EP2643281A1 - Preparation of isomerically pure substituted cyclohexanols - Google Patents

Preparation of isomerically pure substituted cyclohexanols

Info

Publication number
EP2643281A1
EP2643281A1 EP11843794.6A EP11843794A EP2643281A1 EP 2643281 A1 EP2643281 A1 EP 2643281A1 EP 11843794 A EP11843794 A EP 11843794A EP 2643281 A1 EP2643281 A1 EP 2643281A1
Authority
EP
European Patent Office
Prior art keywords
process according
lipase
seq
substituted
trans
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP11843794.6A
Other languages
German (de)
French (fr)
Other versions
EP2643281A4 (en
Inventor
Melanie Bonnekessel
Klaus Ditrich
Jürgen Däuwel
Achim Sorg
Wolfgang Ladner
Bryan Cooper
Rene Backes
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Priority to EP11843794.6A priority Critical patent/EP2643281A4/en
Publication of EP2643281A1 publication Critical patent/EP2643281A1/en
Publication of EP2643281A4 publication Critical patent/EP2643281A4/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N11/00Carrier-bound or immobilised enzymes; Carrier-bound or immobilised microbial cells; Preparation thereof
    • C12N11/14Enzymes or microbial cells immobilised on or in an inorganic carrier
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P41/00Processes using enzymes or microorganisms to separate optical isomers from a racemic mixture
    • C12P41/003Processes using enzymes or microorganisms to separate optical isomers from a racemic mixture by ester formation, lactone formation or the inverse reactions
    • C12P41/004Processes using enzymes or microorganisms to separate optical isomers from a racemic mixture by ester formation, lactone formation or the inverse reactions by esterification of alcohol- or thiol groups in the enantiomers or the inverse reaction
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y301/00Hydrolases acting on ester bonds (3.1)
    • C12Y301/01Carboxylic ester hydrolases (3.1.1)
    • C12Y301/01003Triacylglycerol lipase (3.1.1.3)

Definitions

  • the present invention relates to a process for preparing substantially isomerically pure substituted cyclohexanols starting from a mixture of cis / trans substituted cyclohexanols.
  • WO 2005/073215 describes a method for producing enantiomerically pure amino-alcohols. It discloses that enantioselective acylation of a racemic alcohol with succinic anhydride in the presence of a lipase gives a succinic semi-ester, which can be separated from the unreacted enantiomer.
  • EP 1069183 A2 teaches the enantioselective acylation of racemic trans-2-methoxycyclohexanol by succinic anhydride in the presence of an immobilized lipase from Pseudomonas
  • the present invention solves the problem by providing a process for separating substituted cyclohexanols in substantially isomerically pure forms, which comprises reacting the cis / trans mixture of the substituted cyclohexanol with a dicarboxylic acid anhydride in the presence of a lipase with a protein sequence as displayed in
  • SEQ ID No:2 or a lipase with a protein sequence being at least 75% identical to the entire amino acid sequence shown in SEQ ID No:2 and have at least 50% of the enzymatic activity of SEQ ID No:2, to give the trans semi-ester, separating off the trans semi-ester from the unreacted substituted cyclohexanol cis isomer,
  • substantially isomerically pure means that the isomer is gained in at least 80%, preferably at least 90%, more preferably at least 95%, in particular at least 96, 97, 98, 99%.
  • the cis / trans mixture of the substituted cyclohexanols (formula A1 to A3 below) is reacted with a dicarboxylic-acid anhydride in the presence of a lipase with a protein sequence as displayed in SEQ ID No:2 or a lipase with a protein sequence being at least 75% identical to the entire amino acid sequence shown in SEQ ID No:2 and have at least 50% of the enzymatic activity of SEQ ID No:2, to give a semi-ester (formula C1 to C3 below) and the unreacted isomer (formula ase.
  • the starting material is a cis / trans mixture of 4-substituted cyclohexanols (formula A3 above), which is reacted with a dicarboxylic-acid anhydride in the pres- ence of a lipase with a protein sequence as displayed in SEQ ID No:2 or a lipase with a protein sequence being at least 75% identical to the entire amino acid sequence shown in SEQ ID No:2 and have at least 50% of the enzymatic activity of SEQ ID No:2, to give a semi-ester (formula C3 above) and the unreacted isomer (formula B3 above).
  • R1 can be any substituent being inert under the reaction conditions.
  • R1 can be substituted or unsubstituted C1-C10 alkyl, substituted or unsubstituted C3-C8-cycloalkyl, substituted or unsubstituted C2-Cio-alkenyl or alkynyl, substituted or unsubstituted heterocycle, substituted or unsubstituted aryl.
  • Unsubstituted C1-C10 refers to a straight-chained or branched saturated hydrocarbon group having 1 to 10 carbon atoms, for example methyl, ethyl, propyl, 1 -methyl-ethyl, butyl, 1 - methylpropyl, 2-methylpropyl, and 1 ,1 -dimethylethyl etc. These are substituents called unsubstituted in the context of the invention.
  • unsubstituted Cs-Cs-cycloalkyl refers to monocyclic saturated hydrocarbon radicals having 3 to 8 carbon ring members, such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl or cyclooctyl.
  • Unsubstituted C2-C10 alkenyl refers to a straight-chain or branched unsaturated hydrocarbon radical having 2 to 10 carbon atoms and a double bond in any position, such as ethenyl, 1 - propenyl, 2-propenyl (allyl), 1 -methylethenyl, 1 -butenyl, 2-butenyl, 3-but-enyl, 1 -methyl-1 - propenyl, 2-methyl-1 -propenyl, 1 -methyl-2-propenyl, 2-methyl-2-prop-enyl etc.
  • cyclic unsaturated hydrocarbon radicals having 5 to 8 carbon ring members such as cyclopentadienyl, cyclohexadienyl, cycloheptadienyl, cyclooctadienyl.
  • C2-Cio-alkynyl refers to a straight-chain or branched unsaturated hydrocarbon radical having 2 to 10 carbon atoms and containing at least one triple bond, such as ethynyl, 1 - propynyl, 2-propynyl (propargyl), 1 -butynyl, 2-butynyl, 3-butynyl, 1 -methyl-2-propynyl etc.
  • heterocycle means e.g. "5-, 6-, or 7-membered heterocycles" wherein the ring member atoms of the heterocycle include besides carbon atoms 1 , 2, 3 or 4 heteroatoms selected from the group of N, O and S, is to be understood as meaning both saturated and partially unsaturated as well as aromatic heterocycles (i.e. heteroaryl). Examples include:
  • heteroaryl (heteroaromatic radical), wherein the ring member atoms of the heteroaryl include besides carbon atoms 1 , 2 or 3 heteroatoms selected from the group of N, O and S, for example pyrrol-1 -yl, pyrrol-2-yl, pyrrol-3-yl, thien-2-yl, thien-3-yl, furan- 2-yl, furan-3-yl, pyrazol-1 -yl, pyrazol-3-yl, pyrazol-4-yl, pyrazol-5-yl, imidazol-1 -yl, imida- zol-2-yl, imidazol-4-yl, imidazol-5-yl, oxazol-2-yl, oxazol-4-yl, oxazol-5-yl, isoxazol-3-yl, isoxazol-4-yl, isoxazol-5-yl, thia
  • heteroaryl 0 6-membered heteroaryl (heteroaromatic radical), wherein the ring member atoms of the heteroaryl include besides carbon atoms 1 , 2 or 3 heteroatoms selected from the group of N, O and S, for example pyridin-2-yl, pyridin-3-yl, pyridin-4-yl, pyridazin-3-yl, pyri- dazin-4-yl, pyrimidin-2-yl, pyrimidin-4-yl, pyrimidin-5-yl, pyrazin-2-yl and 1 ,3,5-triazin-2-yl.
  • Unsubstituted aryls in particular are phenyl, naphthyl, anthryl or phenanthryl.
  • Substituted in the context of the invention means here, by comparison with the corresponding unsubstituted substituent, one or more H atoms are replaced by other atoms or molecular groups being inert in the inventive process, such as alkyl, N(alkyl)2, O-alkyl, S-alkyl, CN, NO2, I, CI, Br, F, carbonyl, carboxyl, COOR3 with R3 being alkyl, 5-, 6-, or 7-membered heterocycle, aryl - the latter two as defined above.
  • alkyl means C1-C10- alkyl being a straight-chained or branched saturated hydrocarbon group having 1 to 10 carbon atoms, such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl etc..
  • the lipase-catalyzed acylation reaction of the invention requires the use of a dicarboxylic-acid anhydride.
  • a dicarboxylic-acid anhydride e.g. see formula D
  • R2 is C2-C10 Alkyl.
  • dicarboxylic acids to be used for the process of the invention are: propanedioic (i.e. malonic) acid anhydride, buta- nedioic (i.e. succinic) acid anhydride, pentanedioic (i.e. glutaric) acid anhydride, hexanedioic (i.e. adipic) acid anhydride, heptanedioic (i.e. pimelic) acid anhydride, octanedioic (i.e. suberic) acid anhydride, nonanedioic (i.e.
  • azelaic acid anhydride decanedioic (i.e. sebacic) acid anhydride, undecandioic acid anhydride, dodecandioic acid anhydrid.
  • C3-C8 dicarboxylic anhydrids e.g. succinic acid anhydride.
  • the dicarboxylic-acid anhydride used in the inventive process is used preferably in equimolar amounts, more preferably in at least 10% excess to allow total acylation of the trans isomer.
  • the composition of the starting material i.e.
  • the percentage of trans-isomer in the mixture of cis / trans substituted cyclohexanol is decisive for deciding about the amount of dicarboxylic- acid anhydride used in the process of the invention.
  • the use of 0.7 equivalents or in exess of 0,8 equivalents of dicarboxylic-acid anhydride should serve the purpose of nearly totally acylating the trans substituted cyclohexanol.
  • the lipase used in the inventive process is chosen from lipases having an amino acid sequence according to SEQ ID No:2 or a sequence derived from that displayed as SEQ ID No:2 showing up to 25%, preferably up to 20%, more preferably up to 15% in particular up to 10, 9, 8, 7, 6, 5, 4, 3, 2, 1 % of the amino acid residues changed by deletion, substitution, insertion or a combination thereof. That means, that lipases used in the inventive process have sequences that are at least 75%, preferably at least 80%, more preferably at least 85% in particular at least 90, 91 , 92, 93, 94, 95, 96, 97, 98, 99% identical to the entire amino acid sequence displayed in SEQ ID No:2.
  • the lipase used in the inventive process can be expressed in a lipase producing organism.
  • a lipase producing organism means any organism which is able by nature or through genetic modification, for example by insertion of a lipase gene into the genome of the organism, to produce a lipase having an amino acid sequence according to SEQ ID No:2 or a sequence that is at least 75%, preferably at least 80%, more preferably at least 85% in particular at least 90, 91 , 92, 93, 94, 95, 96, 97, 98, 99% identical to the entire amino acid sequence displayed in SEQ ID No:2.
  • lipase producing organisms are microorganisms of the genus Aspergillus, Arthrobacter, Alcaligenes, Bacillus, Brevibacterium, Pseudomonas, Chromobacterium, Candida, Fusarium, Geotrichum, Humicola, Mucor, Pichia, Penicillium, Rhizomucor, Rhizopus or Ther- mus.
  • Pseudomonas burkholderia i.e. Burkholderia plantarii
  • the preferred lipase gene inserted into the lipase producing organism is a) the polynucleotide as defined in SEQ ID No:1 , b) a polynucleotide at least about 50%, preferably at least about 60%, more preferably at least 70%, 75%, 80%, 85% or 90%, and even more preferably at least 95%, 96%, 97%, 98%, 99% or more identical to the sequence of SEQ ID No:1 over the entire length of the coding region of the sequence of SEQ ID No:1.
  • the cultivation of a lipase-producing organism can take place in a manner known per se, for example by fermentation in a nutrient medium which, besides nutrients, trace elements and, where appropriate, antibiotics, contains, for example, a buffer system to stabilize the proteins and enzymes. Cultivation of a lipase producing organism is described e.g. in US 6596520 B1 , especially Example 1 paragraph 1.1 . where Burholderia plantarii is used as an example.
  • the derived amino acid sequences used in the inventive process shall have at least 50%, preferably 65%, more preferably 80%, in particular more than 90% of the enzymatic activity of SEQ ID No:2.
  • enzymatic activity of SEQ ID No:2 means the ability to trigger the trans-selective acylation of the substituted cyclohexanol.
  • the trans- selectivity is at least 95%, more preferably at least 98%, even more preferably 99%.
  • 4-tert.-butyl-cyclohexanol can be used.
  • the lipase activity per se can be determined by known methods (Gupta et al. Review: Lipase assays for conventional and molecular screening: an overview, Biotechnol. Appl. Biochem.
  • the catalytic activity is preferably measured by using the Tributyrin-test.
  • the Phenylethanol-test is applicable.
  • folding-helper proteins In one preferred embodiment
  • the lipase having an amino acid sequence according to SEQ ID No:2 or a sequence that is at least 75%, preferably at least 80%, more preferably at least 85% in particular at least 90, 91 , 92, 93, 94, 95, 96, 97, 98, 99% identical to the entire amino acid sequence displayed in SEQ ID No:2 is encoded by
  • polynucleotide as defined in SEQ ID No:1 or a polynucleotide at least about 50%, preferably at least about 60%, more preferably at least about 70%, 75%, 80%, 85% or 90%, and even more preferably at least about 95%, 96%, 97%, 98%, 99% or more identical to the sequence of SEQ ID No:1 over the entire length of the coding region of the sequence of SEQ ID No:1 which is expressed in
  • a folding-helper protein having an amino acid sequence according to SEQ ID No:3 or a sequence derived from that displayed as SEQ ID No:3 being at least 85% in particular at least 90, 91 , 92, 93, 94, 95, 96, 97, 98, 99% identical to the entire amino acid sequence displayed in SEQ ID No:3 is co-expressed with the lipase.
  • the lipases used in the process of the invention can be employed as crude extract of whole cells and in preparations of varying purity (e.g. cell-free extract) up to a highly purified form. Preference is given to using the lipases in the form of partially purified or highly purified protein solutions.
  • Burkholderia plantarii cells used in the preferred embodiment are small with having a specific density which is comparable to that of the culture medium. Preferably they are separated from the supernatant by microfiltration using appropriate filter plates and strong pumps as known to those skilled in the art. Further concentration can be achieved e.g. by using ultrafiltration as known to those skilled in the art.
  • immobilized lipases are distinguished which usually have increased stability and are useful for carrying out the reaction continuously and batchwise. Immobilized means carrier-bound on a usually solid support, using methods known to the skilled person, and then employed in the process according to the invention (see below). Using immobilized lipases is a preferred embodiment particularly when conducting the process continuously. For this purpose, the lipases can e.g. advantageously be used while being retained in a column or a tubular reactor. Various possibilities are available to immobilize the lipase used in the process of the invention.
  • the crude extract of a whole cell suspension or the supernatant of a cell culture, as well as purified protein solutions can be immobilized according to methods like those described in e.g. Persson et al. Biotechnology Letters 2000, 22(19): 1571 -1575; US 6,596,520 B1 - especially example 1 .
  • the cultivation medium (or fermentation liquor) of a lipase producing organism can be spray-dried itself at temperatures (outlet temperature of the spray drier) of 50-150°C, preferably 70-100°C, more preferably 75-85°C and even more preferably at 80-85°C. Spray-drying can also occur in the presence of carrier substances.
  • the carrier must be chosen in a way that the process of the invention can take place.
  • polysaccharides like e.g. maltodextrine or mineral compounds like e.g. Na2S0 4 are used as carriers.
  • the weight amount of carrier is 5 to 200% per weight, preferably 10-200% by weight, more preferably 20-150% by weight and particularly preferably 50-100% by weight, based on the solid content of the fermentation liquor. Also, purified lipase solution can be immobilized with such methods.
  • the residual moisture is less than 10%, based on solid substance, preferably it is less than 7%, particular preference being given to residual moisture content of less than 5%.
  • the (immobilized) lipase is used in amounts of 0.5-10% by weight with respect to the starting material (cis / trans mixture), preferably 0.5-5% by weight, more preferably 0.5-1 , in particular 1 % by weight.
  • the acylation reaction of the invention can take place without or in the presence of a solvent.
  • a solvent Preferably it takes place in an organic solvent, such as a hydrocarbon, an ether, or an alcohol.
  • Solvents which are particularly suitable for the reaction are:
  • aliphatic hydrocarbons such as hexane, heptane and octane or a mixture thereof, espe- cially petrolether, or
  • aromatic hydrocarbons like benzene, toluene, xylenes, or
  • 0 ethers such as methyl-tert.-butylether (MTBE), tetrahydrofurane (THF), 1 ,4-dioxane, or
  • cycloaliphatics like cyclopentane, cyclohexane, or
  • the starting material (cis / trans mixture) is diluted with an organic solvent such that a 0.2-5 molar solution, preferred 0.5-2 molar, more preferred in 0.6-1 .2 molar of the starting material (cis / trans mixture) results.
  • the reaction can be carried out either continuously or batchwise. Continuous synthesis, especially using a supported lipase, is recommended for performance on the industrial scale.
  • the second step of the inventive process is the second step of the inventive process:
  • the mixture of semi-ester and unreacted isomer requires the separation of the semi-ester from the unreacted isomer.
  • This is expediently achieved by aqueous extraction, e.g. aqueous extrac- tion, of the semi-ester salt, in particular its alkali or earth alkali metal salt.
  • a preferred embodiment is the aqueous extraction in the presence of a base such as sodium carbonate or sodium hydroxide.
  • a base such as sodium carbonate or sodium hydroxide.
  • the pH should for this reason be in a range of 7.5-10, preferably 8-10, more preferably 8-9.5, in particular 9-9.5.
  • either the organic phase, which contains the cis isomer, or the aqueous phase, which contains the trans isomer in form of the semi-ester can be worked up.
  • Customary methods of hydrolysis can be used to cleave the semi-ester into the corresponding acid and the desired trans-isomer of the alcohol e.g. by treatment with bases (e.g. NaOH, KOH, Na 2 C0 3 ) or acids (e.g. H 2 S0 4 , HCI).
  • Example 1 Preparation of a shake-flask preculture
  • a microelement salt solution was prepared with the following components: two liters of fully demineralized water, 77.2 g of citric acid monohydrate, 22.6 g of zinc sulfate heptahydrate, 17.3 g of diammonium iron(ll) sulfate hexahydrate, 5.7 g of manganese sulfate monohydrate, 1 .2 g of copper sulfate pentahydrate, 0.5 g of cobalt sulfate heptahydrate and 3.0 g of calcium chloride dihydrate.
  • 500 ml of medium comprising the following components were made up: 3.8 g of dry yeast extract powder, 0.5 g of potassium dihydrogen phosphate, 1.5 g of diammonium hydrogen phosphate, 0.5 g of magnesium sulfate heptahydrate, 5 g of trace element salt solution per 500 g of water.
  • the pH was brought to 6.5 using phosphoric acid.
  • the finished medium was filter- sterilized (0.22 ⁇ ). 200 ml of the medium were transferred aseptically into each of the two Erlenmeyer flasks, and the flasks were then inoculated with in each case 1 ml of a Burkholderia plantarii (LU 8093) stock.
  • LU 8093 Burkholderia plantarii
  • Example 2 10 liters of the medium specified in Example 1 were made up in a stainless-steel bucket and the pH was brought to 6.5 using phosphoric acid. Then, the medium was transferred into a 21 -liter fermenter equipped with three traditional blade agitators. The fermenter was sterilized for 60 minutes at 121 °C and then cooled to 30°C.
  • Example 3 Lipase production in a fermenter
  • a fermenter with a total volume of 300 liters was charged in succession with the following starting materials:
  • rapeseed oil was pumped in via a filter- sterilization unit of pore size 0.2 ⁇ .
  • feeding was carried out in accordance with the formula:
  • the first feed phase was terminated after 17 hours. Immediately thereafter, more rapeseed oil was pumped in according to the formula:
  • the oil feeding was stopped, and the operation of the fermenter continued until the oil in the medium had been consumed. Thereafter, the fermenter was cooled to 4°C. Without further delay, a sample was taken, and the total dry matter of the liquor (DM) and the enzymatic activity (units/ml) were determined. The dry matter content was determined with the aid of an infrared moisture analyzer. The enzymatic activity was measured titrimetrically with tributyrin as the substrate. The amount of liquor which liberates one ⁇ from butyric acid/min tributyrin was defined as one enzymatic unit.
  • a dry-matter content of 7.56% was measured, with an enzymatic activity of 10256 U/ml.
  • the fermenter weight was 186.8 kg.
  • the total dry-matter amounted to 14.1 kg.
  • the total enzymatic activity amounted to 1916 MU.
  • One MU 1 000 000 units.
  • the lipase present in the fermentation liquor was immobilized on sodium sulfate by means of spray-drying.
  • a total of 25.6 kg of dry powder were obtained.
  • the residual moisture content of the powder was 1.8%.
  • a sample of the dry powder was dissolved in water and the enzymatic activity was measured using tributyrin.
  • the powder had an activity of 67 360 units/g DM.
  • the immobilized enzyme catalyzes the following transesterification reaction in the organic medium:
  • the suitability of the immobilizate for conversions in the organic system was tested as follows: The reaction was carried out in a test reactor composed of a 500 ml jacketed vessel equipped with a propeller agitator made of glass. The agitator was driven by a motor from Heidolph (type RZR 2051 ) via magnetic coupling. The set-up was heated by a thermostat (Huber Ministat). Approximately 0.5 g of immobilizate were weighed into a 50 ml Falcon® tube and the precise weight was recorded.
  • the thermostat was set at 22°C and the stirrer speed to 350 rpm.
  • the dry reactor was charged with 50.0 g of 1 -phenylethanol and 95.0 g of MTBE. Any contamination with water was avoided since too much water prevents the reaction.
  • the pre-weighed lipase-containing immobilizate was added via a glass funnel.
  • a sample (approx. 1 ml) was taken and immediately filtered through a 0.2 ⁇ syringe filter (SPARTAN® 30/02 RC, Schleicher & Schuell).
  • 100 ⁇ of the filtered sample and 900 ⁇ of the HPLC eluent (acetonitrile 20%, methanol 40%, trifluoroacetic acid 1 % and water 39%) were placed into a 2 ml Eppendorf® vessel. 100 ⁇ of that solution were in turn placed into an HPLC tube and likewise made up with 900 ⁇ of HPLC eluent, whereupon the tube was sealed. The sample was then analyzed by HPLC.
  • the unit of the lipase activity in the organic system is PEU (phenylethanol unit).
  • PEU phenylethanol unit
  • One PEU is the amount of lipase which under the above-described test conditions catalyzes the formation of 1 ⁇ of phenylethyl propionate (PEP) from phenylethanol per minute.
  • PEP phenylethyl propionate
  • the immobilizate obtained in the example had a specific activity of 842 PEU/g immobilizate.
  • reaction mixture was stirred at 20°C.
  • the reaction process was checked by gas chromatography. As after 23 h reaction time 0.9 GC area % of the trans-isomer were still detected (table 1 , No. 3), the reaction mixture was stirred for further 27 h.
  • the reaction mixture was filtered via diatomaceous earth (Kieselgur, e.g. Celite®) and the vessel, as well as the MTBE were rinsed with further MTBE.
  • diatomaceous earth Karlgur, e.g. Celite®
  • 25% NaOH solution was added stepwise at 20°C until a pH of 9.3 was achieved.
  • Further distilled water was added and the phase separation was performed.
  • the aqueous phase (pH 9.3) was extracted another two times with MTBE.
  • the organic phases were combined, and the solvent was removed by distillation (50 mbar, max. 40°C) until a white suspension was gained. This suspension (109 kg) was further concentrated in a rotating evaporator.
  • Table 2 isomeric ratio cis / trans after extraction
  • a simple distillation apparatus was used with a column carrying packing material (packed column, i.e. Raschigrings, 8x8 mm) and heated solids bridge (tempered condenser).
  • the transition temperature was 1 18°C at 26 mbar water-jet vacuum.
  • Example 7 like exam pie 6 but different solvents (0.6 mol) after 24 h at 20°C
  • Example 8 like example 6 but 1.2 mol solvent after 24 h at 20°C

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Peptides Or Proteins (AREA)

Abstract

Disclosed is a method for preparing isomerically pure substituted cyclohexanols starting from a mixture of cis/trans substituted cyclohexanols, which comprises reacting the cis/trans mixture of a substituted cyclohexanol with a dicarboxylic acid anhydride in the presence of a lipase, to give the trans semi-ester which is separated from the unreacted substituted cyclohexanol cis isomer.

Description

Preparation of isomerically pure substituted cyclohexanols
The present invention relates to a process for preparing substantially isomerically pure substituted cyclohexanols starting from a mixture of cis / trans substituted cyclohexanols.
Separating mixtures of cis / trans isomers can be achieved by using various techniques known to those skilled in the art e.g., distillation, chromatography, crystallization.
WO 2005/073215 describes a method for producing enantiomerically pure amino-alcohols. It discloses that enantioselective acylation of a racemic alcohol with succinic anhydride in the presence of a lipase gives a succinic semi-ester, which can be separated from the unreacted enantiomer.
EP 1069183 A2 teaches the enantioselective acylation of racemic trans-2-methoxycyclohexanol by succinic anhydride in the presence of an immobilized lipase from Pseudomonas
burkholderia.
Often distillative separation is used for separation of cis / trans isomers. However, in the case of substituted cyclohexanols this method was unsatisfactory because of the sublimation character- istics of substituted cyclohexanols. Therefore, the technical problem to be solved was to find a method for separating a mixture of cis / trans substituted cyclohexanols.
The present invention solves the problem by providing a process for separating substituted cyclohexanols in substantially isomerically pure forms, which comprises reacting the cis / trans mixture of the substituted cyclohexanol with a dicarboxylic acid anhydride in the presence of a lipase with a protein sequence as displayed in
SEQ ID No:2 or a lipase with a protein sequence being at least 75% identical to the entire amino acid sequence shown in SEQ ID No:2 and have at least 50% of the enzymatic activity of SEQ ID No:2, to give the trans semi-ester, separating off the trans semi-ester from the unreacted substituted cyclohexanol cis isomer,
isolating the isomerically pure substituted cis or trans cyclohexanol. Surprisingly, the lipase used in the inventive process triggers with high selectivity the acylation of the trans form of substituted cyclohexanols by the dicarboxylic-acid anhydride. As a result of the inventive process the cis or trans isomer of the substituted cyclohexanol is gained in substantially isomerically pure form. "Substantially isomerically pure" means that the cis or trans product is not substantially contaminated with the other isomer. Therefore, "substantially isomerically pure" means that the isomer is gained in at least 80%, preferably at least 90%, more preferably at least 95%, in particular at least 96, 97, 98, 99%. The first step of the inventive process:
The cis / trans mixture of the substituted cyclohexanols (formula A1 to A3 below) is reacted with a dicarboxylic-acid anhydride in the presence of a lipase with a protein sequence as displayed in SEQ ID No:2 or a lipase with a protein sequence being at least 75% identical to the entire amino acid sequence shown in SEQ ID No:2 and have at least 50% of the enzymatic activity of SEQ ID No:2, to give a semi-ester (formula C1 to C3 below) and the unreacted isomer (formula ase.
In a preferred embodiment, the starting material is a cis / trans mixture of 4-substituted cyclohexanols (formula A3 above), which is reacted with a dicarboxylic-acid anhydride in the pres- ence of a lipase with a protein sequence as displayed in SEQ ID No:2 or a lipase with a protein sequence being at least 75% identical to the entire amino acid sequence shown in SEQ ID No:2 and have at least 50% of the enzymatic activity of SEQ ID No:2, to give a semi-ester (formula C3 above) and the unreacted isomer (formula B3 above). The substituted cyclohexanols used in the process of the invention according to formula A1 to A3 are substituted by R1 . R1 can be any substituent being inert under the reaction conditions. For example, R1 can be substituted or unsubstituted C1-C10 alkyl, substituted or unsubstituted C3-C8-cycloalkyl, substituted or unsubstituted C2-Cio-alkenyl or alkynyl, substituted or unsubstituted heterocycle, substituted or unsubstituted aryl. "Unsubstituted C1-C10" refers to a straight-chained or branched saturated hydrocarbon group having 1 to 10 carbon atoms, for example methyl, ethyl, propyl, 1 -methyl-ethyl, butyl, 1 - methylpropyl, 2-methylpropyl, and 1 ,1 -dimethylethyl etc. These are substituents called unsubstituted in the context of the invention. The term "unsubstituted Cs-Cs-cycloalkyl" refers to monocyclic saturated hydrocarbon radicals having 3 to 8 carbon ring members, such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl or cyclooctyl.
"Unsubstituted C2-C10 alkenyl" refers to a straight-chain or branched unsaturated hydrocarbon radical having 2 to 10 carbon atoms and a double bond in any position, such as ethenyl, 1 - propenyl, 2-propenyl (allyl), 1 -methylethenyl, 1 -butenyl, 2-butenyl, 3-but-enyl, 1 -methyl-1 - propenyl, 2-methyl-1 -propenyl, 1 -methyl-2-propenyl, 2-methyl-2-prop-enyl etc. Also included in this definition for the purpose of this invention are cyclic unsaturated hydrocarbon radicals having 5 to 8 carbon ring members such as cyclopentadienyl, cyclohexadienyl, cycloheptadienyl, cyclooctadienyl.
The term "C2-Cio-alkynyl" refers to a straight-chain or branched unsaturated hydrocarbon radical having 2 to 10 carbon atoms and containing at least one triple bond, such as ethynyl, 1 - propynyl, 2-propynyl (propargyl), 1 -butynyl, 2-butynyl, 3-butynyl, 1 -methyl-2-propynyl etc.
The term heterocycle means e.g. "5-, 6-, or 7-membered heterocycles" wherein the ring member atoms of the heterocycle include besides carbon atoms 1 , 2, 3 or 4 heteroatoms selected from the group of N, O and S, is to be understood as meaning both saturated and partially unsaturated as well as aromatic heterocycles (i.e. heteroaryl). Examples include:
0 saturated and partially unsaturated 5-, 6-, or 7-membered heterocycle wherein the ring member atoms of the heterocycle include besides carbon atoms 1 , 2 or 3 heteroatoms selected from the group of N, O and S, and which is saturated or partially unsaturated, for example pyrrolidin-2-yl, pyrrolidin-3-yl, tetrahydrofuran-2-yl, tetrahydrofuran-3-yl, tet- rahydrothien-2-yl, tetrahydrothien-3-yl, 1 ,3-dioxolan-4-yl, isoxazolidin-3-yl, isoxazolidin-4- yl, isoxazolidin-5-yl, isothiazolidin3-yl, isothiazolidin-4-yl, isothiazolidin-5-yl, pyrazolidin- 3-yl, pyrazolidin-4-yl, pyrazolidin-5-yl, oxazolidin-2-yl, oxazolidin-4-yl, oxazolidin-5-yl, thi- azolidin-2-yl, thiazolidin-4-yl, thiazolidin-5-yl, imidazolidin-2-yl, imidazolidin-4-yl, 2- pyrrolin-2-yl, 2-pyrrolin-3-yl, 3-pyrrolin-2-yl, 3-pyrrolin-3-yl, piperidin-2-yl, piperidin-3-yl, piperidin-4-yl, 1 ,3-dioxan-5-yl, tetrahydropyran-2-yl, tetrahydropyran-4-yl, tetrahy- drothien-2-yl, hexahydropyridazin-3-yl, hexahydropyridazin-4-yl, hexahydropyrimidin-2- yl, hexahydropyrimidin-4-yl, 5-hexahydropyrimidinyl and piperazin-2-yl;
0 5-membered heteroaryl (heteroaromatic radical), wherein the ring member atoms of the heteroaryl include besides carbon atoms 1 , 2 or 3 heteroatoms selected from the group of N, O and S, for example pyrrol-1 -yl, pyrrol-2-yl, pyrrol-3-yl, thien-2-yl, thien-3-yl, furan- 2-yl, furan-3-yl, pyrazol-1 -yl, pyrazol-3-yl, pyrazol-4-yl, pyrazol-5-yl, imidazol-1 -yl, imida- zol-2-yl, imidazol-4-yl, imidazol-5-yl, oxazol-2-yl, oxazol-4-yl, oxazol-5-yl, isoxazol-3-yl, isoxazol-4-yl, isoxazol-5-yl, thiazol-2-yl, thiazol-4-yl, thiazol-5-yl, isothiazol-3-yl, isothia- zol-4-yl, isothiazol-5-yl, 1 ,2,4-triazolyl-1 -yl, 1 ,2,4-triazol-3-yl 1 ,2,4-triazol-5-yl, 1 ,2,4- oxadiazol-3-yl, 1 ,2,4-oxadiazol-5-yl and 1 ,2 ,4-thiad iazol-3-yl , 1 ,2,4-thiadiazol-5-yl;
0 6-membered heteroaryl (heteroaromatic radical), wherein the ring member atoms of the heteroaryl include besides carbon atoms 1 , 2 or 3 heteroatoms selected from the group of N, O and S, for example pyridin-2-yl, pyridin-3-yl, pyridin-4-yl, pyridazin-3-yl, pyri- dazin-4-yl, pyrimidin-2-yl, pyrimidin-4-yl, pyrimidin-5-yl, pyrazin-2-yl and 1 ,3,5-triazin-2-yl.
"Unsubstituted aryls" in particular are phenyl, naphthyl, anthryl or phenanthryl.
"Substituted" in the context of the invention means here, by comparison with the corresponding unsubstituted substituent, one or more H atoms are replaced by other atoms or molecular groups being inert in the inventive process, such as alkyl, N(alkyl)2, O-alkyl, S-alkyl, CN, NO2, I, CI, Br, F, carbonyl, carboxyl, COOR3 with R3 being alkyl, 5-, 6-, or 7-membered heterocycle, aryl - the latter two as defined above. In the context of inert substitutents, "alkyl" means C1-C10- alkyl being a straight-chained or branched saturated hydrocarbon group having 1 to 10 carbon atoms, such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl etc..
The lipase-catalyzed acylation reaction of the invention requires the use of a dicarboxylic-acid anhydride. In principal every dicarboxylic-acid anhydride e.g. see formula D
can be used for that purpose. Preferably, R2 is C2-C10 Alkyl. Examples for dicarboxylic acids to be used for the process of the invention are: propanedioic (i.e. malonic) acid anhydride, buta- nedioic (i.e. succinic) acid anhydride, pentanedioic (i.e. glutaric) acid anhydride, hexanedioic (i.e. adipic) acid anhydride, heptanedioic (i.e. pimelic) acid anhydride, octanedioic (i.e. suberic) acid anhydride, nonanedioic (i.e. azelaic) acid anhydride, decanedioic (i.e. sebacic) acid anhydride, undecandioic acid anhydride, dodecandioic acid anhydrid. Particular preference is given to using C3-C8 dicarboxylic anhydrids, e.g. succinic acid anhydride. The dicarboxylic-acid anhydride used in the inventive process is used preferably in equimolar amounts, more preferably in at least 10% excess to allow total acylation of the trans isomer. The composition of the starting material, i.e. the percentage of trans-isomer in the mixture of cis / trans substituted cyclohexanol, is decisive for deciding about the amount of dicarboxylic- acid anhydride used in the process of the invention. For example for a 30:70 mixture of cis / trans isomers the use of 0.7 equivalents or in exess of 0,8 equivalents of dicarboxylic-acid anhydride should serve the purpose of nearly totally acylating the trans substituted cyclohexanol. The lipase used in the inventive process is chosen from lipases having an amino acid sequence according to SEQ ID No:2 or a sequence derived from that displayed as SEQ ID No:2 showing up to 25%, preferably up to 20%, more preferably up to 15% in particular up to 10, 9, 8, 7, 6, 5, 4, 3, 2, 1 % of the amino acid residues changed by deletion, substitution, insertion or a combination thereof. That means, that lipases used in the inventive process have sequences that are at least 75%, preferably at least 80%, more preferably at least 85% in particular at least 90, 91 , 92, 93, 94, 95, 96, 97, 98, 99% identical to the entire amino acid sequence displayed in SEQ ID No:2. The percent sequence identity between two sequences is a function of the number of identical positions shared by the sequences (i.e., percent sequence identity = numbers of identical positions/total numbers of positions x 100).
The lipase used in the inventive process can be expressed in a lipase producing organism. A lipase producing organism means any organism which is able by nature or through genetic modification, for example by insertion of a lipase gene into the genome of the organism, to produce a lipase having an amino acid sequence according to SEQ ID No:2 or a sequence that is at least 75%, preferably at least 80%, more preferably at least 85% in particular at least 90, 91 , 92, 93, 94, 95, 96, 97, 98, 99% identical to the entire amino acid sequence displayed in SEQ ID No:2. Examples for lipase producing organisms are microorganisms of the genus Aspergillus, Arthrobacter, Alcaligenes, Bacillus, Brevibacterium, Pseudomonas, Chromobacterium, Candida, Fusarium, Geotrichum, Humicola, Mucor, Pichia, Penicillium, Rhizomucor, Rhizopus or Ther- mus. Preferred is the expression in Pseudomonas burkholderia (i.e. Burkholderia plantarii).
The preferred lipase gene inserted into the lipase producing organism is a) the polynucleotide as defined in SEQ ID No:1 , b) a polynucleotide at least about 50%, preferably at least about 60%, more preferably at least 70%, 75%, 80%, 85% or 90%, and even more preferably at least 95%, 96%, 97%, 98%, 99% or more identical to the sequence of SEQ ID No:1 over the entire length of the coding region of the sequence of SEQ ID No:1. The percent sequence identity between the two sequences is a function of the number of identical positions shared by the se- quences (i.e., percent sequence identity = numbers of identical positions/total numbers of positions x 100).
The cultivation of a lipase-producing organism can take place in a manner known per se, for example by fermentation in a nutrient medium which, besides nutrients, trace elements and, where appropriate, antibiotics, contains, for example, a buffer system to stabilize the proteins and enzymes. Cultivation of a lipase producing organism is described e.g. in US 6596520 B1 , especially Example 1 paragraph 1.1 . where Burholderia plantarii is used as an example.
Compared to SEQ ID No:2 the derived amino acid sequences used in the inventive process shall have at least 50%, preferably 65%, more preferably 80%, in particular more than 90% of the enzymatic activity of SEQ ID No:2. In this context, enzymatic activity of SEQ ID No:2 means the ability to trigger the trans-selective acylation of the substituted cyclohexanol. The trans- selectivity is at least 95%, more preferably at least 98%, even more preferably 99%. As reference substance 4-tert.-butyl-cyclohexanol can be used.
The lipase activity per se can be determined by known methods (Gupta et al. Review: Lipase assays for conventional and molecular screening: an overview, Biotechnol. Appl. Biochem.
(2003) 37, 63-71 ). In aqueous medium the catalytic activity is preferably measured by using the Tributyrin-test. In organic systems the Phenylethanol-test is applicable.
Failure to fold into the intended 3-dimensional shape usually produces inactive proteins or enzymes. The folding often takes place under the supervision of specialized molecules, called folding-helper proteins. In one preferred embodiment
0 the lipase having an amino acid sequence according to SEQ ID No:2 or a sequence that is at least 75%, preferably at least 80%, more preferably at least 85% in particular at least 90, 91 , 92, 93, 94, 95, 96, 97, 98, 99% identical to the entire amino acid sequence displayed in SEQ ID No:2 is encoded by
0 the polynucleotide as defined in SEQ ID No:1 , or a polynucleotide at least about 50%, preferably at least about 60%, more preferably at least about 70%, 75%, 80%, 85% or 90%, and even more preferably at least about 95%, 96%, 97%, 98%, 99% or more identical to the sequence of SEQ ID No:1 over the entire length of the coding region of the sequence of SEQ ID No:1 which is expressed in
0 Burkholderia plantarii.
Consequently, in Burkholderia plantarii a folding-helper protein having an amino acid sequence according to SEQ ID No:3 or a sequence derived from that displayed as SEQ ID No:3 being at least 85% in particular at least 90, 91 , 92, 93, 94, 95, 96, 97, 98, 99% identical to the entire amino acid sequence displayed in SEQ ID No:3 is co-expressed with the lipase.
The lipases used in the process of the invention can be employed as crude extract of whole cells and in preparations of varying purity (e.g. cell-free extract) up to a highly purified form. Preference is given to using the lipases in the form of partially purified or highly purified protein solutions. Burkholderia plantarii cells used in the preferred embodiment are small with having a specific density which is comparable to that of the culture medium. Preferably they are separated from the supernatant by microfiltration using appropriate filter plates and strong pumps as known to those skilled in the art. Further concentration can be achieved e.g. by using ultrafiltration as known to those skilled in the art.
From lipases used in solution for converting substrates, immobilized lipases are distinguished which usually have increased stability and are useful for carrying out the reaction continuously and batchwise. Immobilized means carrier-bound on a usually solid support, using methods known to the skilled person, and then employed in the process according to the invention (see below). Using immobilized lipases is a preferred embodiment particularly when conducting the process continuously. For this purpose, the lipases can e.g. advantageously be used while being retained in a column or a tubular reactor. Various possibilities are available to immobilize the lipase used in the process of the invention. The crude extract of a whole cell suspension or the supernatant of a cell culture, as well as purified protein solutions can be immobilized according to methods like those described in e.g. Persson et al. Biotechnology Letters 2000, 22(19): 1571 -1575; US 6,596,520 B1 - especially example 1 .
Also, the cultivation medium (or fermentation liquor) of a lipase producing organism can be spray-dried itself at temperatures (outlet temperature of the spray drier) of 50-150°C, preferably 70-100°C, more preferably 75-85°C and even more preferably at 80-85°C. Spray-drying can also occur in the presence of carrier substances. The carrier must be chosen in a way that the process of the invention can take place. Preferably, polysaccharides like e.g. maltodextrine or mineral compounds like e.g. Na2S04 are used as carriers. The weight amount of carrier is 5 to 200% per weight, preferably 10-200% by weight, more preferably 20-150% by weight and particularly preferably 50-100% by weight, based on the solid content of the fermentation liquor. Also, purified lipase solution can be immobilized with such methods. The residual moisture is less than 10%, based on solid substance, preferably it is less than 7%, particular preference being given to residual moisture content of less than 5%.
In the process of the invention the (immobilized) lipase is used in amounts of 0.5-10% by weight with respect to the starting material (cis / trans mixture), preferably 0.5-5% by weight, more preferably 0.5-1 , in particular 1 % by weight.
The acylation reaction of the invention can take place without or in the presence of a solvent. Preferably it takes place in an organic solvent, such as a hydrocarbon, an ether, or an alcohol. Solvents which are particularly suitable for the reaction are:
0 aliphatic hydrocarbons such as hexane, heptane and octane or a mixture thereof, espe- cially petrolether, or
0 aromatic hydrocarbons like benzene, toluene, xylenes, or
0 ethers such as methyl-tert.-butylether (MTBE), tetrahydrofurane (THF), 1 ,4-dioxane, or
0 cycloaliphatics like cyclopentane, cyclohexane, or
0 tertiary alcohols like tert.-butylalcohol, tert.-amylalcohol.
If a solvent is used, the starting material (cis / trans mixture) is diluted with an organic solvent such that a 0.2-5 molar solution, preferred 0.5-2 molar, more preferred in 0.6-1 .2 molar of the starting material (cis / trans mixture) results.
The reaction can be carried out either continuously or batchwise. Continuous synthesis, especially using a supported lipase, is recommended for performance on the industrial scale. The second step of the inventive process:
The mixture of semi-ester and unreacted isomer requires the separation of the semi-ester from the unreacted isomer. This is expediently achieved by aqueous extraction, e.g. aqueous extrac- tion, of the semi-ester salt, in particular its alkali or earth alkali metal salt. A preferred embodiment is the aqueous extraction in the presence of a base such as sodium carbonate or sodium hydroxide. Preferably the pH should for this reason be in a range of 7.5-10, preferably 8-10, more preferably 8-9.5, in particular 9-9.5.
The third step of the inventive process:
Depending on which isomer of the alcohol is required, either the organic phase, which contains the cis isomer, or the aqueous phase, which contains the trans isomer in form of the semi-ester, can be worked up. Customary methods of hydrolysis can be used to cleave the semi-ester into the corresponding acid and the desired trans-isomer of the alcohol e.g. by treatment with bases (e.g. NaOH, KOH, Na2C03) or acids (e.g. H2S04, HCI).
Below, the invention is further described by the examples given. This illustration is by no means meant to be limiting for the invention.
Example 1 : Preparation of a shake-flask preculture
Two 1000 ml Erlenmeyer flasks were sealed with cotton wool plugs, covered with aluminum foil and sterilized for 30 min at 134°C. A 250 ml graduated glass cylinder was sealed with aluminum foil and likewise sterilized for 30 min at 134°C.
A microelement salt solution was prepared with the following components: two liters of fully demineralized water, 77.2 g of citric acid monohydrate, 22.6 g of zinc sulfate heptahydrate, 17.3 g of diammonium iron(ll) sulfate hexahydrate, 5.7 g of manganese sulfate monohydrate, 1 .2 g of copper sulfate pentahydrate, 0.5 g of cobalt sulfate heptahydrate and 3.0 g of calcium chloride dihydrate.
500 ml of medium comprising the following components were made up: 3.8 g of dry yeast extract powder, 0.5 g of potassium dihydrogen phosphate, 1.5 g of diammonium hydrogen phosphate, 0.5 g of magnesium sulfate heptahydrate, 5 g of trace element salt solution per 500 g of water. The pH was brought to 6.5 using phosphoric acid. The finished medium was filter- sterilized (0.22 μηη). 200 ml of the medium were transferred aseptically into each of the two Erlenmeyer flasks, and the flasks were then inoculated with in each case 1 ml of a Burkholderia plantarii (LU 8093) stock.
The Erlenmeyer flask cultures were then incubated for 12 hours in a shaker-incubator at 30°C and 200 rpm (orbital radius of the shaker = 25 mm).
Example 2: Preparation of a fermenter preculture
10 liters of the medium specified in Example 1 were made up in a stainless-steel bucket and the pH was brought to 6.5 using phosphoric acid. Then, the medium was transferred into a 21 -liter fermenter equipped with three traditional blade agitators. The fermenter was sterilized for 60 minutes at 121 °C and then cooled to 30°C.
The fully-grown Erlenmeyer flask precultures were then aseptically transferred into the prefer- menter, and the fermenter was operated for eight hours under the following conditions: aeration rate 0.5 vvm pressurized air, constant temperature of 30°C, overlay pressure = 0.1 bar, rota- tional speed = 1000 rpm, pH regulation at 6.5 with 25% strength sodium hydroxide solution and 20% strength phosphoric acid.
Example 3: Lipase production in a fermenter
A fermenter with a total volume of 300 liters was charged in succession with the following starting materials:
150 liters of fully demineralized water, 1207 g of dry yeast extract powder, 160 g of potassium dihydrogen phosphate, 480 g of diammonium hydrogen phosphate, 432 g of magnesium sulfate heptahydrate, 1600 g of trace element salt solution (of Example 1 ), 30 ml of Tegosipon® 3062 (silicone-based antifoam). The pH of the medium was adjusted to 4.5 with 20% strength phosphoric acid.
The fermenter was sterilized for 60 minutes at 121 °C and then cooled to 30°C. Then, the fermenter was inoculated aseptically with the preculture of Example 2 and operated under the following conditions: aeration rate 0.4 vvm pressurized air, constant temperature of 30°C, overlay pressure = 0.3 bar, rotational speed = 550 rpm, pH regulation at 6.5 with 25% strength sodium hydroxide solution and 20% phosphoric acid.
After four hours of fermentation time had elapsed, rapeseed oil was pumped in via a filter- sterilization unit of pore size 0.2 μηη. In the first feed phase, feeding was carried out in accordance with the formula:
feed rate [g/l] = 19.7 * e<° 1 *<>
where t represents the fermentation time in hours.
The first feed phase was terminated after 17 hours. Immediately thereafter, more rapeseed oil was pumped in according to the formula:
feed rate [g/l] = 168.6 * e*0 0069 *')
After 96 hours, the oil feeding was stopped, and the operation of the fermenter continued until the oil in the medium had been consumed. Thereafter, the fermenter was cooled to 4°C. Without further delay, a sample was taken, and the total dry matter of the liquor (DM) and the enzymatic activity (units/ml) were determined. The dry matter content was determined with the aid of an infrared moisture analyzer. The enzymatic activity was measured titrimetrically with tributyrin as the substrate. The amount of liquor which liberates one μηηοΙ from butyric acid/min tributyrin was defined as one enzymatic unit.
In the 300-liter fermenter, a dry-matter content of 7.56% was measured, with an enzymatic activity of 10256 U/ml. The fermenter weight was 186.8 kg. The total dry-matter amounted to 14.1 kg. The total enzymatic activity amounted to 1916 MU. One MU = 1 000 000 units.
Example 4: Production of the immobilized lipase
The lipase present in the fermentation liquor was immobilized on sodium sulfate by means of spray-drying.
To this end, 14.1 kg of sodium sulfate were added to the fermenter contents and dissolved over one hour at the minimum rotational speed of the fermenter. Thereafter, the entire fermenter content was spray-dried. The spray drier was operated with 250 m3/h nitrogen. The inlet temperature was 180°C. The outlet temperature was 75°C. The fermenter content was injected into the nitrogen stream by means of a two-substance nozzle. The pump speed was adjusted such that the desired outlet temperature was reached (approximately 15 kg/h). The dry powder was separated off via a cyclone and discharged from the cyclone by means of a cell-wheel sluice.
A total of 25.6 kg of dry powder were obtained. The residual moisture content of the powder was 1.8%. A sample of the dry powder was dissolved in water and the enzymatic activity was measured using tributyrin. The powder had an activity of 67 360 units/g DM.
The immobilized enzyme catalyzes the following transesterification reaction in the organic medium:
The suitability of the immobilizate for conversions in the organic system was tested as follows: The reaction was carried out in a test reactor composed of a 500 ml jacketed vessel equipped with a propeller agitator made of glass. The agitator was driven by a motor from Heidolph (type RZR 2051 ) via magnetic coupling. The set-up was heated by a thermostat (Huber Ministat). Approximately 0.5 g of immobilizate were weighed into a 50 ml Falcon® tube and the precise weight was recorded.
The thermostat was set at 22°C and the stirrer speed to 350 rpm.
Via a glass funnel, the dry reactor was charged with 50.0 g of 1 -phenylethanol and 95.0 g of MTBE. Any contamination with water was avoided since too much water prevents the reaction. The pre-weighed lipase-containing immobilizate was added via a glass funnel.
The reaction was started by addition of 20.4 g of vinyl propionate.
60 minutes after the addition of vinyl propionate, a sample (approx. 1 ml) was taken and immediately filtered through a 0.2 μηι syringe filter (SPARTAN® 30/02 RC, Schleicher & Schuell). 100 μΙ of the filtered sample and 900 μΙ of the HPLC eluent (acetonitrile 20%, methanol 40%, trifluoroacetic acid 1 % and water 39%) were placed into a 2 ml Eppendorf® vessel. 100 μΙ of that solution were in turn placed into an HPLC tube and likewise made up with 900 μΙ of HPLC eluent, whereupon the tube was sealed. The sample was then analyzed by HPLC.
The unit of the lipase activity in the organic system is PEU (phenylethanol unit). One PEU is the amount of lipase which under the above-described test conditions catalyzes the formation of 1 μηηοΙ of phenylethyl propionate (PEP) from phenylethanol per minute.
Parameters required for the calculation:
Phenylethyl propionate concentration (PEP) [mmol/l]
Reaction volume [I]
Time (reaction time) [min]
Weight (amount of enzyme employed) [g]
Calculation of the enzymatic activity
r n ^m PEP Vmmol] ^ . , r il !li 1000 [/jmo/] , . r . ,
Activity [PEU] = * reaction volume [/] * - 1 time [mm]
[/] [mmol]
Calculation of the specific activity Spec . activity [PEU I g] = [PEU ]
weight [g]
The immobilizate obtained in the example had a specific activity of 842 PEU/g immobilizate.
Example 5: preparation of cis-4-tert.-butyl-cyclohexanol
1 13.4 kg of a cis / trans (30:70) mixture (726 mol, 1 eq) of 4-tert.-butyl-cyclohexanol was introduced into a reaction vessel carrying 453 I MTBE (1 .6 mol). 58.1 kg succinic anhydride
(580 mol; 0.8 eq) were added as well as 1 .1 kg lipase immobilized on Na2S04 from Burkholderia plantarii (1 % per weight; see examples above). The reaction mixture was stirred at 20°C. The reaction process was checked by gas chromatography. As after 23 h reaction time 0.9 GC area % of the trans-isomer were still detected (table 1 , No. 3), the reaction mixture was stirred for further 27 h.
Table 1 : isomeric ratio cis / trans
The reaction mixture was filtered via diatomaceous earth (Kieselgur, e.g. Celite®) and the vessel, as well as the MTBE were rinsed with further MTBE. After addition of distilled water to the filtered reaction mixture and to the MTBE-phase of the rinsing step, 25% NaOH solution was added stepwise at 20°C until a pH of 9.3 was achieved. Further distilled water was added and the phase separation was performed. The aqueous phase (pH 9.3) was extracted another two times with MTBE. The organic phases were combined, and the solvent was removed by distillation (50 mbar, max. 40°C) until a white suspension was gained. This suspension (109 kg) was further concentrated in a rotating evaporator. Table 2: isomeric ratio cis / trans after extraction
No. probe Cis (%] Trans (%)
1 Org. phases 99 3 0.7 combined
2 After distillation 39.6 ( H.4
For distillation, a simple distillation apparatus was used with a column carrying packing material (packed column, i.e. Raschigrings, 8x8 mm) and heated solids bridge (tempered condenser). The transition temperature was 1 18°C at 26 mbar water-jet vacuum.
Overall, 24.8 kg cis-4-(1 ,1 -Dimethylethyl)-cyclohexanol (73% yield) were gained in form of a white solid.
Example 6: preparation of cis-4-tert.-butyl-cyclohexanol
1 g 4-tert.-Butyl-cyclohexanol (cis / trans 30:70; i.e. 1 eq) was mixed with 10 ml toluene (i.e. 0.6 mol). 0.5 g succinic anhydride (i.e. 0.8 eq) and 0,1 g lipase immobilized on Na2S04 were added (i.e. 10% per weight). The reaction conditions were the same as in example 1 .
The reaction mixture was stirred for 24 h at 20°C and further processed as described in example 5. Probes after 1 and 24 h stirring time were analyzed:
Example 7: like exam pie 6 but different solvents (0.6 mol) after 24 h at 20°C
Example 8: like example 6 but 1.2 mol solvent after 24 h at 20°C

Claims

Claims:
1 . A process for preparing substantially isomerically pure substituted cyclohexanols, which comprises
i) reacting the cis / trans mixture of a substituted cyclohexanol with a dicarboxylic acid anhydride in the presence of a lipase with a protein sequence as displayed in SEQ ID No:2 or a lipase with a protein sequence being at least 75% identical to the entire amino acid sequence shown in SEQ ID No:2 and have at least 50% of the enzymatic activity of SEQ ID No:2, to give the trans semi-ester,
ii) separating off the trans semi-ester from the unreacted substituted cyclohexanol cis isomer,
iii) isolating the substituted cis or trans cyclohexanol.
2. A process according to claim 1 , wherein the lipase used in step (i) is encoded by a) the polynucleotide as defined in SEQ ID No:1 , b) a polynucleotide at least 75% identical to the sequence of SEQ ID No:1 over the entire length of the coding region of the sequence of SEQ ID No:1 .
3. A process according to claim 2, wherein the lipase is expressed in Burkholderia plantarii.
4. A process according to any of the preceding claims, wherein in step (i) a C2-C10 dicarboxylic acid anhydride is used.
5. A process according to claim 4, wherein succinic anhydride is used.
6. A process according to any of the preceding claims, wherein the lipase in step (i) is immobilized.
7. A process according to any of the preceding claims, wherein the reaction of step (i) is car- ried out in a hydrocarbon, an ether, or an alcohol as solvent.
8. A process according to claim 7, wherein the solvent is selected from toluene, petrolether, MTBE, tetrahydrofurane, or cyclohexane.
9. A process according to any of the preceding claims, wherein the separation in step (ii) is carried out by extraction at a pH of 8-10.
10. A process according to any of the preceding claims, wherein the mixture of substituted cyclohexanols used is substituted in position 4 related to the OH-group.
1 1 . A process according to claim 10, wherein 4-tert-Butyl-cyclohexanol is used.
12. A process for immobilization of proteins on a solid support, wherein the fermentation liquor is immobilized by means of spray-drying.
13. A process according to claim 12, wherein Na2S04 is used as solid support.
EP11843794.6A 2010-11-26 2011-11-21 Preparation of isomerically pure substituted cyclohexanols Withdrawn EP2643281A4 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP11843794.6A EP2643281A4 (en) 2010-11-26 2011-11-21 Preparation of isomerically pure substituted cyclohexanols

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP10192721 2010-11-26
EP11843794.6A EP2643281A4 (en) 2010-11-26 2011-11-21 Preparation of isomerically pure substituted cyclohexanols
PCT/IB2011/055199 WO2012069974A1 (en) 2010-11-26 2011-11-21 Preparation of isomerically pure substituted cyclohexanols

Publications (2)

Publication Number Publication Date
EP2643281A1 true EP2643281A1 (en) 2013-10-02
EP2643281A4 EP2643281A4 (en) 2014-06-04

Family

ID=46145433

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11843794.6A Withdrawn EP2643281A4 (en) 2010-11-26 2011-11-21 Preparation of isomerically pure substituted cyclohexanols

Country Status (4)

Country Link
EP (1) EP2643281A4 (en)
JP (1) JP2014500020A (en)
CN (1) CN103221370B (en)
WO (1) WO2012069974A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4665028A (en) * 1982-10-06 1987-05-12 Novo Industri A/S Method for production of an immobilized enzyme preparation by means of a crosslinking agent
DE10151292A1 (en) * 2001-10-22 2003-04-30 Basf Ag New bacterial lipase mutants, useful for enantioselective conversion, e.g. acylation of alcohols, have increased specific activity
WO2005073215A1 (en) * 2004-01-29 2005-08-11 Basf Aktiengesellschaft Method for producing enantiomer-pure aminoalcohols
US20100086983A1 (en) * 2008-09-29 2010-04-08 Akermin, Inc. Process for accelerated capture of carbon dioxide
EP2248906A1 (en) * 2008-01-23 2010-11-10 Ajinomoto Co., Inc. Method of producing l-amino acid

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19931847A1 (en) * 1999-07-09 2001-01-11 Basf Ag Immobilized lipase

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4665028A (en) * 1982-10-06 1987-05-12 Novo Industri A/S Method for production of an immobilized enzyme preparation by means of a crosslinking agent
DE10151292A1 (en) * 2001-10-22 2003-04-30 Basf Ag New bacterial lipase mutants, useful for enantioselective conversion, e.g. acylation of alcohols, have increased specific activity
WO2005073215A1 (en) * 2004-01-29 2005-08-11 Basf Aktiengesellschaft Method for producing enantiomer-pure aminoalcohols
EP2248906A1 (en) * 2008-01-23 2010-11-10 Ajinomoto Co., Inc. Method of producing l-amino acid
US20100086983A1 (en) * 2008-09-29 2010-04-08 Akermin, Inc. Process for accelerated capture of carbon dioxide

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
BREUER ET AL: "Industrial methods for the production of optically active intermediates", ANGEWANDTE CHEMIE, INTERNATIONAL EDITION, vol. 43, 2004, pages 788-824, XP002339848, *
COSTA-SILVA ET AL: "Partial purification and drying by spray dryer of extracellular lipases from the endophytic fungus Cercospora kikuchii", JOURNAL OF BIOTECHNOLOGY / SPECIAL ABSTRACTS, vol. 150S , page S377, XP027489946, *
See also references of WO2012069974A1 *
STINSON: "Chiral Drugs", Chemical & Engineering News, vol. 78 2000, pages 1-10, XP002723173, Retrieved from the Internet: URL:http://www.technology-catalysts.com/pdf/TCI-CENews-1000.pdf [retrieved on 2014-04-09] *
XU ET AL: "Template-based modeling of a psychrophilic lipase: Conformational changes, novel structural features and its application in predicting the enantioselectivity of lipase catalyzed transesterification of secondary alcohols", BIOCHIMICA ET BIOPHYSICA ACTA, vol. 1804, 7 September 2010 (2010-09-07), pages 2183-2190, XP002723491, *
YAMAMOTO ET AL: "Drying of enzymes: Enzyme retention during drying of a single droplet", CHEMICAL ENGINEERING SCIENCE, vol. 47, 1992, pages 177-183, XP002723492, *

Also Published As

Publication number Publication date
WO2012069974A1 (en) 2012-05-31
CN103221370B (en) 2015-02-11
JP2014500020A (en) 2014-01-09
CN103221370A (en) 2013-07-24
EP2643281A4 (en) 2014-06-04

Similar Documents

Publication Publication Date Title
US6596520B1 (en) Immobilizing lipase by adsorption from a crude solution onto nonpolar polyolefin particles
EP1775344B1 (en) Lipase, its gene, the strain and the application of this lipase
WO2001038553A1 (en) Process for producing fatty acid lower alcohol ester
CN110396508B (en) L-pantolactone dehydrogenase derived from Nocardia cyriacetigoorgica and application thereof
EP3564376B1 (en) Gene encoding alanyl-glutamine dipeptide biosynthetic enzyme and application thereof
CN109266630A (en) A kind of lipase and its preparing the application in Bu Waxitan intermediate
JP2013504336A (en) Process for the preparation of enzyme-catalyzed monoacylated polyols
Lou et al. Efficient kinetic resolution of (R, S)‐1‐trimethylsilylethanol via lipase‐mediated enantioselective acylation in ionic liquids
KR100697310B1 (en) Biological method for the production of biodiesel
CN110396507B (en) L-pantolactone dehydrogenase from Cneubacter physcomitrella
CN101880695A (en) Method for preparing (S)-naproxen by enzyme resolution of racemic naproxen ester
US7314739B2 (en) Lipase variants
Garske et al. Industrial enzymes and biocatalysis
JP2004516004A (en) Recombinant microorganism expressing polyhydroxyalkanoate biosynthetic enzyme and intracellular PHA depolymerase
US8709751B2 (en) Preparation of isomerically pure substituted cyclohexanols
WO2023159069A1 (en) Engineered alpha-guaiene synthases
EP2643281A1 (en) Preparation of isomerically pure substituted cyclohexanols
JP4170624B2 (en) Method for producing L-menthol
CN110396506B (en) L-pantolactone dehydrogenase derived from Nocardia asteroids and use thereof
JP2008212144A (en) Alcohol dehydrogenase, gene encoding the same and method for producing optically active (r)-3-quinuclidinol using the same
CN109943618A (en) A kind of application of recombinant lipase in fractionation (R, S)-α-ethyl -2- oxygen -1- methyl pyrrolidineacetate
KR102703236B1 (en) Enantioselectivity Improved Candida antarctica Lipase B Variants
CN103409402A (en) Aldolase mutant
CN115725542B (en) Cholesterol esterase active aggregate and application thereof
CN110527671B (en) L-pantolactone dehydrogenase derived from Nocardia farcina and application thereof

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130626

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
A4 Supplementary search report drawn up and despatched

Effective date: 20140508

RIC1 Information provided on ipc code assigned before grant

Ipc: C12P 41/00 20060101AFI20140425BHEP

Ipc: C07C 35/08 20060101ALI20140425BHEP

Ipc: C12N 11/14 20060101ALI20140425BHEP

Ipc: C12P 7/02 20060101ALI20140425BHEP

17Q First examination report despatched

Effective date: 20141216

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20151121