference number of the letter a, b, etc. is attached.

Bei einem in Fig. 4 gezeigten Ausführungsbeispiel ist eine Temperierkammer 3b im Wesentlichen durch eine kappen- oder kammerartige Verformung 13 einer Verbundfolie 2b gebildet. Ein ringförmiges Temperierelement 11b liegt um die Verformung 13 herum gegen die mit einem Substrat 1b verbundene Folie 2b an. Die Abstützung der Folie 2b durch das Substrat 1b lässt eine erhöhte Anpresskraft des Temperierelements 11b gegen die Folie 2b zu. Wärme geht daher gleichmäßiger über und wird lateral durch die in der Folie 2b enthaltene Metallschicht schnell in die Mitte geleitet, sodass ein Temperaturausgleich zwischen einem in der Temperierkammer 3b enthaltenen Fluid und dem Temperierelement 11b in kurzer Zeit erfolgen kann.At an in Fig. 4 In the embodiment shown, a tempering chamber 3b is essentially formed by a cap or chamber-like deformation 13 of a composite foil 2b. An annular tempering element 11b abuts around the deformation 13 against the film 2b connected to a substrate 1b. The support of the film 2b by the substrate 1b allows an increased contact force of the tempering 11b against the film 2b. Heat therefore spreads more uniformly and is guided laterally into the middle by the metal layer contained in the film 2b, so that a temperature compensation between a fluid contained in the tempering chamber 3b and the tempering element 11b can take place in a short time.

Auch ein in Fig. 5 gezeigtes Ausführungsbeispiel verwendet, wie das Ausführungsbeispiel von Fig. 4, ein ringförmiges Temperierelement 11c. Eine Temperierkammer 3c ist, wie bei den Ausführungsbeispielen von Fig. 1 bis 3, durch eine Ausnehmung in einem Substrat 1 c gebildet. Eine die Ausnehmung abdeckende Verbundfolie 2c weist im Bereich der Ausnehmung eine Verformung 14 auf, welche die an das Fluid angrenzende Oberfläche der Folie 2c unter Erhöhung der Wärmeübergangsleistung vergrößert, sodass sich gegenüber dem Ausführungsbeispiel von Fig. 4 eine noch schnellere Angleichung der Temperatur des Fluids in der Temperierkammer 3c an die Temperatur des Temperierelements 11c ergibt.Also a in Fig. 5 shown embodiment used as the embodiment of Fig. 4 , an annular tempering 11c. A tempering chamber 3c is, as in the embodiments of Fig. 1 to 3 formed by a recess in a substrate 1 c. A composite foil 2c covering the recess has a deformation 14 in the region of the recess, which enlarges the surface of the foil 2c adjoining the fluid while increasing the heat transfer capacity, so that in comparison with the exemplary embodiment of FIG Fig. 4 an even faster alignment of the temperature of the fluid in the temperature-control chamber 3c to the temperature of the temperature-control element 11c results.

Fig. 6 zeigt ein Ausführungsbeispiel mit einer Folie 2d, die in einem Bereich, in der sie eine Wand einer Temperierkammer 3d bildet, durch ein Temperierelement 1 1 d in eine die Temperierkammer 3d bildende Ausnehmung in einem Substrat 1 d hinein dehnbar ist. Ein Anschlag 15 am Boden der Temperierkammer 3d begrenzt die Dehnung. In dem in Fig. 1 dargestellten Dehnungszustand liegt das Temperierelement 11d gleichmäßig gegen die elastisch oder plastisch dehnbare Folie 2d an, sodass sich ein über die gesamte Anlagefläche gleichmäßiger Wärmeübergang und Temperaturaustausch zwischen dem Temperierelement und dem Fluid ergibt. Fig. 6 shows an embodiment with a film 2d, which is in a region in which it forms a wall of a temperature control chamber 3d, by a tempering 1 1 d in a temperature control chamber 3d forming recess in a substrate 1 d in stretchable. A stop 15 at the bottom of the tempering chamber 3d limits the strain. In the in Fig. 1 shown expansion state is the tempering 11d uniformly against the elastically or plastically stretchable film 2d, so that there is a uniform over the entire contact surface heat transfer and temperature exchange between the tempering and the fluid.

Eine Anordnung aus dem Temperierelement 11d und weiteren Temperierelementen 11d' und 11d" lässt sich gemäß Pfeil 16 verschieben, sodass wahlweise eines der Temperierelemente 1 1 d, 11 d', 11d" gemäß Pfeil 17 unter Dehnung der Folie 2d bis an den Anschlag 15 ausfahrbar ist. Das Fluid lässt sich dann aufeinanderfolgend entsprechend Temperaturen T1, T2 und T3 der Temperierelemente 11d, 11d', 11d" unterschiedlich temperieren.An arrangement of the temperature-control element 11d and further temperature-control elements 11d 'and 11d "can be moved according to arrow 16 so that either one of the tempering 1 1 d, 11 d', 11d" according to arrow 17 under extension of the film 2d extendable to the stop 15 is. The fluid can then be heated differently in succession according to temperatures T1, T2 and T3 of the temperature-control elements 11d, 11d ', 11d ".

Ein in Fig. 7 gezeigtes Ausführungsbeispiel für eine Flusszelle umfasst ein Substrat 24, dass mit einer Anordnung aus Verbundfolien 2e und 2e' verschweißt oder verklebt ist.An in Fig. 7 The illustrated embodiment for a flow cell comprises a substrate 24 which is welded or glued to an assembly of composite foils 2e and 2e '.

Außer in einem Bereich vor einer Durchgangsöffnung 25 in dem Substrat 24 und einer an diesen Bereich angrenzenden Umgebung sind die Verbundfolien 2e, 2e' auch miteinander durch Verschweißung oder Verklebung verbunden.Except in an area in front of a through-hole 25 in the substrate 24 and an environment adjacent to this area, the composite foils 2e, 2e 'are also joined together by welding or gluing.

Ein in der Durchgangsöffnung 25 gemäß Pfeil 17e bewegbares Temperierelement 1 1 e, kann die Verbundfolien 2e, 2e' in der in Fig. 7 gezeigten Weise unter Bildung einer Temperierkammer 3e zwischen den Verbundfolien 2e, 2e' ausdehnen. In dem gezeigten Ausführungsbeispiel sind beide Verbundfolien 2e, 2e' wie die in Fig. 1 gezeigte Folie mit einer Metallschicht ausgebildet. Abweichend von dem gezeigten Ausführungsbeispiel könnte auch nur die dem Temperierelement 11 e zugewandte Folie 2e als eine solche Verbundfolie ausgebildet sein.A in the passage opening 25 according to arrow 17e movable tempering 1 1 e, the composite films 2e, 2e 'in the in Fig. 7 shown manner to form a tempering 3e between the composite films 2e, 2e 'expand. In the embodiment shown, both composite films 2e, 2e 'as in Fig. 1 shown film formed with a metal layer. Deviating from the shown Embodiment, only the film 2e facing the tempering element 11e could also be designed as such a composite film.

In die Temperierkammer 3e einmündende Zu- oder Abflüsse sind in Fig. 7 nicht gezeigt.In the tempering 3e incoming inflows or outflows are in Fig. 7 Not shown.

Aus Fig. 8 geht ein Ausführungsbeispiel für eine Flusszelle mit einer Temperierkammer 3f hervor. Die Temperierkammer 3f ist aus zwei miteinander verschweißten oder verklebten Verbundfolien 2f und 2f' gebildet. Während die Verbundfolie 2f eben ist, weist die Verbundfolie 2f' eine durch Tiefziehen gebildete Verformung 13f auf und ist ferner mit Ein-/Auslässen 6f, 7f verbunden.Out Fig. 8 shows an embodiment of a flow cell with a tempering 3f forth. The tempering chamber 3f is formed from two composite foils 2f and 2f 'welded or glued together. While the composite foil 2f is flat, the composite foil 2f 'has a deformation 13f formed by deep drawing and is further connected to inlets / outlets 6f, 7f.

Einem gemäß Pfeil 17f bewegbaren Temperierelement 11 f liegen zwei in entgegengesetzten Richtung bewegbare, an die Verbundfolie 2f' ansetzbare Temperierelemente 26 und 27 gegenüber. Während das Temperierelement 11f die gesamte, ihm zugewandte Seite der Temperierkammer 3f und angrenzende Bereiche abdeckt, liegen die Temperierelemente 26, 27 nur gegen an die Temperierkammer 3f angrenzende Bereiche an. Entsprechend wird Wärme lateral in die Temperierkammer geleitet. Der freie, durch die tiefgezogene Verformung 13f gebildete Bereich kann sich bei Druckaufbau in der Temperierkammer 3f unter teilweisem Ausgleich des Drucks ausdehnen.A tempering element 11f which can be moved in accordance with arrow 17f is offset by two tempering elements 26 and 27 which can be moved in the opposite direction and can be attached to the composite film 2f '. While the tempering element 11f covers the entire side of the tempering chamber 3f facing it and adjacent areas, the tempering elements 26, 27 abut only against regions adjacent to the tempering chamber 3f. Accordingly, heat is conducted laterally into the tempering chamber. The free region formed by the deep-drawn deformation 13f can expand when the pressure builds up in the temperature-control chamber 3f with partial compensation of the pressure.

Fig. 9 zeigt ein Ausführungsbeispiel für eine Flusszelle mit einem Substrat 1 g und einer Folie 2g und einer Temperierkammer 3g, das der Flusszelle von Fig. 1 entspricht. Fig. 9 shows an embodiment of a flow cell with a substrate 1 g and a film 2g and a tempering chamber 3g, the flow cell of Fig. 1 equivalent.

Ein Temperierelement 1 1 g ist in dem gezeigten Ausführungsbeispiel jedoch nicht, wie bei den vorangehenden Ausführungsbeispielen, durch einen festen Temperierkörper gebildet, sondern umfasst eine symmetrisch zu der Temperierkammer 3g angeordnete Kammer 18 für die Aufnahme eines temperierenden Fluids. Die Kammer 18 befindet sich in einer Ausnehmung in einem Substrat 19, das mit der Verbundfolie 2g in gleicher Weise verbunden ist, wie das Substrat 1 g. Die Kammer 18 nimmt ein auf einer bestimmten Temperatur gehaltenes Fluid auf, das in dem gezeigten Ausführungsbeispiel über einen Einlass 20 und einen Kanal 21 in die Kammer 18 hinein gelangt und über einen Kanal 22 und einen Auslass 23 abfließt. In dem gezeigten Ausführungsbeispiel bestehen das Substrat 1 g und das Substrat 19 aus dem gleichen Material. Auch eine Innenschicht 8g der Folie 2g gleicht im Material der dem Substrat 19 zugewandten Außenschicht 10g.However, a tempering element 1 1 g is not formed in the embodiment shown, as in the previous embodiments, by a fixed tempering, but includes a symmetrical to the tempering chamber 3 g arranged chamber 18 for receiving a tempering fluid. The chamber 18 is located in a recess in a substrate 19, which is connected to the composite film 2g in the same way as the substrate 1 g. The chamber 18 receives a fluid held at a certain temperature, which in the embodiment shown passes through an inlet 20 and a channel 21 into the chamber 18 and flows through a channel 22 and an outlet 23. In the embodiment shown, the substrate 1 g and the substrate 19 are made of the same material. An inner layer 8g of the film 2g is similar in the material of the outer layer 10g facing the substrate 19.

Eine in Fig. 10 gezeigte Flusszelle unterscheidet sich von der Flusszelle von Fig. 1 dadurch, dass in Kanälen 4h und 5h, die mit einer Temperierkammer 3h verbunden sind, jeweils ein Ventil mit einem Aktuatorelement 28 bzw. 29 vorgesehen ist. Das jeweilige Aktuatorelement drückt eine Verbundfolie 2h im geschlossenen Zustand des Ventils gegen einen Ventilsitz 30 bzw. 31.An in Fig. 10 The flow cell shown differs from the flow cell of Fig. 1 in that in each case a valve with an actuator element 28 or 29 is provided in channels 4h and 5h which are connected to a temperature-control chamber 3h. The respective actuator element presses a composite foil 2h in the closed state of the valve against a valve seat 30 or 31.

Ein Temperierelement 11h weist in der Mitte seiner gegen die Folie 2h anlegbaren Temperierfläche eine Ausnehmung 32 auf, in die hinein sich während einer Temperierung die Verbundfolie 2h bei in der Temperierkammer 3h steigendem Innendruck ausdehnen kann.In the middle of its tempering surface, which can be applied against the film 2h, a tempering element 11h has a recess 32, into which the composite film 2h can expand during a tempering process with increasing internal pressure in the tempering chamber 3h.

Die Aktuatoren 28, 29 können einstückig mit dem Temperierelement 11h verbunden und gemeinsam mit diesem bewegbar sein.The actuators 28, 29 may be integrally connected to the tempering 11h and be movable together with this.

Fig. 11 zeigt eine Flusszelle mit einer Kammer 3i, die zunächst als Speicherkammer für eine Reagenz 33 dient. An Sollbruchstellen bei 34 und 35 lassen sich Öffnungen bilden, die einen Zugriff auf das Reagenz 33 sowie die weitere Nutzung der Kammer 3i als Temperierkammer ermöglichen. Fig. 11 shows a flow cell with a chamber 3i, which initially serves as a storage chamber for a reagent 33. At predetermined breaking points at 34 and 35 can form openings that allow access to the reagent 33 and the further use of the chamber 3i as tempering.

Claims (15)

Flusszelle mit einer ein zu temperierendes Fluid aufnehmenden Temperierkammer (3), deren Begrenzungswand wenigstens teilweise durch eine dünne, Wärme zwischen einem Temperierelement (11) und dem Fluid übertragende Folie (2) gebildet ist,
dadurch gekennzeichnet,
dass die Folie (2) mehrere miteinander verbundene Schichten (8-10) aufweist, wobei die dem Fluid zugewandte Schicht (8) eine Kunststoffschicht ist und wenigstens eine weitere Schicht (9) aus einem Metall besteht.
Flow cell with a tempering chamber (3) receiving a fluid to be tempered, whose boundary wall is formed at least partially by a thin film (2) transmitting heat between a tempering element (11) and the fluid,
characterized,
that the film (2) comprises a plurality of interconnected layers (8-10), wherein the side facing the fluid layer (8) is a plastic layer and at least one further layer (9) consists of a metal.
Flusszelle nach Anspruch 1,
dadurch gekennzeichnet,
dass die dem Fluid zugewandte Kunststoffschicht (8) aus einem mit einer Amplifikationsreaktion kompatiblen Kunststoff besteht, vorzugsweise einem Olefinpolymer, wie PP, PE, COC oder PC.
Flow cell according to claim 1,
characterized,
in that the plastic layer (8) facing the fluid consists of a plastic compatible with an amplification reaction, preferably an olefin polymer, such as PP, PE, COC or PC.
Flusszelle nach Anspruch 1 oder 2,
dadurch gekennzeichnet,
dass die wenigstens eine Metallschicht aus Aluminium oder einem magnetisierbaren Metall, z.B. Nickel, besteht.
Flow cell according to claim 1 or 2,
characterized,
in that the at least one metal layer consists of aluminum or a magnetisable metal, eg nickel.
Flusszelle nach einem der Ansprüche 1 bis 3,
dadurch gekennzeichnet,
dass die dem Temperierelement (11) zugewandte Folienschicht (10) aus einem Kunststoff besteht, insbesondere demselben Kunststoff wie die dem Fluid zugewandte Schicht (8).
Flow cell according to one of claims 1 to 3,
characterized,
that facing the tempering element (11) film layer (10) consists of a plastic, especially the same plastic as the side facing the fluid layer (8).
Flusszelle nach einem der Ansprüche 1 bis 4,
dadurch gekennzeichnet,
dass die jeweilige Schichtdicke zwischen 1 µm und 100 µm liegt.
Flow cell according to one of claims 1 to 4,
characterized,
that the respective layer thickness is between 1 .mu.m and 100 .mu.m.
Flusszelle nach einem der Ansprüche 1 bis 5,
dadurch gekennzeichnet,
dass die Temperierkammer (3) durch eine mit der Verbundfolie (2) abgedeckte Ausnehmung in einem Substrat (1) gebildet und die Verbundfolie (2) mit dem Substrat (1) verbunden, vorzugsweise verschweißt oder verklebt, ist.
Flow cell according to one of claims 1 to 5,
characterized,
that the temperature-control chamber (3) formed by a composite with the film (2) covered recess in a substrate (1) and connected to the composite foil (2) with the substrate (1), preferably welded or glued is.
Flusszelle nach einem der Ansprüche 1 bis 6,
dadurch gekennzeichnet,
dass die Temperierkammer (3h) durch wenigstens ein Ventil verschließbar ist und insbesondere in einem mit der Temperierkammer (3h) verbundenen, durch die Verbundfolie (2h) abgedeckten Kanal (4h, 5h) ein Ventilsitz (30,31), gegen den die Verbundfolie (2h) lose anliegt, gebildet ist.
Flow cell according to one of claims 1 to 6,
characterized,
in that the temperature-control chamber (3h) can be closed by at least one valve, and in particular in a channel (4h, 5h) covered by the composite film (2h) with the temperature-control chamber (3h), a valve seat (30, 31) against which the composite film ( 2h) lies loosely, is formed.
Flusszelle nach Anspruch 6 oder 7,
dadurch gekennzeichnet,
dass das Substrat (1) aus dem gleichen Kunststoff wie die dem Fluid zugewandte Schicht (8) der Verbundfolie (2) besteht.
Flow cell according to claim 6 or 7,
characterized,
in that the substrate (1) consists of the same plastic as the fluid-facing layer (8) of the composite film (2).
Flusszelle nach einem der Ansprüche 1 bis 8,
dadurch gekennzeichnet,
dass das Temperierelement (11) einen festen, zur Wärmeübertragung an die Verbundfolie (2) anlegbaren Temperierkörper oder ein die Verbundfolie (2e) benetzendes, vorzugsweise parallel zu der Verbundfolie (2e) strömendes, Temperierfluid umfasst.
Flow cell according to one of claims 1 to 8,
characterized,
in that the tempering element (11) comprises a tempering body which can be applied for heat transfer to the composite film (2) or a tempering fluid which wets the composite film (2e) and preferably flows parallel to the composite film (2e).
Flusszelle nach Anspruch 9,
dadurch gekennzeichnet,
dass das Temperierelement (11b,11c) nur in einem an die Temperierkammer (3b,3c) grenzenden Randbereich, in dem die Verbundfolie (2b,2c) mit der Oberfläche des Substrats (1b,1c) verbunden ist, anliegt.
Flow cell according to claim 9,
characterized,
that the tempering element (11b, 11c) adjacent only one of the temperature chamber (3b, 3c) the edge region, in which the composite film (2b, 2c) with the surface of the substrate (1b, 1c) is connected, is present.
Flusszelle nach einem der Ansprüche 1 bis 10,
dadurch gekennzeichnet,
dass die Verbundfolie (2d) durch das Temperierelement (1 1d) in die Temperierkammer (3d) hinein dehnbar ist, vorzugsweise bis zu einem die Dehnung begrenzenden Anschlag (15).
Flow cell according to one of claims 1 to 10,
characterized,
that the composite film (2d) through the temperature-regulating element (1 1d) into the temperature chamber (3d) is in elastic, preferably to a strain-limiting stop (15).
Flusszelle nach einem Ansprüche 1 bis 11,
dadurch gekennzeichnet,
dass die Temperierkammer (3i) als Speicherkammer genutzt und insbesondere wenigstens ein die Speicherkammer abschließender Verschluss als Sollbruchstelle (34,35) zur Bildung einer Öffnung ausgebildet ist.
Flow cell according to one of claims 1 to 11,
characterized,
that the temperature chamber (3i) used as a storage chamber and in particular at least one storage chamber final closure as a predetermined breaking point (34,35) is formed to form an opening.
Flusszelle nach einem der Ansprüche 1 bis 11,
dadurch gekennzeichnet,
dass die Verbundfolie (2c) unter Vergrößerung ihrer an das Fluid angrenzenden Oberfläche verformt, insbesondere tiefgezogen, ist.
Flow cell according to one of claims 1 to 11,
characterized,
that the composite film (2c) is deformed under magnification its adjacent to the fluid surface, in particular deep-drawn, is.
Flusszelle nach einem der Ansprüche 1 bis 13,
dadurch gekennzeichnet,
dass die Verbundfolie (2) innerhalb der Flusszelle wenigstens eine weitere Funktion erfüllt, insbesondere eine Abdeck- und/oder Ventilfunktion.
Flow cell according to one of claims 1 to 13,
characterized,
that the composite foil (2) is satisfied within the flow cell at least one other function, in particular a covering device and / or valve function.
Flusszelle nach einem der Ansprüche 1 bis 14,
dadurch gekennzeichnet,
dass der Hohlraum einen Zu- und einen Abfluss (6,7) für das Fluid zum Durchfluss durch den Hohlraum während der Temperierung aufweist.
Flow cell according to one of claims 1 to 14,
characterized,
that the cavity has an inlet and an outlet (6,7) for the fluid to flow through the cavity during the tempering.
EP12163321.8A 2012-04-05 2012-04-05 System with a fluidic cell and a tempering element Active EP2647435B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP12163321.8A EP2647435B1 (en) 2012-04-05 2012-04-05 System with a fluidic cell and a tempering element
US13/856,194 US9149802B2 (en) 2012-04-05 2013-04-03 Flow cell with a temperature-control chamber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP12163321.8A EP2647435B1 (en) 2012-04-05 2012-04-05 System with a fluidic cell and a tempering element

Publications (2)

Publication Number Publication Date
EP2647435A1 true EP2647435A1 (en) 2013-10-09
EP2647435B1 EP2647435B1 (en) 2020-08-05

Family

ID=45937051

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12163321.8A Active EP2647435B1 (en) 2012-04-05 2012-04-05 System with a fluidic cell and a tempering element

Country Status (2)

Country Link
US (1) US9149802B2 (en)
EP (1) EP2647435B1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2962758A1 (en) * 2014-07-01 2016-01-06 ThinXXS Microtechnology AG Flow cell having a storage space and a transport channel that can be opened at a predetermined breaking point
US9662650B2 (en) 2013-07-29 2017-05-30 Atlas Genetics Limited Fluidic cartridge and method for processing a liquid sample
US9816135B2 (en) 2013-07-29 2017-11-14 Atlas Genetics Limited Fluidic cartridge for nucleic acid amplification and detection
US9908114B2 (en) 2013-07-29 2018-03-06 Atlas Genetics Limited Cartridge, cartridge reader and method for preventing reuse of the cartridge
US9993818B2 (en) 2013-07-29 2018-06-12 Atlas Genetics Limited Valve which depressurises, and a valve system
US9999883B2 (en) 2013-07-29 2018-06-19 Atlas Genetics Limited System and method for processing fluid in a fluidic cartridge

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012086168A1 (en) * 2010-12-21 2012-06-28 日本電気株式会社 Sample heating method and heating control device
CN105980058A (en) 2014-01-07 2016-09-28 达克雷诊断器材有限公司 Fluid delivery devices, systems, and methods
EP3124118B1 (en) * 2015-07-28 2018-02-28 Panasonic Intellectual Property Management Co., Ltd. Microchannel apparatus and pcr method
EP3523040A1 (en) * 2016-10-07 2019-08-14 Boehringer Ingelheim Vetmedica GmbH Cartridge, analysis system and method for testing a sample

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002001181A2 (en) * 2000-06-28 2002-01-03 3M Innovative Properties Company Sample processing devices and carriers
US6613560B1 (en) 1994-10-19 2003-09-02 Agilent Technologies, Inc. PCR microreactor for amplifying DNA using microquantities of sample fluid
EP1710016A2 (en) * 2005-03-30 2006-10-11 Roche Diagnostics GmbH Device having a self sealing fluid port
EP1878495A1 (en) * 2006-07-14 2008-01-16 Roche Diagnostics GmbH Analytical device for thermally treating a fluid and/or monitoring a property thereof
EP1878497A1 (en) * 2006-07-14 2008-01-16 Roche Diagnostics GmbH Disposable for analyzing a liquid sample by nucleic acid amplification
WO2008006617A2 (en) * 2006-07-14 2008-01-17 Roche Diagnostics Gmbh Analytical device
US20100311616A1 (en) * 2007-10-26 2010-12-09 Tomoyuki Ozawa Reaction chip and method of manufacturing the same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5074196A (en) * 1990-09-28 1991-12-24 Calspan Corporation Flexible gas impermeable sandwich diaphragm
US6692700B2 (en) * 2001-02-14 2004-02-17 Handylab, Inc. Heat-reduction methods and systems related to microfluidic devices
US6575188B2 (en) * 2001-07-26 2003-06-10 Handylab, Inc. Methods and systems for fluid control in microfluidic devices
JP4208820B2 (en) * 2003-11-28 2009-01-14 株式会社東芝 Nucleic acid detection cassette
JP5282088B2 (en) * 2007-06-21 2013-09-04 ジェン−プロウブ インコーポレイテッド Equipment and containers used for processing execution
DE102009009728A1 (en) * 2009-02-19 2010-09-02 Thinxxs Microtechnology Ag Flow cell with integrated fluid storage
JP5797926B2 (en) * 2011-04-21 2015-10-21 株式会社エンプラス Fluid handling apparatus, manufacturing method thereof, and fluid handling system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6613560B1 (en) 1994-10-19 2003-09-02 Agilent Technologies, Inc. PCR microreactor for amplifying DNA using microquantities of sample fluid
WO2002001181A2 (en) * 2000-06-28 2002-01-03 3M Innovative Properties Company Sample processing devices and carriers
EP1710016A2 (en) * 2005-03-30 2006-10-11 Roche Diagnostics GmbH Device having a self sealing fluid port
EP1878495A1 (en) * 2006-07-14 2008-01-16 Roche Diagnostics GmbH Analytical device for thermally treating a fluid and/or monitoring a property thereof
EP1878497A1 (en) * 2006-07-14 2008-01-16 Roche Diagnostics GmbH Disposable for analyzing a liquid sample by nucleic acid amplification
WO2008006617A2 (en) * 2006-07-14 2008-01-17 Roche Diagnostics Gmbh Analytical device
US20100311616A1 (en) * 2007-10-26 2010-12-09 Tomoyuki Ozawa Reaction chip and method of manufacturing the same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9993818B2 (en) 2013-07-29 2018-06-12 Atlas Genetics Limited Valve which depressurises, and a valve system
US9662650B2 (en) 2013-07-29 2017-05-30 Atlas Genetics Limited Fluidic cartridge and method for processing a liquid sample
US9816135B2 (en) 2013-07-29 2017-11-14 Atlas Genetics Limited Fluidic cartridge for nucleic acid amplification and detection
US9908114B2 (en) 2013-07-29 2018-03-06 Atlas Genetics Limited Cartridge, cartridge reader and method for preventing reuse of the cartridge
US9999883B2 (en) 2013-07-29 2018-06-19 Atlas Genetics Limited System and method for processing fluid in a fluidic cartridge
WO2016000998A1 (en) * 2014-07-01 2016-01-07 Thinxxs Microtechnology Ag Flow cell comprising a storage zone and a duct that can be opened at a predetermined breaking point
WO2016000999A1 (en) * 2014-07-01 2016-01-07 Thinxxs Microtechnology Ag Reagent reservoir for fluids
EP2962758A1 (en) * 2014-07-01 2016-01-06 ThinXXS Microtechnology AG Flow cell having a storage space and a transport channel that can be opened at a predetermined breaking point
US10173215B2 (en) 2014-07-01 2019-01-08 Thinxxs Microtechnology Ag Flow cell comprising a storage zone and a duct that can be opened at a predetermined breaking point
US11291996B2 (en) 2014-07-01 2022-04-05 Thinxxs Microtechnology Ag Reagent reservoir for fluids
US11364500B2 (en) 2014-07-01 2022-06-21 Thinxxs Microtechnology Ag Reagent reservoir for fluids
US11364501B2 (en) 2014-07-01 2022-06-21 Thinxxs Microtechnology Ag Reagent reservoir for fluids
US11642673B2 (en) 2014-07-01 2023-05-09 Thinxxs Microtechnology Gmbh Flow cell comprising a storage zone and a duct that can be opened at a predetermined breaking point

Also Published As

Publication number Publication date
US9149802B2 (en) 2015-10-06
EP2647435B1 (en) 2020-08-05
US20130263940A1 (en) 2013-10-10

Similar Documents

Publication Publication Date Title
EP2647435B1 (en) System with a fluidic cell and a tempering element
EP2138233B1 (en) Microfluid film structure for metering liquids
DE602004002407T2 (en) MICROFLUID VALVE WITH ELECTRIC OPENING CONTROL
EP2686595B1 (en) Microfluidic valve and microfluidic platform
DE102011003856B4 (en) Microsystem for fluidic applications as well as manufacturing and use methods for a microsystem for fluidic applications
DE102008002336A1 (en) Pinch valve and method for its production
WO2009071078A1 (en) Microfluid storage device
EP3406340B1 (en) Flow cell with housing component
EP3049186B1 (en) Analytical device for performing pcr, method for operating the device and method of making the device
DE202012001202U1 (en) valve plug
WO2006042825A1 (en) Method for controlling valves during the thermocyclisation of a substance for the purpose of polymer chain reaction (pcr) and associated arrangement
EP2783752B1 (en) Normally closed valve for microfluidic components of polymeric multilayers and method
DE102015226417A1 (en) Microfluidic device, method for manufacturing and method for operating a microfluidic device
DE19821627A1 (en) Module with microchannel system useful in miniaturized processing or analysis systems e.g. PCR or immunoassays
DE102012206042B4 (en) Method and device for targeted process control in a microfluidic processor with integrated active elements
DE102008048064A1 (en) Microfluidic valve, microfluidic pump, microfluidic system and a manufacturing process
DE102010061910B4 (en) Microfluidic device and method of making same
DE102014202342A1 (en) Device for pre-storing a fluid in a microfluidic system, method for operating and method for producing such a device
DE102012220407A1 (en) Valve arrangement in a microfluidic system
EP2805771B1 (en) Fluid provision unit with a valve device and method for operating a fluid provision unit with a valve device
DE202014104510U1 (en) Device for pre-storing a fluid in a microfluidic system
WO2020078736A1 (en) Sample holder
EP2688671B1 (en) Device for producing a fluidic connection between cavities
DE102013207193A1 (en) Microhydraulic system, especially for use in planar microfluidic laboratories
EP3263218A1 (en) Microfluidic chip comprising a functional area covered with a flexible or deformable lid, and microfluidic system

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20140409

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20161222

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200306

RIN1 Information on inventor provided before grant (corrected)

Inventor name: WEBER LUTZ

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

RIN1 Information on inventor provided before grant (corrected)

Inventor name: WEBER LUTZ

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1297946

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200815

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012016257

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ALDO ROEMPLER PATENTANWALT, CH

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200805

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201105

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201106

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201105

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502012016257

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

26N No opposition filed

Effective date: 20210507

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210405

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210405

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502012016257

Country of ref document: DE

Owner name: THINXXS MICROTECHNOLOGY GMBH, DE

Free format text: FORMER OWNER: THINXXS MICROTECHNOLOGY AG, 66482 ZWEIBRUECKEN, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430

REG Reference to a national code

Ref country code: AT

Ref legal event code: HC

Ref document number: 1297946

Country of ref document: AT

Kind code of ref document: T

Owner name: THINXXS MICROTECHNOLOGY GMBH, DE

Effective date: 20220628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120405

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230420

Year of fee payment: 12

Ref country code: DE

Payment date: 20230420

Year of fee payment: 12

Ref country code: CH

Payment date: 20230502

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20230420

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230419

Year of fee payment: 12