EP2639401B1 - Surveillance en temps réel de puits de forage et analyse de contribution de fracture - Google Patents

Surveillance en temps réel de puits de forage et analyse de contribution de fracture Download PDF

Info

Publication number
EP2639401B1
EP2639401B1 EP13159586.0A EP13159586A EP2639401B1 EP 2639401 B1 EP2639401 B1 EP 2639401B1 EP 13159586 A EP13159586 A EP 13159586A EP 2639401 B1 EP2639401 B1 EP 2639401B1
Authority
EP
European Patent Office
Prior art keywords
fractures
fractured intervals
production
time
determining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13159586.0A
Other languages
German (de)
English (en)
Other versions
EP2639401A1 (fr
Inventor
Luis E Gonzalez
Rajan N Chokshi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Weatherford Technology Holdings LLC
Original Assignee
Weatherford Technology Holdings LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Weatherford Technology Holdings LLC filed Critical Weatherford Technology Holdings LLC
Publication of EP2639401A1 publication Critical patent/EP2639401A1/fr
Application granted granted Critical
Publication of EP2639401B1 publication Critical patent/EP2639401B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/10Locating fluid leaks, intrusions or movements
    • E21B47/103Locating fluid leaks, intrusions or movements using thermal measurements
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures

Definitions

  • Embodiments of the present invention generally relate to hydrocarbon production and, more particularly, to determining the individual contribution of fractured intervals (or fractures) in time.
  • a system for determining production of hydrocarbons comprising:
  • Embodiments of the invention generally relate to allocating production of each of a plurality of fractured intervals (or fractures). This allocation may be performed by combining temperature distribution (and pressure) measurements, a real-time surface multiphase flow measurement, and an inflow model for each fractured interval (or fracture).
  • One embodiment of the invention is a method for determining production of hydrocarbons.
  • the method generally includes determining a temperature distribution associated with a plurality of fractured intervals or fractures disposed along a well; measuring a total flow rate for the well; modeling an inflow rate for each of the plurality of fractured intervals or fractures; and allocating production of each of the plurality of fractured intervals or fractures based on the temperature distribution, the total flow rate, and the inflow rates.
  • the system generally includes a temperature sensing device configured to determine a temperature distribution associated with a plurality of fractured intervals or fractures disposed along a well, a flowmeter configured to measure a total flow rate for the well, and a processing unit.
  • the processing unit is typically configured to model an inflow rate for each of the plurality of fractured intervals or fractures and to allocate production of each of the plurality of fractured intervals or fractures based on the temperature distribution, the total flow rate, and the inflow rates.
  • Yet another embodiment of the invention provides a system for determining production hydrocarbons.
  • the system generally includes means for determining a temperature distribution associated with a plurality of fractured intervals or fractures disposed along a well; means for measuring a total flow rate for the well; means for modeling an inflow rate for each of the plurality of fractured intervals or fractures; and means for allocating production of each of the plurality of fractured intervals or fractures based on the temperature distribution, the total flow rate, and the inflow rates.
  • Embodiments of the invention provide techniques and apparatus for calculating production of each of a plurality of fractured intervals (or fractures) and monitoring changes in the fracture contribution with time. Such real-time monitoring and analysis may be based on a combination of different measurements in the wellbore, on the surface, and from a mathematical model, as described below. In this manner, the industry may be able to understand the behavior of fractures and, in turn, optimize the number of stages ( i.e ., fractured intervals), the number of fractures, and the spacing between fractures and stages.
  • a hydrocarbon production system 100 containing one or more production pipes 102 (also known as production tubing) that may extend downward through a casing 104 to one or more hydrocarbon sources 106 (e.g., reservoirs).
  • An annulus 108 may exist between the pipe 102 and the casing 104.
  • Each production pipe 102 may include one or more lateral sections ( e.g ., created by horizontal drilling) that branch off to access different hydrocarbon sources 106 or different areas of the same hydrocarbon source 106.
  • the fluid mixture may flow from sources 106 to the well completion through the production pipes 102, as indicated by fluid flow 130.
  • the production pipe 102 may include one or more tools 122 for performing various tasks (e.g ., sensing parameters such as pressure or temperature) in, on, or adjacent a pipe or other conduit as the fluid mixtures flow through the production pipes 102.
  • the tools 122 may be any type of downhole device, such as a flow control device (e.g ., a valve), a sensor (e.g ., a pressure, temperature or fluid flow sensor) or other instrument, an actuator ( e.g ., a solenoid), a data storage device ( e.g., a programmable memory), a communication device (e.g., a transmitter or a receiver), etc.
  • a flow control device e.g ., a valve
  • a sensor e.g ., a pressure, temperature or fluid flow sensor
  • an actuator e.g ., a solenoid
  • a data storage device e.g., a programmable memory
  • a communication device e.g.
  • Each tool 122 may be incorporated into an existing section of production pipe 102 or may be incorporated into a specific pipe section that is inserted in line with the production pipe 102.
  • the distributed scheme of tools 122 shown in FIG. 1 may permit an operator of the system 100 to determine, for example, the level of depletion of the hydrocarbon reservoir. This information may permit the operator to monitor and intelligently control production of the hydrocarbon reservoir.
  • microseismic and production logs have helped in the fracture evaluation to determine the drainage volume and fracture inflow.
  • Microseismic can provide useful information on the development of fracture symmetry, half-length, azimuth, width and height, and their dependence on the treatment parameters and reservoir characteristics. Additionally, these fracture geometries in conjunction with other measured or calculated parameters (e.g ., rates, inflow models, etc.) can be used to better understand fracture modeling and production characteristics.
  • Embodiments of the invention provide methods and apparatus to optimize, or at least increase, the production of horizontal fractured wells in shale reservoirs, for example.
  • methods described herein enable the optimization of the number of fractures, the spacing of fractures, and the length of the horizontal section by determining the contribution of the fracture stages (or the fractures) over time.
  • each fracture stage may be calculated in an analogous way to that performed in a traditional field, where the total production rates are allocated to each production well using well testing measurements, done periodically with daily measurement information like wellhead pressure.
  • an acceptable production allocation can be made as a function of time. Because the system is transient, such allocation may be performed on a real-time basis.
  • the idealized system 200 shown in FIG. 2 may be used to model the reservoir.
  • multiple fractures 204, 206 are represented as spaced along and transverse to the horizontal well trajectory 202. Assuming fracturing conditions were the same, the length and width of each fracture in the fracture stage may be considered equal.
  • These parallel fractures are formed in an area ( e . g ., a shale reservoir) with essentially zero permeability (as illustrated in the region 212 unshaded in FIG. 2 ), thereby forming a region 214 of modified permeability (shaded in FIG. 2 ), essentially creating a reservoir where none existed before.
  • N frac any number of fractures
  • five fractures are illustrated in the fracture stage of FIG. 2 (two external fractures 204 and three internal fractures 206) with equal fracture spacing.
  • the fracture stage is defined by confining external boundaries 210.
  • FIG. 2 shows that external fractures 204 are confined by virtual no-flow boundaries 208, which force the external fractures to have the same behavior as the internal fractures 206, and pure linear flow initially occurs. In shale gas reservoirs of nanodarcy permeability, pure linear flow opposite the fracture faces occurs for very long times.
  • SRV Stimulated Reservoir Volume
  • DTS distributed temperature sensing
  • ATS multi-point or array temperature sensing
  • FIG. 3 illustrates a multi-well system 300 in an oil/gas production field, in which hydrocarbon production may be allocated to each of the wells.
  • periodical (e.g., 15 days to weeks or months) production well tests are performed on each individual well, and daily (or in some cases, every few hours) pressure (P) and/or temperature (T) measurements at or near the wellhead 302 of each well are registered.
  • the produced fluids from each well may be collected at a manifold and then separated by a separator 310 into oil, gas, and water.
  • Daily (or in some cases, every few hours or minutes) total flow rates of oil (Qo), gas (Qg), and water (Qw) may be measured.
  • the well performance (P vs. Q relation) for each well at the wellhead 302 is calculated. The use of this wellhead performance with frequent wellhead pressure measurements allows the flow rates of each individual well to be determined.
  • an allocation factor (K) is found using the relationship between the total flow rate (Qt) measured and the sum of the individual well flow rates ( ⁇ Qi) and may be subsequently used.
  • FIG. 4 illustrates a system 400 for allocating hydrocarbon produced from a horizontal well with multiple fractured intervals 402 along a horizontal well, in accordance with an embodiment of the invention. Although seven fractured intervals 402, each with five fractures 404, are shown in FIG. 4 , any number of fractured intervals and any number of fractures per interval may be used.
  • the system 400 also includes a multiphase real-time flowmeter 406 and a DTS cable 408 disposed downhole.
  • the system may also include one or more sensors 410 for measuring pressure (P) and/or temperature (T), which may be disposed anywhere in the wellbore, such as in the vertical section as shown.
  • P pressure
  • T temperature
  • the multiphase flowmeter 406 may be installed at or adjacent the wellhead or within the well bore and, for some embodiments, may be an optical flowmeter ( e . g ., an optical downhole flowmeter).
  • the DTS cable 408 may be installed adjacent the casing 104, as shown in FIG. 4 .
  • each stage (i . e ., fractured interval 402) in FIG. 4 is akin to a producing well.
  • the variation of temperature and a transient inflow model it is possible to calculate the production of each stage at any time. In fact, if the temperature variation is high enough to distinguish between fractures 404, it may also be possible to allocate the production of each particular fracture.
  • each stage or fracture may be considered as an individual contributor to production
  • the main characteristics of the fractures e.g., length and width
  • the inflow rate of each fracture will be computed by an analytical transient model and combined with the change in temperature (as determined by the DTS cable 408, for example) at each stage referenced to an initial condition prior to fracturing.
  • Qt total flow rate measured by the multiphase flowmeter 406
  • FIG. 5 is a flow diagram of example operations 500 for determining the contribution to hydrocarbon production of each fractured interval (or each fracture).
  • the operations 500 may begin, at 502, by determining a temperature distribution associated with a plurality of fractured intervals or fractures disposed along a well.
  • the temperature distribution may be determined by performing at least one of distributed temperature sensing (DTS) or array temperature sensing (ATS).
  • DTS distributed temperature sensing
  • ATS array temperature sensing
  • the plurality of fractured intervals or fractures may be located in a shale reservoir, for example.
  • a total flow rate of a fluid (or any combination of fluids) produced by the well is measured.
  • the total flow rate may be a total gas flow rate or a total oil flow rate, for example.
  • the total flow rate may be measured using a flowmeter disposed at the surface.
  • the flowmeter may be disposed at or adjacent a wellhead of the well.
  • An inflow rate is modeled at 506 for each of the plurality of fractured intervals or fractures.
  • the inflow rate may be an inflow gas rate or an inflow oil rate, for example.
  • allocating the production at 508 may include: (1) determining a first temperature value T 0 at a first time t 0 ( e . g ., before production starts) for each of the plurality of fractured intervals or fractures; (2) determining a second temperature value T n at a second time t n ( e .
  • the operations 500 may also include repeating the determining at 502, the measuring at 504, and the modeling at 506 within a period short enough to observe transient behavior of the plurality of fractured intervals or fractures.
  • the determining, measuring, and/or modeling described above may be performed and repeated with any desired frequency (at any desired rate or periodicity).
  • the determining, measuring, and/or modeling may be performed continuously, hourly, daily, weekly, or with other frequencies.
  • the operations 500 may also include determining one or more pressure measurements for the well.
  • allocation of the production at 508 may also be based on the pressure measurements.
  • the pressure measurements may be made by one or more pressure sensors located downhole, along the horizontal or vertical portion of the wellbore.
  • the pressure sensors may be optical-based pressure sensors having one or more fiber Bragg gratings (FBGs) located therein.
  • FBGs fiber Bragg gratings
  • FIG. 6 illustrates a workflow 600 for identifying and calculating the contribution of each fractured interval (or fracture), in accordance with an embodiment of the invention.
  • the workflow 600 can be easily expanded to production allocation for each fracture, as long as the temperature variation is high enough to distinguish between fractures.
  • the DTS (or ATS) data 602 is related to the geothermal gradient value for each stage 402.
  • the cable 408 may be sampled with some periodicity to generate the data 602, leading to temperature measurements at certain sampling times (t n ).
  • the delta temperature ( ⁇ T) between the temperature at the sampling time and at time t 0 is calculated for each stage 402.
  • the ⁇ T values for each stage are divided by Tg to normalize the data.
  • pressure measurements e . g ., taken by the sensors 410) may be used to ensure accuracy of the ⁇ T values for each stage ( e . g ., by correlation with the temperature measurements).
  • a ratio (( ⁇ T/Tg)/( ⁇ T/Tg)max) for the sampling time (t n ) is calculated for each stage 402.
  • the ratio for each stage is calculated by dividing the Tg-normalized ⁇ T value for this particular stage by the maximum Tg-normalized ⁇ T value over all previous times for this stage.
  • the ⁇ T value at time to is initially assumed to be the maximum Tg-normalized ⁇ T value, so the ratio in this case will be 1.
  • the maximum ⁇ T value is stored for later validation of this assumption.
  • inflow transient models are run to generate inflow rates for each stage 402 (indexed by "i").
  • the workflow 600 of FIG. 6 generates inflow gas rates for each stage (Qgfi), but inflow oil rates or both may also be used.
  • the inflow transient models either produce the inflow rates at the sampling time (t n ) as shown at 610, or interpolation or other techniques are used to determine inflow rates at the sampling time based on inflow rates produced for other times.
  • the ratio at the sampling time (t n ) for each stage calculated at 606 is multiplied with the modeled inflow rate for each stage from 610 corresponding to the sampling time.
  • surface multiphase measurements may be made at 614, for example, by the flowmeter 406, to generate one or more total flow rates (Qg, Qo, and/or Qw) for the well.
  • the total flow rates may either be generated at the sampling time (t n ) as shown at 616, or interpolation or other techniques may be used to determine the total flow rates at sampling time based on measurements taken at other times.
  • results of the multiplications at 612 for each of the stages 402 at the sampling time (t n ) may be summed ( ⁇ Q'gfi). At 618, this sum may be compared to the total gas flow rate (Qg) corresponding to the sampling time (t n ).
  • the ratio for each stage 402 calculated at 606 is multiplied by the Qgfi at t 0 for each stage at 612, and the sum of all Qgfi values is compared to the Qg corresponding to to at 618.
  • the value of ⁇ T 1 will be compared to the value of ⁇ T 0 . If ⁇ T 1 is bigger, then a new maximum value is obtained.
  • This new maximum value replaces the previous value, and in this case the contribution of this particular stage will be 100% during this period of time, and the assumption on the previous time step was wrong. A new calculation for to will be performed to correct the first assumption and similarly at any time that a new maximum value is found.
  • the workflow 600 operating on a "real-time" basis, will increase well productivity, helping to determine what is the optimal choke size to flow back the well and to have all fractures contributing (or to find out which fractures do not contribute at all).
  • a normalized graph of production versus a number of contributing stages and/or fractures can be obtained and, based on these results, an optimal number of stages and/or fractures may be determined.
  • a good relationship is expected of production versus number of contributing fractures, more consistent than the plot 700 of gas production versus number of contributing fractures shown in FIG. 7 (from Modeland N.
  • DTS distributed temperature sensing
  • ATS multi-point or array temperature sensing

Landscapes

  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geophysics (AREA)
  • Measuring Fluid Pressure (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Claims (13)

  1. Procédé (500) permettant de déterminer une production d'hydrocarbure, comprenant les étapes consistant à :
    déterminer (502) une distribution de température associée à une pluralité d'intervalles fracturés ou de fractures agencées le long d'un puits ;
    mesurer (504) un débit total pour ledit puits ;
    modéliser (506) un débit entrant pour chacun parmi la pluralité d'intervalles fracturés ou de fractures ; et
    affecter (508) une production de chacun parmi la pluralité d'intervalles fracturés ou de fractures en se basant sur la distribution de température, le débit total, et les débits entrants.
  2. Procédé selon la revendication 1, comprenant en outre une étape consistant à répéter (510) les étapes de détermination, de mesure, et de modélisation au sein d'une période suffisamment courte pour observer un comportement transitoire de la pluralité d'intervalles fracturés ou de fractures.
  3. Procédé selon la revendication 1 ou 2, dans lequel l'étape de mesure comprend une étape consistant à mesurer le débit total en utilisant un débitmètre multiphase (406).
  4. Procédé selon la revendication 1, 2 ou 3, dans lequel au moins une étape parmi les étapes de détermination, de mesure, ou de modélisation est mise en oeuvre quotidiennement.
  5. Procédé selon la revendication 1, 2, 3 ou 4, dans lequel au moins une étape parmi les étapes de détermination, de mesure, ou de modélisation est mise en oeuvre de manière continue.
  6. Système (400) permettant de déterminer une production d'hydrocarbures, comprenant :
    un dispositif de détection de température (410) configuré pour déterminer une distribution de température associée à une pluralité d'intervalles fracturés (402) ou de fractures agencés le long d'un puits ;
    un débitmètre (406) configuré pour mesurer un débit total pour ledit puits ; et
    une unité de traitement configurée pour :
    modéliser un débit entrant pour chacun parmi la pluralité d'intervalles fracturés ou de fractures ; et
    affecter une production de chacun parmi une pluralité d'intervalles fracturés ou de fractures en se basant sur la distribution de température, le débit total, et les débits entrants.
  7. Procédé selon l'une quelconque des revendications 1 à 5, ou système selon la revendication 6, dans lequel la pluralité d'intervalles fracturés ou de fractures est située dans un réservoir de schiste.
  8. Procédé selon l'une quelconque des revendications 1 à 5, ou selon la revendication 7, comprenant en outre une étape consistant à déterminer une ou plusieurs mesure(s) de pression pour ledit puits, dans lequel l'étape d'affectation de la production est en outre basée sur les mesures de pression, ou système selon la revendication 6 ou 7, comprenant en outre un capteur de pression configuré pour déterminer une ou plusieurs mesure(s) de pression pour ledit puits, dans lequel l'unité de traitement est configurée pour affecter la production en se basant en outre sur les mesures de pression.
  9. Procédé selon l'une quelconque des revendications 1 à 5, ou selon la revendication 7 ou 8, dans lequel l'étape d'affectation de la production comprend les étapes consistant à, ou système selon la revendication 6, 7 ou 8, dans lequel l'unité de traitement est configurée pour affecter la production grâce aux étapes consistant à :
    déterminer une première valeur de température à un premier instant pour chacun parmi la pluralité d'intervalles fracturés ou de fractures ;
    déterminer une deuxième valeur de température à un deuxième instant pour chacun parmi la pluralité d'intervalles fracturés ou de fractures ;
    calculer une valeur delta de température pour le deuxième instant pour chacun parmi la pluralité d'intervalles fracturés ou de fractures grâce à une étape consistant à déterminer une différence entre les première et deuxième valeurs de température pour chacun parmi la pluralité d'intervalles fracturés ou de fractures ;
    calculer un premier rapport constitué de la valeur delta de température pour le deuxième instant pour chacun parmi la pluralité d'intervalles fracturés ou de fractures sur une température géothermique ;
    comparer le premier rapport pour le deuxième instant à une valeur maximale du premier rapport sur tous les instants précédents pour chacun parmi la pluralité d'intervalles fracturés ou de fractures ;
    pour chacun parmi la pluralité d'intervalles fracturés ou de fractures, designer le premier rapport pour le deuxième instant en tant que valeur maximale du premier rapport sur tous les instants précédents si le premier rapport pour le deuxième instant est supérieur à une valeur maximale précédemment désignée ;
    pour chacun parmi la pluralité d'intervalles fracturés ou de fractures, calculer un deuxième rapport constitué du premier rapport pour le deuxième instant sur une valeur maximale, actuellement désignée, du premier rapport sur tous les instants précédents ;
    multiplier le deuxième rapport pour le deuxième instant par le débit entrant modélisé correspondant au deuxième instant pour chacun parmi la pluralité d'intervalles fracturés ou de fractures ;
    additionner des résultats de la multiplication pour chacun parmi la pluralité d'intervalles fracturés ou de fractures ; et
    déterminer un facteur d'affectation grâce à l'étape consistant à diviser le débit total mesuré correspondant au deuxième instant par ladite somme.
  10. Procédé selon la revendication 9, dans lequel le premier instant survient avant que les hydrocarbures soient produits.
  11. Procédé selon la revendication 9 ou 10, comprenant en outre une étape consistant à appliquer le facteur d'affectation au débit entrant modélisé pour chacun parmi la pluralité d'intervalles fracturés ou de fractures, ou système selon la revendication 9, dans lequel l'unité de traitement est en outre configurée pour appliquer le facteur d'affectation au débit entrant modélisé pour chacun parmi la pluralité d'intervalles fracturés ou de fractures.
  12. Procédé selon l'une quelconque des revendications 1 à 5, ou 7 à 11, dans lequel l'étape de détermination de la distribution de température comprend une étape consistant à mettre en oeuvre au moins une parmi une détection de température distribuée (DTS) ou une détection de température en réseau (ATS), ou système selon l'une quelconque des revendications 6 à 9, ou 11, dans lequel le dispositif de détection de température comprend un dispositif de détection de température distribuée (DTS) ou un dispositif de détection de température en réseau (ATS).
  13. Procédé selon l'une quelconque des revendications 1 à 5, ou 7 à 12, ou système selon l'une quelconque des revendications 6 à 9, ou 11 ou 12, dans lequel le débit total comprend un débit de gaz total et dans lequel les débits entrants comprennent des débits de gaz entrants.
EP13159586.0A 2012-03-16 2013-03-15 Surveillance en temps réel de puits de forage et analyse de contribution de fracture Active EP2639401B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US201261611924P 2012-03-16 2012-03-16

Publications (2)

Publication Number Publication Date
EP2639401A1 EP2639401A1 (fr) 2013-09-18
EP2639401B1 true EP2639401B1 (fr) 2016-05-04

Family

ID=48049763

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13159586.0A Active EP2639401B1 (fr) 2012-03-16 2013-03-15 Surveillance en temps réel de puits de forage et analyse de contribution de fracture

Country Status (7)

Country Link
US (1) US20130245953A1 (fr)
EP (1) EP2639401B1 (fr)
CN (1) CN103306664A (fr)
AR (1) AR090353A1 (fr)
AU (1) AU2013201757B2 (fr)
BR (1) BR102013006266B1 (fr)
CA (1) CA2808858C (fr)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10400580B2 (en) 2015-07-07 2019-09-03 Schlumberger Technology Corporation Temperature sensor technique for determining a well fluid characteristic
US10415382B2 (en) * 2016-05-03 2019-09-17 Schlumberger Technology Corporation Method and system for establishing well performance during plug mill-out or cleanout/workover operations
US10303819B2 (en) 2016-08-25 2019-05-28 Drilling Info, Inc. Systems and methods for allocating hydrocarbon production values
US11263370B2 (en) 2016-08-25 2022-03-01 Enverus, Inc. Systems and methods for allocating hydrocarbon production values
US11892579B2 (en) * 2016-09-30 2024-02-06 Schlumberger Technology Corporation Crosswell microseismic system
US10584577B2 (en) 2018-03-13 2020-03-10 Saudi Arabian Oil Company In-situ reservoir depletion management based on surface characteristics of production
CN110318742B (zh) * 2018-03-30 2022-07-15 中国石油化工股份有限公司 基于压裂井生产数据确定裂缝闭合长度的方法和系统
EP3837429A4 (fr) 2018-08-16 2022-08-24 Fervo Energy Company Procédés et systèmes pour réguler l'écoulement et le transfert de chaleur entre des puits de forage souterrains reliés hydrauliquement par des fractures
US11293280B2 (en) * 2018-12-19 2022-04-05 Exxonmobil Upstream Research Company Method and system for monitoring post-stimulation operations through acoustic wireless sensor network
US11326440B2 (en) 2019-09-18 2022-05-10 Exxonmobil Upstream Research Company Instrumented couplings
CN111255442B (zh) * 2020-01-14 2023-04-07 大庆油田有限责任公司 一种利用干扰试井理论评价压裂裂缝方法
CN112878982B (zh) * 2020-12-31 2022-03-01 西南石油大学 一种考虑裂缝长期导流能力的深层页岩气产能预测方法
CN113187472B (zh) * 2021-05-11 2023-09-26 中国石油天然气股份有限公司 一种层状砂岩油藏水驱开发渗流优势通道的识别方法
CN117888841B (zh) * 2024-03-15 2024-05-17 江苏卫东机械有限公司 智能反馈控制电动钻井阀

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3913398A (en) * 1973-10-09 1975-10-21 Schlumberger Technology Corp Apparatus and method for determining fluid flow rates from temperature log data
FR2538849A1 (fr) * 1982-12-30 1984-07-06 Schlumberger Prospection Procede et dispositif pour determiner les caracteristiques d'ecoulement d'un fluide dans un puits a partir de mesures de temperature
US6142229A (en) * 1998-09-16 2000-11-07 Atlantic Richfield Company Method and system for producing fluids from low permeability formations
DZ3413A1 (fr) * 2000-09-12 2002-03-21 Sofitech Nv Evaluation des proprietes du reservoir et de fracture hydraulique amalgames a multicouches utilisant des donnees de production de reservoirs amalgames et des informations de diagraphie de production
US6789937B2 (en) * 2001-11-30 2004-09-14 Schlumberger Technology Corporation Method of predicting formation temperature
US7703525B2 (en) * 2004-12-03 2010-04-27 Halliburton Energy Services, Inc. Well perforating and fracturing
WO2009139949A1 (fr) * 2008-05-13 2009-11-19 Exxonmobil Upstream Research Company Modélisation de gisements d'hydrocarbures utilisant des modèles de plans d'expériences
CN201334901Y (zh) * 2008-07-01 2009-10-28 电子科大科园股份有限公司 气体钻井安全实时监测系统
AU2009279407A1 (en) * 2008-08-08 2010-02-11 Altarock Energy, Inc. Method for testing an engineered geothermal system using one stimulated well
US8463585B2 (en) * 2009-05-22 2013-06-11 Baker Hughes Incorporated Apparatus and method for modeling well designs and well performance
US8788251B2 (en) * 2010-05-21 2014-07-22 Schlumberger Technology Corporation Method for interpretation of distributed temperature sensors during wellbore treatment

Also Published As

Publication number Publication date
CA2808858A1 (fr) 2013-09-16
EP2639401A1 (fr) 2013-09-18
BR102013006266A2 (pt) 2015-07-07
AU2013201757A1 (en) 2013-10-03
BR102013006266A8 (pt) 2017-07-11
AU2013201757B2 (en) 2015-10-22
CA2808858C (fr) 2016-01-26
CN103306664A (zh) 2013-09-18
BR102013006266B1 (pt) 2021-02-17
AR090353A1 (es) 2014-11-05
US20130245953A1 (en) 2013-09-19

Similar Documents

Publication Publication Date Title
EP2639401B1 (fr) Surveillance en temps réel de puits de forage et analyse de contribution de fracture
EP2038809B1 (fr) Procédé de comparaison et de réallocation de production
US9163499B2 (en) Method of determining reservoir pressure
CA2922573C (fr) Commande de traitement par injection d'une region souterraine sur la base de donnees de test d'avancee
US9341060B2 (en) Method and system for permeability calculation using production logs for horizontal wells
US9500076B2 (en) Injection testing a subterranean region
US9341557B2 (en) Method and system for permeability calculation using production logs for horizontal wells, using a downhole tool
US20150075779A1 (en) Designing an Injection Treatment for a Subterranean Region Based on Stride Test Data
US20220389810A1 (en) Systems and methods for subterranean fluid flow characterization
US11593683B2 (en) Event model training using in situ data
EA015435B1 (ru) Способ моделирования технологических показателей скважин
US11556612B2 (en) Predicting material distribution in a hydraulic fracturing treatment stage
Yoshida Modeling and interpretation of downhole temperature in a horizontal well with multiple fractures
CN110945209A (zh) 注入井中的或与注入井相关的改进
Jamali et al. Application of capacitance resistance models to determining interwell connectivity of large-scale mature oil fields
Gonzalez et al. Wellbore real-time monitoring and analysis for shale reservoirs
Zhan et al. Using an innovative tool system to estimate in-situ permeability and pressure at multiple targets in a monitoring well in Permian basin
Wang Processing and analysis of transient pressure from permanent down-hole gauges
Zhang Interpretation of Downhole Temperature Measurements for Multistage Fracture Stimulation in Horizontal Wells
Sun Implementation and application of fracture diagnostic tools: fiber optic sensing and diagnostic fracture injection test (DFIT)
Lin et al. A new method using wellhead measurement to approximate unsteady-state gas-water two-phase flow in wellbore to calculate inflow performance
Denney Effective Completion and Reservoir Management With Well Logs

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130315

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: WEATHERFORD/LAMB, INC.

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: WEATHERFORD TECHNOLOGY HOLDINGS, LLC

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602013007207

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: E21B0041000000

Ipc: E21B0043260000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: E21B 43/26 20060101AFI20151022BHEP

Ipc: E21B 47/10 20120101ALI20151022BHEP

INTG Intention to grant announced

Effective date: 20151112

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 797096

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602013007207

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160504

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20160504

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 797096

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160805

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160905

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602013007207

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20170207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602013007207

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20171130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171003

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170315

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170331

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170315

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170315

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130315

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160904

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20200813 AND 20200819

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20201126 AND 20201202

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20210225 AND 20210303

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NO

Payment date: 20230309

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230119

Year of fee payment: 11

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230922