EP2638577A2 - Générateur photovoltaïque organique et procédé de fabrication - Google Patents

Générateur photovoltaïque organique et procédé de fabrication

Info

Publication number
EP2638577A2
EP2638577A2 EP12746750.4A EP12746750A EP2638577A2 EP 2638577 A2 EP2638577 A2 EP 2638577A2 EP 12746750 A EP12746750 A EP 12746750A EP 2638577 A2 EP2638577 A2 EP 2638577A2
Authority
EP
European Patent Office
Prior art keywords
layer
solar photovoltaic
photovoltaic cell
poly
ito
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP12746750.4A
Other languages
German (de)
English (en)
Inventor
Xiaomei Jiang
Jason Lewis
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of South Florida
Original Assignee
University of South Florida
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of South Florida filed Critical University of South Florida
Publication of EP2638577A2 publication Critical patent/EP2638577A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • H10K85/1135Polyethylene dioxythiophene [PEDOT]; Derivatives thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/211Fullerenes, e.g. C60
    • H10K85/215Fullerenes, e.g. C60 comprising substituents, e.g. PCBM
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the poly (3,4) ethylenedioxythiophene:poly-styrenesulfonate mixed with 5 vol.% of dimethylsulfoxide was prepared diluting the poly (3,4) ethylenedioxythiophene:poly- styrenesulfonate filtering the diluted poly (3,4) ethylenedioxythiophene:poly-styrenesulfonate through a 0.45 ⁇ filter, and mixing the dimethylsulfoxide into the diluted poly (3,4) ethylenedioxythiophene:poly-styrenesulfonate.
  • this cathodic layer has a thickness of about 100nm to about 700nm, and may be 600nm in some variations. Exemplary thicknesses include 200nm, 250nm, 300nm, 350nm, 400nm, 450nm, 550nm, 600nm, 650nm, and 700nm.
  • the l-V was measured by shining light from m- PEDOT side.
  • the device was analyzed by exposing the cell to continuous radiation.
  • the current-voltage (l-V) characterization of the solar array was performed with a 1.6 KW solar simulator under AM1 .5 irradiance of 100 mW/cm 2 (Newport Corp., Franklin MA). No spectral mismatch with the standard solar spectrum was corrected in the power conversion efficiency (PCE) calculation.
  • the incident photon converted electron (IPCE), or the external quantum efficiency, of the device was measured using 250W tungsten halogen lamp coupled with a monochromator (Newport Oriel Cornerstone 1/4 m).
  • the photocurrent was detected by a UV enhanced silicon detector connected with a Keithley 2000 multimeter.
  • the second annealing step at 160°C worsens the device performance, mainly due to unfavorable change of film morphology, which was confirmed in AFM images (data not shown).
  • the PCE of 1 -step annealing at 160°C was in between that of 1 -step annealing at 120°C and 2-step annealing, yet the device has the worst FF.
  • Table 1 listed the details of the IV characteristics of these three test cells.
  • IPCE measurement shows 2-step annealing was worse than 1 step annealing, seen in Figure 9, which was consistent with IV measurements (data not shown).
  • IPCE measurement was done under illumination from Tungsten lamp, whereas IV was done under solar simulator which has different spectrum than that of the tungsten lamp. Nevertheless, the integration of IPCE should be proportional to l sc .
  • the 1-step annealing at 120°C showed the improved film roughness and the best phase segregation of P3HT and PCBM, which explains why the device performance was the best, seen in Figures 8 and 9.
  • Device by 2-step annealing has the smoothest film, however, the phase segregation was much less distinct. This indicates that P3HT chains and PCBM molecules are penetrating through each other more after the second annealing at 160°C, and form much smaller nano-domains, which are favorable for charge transport between the domains (Kline and McGehee, Morphology and Charge Transport in Conjugated Polymers. J of Macromol Sci, Part C: Polymer Reviews, 2006, 46(1): 27-45).

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

La présente invention se rapporte à la fabrication et à la caractérisation d'un générateur solaire organique inversé de grande taille à l'aide d'un procédé de pulvérisation et qui se compose de quatre couches : ITO-Cs2CO3-(P3HT:PCBM)-PEDPT:PSS modifié, sur un substrat. Avec la couche PEDPT:PSS comme anode, le générateur solaire encapsulé présente une transmission supérieure à 30 % dans la plage visible proche de l'infrarouge (IR). L'optimisation par un recuit thermique est réalisée sur la base de générateurs à une seule cellule ou à multiples cellules. L'éclairage solaire a été démontré pour améliorer l'efficacité du générateur solaire jusqu'à 250 % avec une efficacité du dispositif de 1,80 % sous un éclairage énergétique de AM : 1,5. L'amélioration de la performance sous un éclairage se produit seulement avec des dispositifs pulvérisés, indiquant une amélioration du dispositif sous la lumière du soleil, ce qui est bénéfique pour des applications d'énergie solaire. La propriété semi-transparente du module solaire permet des applications sur des fenêtres et des pare-brises, des applications intérieures et des substances de tissu souple telles que des tentes, des sacs à dos militaires ou des tenues de combat, ce qui permet de fournir une alimentation électrique renouvelable aisément transportable pour les forces militaires déployées.
EP12746750.4A 2011-02-14 2012-02-14 Générateur photovoltaïque organique et procédé de fabrication Withdrawn EP2638577A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201161442561P 2011-02-14 2011-02-14
PCT/US2012/025028 WO2012112533A2 (fr) 2011-02-14 2012-02-14 Générateur photovoltaïque organique et procédé de fabrication

Publications (1)

Publication Number Publication Date
EP2638577A2 true EP2638577A2 (fr) 2013-09-18

Family

ID=46673118

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12746750.4A Withdrawn EP2638577A2 (fr) 2011-02-14 2012-02-14 Générateur photovoltaïque organique et procédé de fabrication

Country Status (5)

Country Link
EP (1) EP2638577A2 (fr)
JP (1) JP2014505378A (fr)
CN (1) CN103262281B (fr)
CA (1) CA2820090A1 (fr)
WO (1) WO2012112533A2 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014505371A (ja) 2011-02-01 2014-02-27 ユニバーシティー オブ サウス フロリダ 自己組織化単分子膜を使用する部分スプレー式有機太陽電池および製造方法
JP6027641B2 (ja) * 2015-03-10 2016-11-16 株式会社東芝 光電変換素子および太陽電池
CN105355795A (zh) * 2015-12-01 2016-02-24 电子科技大学 基于共轭聚合物-纳米晶叠层式自装配功能薄膜的光电探测器阵列制造方法
JP7413833B2 (ja) * 2020-02-27 2024-01-16 株式会社リコー 光電変換素子及び光電変換モジュール

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007527109A (ja) * 2003-07-07 2007-09-20 ダウ・コ−ニング・コ−ポレ−ション 太陽電池の封入
CN100505367C (zh) * 2007-01-22 2009-06-24 铼德科技股份有限公司 有机太阳能电池及其制作方法
WO2009094663A2 (fr) * 2008-01-25 2009-07-30 University Of Washington Dispositifs photovoltaïques comportant des couches de transport d'électrons en oxyde métallique
US20090229667A1 (en) * 2008-03-14 2009-09-17 Solarmer Energy, Inc. Translucent solar cell
KR20100130514A (ko) * 2009-06-03 2010-12-13 삼성전자주식회사 유기 태양 전지 및 그 제조방법
CA2812559A1 (fr) * 2010-09-30 2012-04-05 University Of South Florida Panneau solaire organique transparent par pulverisation a encapsulation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2012112533A3 *

Also Published As

Publication number Publication date
CA2820090A1 (fr) 2012-08-23
CN103262281A (zh) 2013-08-21
WO2012112533A3 (fr) 2012-11-22
CN103262281B (zh) 2017-02-08
JP2014505378A (ja) 2014-02-27
WO2012112533A2 (fr) 2012-08-23

Similar Documents

Publication Publication Date Title
JP5516153B2 (ja) 有機光電変換素子、それを用いた太陽電池及び光センサアレイ
Lewis et al. Over 30% transparency large area inverted organic solar array by spray
US8980677B2 (en) Transparent contacts organic solar panel by spray
US9722180B2 (en) Mask-stack-shift method to fabricate organic solar array by spray
US10008669B2 (en) Organic photovoltaic array and method of manufacture
US20130263916A1 (en) All spray see-through organic solar array with encapsulation
US9831429B2 (en) Method of manufacture for a partially-sprayed layer organic solar photovoltaic cell
US9425397B2 (en) Method of manufacturing inverted organic solar microarray for applications in microelectromechanical systems
EP2638577A2 (fr) Générateur photovoltaïque organique et procédé de fabrication
JP2013089684A (ja) 有機光電変換素子およびこれを用いた太陽電池
JP5652314B2 (ja) 有機光電変換素子およびその製造方法
WO2014204696A1 (fr) Panneau solaire organique à contacts transparents formé par pulvérisation
Jiang Inverted organic solar microarray for applications in microelectromechanical systems
Morvillo et al. High-efficiency standard and inverted polymer solar cells based on PBDTTT-C:[70] PCBM blend

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130611

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20160901