EP2634936B1 - Feed system, in particular for receiving television or radio programming transmitted by satellite - Google Patents

Feed system, in particular for receiving television or radio programming transmitted by satellite Download PDF

Info

Publication number
EP2634936B1
EP2634936B1 EP13000877.4A EP13000877A EP2634936B1 EP 2634936 B1 EP2634936 B1 EP 2634936B1 EP 13000877 A EP13000877 A EP 13000877A EP 2634936 B1 EP2634936 B1 EP 2634936B1
Authority
EP
European Patent Office
Prior art keywords
signal
feed system
bandpass filter
satellite
intermediate frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13000877.4A
Other languages
German (de)
French (fr)
Other versions
EP2634936A1 (en
Inventor
Peter Prassmayer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kathrein SE
Original Assignee
Kathrein Werke KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kathrein Werke KG filed Critical Kathrein Werke KG
Publication of EP2634936A1 publication Critical patent/EP2634936A1/en
Application granted granted Critical
Publication of EP2634936B1 publication Critical patent/EP2634936B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04HBROADCAST COMMUNICATION
    • H04H40/00Arrangements specially adapted for receiving broadcast information
    • H04H40/18Arrangements characterised by circuits or components specially adapted for receiving
    • H04H40/27Arrangements characterised by circuits or components specially adapted for receiving specially adapted for broadcast systems covered by groups H04H20/53 - H04H20/95
    • H04H40/90Arrangements characterised by circuits or components specially adapted for receiving specially adapted for broadcast systems covered by groups H04H20/53 - H04H20/95 specially adapted for satellite broadcast receiving

Definitions

  • the present invention relates to a feed system, in particular for the reception of television and / or radio programs broadcast via satellite according to the preamble of claim 1.
  • Feeders are commonly used to receive television and radio programs broadcast over geostationary satellites. In this case, analog or digitally broadcast programs can be received in such feed systems.
  • a corresponding feed system is usually arranged in the focal point or in the region of the focal point of a parabolic antenna and comprises a waveguide, in the at least one coupling pin for receiving radiated in a plane of polarization electromagnetic waves protrudes.
  • the electromagnetic wave can be coupled out and a downstream converter (LNB) are supplied, in which a corresponding processing for frequency conversion of the satellite received signals.
  • LNB downstream converter
  • the amplified, filtered and frequency converted signal is output in known from the prior art feed systems via a coaxial output, which is provided in the converter housing.
  • the satellite signal is distributed to one or more terminals (for example, a television with an antenna connection).
  • feeding systems are known from the prior art, which comprise an orthomode transducer, which is also referred to as Orthormenkoppler or as polarization diverter.
  • An orthomode transducer has a horn at the receiver end, for example a groove horn, which merges into a waveguide.
  • Two mutually offset coupling pins protrude into the waveguide, a first coupling pin being provided for receiving electromagnetic waves emitted in a first polarization plane, and a second coupling pin being provided for receiving electromagnetic waves emitted in a second polarization plane perpendicular to the first polarization plane.
  • the respective satellite received signals are processed separately by a downstream converter and by means of Two separate coaxial outputs are output, so that two separate television and / or radio programs can be distributed over two coaxial cables to terminals.
  • Some broadcast satellites broadcast broadband television and / or broadcast signals in a frequency range of 10.7 GHz to 12.75 GHz, so that the satellite signal consequently has a bandwidth of 2.05 GHz.
  • Modern feed systems can process these broadband satellite signals, but in the converter the signals must be converted into a so-called low band (low frequency band) in the frequency range of 10.7 GHz to 11.7 GHz and a high band (high frequency band) in the frequency range of 11.7 GHz to 12.75 GHz, so that the processed signals can be distributed via coaxial outputs and coaxial cable to terminals. Because the transmissible via a coaxial cable maximum frequency of a signal can only be significantly less than 3 GHz.
  • a feed system with orthomode transducers and split into lowband and highband four separate television and / or radio programs can be distributed over four data signal output interfaces in the form of four coaxial outputs (horizontally polarized lowband, vertically polarized lowband, horizontally polarized highband, vertically polarized highband).
  • a corresponding feed system has for this purpose two high frequency amplifiers, two splitters, four input bandpasses, four mixers, two local oscillators, four output bandpasses and four intermediate frequency amplifiers. These electrical components each take electrical energy and consequently each have a heat development.
  • the DE 43 35 616 A1 discloses a well-known feed system.
  • the received frequency band is frequency-selectively split into two frequency branches in at least one converter branch, wherein a local oscillator in the one frequency band has a local oscillator frequency which is below the frequency band converted into the intermediate frequency level in this frequency branch, and wherein the total oscillator frequency in the second frequency branch is above the lowest frequency of the frequency band converted into the intermediate frequency plane in this frequency branch.
  • the US 2002/0154055 A1 describes a satellite receiving system having one or more low-noise block converters (LNB) whose outputs are connected to a local area network (LAN), where an interface between a LNB and LAN with a receiver detects the RF output signals of the LNBs converts digital baseband information.
  • LNB low-noise block converters
  • LAN local area network
  • This baseband information is filtered, compressed and encrypted in the interface before being sent as a multiplexed signal to the LAN and further to the connected terminals.
  • the external dimensions of a feed system including the converter housing should be as low as possible so that the weight of the feed system and the wind load through the feed system are kept as low as possible. Furthermore, a compact converter housing is desirable for design reasons. Due to the necessary compactness of the feed system and the converter housing, the heat generated by the electrical components can be derived only with difficulty. Additional electrical components within the converter housing are thus difficult to realize.
  • LAN interface for example in the form of an Ethernet connection or an antenna for receiving WLAN signals.
  • corresponding flat panel displays have a coaxial antenna port for receiving television signals.
  • IP Internet Protocol
  • Ethernet In many households, there is already an Ethernet with a central router, because, for example, more than one computer to DSL (Digital Subscriber Line) to be connected, or because, for example, a central printer for a variety of computers is available.
  • DSL Digital Subscriber Line
  • Both the coaxial network for distributing the television and / or radio programs as well as the Ethernet are usually realized as so-called star networks, so that these are virtually one above the other and exist parallel to each other.
  • An internet-enabled flat screen is thus connected to the coaxial network for displaying television programs via the antenna connection and to the Ethernet for the reproduction of Internet content via the Ethernet connection.
  • a generic distribution system for satellite broadcasting is for example from the WO 2004/054 143 A1 known.
  • a system is shown with a reflector and a receiving device arranged in the focal point or in the region of the focal point.
  • the receiving unit is connected by means of a bus system with different participants.
  • the receiving unit further comprises a modem converter, a preamplifier, a receiver and a bus interface, via which the receiving unit is coupled to the bus system.
  • the receivers are those units which demodulate the signals and, if necessary, decode them.
  • the known system comprises at least one LNB, possibly necessary frequency converter and at least one receiving receiver together with a bus interface, so that only demodulated and / or - if desired or necessary - decoded signals can be distributed by means of the bus system to the participants.
  • the signals can be transmitted via the bus system optionally re-encoded according to the bus system standard.
  • a structure can be used, which is also used for data transmission in PC networks. Therefore, it is possible to provide only a single network infrastructure, which handles all possible communication tasks in a housing.
  • the explanatory components are all housed in a single housing, which is also used for example for the LNBs. Therefore, according to this prior publication, the entire unit in the LNB housing with the mentioned additional components is mounted on the antenna.
  • a digital television transmission signal receiving system and an external arrangement used in this system can be taken as known.
  • This outer assembly includes, for example, a housing and a tuner over which an RF signal can be received.
  • the tuner is coupled to a demodulator, which in turn can transmit MPEG signals to a wireless interface (LAN 1394), which in turn is transmitted via an antenna to an indoor arrangement.
  • LAN 1394 wireless interface
  • the outer arrangement should be arranged in the vicinity of the antenna, for example on an outer wall.
  • a distribution system for satellite broadcasting which comprises a satellite receiving antenna for receiving the satellite signals, receivers for demodulating the signals received by the antenna and a line system for distributing the signals to a plurality of subscribers, the receivers being spatially close to the satellite receiving antenna are and redistribute exclusively demodulated or decoded signals by means of the line system to the participants.
  • the receiver comprises a waveguide and a housing, wherein in the housing are arranged: a decoupling device, a high frequency amplifier, an intermediate frequency amplifier and a tuner.
  • the invention is based on the object to provide an improved feed system having a reduced power consumption and reduced heat generation and a reduced number of data signal output interfaces.
  • an input bandpass and an output bandpass of the inventive feed system have passband widths equal to or greater than the satellite signal bandwidth having at least 2.05 GHz.
  • the feed system according to the invention further comprises a arranged in the housing of the feed system and connected via a signal line to an intermediate frequency amplifier broadband tuner, which converts the output of the intermediate frequency amplifier intermediate frequency signal of a transponder into a baseband signal and generates I and Q signals, each half the bandwidth as the pass bandwidth have the input and output bandpass.
  • the feed system according to the invention further comprises a demodulator arranged in the housing of the feed system and connected via the signal line to the wideband tuner, which is designed to demodulate the baseband signal and to generate a data signal.
  • the feed system according to the invention comprises an Ethernet interface, which is arranged in the housing and connected via the signal line to the demodulator. The data signals can be output via the Ethernet interface and the supply of the feed system with electrical energy via the Ethernet interface.
  • a broadband satellite signal for example, having a bandwidth of 2.05 GHz
  • the signal processing by the converter always has a wideband signal. Due to the conversion of the wideband intermediate frequency signal into a baseband signal by the wideband tuner and subsequent demodulation of the baseband signal into a data signal by the demodulator, the data signal thus generated can be output via the single Ethernet interface.
  • the feed system according to the invention is therefore no longer dependent on the bandwidth-limited signal output via one or more coaxial interfaces.
  • the tuner is also configured as a broadband tuner for processing the signals in the passband bandwidth.
  • the frequency conversion device provided in the context of the invention also proves to be advantageous using a local oscillator which generates a local oscillator signal with a local oscillator frequency in order to control a mixer arranged between the input bandpass and the output bandpass and connected thereto via the signal line is.
  • an input bandpass filter, a mixer, a local oscillator, an output bandpass filter and an intermediate frequency amplifier can be saved compared to a feed system known from the prior art. Consequently, the feed system according to the invention has a reduced energy consumption and reduced heat generation. Furthermore, the space available in the converter housing for the Breitbandtuner and the demodulator can be used. Due to the reduced energy consumption of the feed system according to the invention this can be supplied via the Ethernet interface with electrical energy.
  • a coaxial network is no longer necessary for transmitting satellite and / or broadcast programs broadcast via satellite.
  • the television and / or radio programs are transmitted over the Ethernet to the terminals.
  • a twisted pair cable, wireless for WLAN or a power supply line (power cable) can be used to transmit the television and / or radio programs.
  • a modern flat panel display can thus display television programs received via satellite as well as receive and display information received over the Internet without the flat screen must be connected to a coaxial network. Therefore, when using the feed system according to the invention, a redundant coaxial network can be completely saved. Furthermore, all the disadvantages of coaxial signal processing, such as attenuation, skew, nonlinear distortion and crosstalk between polarization and band planes are avoided.
  • terminals such as smartphones, laptops or tablets, which do not have a coaxial input for receiving television programs, can access television signals directly via the Ethernet by using the inventive feed system.
  • a second outcoupling device protruding into the waveguide is furthermore arranged in the housing, by means of which the electromagnetic waves of the satellite signal radiated in a second polarization plane can be received.
  • the second polarization plane is perpendicular to the first plane of polarization in which electromagnetic waves of the satellite signal are emitted, which can be received by means of the first outcoupling device.
  • a second high-frequency amplifier for amplifying the satellite signal is arranged, which is connected via a second signal line to the second coupling-out device.
  • a second input bandpass and a second output bandpass are further arranged, which are connected in series via the second signal line to the second high-frequency amplifier, wherein the second Input bandpass and the second output bandpass each have the passband bandwidth which is at least 70% of the satellite signal bandwidth.
  • a second mixer is disposed between the second input bandpass and the second output bandpass and connected thereto via the second signal line, the second mixer being further connected to and to the local oscillator. The second mixer mixes the satellite signal with the local oscillator signal to produce a second intermediate frequency signal.
  • a second intermediate frequency amplifier disposed in the housing is connected to the second output bandpass via the second signal line and configured to amplify the second intermediate frequency signal.
  • the broadband tuner is additionally connected via the second signal line to the second intermediate frequency amplifier and configured to convert the second intermediate frequency signal into a second baseband signal.
  • the demodulator is additionally connected to the broadband tuner via the second signal line and configured to demodulate the second baseband signal and to generate a second data signal.
  • the Ethernet interface is connected via the second signal line to the demodulator for exchanging the second data signals.
  • a corresponding feed system can process satellite signals having a 2.55 GHz satellite signal bandwidth and having vertically and horizontally polarized signal components.
  • corresponding satellite signals have known from the prior art feed systems, so-called quadruple or quatro LNB's, four coaxial outputs.
  • quadruple or quatro LNB's four coaxial outputs.
  • two input bandpasses, two splitters, two mixers, a local oscillator, two output bandpass filters and two intermediate frequency amplifiers can be saved compared to a feed system known from the prior art. Consequently, the feed system according to the invention has a reduced energy consumption and reduced heat generation.
  • a complete side of the converter may be used for other additional components such as e.g. for the broadband tuner and the demodulator. Due to the reduced energy consumption of the feed system according to the invention this can be supplied via the Ethernet interface with electrical energy.
  • the passband widths of the second input bandpass and the second output bandpass are equal to or greater than the satellite signal bandwidth.
  • the passband bandwidth of the second input bandpass and the second output bandpass is at least 2.05 GHz. This allows more information to be processed and distributed by the feed system.
  • the feed system comprises a backend processor located in and connected to the housing between the demodulator and the Ethernet interface, the backend processor thereto is designed to demultiplex the data signal and / or the second data signal in data transport streams.
  • FIG. 1 shows a block diagram of a known from the prior art feed system for receiving and processing of broadband satellite signals, which consist of emitted in two polarization planes electromagnetic waves.
  • the feed system comprises a feedhorn 1, which can be configured as a grooved horn, and which merges into a waveguide 1.
  • an orthomode transducer 2 is arranged, which can separate mutually perpendicular polarized electromagnetic waves of the satellite signal from each other.
  • the orthomode transducer 2 protrude a first decoupling device 10 and a second decoupling device 20, which are each realized as Auskoppelstatte.
  • the first outcoupling device 10 and the second outcoupling device 20 can be aligned parallel to one another.
  • two Auskoppeljane be provided, which protrude into a waveguide 1, wherein the first Auskoppel forest 10 would then have to be rotated to the second Auskoppelh 20 by 90 °.
  • the orthomode transducer 2 has two signal outputs, namely a first signal output in the form of a Signal line 11 for the satellite signal, which is received via horizontally polarized electromagnetic waves, and a second signal output in the form of a second signal line 21, are transported over the signals obtained from vertically polarized electromagnetic waves of the satellite signal.
  • the following describes the signal processing of the signals obtained from the electromagnetic waves having horizontal polarization of the satellite signal.
  • the processing of the signals obtained from the vertically polarized electromagnetic waves of the satellite signal is correspondingly identical.
  • the first decoupling pin 10 protrudes into the orthomode transducer 2 and is configured to receive electromagnetic waves of horizontal polarization.
  • a three-stage high-frequency amplifier 12 is connected via the signal line 11 to the first decoupling pin 10.
  • the radio frequency amplifier 12 is configured to amplify the satellite signal.
  • the output of the high-frequency amplifier 12 is connected to the input of a splitter SH, which splits the broadband emitted satellite signal, for example, has a bandwidth of 10.7 GHz to 12.75 GHz, in a so-called low band and a so-called high band.
  • the low band is a low frequency signal band of 10.7 to 11.7 GHz
  • the high band is a high frequency signal band of 11.7 to 12.75 GHz.
  • the splitter SH has two outputs, namely an output for the low band and an output for the highband.
  • the output for the low band is connected to a first low band input bandpass 13L.
  • the first low band input bandpass filter 13L has a passband in the frequency range of 10.7 to 11.7 GHz. Other frequencies are not allowed through.
  • the first low band input bandpass filter 13L is connected via the first signal line 11 to a first mixer 14, which in turn is connected to a low band local oscillator 30L.
  • the low band local oscillator 30L generates a low band local oscillator signal having a low band local oscillator frequency of 9.75 GHz.
  • This low-band local oscillator signal is mixed with the satellite signal frequency-filtered via the first low-band input bandpass filter 13L by the mixer 14.
  • the mixer 14 generates, inter alia, the difference signal resulting from the difference of the satellite signal and the low-band local oscillator signal.
  • This thus generated first intermediate frequency signal has signals with frequencies of 950 MHz to 1950 MHz, thus has a bandwidth of 1 GHz.
  • the first mixer 14 is connected to a first low band output bandpass 15L having a passband of 950 MHz to 1950 MHz. Other frequencies are not passed by the first low band output bandpass.
  • the first low band output bandpass 15L is connected via the first signal line 11 to a first low band intermediate frequency amplifier 16L which amplifies the intermediate frequency signal.
  • the first low-band intermediate frequency amplifier 16L is in turn connected to a first coaxial output 71 through which the amplified Intermediate frequency signals can be output.
  • a first highband input bandpass filter 13H is connected to the second output of the splitter SV via a signal line.
  • the pass band of the first high band band pass 13H is between 11.7 GHz and 12.75 GHz. Other frequency ranges are not passed by the first highband input bandpass 13H.
  • the first high band input band pass 13H is connected to another mixer 14 via a signal line.
  • the further mixer 14 is connected to a high band local oscillator 30H which generates a high band local oscillator signal with a high band local oscillator frequency of 10.6 GHz.
  • the further mixer 14 mixes the high band local oscillator frequency signal with the satellite signal filtered by the first high band input bandpass filter 13H.
  • the further mixer 14 also generates a difference signal between the high-frequency satellite signal and the high-band local oscillator signal. This difference signal represents another intermediate frequency signal having frequencies of 1100 MHz to 2150 MHz, thus having a bandwidth of 1.05 GHz.
  • This intermediate frequency signal is filtered again by a first highband output bandpass filter 15H to filter out possible image frequencies and other frequency ranges.
  • the pass band of the first high band output band pass 15H is between 1100 MHz and 2150 MHz. Other frequency ranges will not be transmitted.
  • With the first High band output band pass 15H is connected to a first high band intermediate frequency amplifier 16H, which in turn is connected to a third coaxial output 73. Via the third coaxial output 73, the thus frequency-processed and amplified signals can be output.
  • the signal processing of the signals obtained from the vertical vibration component electromagnetic waves is identical to the above-described signal processing of the signals obtained from the horizontal vibration component electromagnetic waves, so that a description of the frequency processing will not be given here.
  • This prior art feed system can thus process satellite signals broadband broadcast in a frequency range of 10.7 GHz to 12.75 GHz and having a horizontal and a vertical polarization component.
  • the frequency-processed television and / or radio programs are output via four coaxial outputs 71-74.
  • FIG. 2 shows a block diagram of a feed system according to the invention according to a first embodiment of the present invention.
  • the feed system according to the invention comprises a waveguide 1, which may be equipped on the input side, for example with a grooved horn.
  • the waveguide 1 projects as a decoupling pin 10 first decoupling means 10, by means of which a signal consisting of electro-magnetic waves and emitted by the satellite satellite signal can be received.
  • the first decoupling pin 10 is connected via the first signal line 11 to a first high-frequency amplifier 12.
  • the satellite signal received by the feed system has frequencies in the range of 10.7 GHz to 12.75 GHz.
  • This satellite signal is broadband amplified by the first high-frequency amplifier 12.
  • the first high-frequency amplifier 12 is connected to a first input bandpass 13 via the signal line 11.
  • the pass bandwidth of the first input passband is equal to or greater than the satellite signal bandwidth, so that the entire satellite signal transmitted from the satellite is transmitted through the first input passband 13.
  • the first input bandpass is connected via the first signal line 11 to a first mixer 14, which in turn is additionally connected via an electrical line to a local oscillator 30.
  • the local oscillator 30 generates a local oscillator signal having a local oscillator frequency.
  • the local oscillator frequency can be 10.2 GHz or even 10.5 GHz.
  • the mixer 14 mixes the local oscillator signal with the satellite signal and generates sum and difference frequencies.
  • the difference frequency of the satellite signal and the local oscillator signal are passed through by a first output bandpass filter 15 which is connected to the mixer 14 via the signal line 11.
  • the difference signal generated by the first mixer 14 is in the range of 500 MHz to 2550 MHz and is referred to as a (first) intermediate frequency signal.
  • the passband of the first output bandpass 15 is also located. Other frequencies are not passed by the first output bandpass 15.
  • the first output bandpass 15 is connected via the first signal line 11 to a first intermediate frequency amplifier 16, which amplifies the intermediate frequency signal. If the passband widths of the input passband 13 and the output passband 100% correspond to the satellite signal bandwidth, the amplified intermediate frequency signal has a bandwidth of 2.05 GHz and broadband is supplied via the signal line 11 to a broadband tuner 40.
  • the broadband tuner 40 which may be configured, for example, as a chip tuner 40, converts a transponder from the intermediate frequency position into a baseband signal. As a result, the broadband tuner 40 mixes the intermediate frequency signal down to the baseband signal, with the I and Q baseband signals extending over each half the transponder bandwidth.
  • the baseband signal is modulated and demodulated by a demodulator 50 connected to the broadband tuner 40 via the signal line 11. That from the demodulator
  • the output data signal is usually a so-called multi-program transport stream (MPTS), which includes several television programs.
  • MPTS multi-program transport stream
  • the data signal output by the demodulator 50 is supplied via the signal line 11 to an Ethernet interface 70, which may be designed, for example, as an Ethernet socket 70.
  • the signals thus converted are output from the feed system via the Ethernet interface 70 and can be received by a terminal via an Ethernet network. Consequently, a coaxial network is no longer necessary for the reception of television and / or radio programs.
  • the feed system according to the invention has only a single output interface 70.
  • FIG. 3 shows a block diagram of a feed system according to the invention according to a second embodiment.
  • the feed system comprises an orthomode transducer 2 whose operation has already been described above with reference to FIG FIG. 1 has been described.
  • the orthomode transducer 2 project two decoupling devices, namely a first decoupling pin 10 and a second decoupling pin 20.
  • first decoupling pin 10 electromagnetic waves of the satellite signal can be received, which are horizontally polarized.
  • the second decoupling pin 20 electromagnetic waves of the satellite signal can be received, which are vertically polarized.
  • the first decoupling pin 10 is connected to the first high-frequency amplifier 12 via the first signal line 11.
  • the second decoupling pin 20 is connected via a second signal line 21 to a second high-frequency amplifier 22.
  • the operations of the horizontal signal branch consisting of the first high frequency amplifier 12, the first input bandpass 13, the first mixer 14, the first output bandpass 15 and the first intermediate frequency amplifier 16, and the vertical signal branch comprising a second high frequency amplifier 22, a second input bandpass 23, a second mixer 24, a second output bandpass 25 and a second intermediate frequency amplifier 26 are identical. Both the signals from the horizontal signal branch and the signals from the vertical signal branch are respectively mixed by the first mixer 14 or the second mixer 24 with the local oscillator signal generated by the local oscillator 30.
  • the broadband tuner 40 Since there are two intermediate frequency signals which are transported via two signal lines 11, 21, the broadband tuner 40 additionally has a further input and a further output. Thus, the broadband tuner 40 is additionally connected to the second intermediate frequency amplifier 26 via the second signal line 21 and converts the second intermediate frequency signal into a second baseband signal.
  • the broadband tuner 40 may be realized in this case as a dual-chip tuner 40.
  • the two pair I and Q outputs of the broadband tuner 40 are connected to the two pairs of I, Q inputs of the demodulator.
  • the demodulator 50 is therefore also additional Connected to the broadband tuner 40 via a second pair of signal lines 21 and demodulates the second baseband signal to produce a second data signal.
  • the demodulator may be realized in this case as a so-called dual demodulator 50.
  • the dual demodulator 50 usually outputs an MPTS.
  • the demodulator 50 is connected to a back-end processor 60 via the first signal line 11 and the second signal line 21.
  • the back-end processor 60 converts or demultiplexes the multi-program transport stream into a so-called single-program transport stream (SPTS).
  • SPTS single-program transport stream
  • the data rate of the MPTS is usually about 50 Mbit / s, whereas the data rate of an SPTS is in the range of 6 to 16 Mbit / s depending on the transmitted TV program.
  • back-end processor 60 reduces the necessary data rate so that Ethernet resources or, more generally, network resources are optimally utilized.
  • the back-end processor 60 is in turn connected to the Ethernet interface 70 via a signal line.
  • FIG. 3 shown feed system can also be like that of the prior art and in FIG. 1 feed system processed satellite signals that broadband, for example, in a frequency range from 10.7 GHz to 12.75 GHz are emitted, and moreover, have both a horizontal signal component and a vertical signal component. however are for the corresponding signal processing by the invention and in FIG. 3 shown feed system much less electronic components necessary than in the known from the prior art feed system.
  • the feed system according to the invention two input bandpasses, two splitters, two mixers, a local oscillator, two output bandpass filters, two intermediate frequency amplifiers and three output interfaces can be saved in comparison to the known from the prior art feed system.
  • the feed system according to the invention consequently has a considerably reduced energy consumption.
  • a converter is arranged on a printed circuit board, wherein the in FIG. 1 shown feed system is occupied both sides of the housing with the circuit boards.
  • a corresponding feed system can not be extended due to the limited available space and due to the considerable heat generation by the plurality of electronic components.
  • the feed system according to the invention which in the FIGS. 2 and 3 is shown, has significantly fewer electronic components, so that one side of the housing is not occupied, so that on this page more electronic components, such as the broadband tuner 40, the demodulator 50 and the back-end processor 60 can be accommodated. Because of the broadband concept according to the invention, it is thus only possible to provide the functionality of television and / or radio programs in the converter housing itself to be converted accordingly, so that the signals can be output via an Ethernet interface 70.
  • the Ethernet interface 70 may comprise a so-called Ethernet PHY chip, which is adapted to adapt the data signals to the medium used for data exchange (eg twisted pair cable). Alternatively, however, a separate physical interface (PHY) may also be provided, which is arranged between the Ethernet interface 70 and the demodulator 50.
  • PHY physical interface

Landscapes

  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Input Circuits Of Receivers And Coupling Of Receivers And Audio Equipment (AREA)

Description

Die vorliegende Erfindung betrifft ein Speisesystem insbesondere zum Empfang von über Satellit ausgestrahlten Fernseh- und/oder Rundfunkprogrammen nach dem Oberbegriff des Anspruchs 1.The present invention relates to a feed system, in particular for the reception of television and / or radio programs broadcast via satellite according to the preamble of claim 1.

Speisesysteme werden üblicherweise zum Empfang von über geostationären Satelliten ausgestrahlten Fernseh- und Hörfunkprogrammen benutzt. Dabei können bei derartigen Speisesystemen analog oder digital ausgestrahlte Programme empfangen werden.Feeders are commonly used to receive television and radio programs broadcast over geostationary satellites. In this case, analog or digitally broadcast programs can be received in such feed systems.

Ein entsprechendes Speisesystem ist üblicherweise im Brennpunkt oder im Bereich des Brennpunktes einer Parabolantenne angeordnet und umfasst einen Hohlleiter, in den zumindest ein Koppelstift zum Empfang von in einer Polarisationsebene ausgestrahlten elektromagnetischen Wellen ragt. Über diesen Koppelstift kann die elektromagnetische Welle ausgekoppelt werden und einem nachgeschalteten Konverter (LNB) zugeführt werden, in dem eine entsprechende Aufbereitung zur Frequenzumsetzung der Satelliten-Empfangssignale erfolgt. Das verstärkte, gefilterte und in der Frequenz umgesetzte Signal wird bei aus dem Stand der Technik bekannten Speisesystemen über einen Koaxialausgang ausgegeben, der in dem Konvertergehäuse vorgesehen ist. Über ein Koaxialkabel wird das Satellitensignal zu einem oder zu mehreren Endgeräten (beispielsweise ein Fernsehgerät mit Antennenanschluss) verteilt.A corresponding feed system is usually arranged in the focal point or in the region of the focal point of a parabolic antenna and comprises a waveguide, in the at least one coupling pin for receiving radiated in a plane of polarization electromagnetic waves protrudes. About this coupling pin, the electromagnetic wave can be coupled out and a downstream converter (LNB) are supplied, in which a corresponding processing for frequency conversion of the satellite received signals. The amplified, filtered and frequency converted signal is output in known from the prior art feed systems via a coaxial output, which is provided in the converter housing. Via a coaxial cable, the satellite signal is distributed to one or more terminals (for example, a television with an antenna connection).

Damit nicht lediglich nur ein Signal für Endgeräte durch das Speisesystem zur Verfügung gestellt wird, sind aus dem Stand der Technik Speisesysteme bekannt, die einen Orthomode-Transducer umfassen, der auch als Orthomodenkoppler oder als Polarisationsweiche bezeichnet wird. Ein Orthomoden-Transducer weist empfangsseitig ein Horn, beispielsweise ein Rillenhorn auf, das in einen Hohlleiter übergeht. In den Hohlleiter ragen zwei zueinander versetzt angeordnete Koppelstifte, wobei ein erster Koppelstift zum Empfang von in einer ersten Polarisationsebene ausgestrahlten elektromagnetischen Wellen vorgesehen ist, und wobei ein zweiter Koppelstift zum Empfang von in einer zur ersten Polarisationsebene senkrecht stehenden zweiten Polarisationsebene ausgestrahlten elektromagnetischen Wellen vorgesehen ist. Die jeweiligen Satelliten-Empfangssignale werden durch einen nachgeschalteten Konverter separat aufbereitet und mittels zwei separater Koaxialausgänge ausgegeben, so dass zwei separate Fernseh- und/oder Rundfunkprogramme über zwei Koaxialkabel an Endgeräte verteilt werden können.So that not only a signal for terminals is provided by the feed system, feeding systems are known from the prior art, which comprise an orthomode transducer, which is also referred to as Orthormenkoppler or as polarization diverter. An orthomode transducer has a horn at the receiver end, for example a groove horn, which merges into a waveguide. Two mutually offset coupling pins protrude into the waveguide, a first coupling pin being provided for receiving electromagnetic waves emitted in a first polarization plane, and a second coupling pin being provided for receiving electromagnetic waves emitted in a second polarization plane perpendicular to the first polarization plane. The respective satellite received signals are processed separately by a downstream converter and by means of Two separate coaxial outputs are output, so that two separate television and / or radio programs can be distributed over two coaxial cables to terminals.

Einige Rundfunksatelliten strahlen Fernseh- und/oder Rundfunksignale breitbandig in einem Frequenzbereich von 10,7 GHZ bis 12,75 GHz aus, so dass das Satellitensignal folglich eine Bandbreite von 2,05 GHz aufweist. Moderne Speisesysteme können diese breitbandigen Satellitensignale verarbeiten, jedoch müssen in dem Konverter die Signale mittels entsprechender Splitter und Bandpässe in ein sogenanntes Lowband (niederfrequentes Band) im Frequenzbereich von 10,7 GHz bis 11,7 GHz und ein Highband (hochfrequentes Band) im Frequenzbereich von 11,7 GHz bis 12,75 GHz aufgespalten werden, damit die aufbereiteten Signale über Koaxialausgänge und Koaxialkabel an Endgeräte verteilt werden können. Denn die über ein Koaxialkabel übertragbare maximale Frequenz eines Signals kann lediglich deutlich weniger als 3 GHz betragen.Some broadcast satellites broadcast broadband television and / or broadcast signals in a frequency range of 10.7 GHz to 12.75 GHz, so that the satellite signal consequently has a bandwidth of 2.05 GHz. Modern feed systems can process these broadband satellite signals, but in the converter the signals must be converted into a so-called low band (low frequency band) in the frequency range of 10.7 GHz to 11.7 GHz and a high band (high frequency band) in the frequency range of 11.7 GHz to 12.75 GHz, so that the processed signals can be distributed via coaxial outputs and coaxial cable to terminals. Because the transmissible via a coaxial cable maximum frequency of a signal can only be significantly less than 3 GHz.

Bei einem Speisesystem mit Orthomoden-Transducer und Aufspaltung in Lowband und Highband können vier separate Fernseh- und/oder Rundfunkprogramme über vier Datensignalausgangsschnittstellen in Form von vier Koaxialausgängen verteilt werden (horizontal polarisiertes Lowband, vertikal polarisiertes Lowband, horizontal polarisiertes Highband, vertikal polarisiertes Highband). Ein entsprechendes Speisesystem weist dafür zwei Hochfrequenzverstärker, zwei Splitter, vier Eingangsbandpässe, vier Mischer, zwei Lokaloszillatoren, vier Ausgangsbandpässe und vier Zwischenfrequenzverstärker auf. Diese elektrischen Bauteile nehmen jeweils elektrische Energie auf und weisen folglich jeweils eine Wärmeentwicklung auf.In a feed system with orthomode transducers and split into lowband and highband, four separate television and / or radio programs can be distributed over four data signal output interfaces in the form of four coaxial outputs (horizontally polarized lowband, vertically polarized lowband, horizontally polarized highband, vertically polarized highband). A corresponding feed system has for this purpose two high frequency amplifiers, two splitters, four input bandpasses, four mixers, two local oscillators, four output bandpasses and four intermediate frequency amplifiers. These electrical components each take electrical energy and consequently each have a heat development.

Die DE 43 35 616 A1 offenbart ein allgemein bekanntes Speisesystem. In dem Speisesystem wird in zumindest einem Konverterzweig das empfangene Frequenzband frequenzselektiv in zwei Frequenzzweige aufgespalten, wobei ein Lokaloszillator in dem einen Frequenzband eine Lokaloszillatorfrequenz aufweist, die unterhalb des in diesem Frequenzzweiges in die Zwischenfrequenz-Ebene konvertierten Frequenzbandes liegt, und wobei die Gesamtoszillator-Frequenz in dem zweiten Frequenzzweig oberhalb der untersten Frequenz des in diesem Frequenzzweig in die Zwischenfrequenz-Ebene konvertierten Frequenzbandes liegt.The DE 43 35 616 A1 discloses a well-known feed system. In the feed system, the received frequency band is frequency-selectively split into two frequency branches in at least one converter branch, wherein a local oscillator in the one frequency band has a local oscillator frequency which is below the frequency band converted into the intermediate frequency level in this frequency branch, and wherein the total oscillator frequency in the second frequency branch is above the lowest frequency of the frequency band converted into the intermediate frequency plane in this frequency branch.

Die US 2002/0154055 A1 beschreibt ein Satelliten-Empfangssystem, das einen oder mehrere Low-Noise-Blockkonverter (LNB) aufweist, deren Ausgänge mit einem lokalen Netzwerk (LAN) verbunden sind, wobei eine zwischen LNB und LAN angeordnete Schnittstelle mit einem Empfänger die RF-Ausgangssignale der LNBs in digitale Basisbandinformationen umwandelt. Diese Basisbandinformationen werden in der Schnittstelle gefiltert, komprimiert und verschlüsselt, bevor sie als Multiplex-Signal in das LAN und weiter an die angeschlossenen Endgeräte gesendet werden.The US 2002/0154055 A1 describes a satellite receiving system having one or more low-noise block converters (LNB) whose outputs are connected to a local area network (LAN), where an interface between a LNB and LAN with a receiver detects the RF output signals of the LNBs converts digital baseband information. This baseband information is filtered, compressed and encrypted in the interface before being sent as a multiplexed signal to the LAN and further to the connected terminals.

Die Außenabmessungen eines Speisesystems samt Konvertergehäuse sollten so gering wie möglich sein, damit das Gewicht des Speisesystems als auch die Windlast durch das Speisesystem so gering wie möglich gehalten werden. Weiterhin ist aus Design-Gründen ein kompaktes Konvertergehäuse wünschenswert. Aufgrund der notwendigen Kompaktheit des Speisesystems und des Konvertergehäuses kann die durch die elektrischen Bauteile erzeugte Wärme nur noch schwer abgeleitet werden. Zusätzliche elektrische Bauteile innerhalb des Konvertergehäuses sind somit nur noch schwer zu realisieren.The external dimensions of a feed system including the converter housing should be as low as possible so that the weight of the feed system and the wind load through the feed system are kept as low as possible. Furthermore, a compact converter housing is desirable for design reasons. Due to the necessary compactness of the feed system and the converter housing, the heat generated by the electrical components can be derived only with difficulty. Additional electrical components within the converter housing are thus difficult to realize.

Moderne Endgeräte, so wie beispielsweise moderne Flachbildschirme sind internetfähig, können also Informationen und Inhalte direkt aus dem Internet empfangen und verarbeiten. Entsprechende Flachbildschirme weisen dafür eine LAN-Schnittstelle beispielsweise in Form eines Ethernet-Anschlusses oder eine Antenne zum Empfang von WLAN-Signalen auf. Zusätzlich weisen entsprechenden Flachbildschirme einen koaxialen Antennenanschluss zum Empfangen von Fernsehsignalen auf.Modern devices, such as modern flat screens are internet enabled, so can receive and process information and content directly from the Internet. Corresponding flat screens have for this purpose a LAN interface, for example in the form of an Ethernet connection or an antenna for receiving WLAN signals. In addition, corresponding flat panel displays have a coaxial antenna port for receiving television signals.

Endgeräte wie Smartphones, Laptops oder Tablets (tragbare Computer mit berührungsempfindlichen Bildschirm) weisen üblicherweise keinen Antennenanschluss auf, so dass zum Darstellen von Fernsehprogrammen ein separater sogenannter IP-Adapter verwendet werden muss, der Fernsehsignale konvertiert und IP-verkapselt (IP = Internetprotokoll), so dass die so IP-verkapselten Daten auf den Endgeräten dargestellt werden können.Terminals such as smartphones, laptops or tablets (portable computers with touch-sensitive screen) usually have no antenna connection, so that for displaying television programs, a separate so-called IP adapter must be used, which converts television signals and IP-encapsulated (IP = Internet Protocol) that the so IP-encapsulated data can be displayed on the terminals.

In vielen Haushalten liegt bereits ein Ethernet mit einem zentralen Router vor, da z.B. mehr als ein Rechner an DSL (engl.: Digital Subscriber Line) angeschlossen werden soll, oder weil z.B. ein zentraler Drucker für eine Vielzahl von Rechnern vorhanden ist. Sowohl das Koaxialnetz zum Verteilen der Fernseh- und/oder Rundfunkprogramme als auch das Ethernet sind üblicherweise als sogenannte Sternnetze realisiert, so dass diese quasi übereinander liegen und parallel zueinander existieren. Ein internetfähiger Flachbildschirm ist somit über den Antennenanschluss mit dem Koaxialnetz zum Darstellen von Fersehprogrammen und über den Ethernetanschluss mit dem Ethernet zum Wiedergegeben von Internetinhalten verbunden.In many households, there is already an Ethernet with a central router, because, for example, more than one computer to DSL (Digital Subscriber Line) to be connected, or because, for example, a central printer for a variety of computers is available. Both the coaxial network for distributing the television and / or radio programs as well as the Ethernet are usually realized as so-called star networks, so that these are virtually one above the other and exist parallel to each other. An internet-enabled flat screen is thus connected to the coaxial network for displaying television programs via the antenna connection and to the Ethernet for the reproduction of Internet content via the Ethernet connection.

Ein gattungsbildendes Distributionssystem für Satellitenrundfunk ist beispielsweise aus der WO 2004/054 143 A1 bekannt geworden. Gezeigt wird ein System mit einem Reflektor und einer im Brennpunkt bzw. im Bereich des Brennpunktes angeordneten Empfangseinrichtung. Die Empfangseinheit ist mittels eines Bussystems mit unterschiedlichen Teilnehmern verbunden. Die Empfangseinheit umfasst ferner einen Modemwandler, einen Vorverstärker, einen Empfänger und ein Businterface, worüber die Empfangseinheit mit dem Bussystem gekoppelt. Gemäß dieser Vorveröffentlichung wird vorgeschlagen, die Empfänger nicht auf Seiten der Teilnehmer vorzusehen, sondern die Teilnehmer den Satellitenempfangsantennen zuzuordnen. Unter den Empfängern werden jene Einheiten verstanden, die die Signale demodulieren und gegebenenfalls decodieren. Das bekannte System umfasst wenigstens einen LNB, eventuell notwendige Frequenzumsetzer sowie wenigstens einen Empfangsempfänger zusammen mit einem Businterface, so dass ausschließlich demodulierte und/oder - falls gewünscht oder notwendig - decodierte Signale mittels des Bussystems an die Teilnehmer verteilt werden können. Dabei können die Signale zur Übertragung über das Bussystem entsprechend dem Bussystem-Standard gegebenenfalls neu codiert werden.A generic distribution system for satellite broadcasting is for example from the WO 2004/054 143 A1 known. A system is shown with a reflector and a receiving device arranged in the focal point or in the region of the focal point. The receiving unit is connected by means of a bus system with different participants. The receiving unit further comprises a modem converter, a preamplifier, a receiver and a bus interface, via which the receiving unit is coupled to the bus system. According to this prior publication, it is proposed not to provide the receivers on the part of the subscribers, but to assign the subscribers to the satellite receiving antennas. The receivers are those units which demodulate the signals and, if necessary, decode them. The known system comprises at least one LNB, possibly necessary frequency converter and at least one receiving receiver together with a bus interface, so that only demodulated and / or - if desired or necessary - decoded signals can be distributed by means of the bus system to the participants. The signals can be transmitted via the bus system optionally re-encoded according to the bus system standard.

Als Bussystem kann eine Struktur verwendet werden, die auch zur Datenübertragung in PC-Netzwerken eingesetzt wird. Von daher ist es möglich, nur noch eine einzige Netzwerkinfrastruktur vorzusehen, welche alle möglichen Kommunikationsaufgaben in einem Gehäuse bewältigt.As a bus system, a structure can be used, which is also used for data transmission in PC networks. Therefore, it is possible to provide only a single network infrastructure, which handles all possible communication tasks in a housing.

Die erläuternden Komponenten sind dabei alle in einem einzigen Gehäuse untergebracht, das beispielsweise auch für die LNBs verwendet wird. Von daher wird gemäß dieser Vorveröffentlichung die gesamte Einheit in dem LNB-Gehäuse mit den erwähnten zusätzlichen Komponenten an der Antenne montiert.The explanatory components are all housed in a single housing, which is also used for example for the LNBs. Therefore, according to this prior publication, the entire unit in the LNB housing with the mentioned additional components is mounted on the antenna.

Aus der US 2006/0294550 A1 ist zudem ein digitales Fernsehübertragungssignal-Empfangssystem und eine in diesem System verwendete Außenanordnung als bekannt zu entnehmen. Diese Außenanordnung umfasst beispielsweise ein Gehäuse und einen Tuner, worüber ein RF-Signal empfangen werden kann. Der Tuner ist mit einem Demodulator gekoppelt, der wiederum MPEG-Signale zu einer drahtlosen Schnittstelle (LAN 1394) übertragen kann, die wiederum über eine Antenne zu einer Innenanordnung übertragen werden.From the US 2006/0294550 A1 In addition, a digital television transmission signal receiving system and an external arrangement used in this system can be taken as known. This outer assembly includes, for example, a housing and a tuner over which an RF signal can be received. The tuner is coupled to a demodulator, which in turn can transmit MPEG signals to a wireless interface (LAN 1394), which in turn is transmitted via an antenna to an indoor arrangement.

Die Außenanordnung soll dabei in der Nähe der Antenne, beispielsweise an einer Außenwand angeordnet sein. Aus der WO2004054143 A1 ist Ein Distributionssystem für Satellitenrundfunk bekannt, das eine Satelliten-Empfangsantenne zum Empfang der Satelliten-Signale, Empfänger zur Demodulation der von der Antenne empfangenen Signale und ein Leitungssystem zur Verteilung der Signale an mehrere Teilnehmer umfasst, wobei die Empfänger der Satelliten-Empfangsantenne räumlich nahe zugeordnet sind und ausschliesslich demodulierte bzw. decodierte Signale mittels des Leitungssystems an die Teilnehmer weiterverteilen. Der Empfänger umfasst einen Hohlleiter und ein Gehäuse, wobei in dem Gehäuse sind: eine Auskoppeleinrichtung, ein Hochfrequenzverstärker, ein Zwischenfrequenzverstärker und ein Tuner angeordnet. Demgegenüber liegt der Erfindung die Aufgabe zugrunde, ein verbessertes Speisesystem bereitzustellen, das einen verminderten Energieverbrauch und eine verminderte Wärmeentwicklung und eine verminderte Anzahl von Datensignalausgangsschnittstellen aufweist.The outer arrangement should be arranged in the vicinity of the antenna, for example on an outer wall. From the WO2004054143 A1 A distribution system for satellite broadcasting is known which comprises a satellite receiving antenna for receiving the satellite signals, receivers for demodulating the signals received by the antenna and a line system for distributing the signals to a plurality of subscribers, the receivers being spatially close to the satellite receiving antenna are and redistribute exclusively demodulated or decoded signals by means of the line system to the participants. The receiver comprises a waveguide and a housing, wherein in the housing are arranged: a decoupling device, a high frequency amplifier, an intermediate frequency amplifier and a tuner. In contrast, the invention is based on the object to provide an improved feed system having a reduced power consumption and reduced heat generation and a reduced number of data signal output interfaces.

Diese Aufgabe wird durch ein Speisesystem mit den Merkmalen gemäß Anspruch 1 der vorliegenden Erfindung gelöst. Vorteilhafte Ausführungen sind in den Unteransprüchen beschrieben.This object is achieved by a feed system having the features according to claim 1 of the present invention. Advantageous embodiments are described in the subclaims.

Im genaueren weisen ein Eingangsbandpass und ein Ausgangsbandpass des erfindungsgemäßen Speisesystems Durchlassbandbreiten auf, die gleich groß oder größer sind als die Satellitensignalbandbreite, die zumindest 2,05 GHz aufweist. Das erfindungsgemäße Speisesystem umfasst ferner einen im Gehäuse des Speisesystems angeordneten und über eine Signalleitung mit einem Zwischenfrequenzverstärker verbundenen Breitbandtuner, der das vom Zwischenfrequenzverstärker ausgegebene Zwischenfrequenzsignal eines Transponders in ein Basisbandsignal konvertiert und I- und Q-Signale erzeugt, die jeweils die halbe Bandbreite wie die Durchlassbandbreite des Eingangs- und Ausgangsbandpasses aufweisen. Das erfindungsgemäße Speisesystem umfasst ferner einen im Gehäuse des Speisesystems angeordneten und über die Signalleitung mit dem Breitbandtuner verbundenen Demodulator, der dazu ausgebildet ist, das Basisbandsignal zu demodulieren und ein Datensignal zu erzeugen. Ferner umfasst das erfindungsgemäße Speisesystem eine Ethernet-Schnittstelle, die in dem Gehäuse angeordnet und über die Signalleitung mit dem Demodulator verbunden ist. Über die Ethernet-Schnittstelle können die Datensignale ausgegeben werden und über die Ethernet-Schnittstelle erfolgt die Versorgung des Speisesystems mit elektrischer Energie.More specifically, an input bandpass and an output bandpass of the inventive feed system have passband widths equal to or greater than the satellite signal bandwidth having at least 2.05 GHz. The feed system according to the invention further comprises a arranged in the housing of the feed system and connected via a signal line to an intermediate frequency amplifier broadband tuner, which converts the output of the intermediate frequency amplifier intermediate frequency signal of a transponder into a baseband signal and generates I and Q signals, each half the bandwidth as the pass bandwidth have the input and output bandpass. The feed system according to the invention further comprises a demodulator arranged in the housing of the feed system and connected via the signal line to the wideband tuner, which is designed to demodulate the baseband signal and to generate a data signal. Furthermore, the feed system according to the invention comprises an Ethernet interface, which is arranged in the housing and connected via the signal line to the demodulator. The data signals can be output via the Ethernet interface and the supply of the feed system with electrical energy via the Ethernet interface.

Aufgrund der erhöhten Durchlassbandbreite des Eingangsbandpasses und des Ausgangsbandpasses muss ein breitbandiges Satellitensignal, das beispielsweise eine Bandbreite von 2,05 GHz aufweist, durch den Konverter nicht mittels eines Splitters in ein Lowband und ein Highband aufgespalten werden. Somit liegt bei der Signalverarbeitung durch den Konverter stets ein Breitbandsignal vor. Aufgrund der Konvertierung des breitbandigen Zwischenfrequenzsignals in ein Basisbandsignal durch den Breitbandtuner und anschließender Demodulierung des Basisbandsignals in ein Datensignal durch den Demodulator kann das so erzeugte Datensignal über die einzige Ethernet-Schnittstelle ausgegeben werden. Das erfindungsgemäße Speisesystem ist folglich nicht mehr auf die bandbreitenbegrenzte Signalausgabe über eine oder über mehrere Koaxialschnittstellen angewiesen.Due to the increased passband bandwidth of the input bandpass and the output bandpass, a broadband satellite signal, for example, having a bandwidth of 2.05 GHz, need not be split by the converter into a lowband and a highband by means of a splitter. Thus, the signal processing by the converter always has a wideband signal. Due to the conversion of the wideband intermediate frequency signal into a baseband signal by the wideband tuner and subsequent demodulation of the baseband signal into a data signal by the demodulator, the data signal thus generated can be output via the single Ethernet interface. The feed system according to the invention is therefore no longer dependent on the bandwidth-limited signal output via one or more coaxial interfaces.

Es erweist sich im Rahmen der Erfindung als positiv, dass der Tuner zudem als Breitband-Tuner zur Verarbeitung der Signale in der Durchlassbandbreite ausgestaltet ist.It proves to be positive in the context of the invention that the tuner is also configured as a broadband tuner for processing the signals in the passband bandwidth.

Als vorteilhaft erweist sich auch die im Rahmen der Erfindung vorgesehene Frequenzumsetzungseinrichtung unter Verwendung eines Lokaloszillators, der ein Lokaloszillator-Signal mit einer Lokaloszillator-Frequenz erzeugt, um hierüber einen Mischer anzusteuern, der zwischen dem Eingangsbandpass und dem Ausgangsbandpass angeordnet und mit diesen über die Signalleitung verbunden ist.The frequency conversion device provided in the context of the invention also proves to be advantageous using a local oscillator which generates a local oscillator signal with a local oscillator frequency in order to control a mixer arranged between the input bandpass and the output bandpass and connected thereto via the signal line is.

Schließlich ist der Einsatz des entsprechenden Gerätes überall problemlos auch dadurch möglich, dass das erfindungsgemäße Speisesystem über die Ethernet-Schnittstelle mit elektrischer Energie versorgt wird.Finally, the use of the corresponding device anywhere is also easily possible because the feed system of the invention is supplied via the Ethernet interface with electrical energy.

Mittels des erfindungsgemäßen Speisesystems können im Vergleich zu einem aus dem Stand der Technik bekannten Speisesystem ein Eingangsbandpass, ein Mischer, ein Lokaloszillator, ein Ausgangsbandpass und ein Zwischenfrequenzverstärker eingespart werden. Folglich weist das erfindungsgemäße Speisesystem einen verminderten Energieverbrauch und eine verminderte Wärmeerzeugung auf. Weiterhin kann der frei werdende Bauraum im Konvertergehäuse für den Breitbandtuner und den Demodulator verwendet werden. Aufgrund des verminderten Energieverbrauchs des erfindungsgemäßen Speisesystems kann dieses über die Ethernet-Schnittstelle mit elektrischer Energie versorgt werden.By means of the feed system according to the invention, an input bandpass filter, a mixer, a local oscillator, an output bandpass filter and an intermediate frequency amplifier can be saved compared to a feed system known from the prior art. Consequently, the feed system according to the invention has a reduced energy consumption and reduced heat generation. Furthermore, the space available in the converter housing for the Breitbandtuner and the demodulator can be used. Due to the reduced energy consumption of the feed system according to the invention this can be supplied via the Ethernet interface with electrical energy.

Da die Datensignale über die Ethernet-Schnittstelle ausgegeben werden, ist zum Übertragen von über Satellit ausgestrahlten Fernseh- und/oder Rundfunkprogrammen kein Koaxialnetz mehr notwendig. Die Fernseh- und/oder Rundfunkprogramme werden über das Ethernet zu den Endgeräten übertragen. Dabei kann zur Übertragung der Fernseh- und/oder Rundfunkprogramme beispielsweise ein Twisted-Pair-Kabel, Funk für WLAN oder eine Stromversorgungsleitung (Stromkabel) verwendet werden. Ein moderner Flachbildschirm kann somit über Satellit empfangene Fernsehprogramme darstellen als auch über das Internet empfangene Informationen empfangen und darstellen, ohne dass der Flachbildschirm an einem Koaxialnetz angeschlossen sein muss. Daher kann bei Verwendung des erfindungsgemäßen Speisesystems ein redundantes Koaxialnetz komplett eingespart werden. Weiterhin werden sämtliche Nachteile der koaxialen Signalverarbeitung, so wie Dämpfungen, Schräglagen, nichtlineare Verzerrungen und Übersprechen zwischen Polarisations- und Bandebenen) vermieden.Since the data signals are output via the Ethernet interface, a coaxial network is no longer necessary for transmitting satellite and / or broadcast programs broadcast via satellite. The television and / or radio programs are transmitted over the Ethernet to the terminals. In this case, for example, a twisted pair cable, wireless for WLAN or a power supply line (power cable) can be used to transmit the television and / or radio programs. A modern flat panel display can thus display television programs received via satellite as well as receive and display information received over the Internet without the flat screen must be connected to a coaxial network. Therefore, when using the feed system according to the invention, a redundant coaxial network can be completely saved. Furthermore, all the disadvantages of coaxial signal processing, such as attenuation, skew, nonlinear distortion and crosstalk between polarization and band planes are avoided.

Darüber hinaus können Endgeräte wie Smartphones, Laptops oder Tablets, die keinen Koaxialeingang zum Empfangen von Fernsehprogrammen aufweisen, durch Verwenden des erfindungsgemäßen Speisesystems über das Ethernet direkt auf Fernsehsignale zugreifen.In addition, terminals such as smartphones, laptops or tablets, which do not have a coaxial input for receiving television programs, can access television signals directly via the Ethernet by using the inventive feed system.

Vorzugsweise ist in dem Gehäuse ferner eine in den Hohlleiter ragende zweite Auskoppeleinrichtung angeordnet, mittels der in einer zweiten Polarisationsebene ausgestrahlte elektromagnetische Wellen des Satellitensignals empfangbar sind. Die zweite Polarisationsebene steht dabei senkrecht zu der ersten Polarisationsebene, in der elektromagnetische Wellen des Satellitensignals ausgestrahlt werden, die mittels der ersten Auskoppeleinrichtung empfangbar sind. Ferner ist in dem Gehäuse ein zweiter Hochfrequenzverstärker zum Verstärken des Satellitensignals angeordnet, der über eine zweite Signalleitung mit der zweiten Auskoppeleinrichtung verbunden ist. In dem Gehäuse sind weiterhin ein zweiter Eingangsbandpass und ein zweiter Ausgangsbandpass angeordnet, die über die zweite Signalleitung mit dem zweiten Hochfrequenzverstärker seriell verbunden sind, wobei der zweite Eingangsbandpass und der zweite Ausgangsbandpass jeweils die Durchlassbandbreite aufweisen, die mindestens 70% der Satellitensignalbandbreite beträgt. Ferner ist in dem Gehäuse ein zweiter Mischer zwischen dem zweiten Eingangsbandpass und dem zweiten Ausgangsbandpass angeordnet und mit diesen über die zweite Signalleitung verbunden, wobei der zweite Mischer ferner mit und dem Lokaloszillator verbunden ist. Der zweite Mischer mischt das Satellitensignal mit dem Lokaloszillatorsignal und erzeugt so ein zweites Zwischenfrequenzsignal. Ein in dem Gehäuse angeordneter zweiter Zwischenfrequenzverstärker ist über die zweite Signalleitung mit dem zweiten Ausgangsbandpass verbunden und dazu ausgebildet, das zweite Zwischenfrequenzsignal zu verstärken. Der Breitbandtuner ist zusätzlich über die zweite Signalleitung mit dem zweiten Zwischenfrequenzverstärker verbunden und dazu ausgebildet, das zweite Zwischenfrequenzsignal in ein zweites Basisbandsignal zu konvertieren. Weiterhin ist der Demodulator zusätzlich über die zweite Signalleitung mit dem Breitbandtuner verbunden und dazu ausgebildet, das zweite Basisbandsignal zu demodulieren und ein zweites Datensignal zu erzeugen. Ferner ist die Ethernet-Schnittstelle über die zweite Signalleitung mit dem Demodulator zum Austausch der zweiten Datensignale verbunden.Preferably, a second outcoupling device protruding into the waveguide is furthermore arranged in the housing, by means of which the electromagnetic waves of the satellite signal radiated in a second polarization plane can be received. The second polarization plane is perpendicular to the first plane of polarization in which electromagnetic waves of the satellite signal are emitted, which can be received by means of the first outcoupling device. Further, in the housing, a second high-frequency amplifier for amplifying the satellite signal is arranged, which is connected via a second signal line to the second coupling-out device. In the housing, a second input bandpass and a second output bandpass are further arranged, which are connected in series via the second signal line to the second high-frequency amplifier, wherein the second Input bandpass and the second output bandpass each have the passband bandwidth which is at least 70% of the satellite signal bandwidth. Further, in the housing, a second mixer is disposed between the second input bandpass and the second output bandpass and connected thereto via the second signal line, the second mixer being further connected to and to the local oscillator. The second mixer mixes the satellite signal with the local oscillator signal to produce a second intermediate frequency signal. A second intermediate frequency amplifier disposed in the housing is connected to the second output bandpass via the second signal line and configured to amplify the second intermediate frequency signal. The broadband tuner is additionally connected via the second signal line to the second intermediate frequency amplifier and configured to convert the second intermediate frequency signal into a second baseband signal. Furthermore, the demodulator is additionally connected to the broadband tuner via the second signal line and configured to demodulate the second baseband signal and to generate a second data signal. Furthermore, the Ethernet interface is connected via the second signal line to the demodulator for exchanging the second data signals.

Ein entsprechendes Speisesystem kann Satellitensignale verarbeiten, die eine Satellitensignalbandbreite von 2,05 GHz aufweist und die vertikal und horizontal polarisierte Signalkomponenten aufweisen. Zur Verarbeitung entsprechenden Satellitensignale weisen aus dem Stand der Technik bekannte Speisesysteme, sogenannte vierfach oder quatro LNB's, vier Koaxialausgänge auf. Mittels eines entsprechenden erfindungsgemäßen Speisesystems können im Vergleich zu einem aus dem Stand der Technik bekannten Speisesystem zwei Eingangsbandpässe, zwei Splitter, zwei Mischer, ein Lokaloszillator, zwei Ausgangsbandpässe und zwei Zwischenfrequenzverstärker eingespart werden. Folglich weist das erfindungsgemäße Speisesystem einen verminderten Energieverbrauch und eine verminderte Wärmeerzeugung auf.A corresponding feed system can process satellite signals having a 2.55 GHz satellite signal bandwidth and having vertically and horizontally polarized signal components. For processing corresponding satellite signals have known from the prior art feed systems, so-called quadruple or quatro LNB's, four coaxial outputs. By means of a corresponding feed system according to the invention, two input bandpasses, two splitters, two mixers, a local oscillator, two output bandpass filters and two intermediate frequency amplifiers can be saved compared to a feed system known from the prior art. Consequently, the feed system according to the invention has a reduced energy consumption and reduced heat generation.

Aufgrund der Einsparung der oben angegebenen elektrischen Bauteile kann beispielsweise eine komplette Seite des Konverters für andere zusätzliche Bauteile, so wie z.B. für den Breitbandtuner und den Demodulator verwendet werden. Aufgrund des verminderten Energieverbrauchs des erfindungsgemäßen Speisesystems kann dieses über die Ethernet-Schnittstelle mit elektrischer Energie versorgt werden.For example, due to the economization of the above-noted electrical components, a complete side of the converter may be used for other additional components such as e.g. for the broadband tuner and the demodulator. Due to the reduced energy consumption of the feed system according to the invention this can be supplied via the Ethernet interface with electrical energy.

Vorzugsweise sind die Durchlassbandbreiten des zweiten Eingangsbandpasses und des zweiten Ausgangsbandpasses gleich groß oder größer als die Satellitensignalsbandbreite. Bei einer Satellitensignalbandbreite von 2,05 GHz beträgt dann die Durchlassbandbreite des zweiten Eingangsbandpasses und des zweiten Ausgangsbandpasses mindestens 2,05 GHz. Dadurch können mehr Informationen durch das Speisesystem verarbeitet und verteilt werden.Preferably, the passband widths of the second input bandpass and the second output bandpass are equal to or greater than the satellite signal bandwidth. With a satellite signal bandwidth of 2.05 GHz, then the passband bandwidth of the second input bandpass and the second output bandpass is at least 2.05 GHz. This allows more information to be processed and distributed by the feed system.

Vorzugsweise weist das Speisesystem einen Backend-Prozessor auf, der in dem Gehäuse zwischen dem Demodulator und der Ethernet-Schnittstelle angeordnet und mit diesen verbunden ist, wobei der Backend-Prozessor dazu ausgebildet ist, das Datensignal und/oder das zweite Datensignal in Datentransportströme zu demultiplexen.Preferably, the feed system comprises a backend processor located in and connected to the housing between the demodulator and the Ethernet interface, the backend processor thereto is designed to demultiplex the data signal and / or the second data signal in data transport streams.

Die vom Breitbandmodulator ausgegebenen Datensignale sind in der Regel sogenannte Multi-Programm-Transport-Ströme (MPTS), die mehrere Fernsehprogramme beinhalten. Die Datenrate eines entsprechenden MPTS beträgt etwa 50 Mbit/s. Durch demultiplexen des MPTS mittels des Backend-Prozessors werden sogenannte Single-Programm-Transport-Ströme (SPTS) erzeugt, deren Datenrate lediglich im Bereich von 6 bis 16 Mbit/s liegt. Folglich kann durch Verwenden eines Backend-Prozessors die vom Speisesystem ausgegebene Datenrate reduziert werden, so dass Netzwerkressourcen optimal genutzt werden können. Weitere Vorteile, Einzelheiten und Merkmale der Erfindung ergeben sich nachfolgend aus den erläuterten Ausführungsbeispielen. Dabei zeigen im Einzelnen:

  • Figur 1: Ein Blockschaltdiagramm eines aus dem Stand der Technik bekannten Speisesystems zum Empfangen und Verarbeiten von breitbandigen Satellitensignalen mit vier Signalausgängen;
  • Figur 2: Ein Blockschaltdiagramm eines erfindungsgemäßen Speisesystems gemäß einer ersten Ausführungsform; und
  • Figur 3: Ein Blockschaltdiagramm eines erfindungsgemäßen Speisesystems gemäß einer zweiten Ausführungsform.
The data signals output by the broadband modulator are typically so-called multi-program transport streams (MPTS), which include multiple television programs. The data rate of a corresponding MPTS is about 50 Mbit / s. By demultiplexing the MPTS by means of the backend processor so-called single-program transport streams (SPTS) are generated, the data rate is only in the range of 6 to 16 Mbit / s. Thus, by using a backend processor, the data rate output from the feed system can be reduced so that network resources can be optimally utilized. Further advantages, details and features of the invention will become apparent from the illustrated embodiments. In detail:
  • FIG. 1 : A block diagram of a prior art feed system for receiving and processing broadband satellite signals having four signal outputs;
  • FIG. 2 : A block diagram of a feed system according to the invention according to a first embodiment; and
  • FIG. 3 : A block diagram of a feed system according to the invention according to a second embodiment.

In der nun folgenden Beschreibung bezeichnen gleiche Bezugszeichen gleiche Bauteile bzw. gleiche Merkmale, so dass eine in Bezug auf eine Figur durchgeführte Beschreibung bezüglich eines Bauteils auch für die anderen Figuren gilt, so dass eine wiederholende Beschreibung vermieden wird.In the description that follows, the same reference numerals designate the same components or the same features that a description made with respect to a figure with respect to a component also applies to the other figures, so that a repetitive description is avoided.

Figur 1 zeigt ein Blockschaltdiagramm eines aus dem Stand der Technik bekannten Speisesystems zum Empfangen und Verarbeiten von breitbandigen Satellitensignalen, die aus in zwei Polarisationsebenen ausgestrahlten elektromagnetischen Wellen bestehen. Das Speisesystem umfasst ein Feedhorn 1, das als Rillenhorn ausgestaltet sein kann, und das in einen Hohlleiter 1 übergeht. In dem Feedhorn 1 ist ein Orthomoden-Transducer 2 angeordnet, der senkrecht zueinander polarisierte elektromagnetische Wellen des Satellitensignals voneinander trennen kann. In den Orthomoden-Transducer 2 ragen eine erste Auskoppeleinrichtung 10 und eine zweite Auskoppeleinrichtung 20, die jeweils als Auskoppelstifte realisiert sind. FIG. 1 shows a block diagram of a known from the prior art feed system for receiving and processing of broadband satellite signals, which consist of emitted in two polarization planes electromagnetic waves. The feed system comprises a feedhorn 1, which can be configured as a grooved horn, and which merges into a waveguide 1. In the feed horn 1, an orthomode transducer 2 is arranged, which can separate mutually perpendicular polarized electromagnetic waves of the satellite signal from each other. In the orthomode transducer 2 protrude a first decoupling device 10 and a second decoupling device 20, which are each realized as Auskoppelstifte.

Aufgrund der Bereitstellung des Orthomoden-Transducers 2, der eine Polarisationsebene einer elektromagnetischen Wel-le drehen kann, können die erste Auskoppeleinrichtung 10 und die zweite Auskoppeleinrichtung 20 parallel zueinander ausgerichtet sein. Alternativ können auch zwei Auskoppelstifte bereitgestellt sein, die in einen Hohlleiter 1 ragen, wobei der erste Auskoppelstift 10 dann zu dem zweiten Auskoppelstift 20 um 90° gedreht sein müsste.Due to the provision of the orthomode transducer 2, which can rotate a plane of polarization of an electromagnetic wave, the first outcoupling device 10 and the second outcoupling device 20 can be aligned parallel to one another. Alternatively, two Auskoppelstifte be provided, which protrude into a waveguide 1, wherein the first Auskoppelstift 10 would then have to be rotated to the second Auskoppelstift 20 by 90 °.

Der Orthomoden-Transducer 2 weist zwei Signalausgänge auf, nämlich einen ersten Signalausgang in Form einer Signalleitung 11 für das Satellitensignal, das über horizontalpolarisierte elektromagnetische Wellen empfangen wird, und einen zweiten Signalausgang in Form einer zweiten Signalleitung 21, über das Signale transportiert werden, die aus vertikal polarisierten elektromagnetischen Wellen des Satellitensignals gewonnen werden.The orthomode transducer 2 has two signal outputs, namely a first signal output in the form of a Signal line 11 for the satellite signal, which is received via horizontally polarized electromagnetic waves, and a second signal output in the form of a second signal line 21, are transported over the signals obtained from vertically polarized electromagnetic waves of the satellite signal.

Im Folgenden wird die Signalverarbeitung der Signale beschrieben, die aus den elektromagnetischen Wellen mit horizontaler Polarisation des Satellitensignals gewonnen werden. Die Verarbeitung der Signale, die aus den vertikal polarisierten elektromagnetischen Wellen des Satellitensignals gewonnen werden, ist entsprechend identisch.The following describes the signal processing of the signals obtained from the electromagnetic waves having horizontal polarization of the satellite signal. The processing of the signals obtained from the vertically polarized electromagnetic waves of the satellite signal is correspondingly identical.

Der erste Auskoppelstift 10 ragt in den Orthomoden-Transducer 2 und ist dazu ausgebildet, elektromagnetische Wellen mit horizontaler Polarisation zu empfangen. Ein dreistufiger Hochfrequenzverstärker 12 ist über die Signalleitung 11 mit dem ersten Auskoppelstift 10 verbunden. Der Hochfrequenzverstärker 12 ist dazu ausgebildet, das Satellitensignal zu verstärken. Der Ausgang des Hochfrequenzverstärkers 12 ist mit dem Eingang eines Splitters SH verbunden, der das breitbandig ausgestrahlte Satellitensignal, das beispielsweise eine Bandbreite von 10,7 GHz bis 12,75 GHz aufweist, in ein so genanntes Lowband und ein so genanntes Highband aufspaltet. Bei dem Lowband handelt es sich um ein niederfrequentes Signalband von 10,7 bis 11,7 GHz, und bei dem Highband handelt es sich um ein hochfrequentes Signalband von 11,7 bis 12,75 GHz. Der Splitter SH weist zwei Ausgänge auf, nämlich einen Ausgang für das Lowband und einen Ausgang für das Highband. Der Ausgang für das Lowband ist mit einem ersten Lowband-Eingangsbandpass 13L verbunden. Der erste Lowband-Eingangsbandpass 13L weist einen Durchlassbereich im Frequenzbereich von 10,7 bis 11,7 GHz auf. Andere Frequenzen werden nicht durchgelassen.The first decoupling pin 10 protrudes into the orthomode transducer 2 and is configured to receive electromagnetic waves of horizontal polarization. A three-stage high-frequency amplifier 12 is connected via the signal line 11 to the first decoupling pin 10. The radio frequency amplifier 12 is configured to amplify the satellite signal. The output of the high-frequency amplifier 12 is connected to the input of a splitter SH, which splits the broadband emitted satellite signal, for example, has a bandwidth of 10.7 GHz to 12.75 GHz, in a so-called low band and a so-called high band. The low band is a low frequency signal band of 10.7 to 11.7 GHz, and the high band is a high frequency signal band of 11.7 to 12.75 GHz. The splitter SH has two outputs, namely an output for the low band and an output for the highband. The output for the low band is connected to a first low band input bandpass 13L. The first low band input bandpass filter 13L has a passband in the frequency range of 10.7 to 11.7 GHz. Other frequencies are not allowed through.

Der erste Lowband-Eingangsbandpass 13L ist über die erste Signalleitung 11 mit einem ersten Mischer 14 verbunden, der wiederum mit einem Lowband-Lokaloszillator 30L verbunden ist. Der Lowband-Lokaloszillator 30L erzeugt ein Lowband-Lokaloszillatorsignal mit einer Lowband-Lokaloszillatorfrequenz von 9,75 GHz. Dieses Lowband-Lokaloszillatorsignal wird mit dem über den ersten Lowband-Eingangsbandpass 13L frequenzgefilterten Satellitensignal durch den Mischer 14 gemischt. Der Mischer 14 erzeugt unter anderem das Differenzsignal resultierend aus der Differenz des Satellitensignals und des Lowband-Lokaloszillatorsignals. Dieses so erzeugte erste Zwischenfrequenzsignal weist Signale mit Frequenzen von 950 MHz bis 1950 MHz auf, weist folglich eine Bandbreite von 1 GHz auf. Der erste Mischer 14 ist mit einem ersten Lowband-Ausgangsbandpass 15L verbunden, der einen Durchlassbereich von 950 MHz bis 1950 MHz aufweist. Andere Frequenzen werden von dem ersten Lowband-Ausgangsbandpass nicht durchgelassen.The first low band input bandpass filter 13L is connected via the first signal line 11 to a first mixer 14, which in turn is connected to a low band local oscillator 30L. The low band local oscillator 30L generates a low band local oscillator signal having a low band local oscillator frequency of 9.75 GHz. This low-band local oscillator signal is mixed with the satellite signal frequency-filtered via the first low-band input bandpass filter 13L by the mixer 14. The mixer 14 generates, inter alia, the difference signal resulting from the difference of the satellite signal and the low-band local oscillator signal. This thus generated first intermediate frequency signal has signals with frequencies of 950 MHz to 1950 MHz, thus has a bandwidth of 1 GHz. The first mixer 14 is connected to a first low band output bandpass 15L having a passband of 950 MHz to 1950 MHz. Other frequencies are not passed by the first low band output bandpass.

Der erste Lowband-Ausgangsbandpass 15L ist über die erste Signalleitung 11 mit einem ersten Lowband-Zwischenfrequenzverstärker 16L verbunden, der das Zwischenfrequenzsignal verstärkt. Der erste Lowband-Zwischenfrequenzverstärker 16L ist wiederum mit einem ersten Koaxialausgang 71 verbunden, über den die verstärkten Zwischenfrequenzsignale ausgegeben werden können.The first low band output bandpass 15L is connected via the first signal line 11 to a first low band intermediate frequency amplifier 16L which amplifies the intermediate frequency signal. The first low-band intermediate frequency amplifier 16L is in turn connected to a first coaxial output 71 through which the amplified Intermediate frequency signals can be output.

Ein erster Highband-Eingangsbandpass 13H ist mit dem zweiten Ausgang des Splitters SV über eine Signalleitung verbunden. Der Duchlassbereich des ersten Highband-Bandpasses 13H liegt zwischen 11,7 GHz und 12,75 GHz. Andere Frequenzbereiche werden von dem ersten Highband-Eingangsbandpass 13H nicht durchgelassen.A first highband input bandpass filter 13H is connected to the second output of the splitter SV via a signal line. The pass band of the first high band band pass 13H is between 11.7 GHz and 12.75 GHz. Other frequency ranges are not passed by the first highband input bandpass 13H.

Der erste Highband-Eingangsbandpass 13H ist über eine Signalleitung mit einem weiteren Mischer 14 verbunden. Der weitere Mischer 14 ist mit einem Highband-Lokaloszillator 30H verbunden, der ein Highband-Lokaloszillatorsignal mit einer Highband-Lokaloszillatorfrequenz von 10,6 GHz erzeugt. Der weitere Mischer 14 mischt das Highband-Lokaloszillatorfrequenzsignal mit dem Satellitensignal, das durch den ersten Highband-Eingangsbandpass 13H gefiltert wurde. Der weitere Mischer 14 erzeugt unter anderem auch ein Differenzsignal zwischen dem hochfrequenten Satellitensignal und dem Highband-Lokaloszillatorsignal. Dieses Differenzsignal stellt ein weiteres Zwischenfrequenzsignal dar, das Frequenzen von 1100 MHz bis 2150 MHz aufweist, folglich eine Bandbreite von 1,05 GHz aufweist. Dieses Zwischenfrequenzsignal wird von einem ersten Highband-Ausgangsbandpass 15H nochmals gefiltert, damit eventuelle Spiegelfrequenzen und andere Frequenzbereiche herausgefiltert werden. Der Durchlassbereich des ersten Highband-Ausgangsbandpasses 15H liegt zwischen 1100 MHz und 2150 MHz. Andere Frequenzbereiche werden nicht durchgelassen. Mit dem ersten Highband-Ausgangsbandpass 15H ist ein erster Highband-Zwischenfrequenzverstärker 16H verbunden, der wiederum mit einem dritten Koaxialausgang 73 verbunden ist. Über den dritten Koaxialausgang 73 können die so frequenzaufbereiteten und verstärkten Signale ausgegeben werden.The first high band input band pass 13H is connected to another mixer 14 via a signal line. The further mixer 14 is connected to a high band local oscillator 30H which generates a high band local oscillator signal with a high band local oscillator frequency of 10.6 GHz. The further mixer 14 mixes the high band local oscillator frequency signal with the satellite signal filtered by the first high band input bandpass filter 13H. Among other things, the further mixer 14 also generates a difference signal between the high-frequency satellite signal and the high-band local oscillator signal. This difference signal represents another intermediate frequency signal having frequencies of 1100 MHz to 2150 MHz, thus having a bandwidth of 1.05 GHz. This intermediate frequency signal is filtered again by a first highband output bandpass filter 15H to filter out possible image frequencies and other frequency ranges. The pass band of the first high band output band pass 15H is between 1100 MHz and 2150 MHz. Other frequency ranges will not be transmitted. With the first High band output band pass 15H is connected to a first high band intermediate frequency amplifier 16H, which in turn is connected to a third coaxial output 73. Via the third coaxial output 73, the thus frequency-processed and amplified signals can be output.

Die Signalverarbeitung der Signale, die aus den elektromagnetischen Wellen mit vertikaler Schwingungskomponente gewonnen werden, ist identisch zu der oben beschriebenen Signalverarbeitung der Signale, die aus den elektromagnetischen Wellen mit horizontaler Schwingungskomponente gewonnen werden, so dass eine Beschreibung der Frequenzverarbeitung hier nicht erfolgt.The signal processing of the signals obtained from the vertical vibration component electromagnetic waves is identical to the above-described signal processing of the signals obtained from the horizontal vibration component electromagnetic waves, so that a description of the frequency processing will not be given here.

Dieses aus dem Stand der Technik bekannte Speisesystem kann somit Satellitensignale verarbeiten, die breitbandig in einem Frequenzbereich von 10,7 GHz bis 12,75 GHz ausgestrahlt werden, und die eine horizontale und eine vertikale Polarisationskomponente aufweisen. Für die Ausgabe der aufbereiteten Fernseh- und/oder Rundfunkprogramme sind zwei Hochfrequenzverstärker 12, zwei Splitter SH, SV, vier Eingangsbandpässe 13L, 23L, 13H, 23H, vier Mischer 14, 24, zwei Lokaloszillatoren 30L, 30H, vier Ausgangsbandpässe 15L, 25L, 15H, 25H und vier Zwischenfrequenzverstärker 16L, 26L, 16H, 26H notwendig. Die frequenzaufbereiteten Fernseh- und/oder Rundfunkprogramme werden über vier Koaxialausgänge 71 - 74 ausgegeben.This prior art feed system can thus process satellite signals broadband broadcast in a frequency range of 10.7 GHz to 12.75 GHz and having a horizontal and a vertical polarization component. For the output of the prepared television and / or radio programs, two high-frequency amplifiers 12, two splitters SH, SV, four input bandpass filters 13L, 23L, 13H, 23H, four mixers 14, 24, two local oscillators 30L, 30H, four output bandpass filters 15L, 25L, 15H, 25H and four intermediate frequency amplifiers 16L, 26L, 16H, 26H necessary. The frequency-processed television and / or radio programs are output via four coaxial outputs 71-74.

Figur 2 zeigt ein Bockschaltdiagramm eines erfindungsgemäßen Speisesystems gemäß einer ersten Ausführungsform der vorliegenden Erfindung. Das erfindungsgemäße Speisesystem umfasst einen Hohlleiter 1, der eingangsseitig beispielsweise mit einem Rillenhorn ausgestattet sein kann. In den Hohlleiter 1 ragt eine als Auskoppelstift 10 ausgebildete erste Auskoppeleinrichtung 10, mittels der ein aus elektromagnatischen Wellen bestehendes und vom Satelliten ausgestrahltes Satellitensignal empfangen werden kann. FIG. 2 shows a block diagram of a feed system according to the invention according to a first embodiment of the present invention. The feed system according to the invention comprises a waveguide 1, which may be equipped on the input side, for example with a grooved horn. In the waveguide 1 projects as a decoupling pin 10 first decoupling means 10, by means of which a signal consisting of electro-magnetic waves and emitted by the satellite satellite signal can be received.

Der erste Auskoppelstift 10 ist über die erste Signalleitung 11 mit einem ersten Hochfrequenzverstärker 12 verbunden. Das von dem Speisesystem empfangene Satellitensignal weist beispielsweise Frequenzen im Bereich von 10,7 GHz bis 12,75 GHz auf. Dieses Satellitensignal wird breitbandig von dem ersten Hochfrequenzverstärker 12 verstärkt. Der erste Hochfrequenzverstärker 12 ist über die Signalleitung 11 mit einem ersten Eingangsbandpass 13 verbunden.The first decoupling pin 10 is connected via the first signal line 11 to a first high-frequency amplifier 12. For example, the satellite signal received by the feed system has frequencies in the range of 10.7 GHz to 12.75 GHz. This satellite signal is broadband amplified by the first high-frequency amplifier 12. The first high-frequency amplifier 12 is connected to a first input bandpass 13 via the signal line 11.

Vorzugsweise ist die Durchlassbandbreite des ersten Eingangsbandpasses gleich groß oder größer als die Satellitensignalbandbreite, so dass das gesamte vom Satelliten aus gestrahlte Satellitensignal durch den ersten Eingangsbandpass 13 durchgelassen wird.Preferably, the pass bandwidth of the first input passband is equal to or greater than the satellite signal bandwidth, so that the entire satellite signal transmitted from the satellite is transmitted through the first input passband 13.

Der erste Eingangsbandpass ist über die erste Signalleitung 11 mit einem ersten Mischer 14 verbunden, der wiederum über eine elektrische Leitung zusätzlich mit einem Lokaloszillator 30 verbunden ist. Der Lokaloszillator 30 erzeugt ein Lokaloszillatorsignal mit einer Lokaloszillatorfrequenz. Beispielsweise kann die Lokaloszillatorfrequenz 10,2 GHz oder auch 10,5 GHz betragen. Der Mischer 14 mischt das Lokaloszillatorsignal mit dem Satellitensignal und erzeugt Summen- und Differenzfrequenzen. Die Differenzfrequenz des Satellitensignals und des Lokaloszillatorsignals werden von einem ersten Ausgangsbandpass 15 durchgelassen, der über die Signalleitung 11 mit dem Mischer 14 verbunden ist. Wenn die Lokaloszillatorfrequenz 10,2 GHz beträgt, dann ist das von dem ersten Mischer 14 erzeugte Differenzsignal im Bereich von 500 MHz bis zu 2550 MHz angesiedelt und wird als (erstes) Zwischenfrequenzsignal bezeichnet. In diesem Frequenzbereich ist auch der Durchlassbereich des ersten Ausgangsbandpasses 15 angesiedelt. Andere Frequenzen werden von dem ersten Ausgangsbandpass 15 nicht durchgelassen.The first input bandpass is connected via the first signal line 11 to a first mixer 14, which in turn is additionally connected via an electrical line to a local oscillator 30. The local oscillator 30 generates a local oscillator signal having a local oscillator frequency. For example, the local oscillator frequency can be 10.2 GHz or even 10.5 GHz. The mixer 14 mixes the local oscillator signal with the satellite signal and generates sum and difference frequencies. The difference frequency of the satellite signal and the local oscillator signal are passed through by a first output bandpass filter 15 which is connected to the mixer 14 via the signal line 11. If the local oscillator frequency is 10.2 GHz, then the difference signal generated by the first mixer 14 is in the range of 500 MHz to 2550 MHz and is referred to as a (first) intermediate frequency signal. In this frequency range, the passband of the first output bandpass 15 is also located. Other frequencies are not passed by the first output bandpass 15.

Der erste Ausgangbandpass 15 ist über die erste Signalleitung 11 mit einem ersten Zwischenfrequenzverstärker 16 verbunden, der das Zwischenfrequenzsignal verstärkt. Wenn die Durchlassbandbreiten des Eingangsbandpasses 13 und des Ausgangsbandpasses 100% der Satellitensignalbandbreite entspricht, weist das verstärkte Zwischenfrequenzsignal eine Bandbreite von 2,05 GHz auf und wird breitbandig über die Signalleitung 11 einem Breitbandtuner 40 zugeführt. Der Breitbandtuner 40, der beispielsweise als ein Chip-Tuner 40 ausgestaltet sein kann, konvertiert einen Transponder aus der Zwischenfrequenzlage in ein Basisbandsignal. Folglich mischt der Breitbandtuner 40 das Zwischenfrequenzsignal auf das Basisbandsignal herunter, wobei sich die I- und Q-Basisbandsignale über die jeweils halbe Transponder-Bandbreite erstrecken. Das Basisbandsignal ist moduliert und wird von einem über die Signalleitung 11 mit dem Breitbandtuner 40 verbundenen Demodulator 50 demoduliert. Das von dem Demodulator 50 ausgegebene Datensignal ist in der Regel ein so genannter Multi-Programm-Transport-Strom (MPTS), der mehrere Fernsehprogramme beinhaltet.The first output bandpass 15 is connected via the first signal line 11 to a first intermediate frequency amplifier 16, which amplifies the intermediate frequency signal. If the passband widths of the input passband 13 and the output passband 100% correspond to the satellite signal bandwidth, the amplified intermediate frequency signal has a bandwidth of 2.05 GHz and broadband is supplied via the signal line 11 to a broadband tuner 40. The broadband tuner 40, which may be configured, for example, as a chip tuner 40, converts a transponder from the intermediate frequency position into a baseband signal. As a result, the broadband tuner 40 mixes the intermediate frequency signal down to the baseband signal, with the I and Q baseband signals extending over each half the transponder bandwidth. The baseband signal is modulated and demodulated by a demodulator 50 connected to the broadband tuner 40 via the signal line 11. That from the demodulator The output data signal is usually a so-called multi-program transport stream (MPTS), which includes several television programs.

Das von dem Demodulator 50 ausgegebene Datensignal wird über die Signalleitung 11 einer Ethernet-Schnittstelle 70 zugeführt, die beispielsweise als Ethernet-Buchse 70 ausgestaltet sein kann. Die so konvertierten Signale werden von dem Speisesystem über die Ethernet-Schnittstelle 70 ausgegeben und können von einem Endgerät über ein Ethernetz empfangen werden. Folglich ist für den Empfang von Fernseh- und/oder Rundfunkprogrammen kein Koaxialnetz mehr notwendig. Ferner weist das erfindungsgemäße Speisesystem lediglich eine einzige Ausgabe-Schnittstelle 70 auf.The data signal output by the demodulator 50 is supplied via the signal line 11 to an Ethernet interface 70, which may be designed, for example, as an Ethernet socket 70. The signals thus converted are output from the feed system via the Ethernet interface 70 and can be received by a terminal via an Ethernet network. Consequently, a coaxial network is no longer necessary for the reception of television and / or radio programs. Furthermore, the feed system according to the invention has only a single output interface 70.

Figur 3 zeigt ein Blockschaltdiagramm eines erfindungsgemäßen Speisesystem gemäß einer zweiten Ausführungsform. Das Speisesystem umfasst einen Orthomoden-Transducer 2, dessen Funktionsweise bereits oben mit Bezug auf Figur 1 beschrieben wurde. In den Orthomoden-Transducer 2 ragen zwei Auskoppeleinrichtungen, nämlich ein erster Auskoppelstift 10 und ein zweiter Auskoppelstift 20. Mittels des ersten Auskoppelstifts 10 sind elektromagnetische Wellen des Satellitensignals empfangbar, die horizontal polarisiert sind. Mittels des zweiten Auskoppelstifts 20 sind elektromagnetische Wellen des Satellitensignals empfangbar, die vertikal polarisiert sind. Der erste Auskoppelstift 10 ist über die erste Signalleitung 11 mit dem ersten Hochfrequenzverstärker 12 verbunden. Der zweite Auskoppelstift 20 ist über eine zweite Signalleitung 21 mit einem zweiten Hochfrequenzverstärker 22 verbunden. FIG. 3 shows a block diagram of a feed system according to the invention according to a second embodiment. The feed system comprises an orthomode transducer 2 whose operation has already been described above with reference to FIG FIG. 1 has been described. In the orthomode transducer 2 project two decoupling devices, namely a first decoupling pin 10 and a second decoupling pin 20. By means of the first decoupling pin 10 electromagnetic waves of the satellite signal can be received, which are horizontally polarized. By means of the second decoupling pin 20 electromagnetic waves of the satellite signal can be received, which are vertically polarized. The first decoupling pin 10 is connected to the first high-frequency amplifier 12 via the first signal line 11. The second decoupling pin 20 is connected via a second signal line 21 to a second high-frequency amplifier 22.

Die Funktionsweisen des horizontalen Signalzweigs bestehend aus dem ersten Hochfrequenzverstärker 12, dem ersten Eingangsbandpass 13, dem ersten Mischer 14, dem ersten Ausgangsbandpass 15 und dem ersten Zwischenfrequenzverstärker 16, und des vertikalen Signalzweigs umfassend einen zweiten Hochfrequenzverstärker 22, einem zweiten Eingangsbandpass 23, einem zweiten Mischer 24, einem zweiten Ausgangsbandpass 25 und einem zweiten Zwischenfrequenzverstärker 26 sind identisch. Sowohl die Signale aus dem horizontalen Signalzweig als auch die Signale aus dem vertikalen Signalzweig werden entsprechend durch den ersten Mischer 14 oder den zweiten Mischer 24 mit dem Lokaloszillatorsignal gemischt, das von dem Lokaloszillator 30 erzeugt wird.The operations of the horizontal signal branch consisting of the first high frequency amplifier 12, the first input bandpass 13, the first mixer 14, the first output bandpass 15 and the first intermediate frequency amplifier 16, and the vertical signal branch comprising a second high frequency amplifier 22, a second input bandpass 23, a second mixer 24, a second output bandpass 25 and a second intermediate frequency amplifier 26 are identical. Both the signals from the horizontal signal branch and the signals from the vertical signal branch are respectively mixed by the first mixer 14 or the second mixer 24 with the local oscillator signal generated by the local oscillator 30.

Da zwei Zwischenfrequenzsignale vorliegen, die über zwei Signalleitungen 11, 21 transportiert werden, weist der Breitbandtuner 40 zusätzlich einen weiteren Eingang und einen weiteren Ausgang auf. Der Breitbandtuner 40 ist also folglich zusätzlich über die zweite Signalleitung 21 mit dem zweiten Zwischenfrequenzverstärker 26 verbunden und konvertiert das zweite Zwischenfrequenzsignal in ein zweites Basisbandsignal. Der Breitbandtuner 40 kann in diesem Fall als ein Dual-Chip-Tuner 40 realisiert sein.Since there are two intermediate frequency signals which are transported via two signal lines 11, 21, the broadband tuner 40 additionally has a further input and a further output. Thus, the broadband tuner 40 is additionally connected to the second intermediate frequency amplifier 26 via the second signal line 21 and converts the second intermediate frequency signal into a second baseband signal. The broadband tuner 40 may be realized in this case as a dual-chip tuner 40.

Die zwei Paar I- und Q-Ausgänge des Breitbandtuners 40 sind mit den zwei Paar I-, Q-Eingängen des Demodulators verbunden. Der Demodulator 50 ist also folglich zusätzlich über ein zweites Paar Signalleitungen 21 mit dem Breitbandtuner 40 verbunden und demoduliert das zweite Basisbandsignal, um ein zweites Datensignal zu erzeugen. Der Demodulator kann in diesem Fall als ein so genannter Dual-Demodulator 50 realisiert sein.The two pair I and Q outputs of the broadband tuner 40 are connected to the two pairs of I, Q inputs of the demodulator. The demodulator 50 is therefore also additional Connected to the broadband tuner 40 via a second pair of signal lines 21 and demodulates the second baseband signal to produce a second data signal. The demodulator may be realized in this case as a so-called dual demodulator 50.

Der Dual-Demodulator 50 gibt üblicherweise ein MPTS aus. Zum Konvertieren des MPTS in einen Single-Programm-Transport-Strom ist der Demodulator 50 mit einem Backend-Prozessor 60 über die erste Signalleitung 11 und die zweite Signalleitung 21 verbunden. Der Backend-Prozessor 60 konvertiert bzw. demultiplext den Multi-Programm-Transport-Strom in einen so genannten Single-Programm-Transport-Strom (SPTS).The dual demodulator 50 usually outputs an MPTS. For converting the MPTS into a single-program transport stream, the demodulator 50 is connected to a back-end processor 60 via the first signal line 11 and the second signal line 21. The back-end processor 60 converts or demultiplexes the multi-program transport stream into a so-called single-program transport stream (SPTS).

Die Datenrate des MPTS beträgt üblicherweise etwa 50 Mbit/s, wohingegen die Datenrate eines SPTS im Bereich von 6 bis 16 Mbit/s je nach übertragenem TV-Programm liegt. Folglich wird durch den Backend-Prozessor 60 die notwendige Datenrate reduziert, so dass Ethernet-Ressourcen bzw. ganz allgemein Netzwerkressourcen optimal genutzt werden. Der Backend-Prozessor 60 ist wiederum über eine Signalleitung mit der Ethernet-Schnittstelle 70 verbunden.The data rate of the MPTS is usually about 50 Mbit / s, whereas the data rate of an SPTS is in the range of 6 to 16 Mbit / s depending on the transmitted TV program. As a result, back-end processor 60 reduces the necessary data rate so that Ethernet resources or, more generally, network resources are optimally utilized. The back-end processor 60 is in turn connected to the Ethernet interface 70 via a signal line.

Das in Figur 3 dargestellte Speisesystem kann ebenfalls wie das aus dem Stand der Technik und in Figur 1 dargestellte Speisesystem Satellitensignale verarbeiten, die breitbandig, beispielsweise in einem Frequenzbereich von 10,7 GHz bis 12,75 GHz ausgestrahlt werden, und die darüber hinaus sowohl eine horizontale Signalkomponente als auch eine vertikale Signalkomponente aufweisen. Jedoch sind für die entsprechende Signalverarbeitung durch das erfindungsgemäße und in Figur 3 dargestellte Speisesystem viel weniger elektronische Bauteile notwendig als bei dem aus dem Stand der Technik bekannten Speisesystem. Mittels des erfindungsgemäßen Speisesystems können im Vergleich zu dem aus dem Stand der Technik bekannten Speisesystem zwei Eingangsbandpässe, zwei Splitter, zwei Mischer, ein Lokaloszillator, zwei Ausgangsbandpässe, zwei Zwischenfrequenzverstärker und drei Ausgabe-Schnittstellen eingespart werden. Das erfindungsgemäße Speisesystem weist folglich einen erheblich verminderten Energieverbrauch auf.This in FIG. 3 shown feed system can also be like that of the prior art and in FIG. 1 feed system processed satellite signals that broadband, for example, in a frequency range from 10.7 GHz to 12.75 GHz are emitted, and moreover, have both a horizontal signal component and a vertical signal component. however are for the corresponding signal processing by the invention and in FIG. 3 shown feed system much less electronic components necessary than in the known from the prior art feed system. By means of the feed system according to the invention, two input bandpasses, two splitters, two mixers, a local oscillator, two output bandpass filters, two intermediate frequency amplifiers and three output interfaces can be saved in comparison to the known from the prior art feed system. The feed system according to the invention consequently has a considerably reduced energy consumption.

Üblicherweise ist ein Konverter auf einer Leiterplatte angeordnet, wobei bei dem in Figur 1 dargestellten Speisesystem beide Seiten des Gehäuses mit den Leiterplatten besetzt ist. Ein entsprechendes Speisesystem kann aufgrund des nur begrenzt zur Verfügung stehenden Bauraumes und aufgrund der erheblichen Wärmeentwicklung durch die Vielzahl von elektronischen Bauteilen nicht mehr erweitert werden.Usually, a converter is arranged on a printed circuit board, wherein the in FIG. 1 shown feed system is occupied both sides of the housing with the circuit boards. A corresponding feed system can not be extended due to the limited available space and due to the considerable heat generation by the plurality of electronic components.

Das erfindungsgemäße Speisesystem, das in den Figuren 2 und 3 dargestellt ist, weist erheblich weniger elektronische Bauteile auf, so dass eine Seite des Gehäuses nicht belegt ist, so dass auf dieser Seite weitere elektronische Bauteile, so wie beispielsweise der Breitbandtuner 40, der Demodulator 50 und der Backend-Prozessor 60 untergebracht werden können. Aufgrund des erfindungsgemäßen Breitband-Konzepts wird es somit erst möglich, die Funktionalität bereitzustellen, Fernseh- und/oder Rundfunkprogramme in dem Konvertergehäuse selbst entsprechend zu konvertieren, so dass die Signale über eine Ethernet-Schnittstelle 70 ausgegeben werden können. Die Ethernet-Schnittstelle 70 kann einen so genannten Ethernet-PHY-Chip aufweisen, der dazu ausgebildet ist, die Datensignale an das zum Datenaustausch verwendete Medium anzupassen (z. B. Twisted-Pair-Kabel). Es kann aber alternativ auch eine separate physikalische Schnittstelle (PHY) vorgesehen sein, die zwischen der Ethernet-Schnittstelle 70 und dem Demodulator 50 angeordnet ist.The feed system according to the invention, which in the FIGS. 2 and 3 is shown, has significantly fewer electronic components, so that one side of the housing is not occupied, so that on this page more electronic components, such as the broadband tuner 40, the demodulator 50 and the back-end processor 60 can be accommodated. Because of the broadband concept according to the invention, it is thus only possible to provide the functionality of television and / or radio programs in the converter housing itself to be converted accordingly, so that the signals can be output via an Ethernet interface 70. The Ethernet interface 70 may comprise a so-called Ethernet PHY chip, which is adapted to adapt the data signals to the medium used for data exchange (eg twisted pair cable). Alternatively, however, a separate physical interface (PHY) may also be provided, which is arranged between the Ethernet interface 70 and the demodulator 50.

Bezugszeichenliste:LIST OF REFERENCE NUMBERS

11
Hohlleiter, FeedhornWaveguide, feedhorn
22
Orthomoden-TransducerOrtho-mode transducer
1010
(erste) Auskoppeleinrichtung / Auskoppelstift(first) decoupling device / decoupling pin
1111
(erste) Signalleitung(first) signal line
1212
(erster) Hochfrequenzverstärker(first) high-frequency amplifier
1313
(erster) Eingangsbandpass(first) incoming bandpass
13L13L
erster Lowband-Eingangsbandpassfirst lowband input bandpass
13H13H
erster Highband-Eingangsbandpassfirst highband input bandpass
1414
(erster) Mischer(first) mixer
1515
(erster) Ausgangsbandpass(first) output bandpass
15L15L
erster Lowband-Ausgangsbandpassfirst lowband output bandpass
15H15H
erster Highband-Ausgangsbandpassfirst highband output bandpass
1616
(erster) Zwischenfrequenzverstärker(first) intermediate frequency amplifier
16L16L
erster Lowband-Zwischenfrequenzverstärkerfirst low-band intermediate frequency amplifier
16H16H
erster Highband-Zwischenfrequenzverstärkerfirst high-band intermediate frequency amplifier
2020
zweite Auskoppeleinrichtung / Auskoppelstifttsecond decoupling / Auskoppelstiftt
2121
zweite Signalleitungsecond signal line
2222
zweiter Hochfrequenzverstärkersecond high frequency amplifier
2323
zweiter Eingangsbandpasssecond entrance bandpass
23L23L
zweiter Lowband-Eingangsbandpasssecond low band input bandpass
23H23H
zweiter Highband-Eingangsbandpasssecond highband input bandpass
2424
zweiter Mischersecond mixer
2525
zweiter Ausgangsbandpasssecond output bandpass
25L25L
zweiter Lowband-Ausgangsbandpasssecond low band output bandpass
25H25H
zweiter Highband-Ausgangsbandpasssecond highband output bandpass
2626
zweiter Zwischenfrequenzverstärkersecond intermediate frequency amplifier
26L26L
zweiter Lowband-Zwischenfrequenzverstärkersecond low-band intermediate frequency amplifier
26H26H
zweiter Highband-Zwischenfrequenzverstärkersecond high-band intermediate frequency amplifier
3030
Lokaloszillatorlocal oscillator
30L30L
Lowband-LokaloszillatorLow-band local oscillator
30H30H
Highband-LokaloszillatorHigh-band local oscillator
4040
BreitbandtunerBroadband Tuner
5050
Demodulatordemodulator
6060
Backend-ProzessorBack end processor
7070
Ethernet-SchnittstelleEthernet interface
7171
erster Koaxialausgangfirst coaxial output
7272
zweiter Koaxialausgangsecond coaxial output
7373
dritter Koaxialausgangthird coaxial output
7474
vierter Koaxialausgangfourth coaxial output
SHSH
Splittersplinter
SVSV
Splittersplinter

Claims (9)

  1. Feed system for receiving television and/or radio programmes which are broadcast via satellite and transmitted by means of satellite signals which consist of electromagnetic waves and are broadcast from satellites at a satellite signal bandwidth, wherein the feed system comprises a waveguide (1) and a housing in which the following components are arranged:
    • a decoupling device (10) which protrudes into the waveguide (1) and by means of which a satellite signal broadcast from satellites can be received;
    • a radio frequency amplifier (12) which is intended for amplifying the satellite signal and connected to the decoupling device (10) via a signal line (11); an input bandpass filter (13) and an output bandpass filter (15), which are connected in series to the radio frequency amplifier (12) via the signal line (11), wherein the input bandpass filter (13) and the output bandpass filter (15) each have a pass bandwidth;
    • a frequency conversion device is also provided, by means of which the satellite signals can be converted into intermediate frequency signals;
    • an intermediate frequency amplifier (16) which is intended for amplifying the intermediate frequency signal and is connected to the output bandpass filter (15) via the signal line (11),
    • a tuner (40) which is connected to the intermediate frequency amplifier (16)
    • via the signal line (11) and converts the intermediate frequency signal into a baseband signal is also arranged in the housing; a demodulator (50) which is connected to the tuner (40) via the signal line (11) is arranged in the housing for demodulating the baseband signal and generating a data signal; and
    • an Ethernet interface (70) which is connected to the demodulator (50) via the signal line (11) is arranged in the housing for exchanging the data signals;
    • the pass bandwidths of the input bandpass filter (13) and the output bandpass filter (15) are equal to or greater than the satellite signal bandwidth, wherein said satellite signal bandwidth is 2.05 GHz;
    • the tuner is designed as a broadband tuner (40) for processing the signals in the pass bandwidth;
    • the frequency conversion device comprises a local oscillator (30), which generates a local oscillator signal having a local oscillator frequency;
    • the frequency conversion device also comprises a mixer (14), which is arranged between the input bandpass filter (13) and the output bandpass filter (15) and connected thereto via the signal line (11), wherein the mixer (14) is also connected to the local oscillator (30) for mixing the satellite signal with the local oscillator signal and generating an intermediate frequency signal;
    • the feed system is supplied with electrical energy by the Ethernet interface (70).
  2. Feed system according to claim 1, characterised in that the broadband tuner (40) is constructed so as to convert the intermediate frequency signal of a transponder, which signal is emitted by the intermediate frequency amplifier (16), into a base signal and to generate I and Q signals which preferably each have the half pass bandwidth.
  3. Feed system according to either claim 1 or claim 2, characterised in that the following components are also arranged in the housing:
    • a second decoupling device (20) which protrudes into the waveguide (1) and by means of which electromagnetic waves of the satellite signal that are broadcast in a second polarisation plane can be received;
    • a second radio frequency amplifier (22) which is intended for amplifying the satellite signal and is connected to the second decoupling device (20) via a second signal line (21);
    • a second input bandpass filter (23) and a second output bandpass filter (25), which are connected in series to the second radio frequency amplifier (22) via the second signal line (21), the second input bandpass filter (23) and the second output bandpass filter (25) each having the pass bandwidth which is at least 70% of the satellite signal bandwidth;
    • a second mixer (24), which is arranged between the second input bandpass filter (23) and the second output bandpass filter (25) and is connected thereto via the second signal line (21), the second mixer (24) also being connected to the local oscillator (30) for mixing the satellite signal with the local oscillator signal and generating a second intermediate frequency signal; and
    • a second intermediate frequency amplifier (26) which is intended for amplifying the second intermediate frequency signal and is connected to the second output bandpass filter (25) via the second signal line (21),
    • the feed system having the following features:
    • the broadband tuner (40) is additionally connected to the second intermediate frequency amplifier (26) via the second signal line (21), and the broadband tuner (40) converts the second intermediate frequency signal into a second baseband signal;
    • the demodulator (50) is additionally connected to the broadband tuner (40) via the second signal line (21) for demodulating the second baseband signal and generating a second data signal; and the Ethernet interface (70) is also connected to the demodulator (50) via the second signal line (21) for exchanging the second data signals.
  4. Feed system according to claim 3, characterised in that the pass bandwidths of the second input bandpass filter (23) and the second output bandpass filter (25) are equal to or greater than the satellite signal bandwidth.
  5. Feed system according to either claim 3 or claim 4, characterised in that the feed system also comprises an orthomode transducer (2) for splitting the satellite signal into a horizontally polarised component and a vertically polarised component.
  6. Feed system according to either claim 1 or claim 2, characterised in that the feed system also comprises a back-end processor (60), which is arranged between the demodulator (50) and the Ethernet interface (70) and connected thereto, the back-end processor (60) being designed so as to demultiplex the data signal into data transport streams.
  7. Feed system according to any of claims 3 to 5, characterised in that the feed system also comprises a back-end processor (60), which is arranged between the demodulator (50) and the Ethernet interface (70) and connected thereto, the back-end processor (60) being designed so as to demultiplex the data signal and the second data signal into data transport streams.
  8. Feed system according to any of claims 1 to 7, characterised in that the feed system also comprises a switch, which is arranged between the back-end processor (60) and the Ethernet interface (70) and is connected thereto, the switch being designed so as to combine the data transport streams into one overall data transport stream.
  9. Feed system according to any of the preceding claims, characterised in that the feed system also comprises a physical interface, which is arranged between the demodulator (50) and the Ethernet interface (70) and is connected thereto, the physical interface being designed so as to adapt the data signals to a transmission medium used for data exchange.
EP13000877.4A 2012-02-29 2013-02-21 Feed system, in particular for receiving television or radio programming transmitted by satellite Active EP2634936B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102012003966.2A DE102012003966B4 (en) 2012-02-29 2012-02-29 Feeding system, in particular for the reception of television and / or radio programs broadcast via satellite

Publications (2)

Publication Number Publication Date
EP2634936A1 EP2634936A1 (en) 2013-09-04
EP2634936B1 true EP2634936B1 (en) 2018-03-14

Family

ID=47877680

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13000877.4A Active EP2634936B1 (en) 2012-02-29 2013-02-21 Feed system, in particular for receiving television or radio programming transmitted by satellite

Country Status (2)

Country Link
EP (1) EP2634936B1 (en)
DE (1) DE102012003966B4 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109068076A (en) * 2018-10-11 2018-12-21 珠海佳讯创新科技股份有限公司 The high-frequency tuner of Ku band satellite signal is transmitted and distributed by coaxial cable

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10124691A1 (en) * 2001-05-18 2002-11-21 Bktel Comm Gmbh Method for supplying power to network users in a data communications network employs network users, a central network data distributor and communications devices for data transmission between network users and data distributors.
EP1944864A2 (en) * 2007-01-09 2008-07-16 Rohde & Schwarz GmbH & Co. KG Frequency converter

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4335616C2 (en) * 1993-10-19 1996-02-22 Kathrein Werke Kg Satellite receiving system
US20020154055A1 (en) * 2001-04-18 2002-10-24 Robert Davis LAN based satellite antenna/satellite multiswitch
EP1573942A1 (en) * 2002-12-12 2005-09-14 Oasis Silicon Systems AG Distribution system for satellite broadcasts
JP2006165652A (en) * 2004-12-02 2006-06-22 Funai Electric Co Ltd Digital broadcast reception system and outdoor apparatus used therefor
US8140004B2 (en) * 2005-08-30 2012-03-20 Interdigital Technology Corporation Digital satellite radio systems and associated methods for providing indoor reception
US20080060024A1 (en) * 2006-08-31 2008-03-06 Bart Decanne Wirelessly transmitting programming obtained from a satellite system
US8719875B2 (en) * 2006-11-06 2014-05-06 The Directv Group, Inc. Satellite television IP bitstream generator receiving unit
WO2011033342A1 (en) * 2009-09-18 2011-03-24 Stmicroelectronics Sa Receive unit for reception of a satellite signal

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10124691A1 (en) * 2001-05-18 2002-11-21 Bktel Comm Gmbh Method for supplying power to network users in a data communications network employs network users, a central network data distributor and communications devices for data transmission between network users and data distributors.
EP1944864A2 (en) * 2007-01-09 2008-07-16 Rohde & Schwarz GmbH & Co. KG Frequency converter

Also Published As

Publication number Publication date
EP2634936A1 (en) 2013-09-04
DE102012003966A1 (en) 2013-08-29
DE102012003966B4 (en) 2015-11-05

Similar Documents

Publication Publication Date Title
EP1573942A1 (en) Distribution system for satellite broadcasts
DE60202579T2 (en) Tuner arrangement and set-top box
DE60114661T2 (en) Improvements in terms of satellite reception
WO2010057664A2 (en) Satellite reception and distribution system for use as a head end with programmable transponder conversion of transponder blocks
EP2160014A1 (en) Modular digital television decoder
DE102015108154B4 (en) Two-channel polarization correction
EP2634936B1 (en) Feed system, in particular for receiving television or radio programming transmitted by satellite
DE69920894T2 (en) BIDIRECTIONAL BROADCASTING SYSTEM
JP4140900B2 (en) Satellite signal reception and transmission system
DE69924666T2 (en) Device for transmitting / receiving signals
EP3347995B1 (en) Device for transmitting and receiving mobile radio signals by means of a stationary antenna
DE202013006660U1 (en) Feeding system, in particular for the reception of television and / or radio programs broadcast via satellite
EP0740434B1 (en) System for distributing satellite television signals in a community antenna system
DE60311832T2 (en) TRANSMITTER FOR COUPLING A RECEPTION DEVICE
EP3094085A1 (en) System for receiving telecommunication signals, in particular of television signals in matv/smatv networks
CN212115497U (en) Low-noise down converter
DE202007017295U1 (en) Home-based satellite reception and distribution system with wireless and wired transmission links and multiple transponders
DE102019205406B3 (en) Antenna device for transmitting high-frequency signals from or into a motor vehicle and motor vehicle with an antenna device
EP2609699A1 (en) Device for receiving systems, in particular for single-cable systems in shared receiving systems
DE112008002841T5 (en) Radio receiver
DE202007017590U1 (en) Switches with subscriber-controlled converters for satellite receiving systems with automatic mode switching
DE202008010024U1 (en) Digital bidirectional set-top box
JP6654879B2 (en) Satellite broadcast receiver
DE10324122B4 (en) Distribution system for satellite broadcasting
EP2573989B1 (en) Device for suppressing unwanted high frequency signals

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20131003

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

17Q First examination report despatched

Effective date: 20140123

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20171116

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 979820

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180315

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013009625

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SCHMAUDER AND PARTNER AG PATENT- UND MARKENANW, CH

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180314

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502013009625

Country of ref document: DE

Representative=s name: FLACH BAUER & PARTNER PATENTANWAELTE MBB, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502013009625

Country of ref document: DE

Representative=s name: FLACH BAUER STAHL PATENTANWAELTE PARTNERSCHAFT, DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180314

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180314

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180314

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180614

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180314

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180314

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180314

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180314

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180615

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180614

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502013009625

Country of ref document: DE

Owner name: KATHREIN DIGITAL SYSTEMS GMBH, DE

Free format text: FORMER OWNER: KATHREIN-WERKE KG, 83022 ROSENHEIM, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502013009625

Country of ref document: DE

Representative=s name: FLACH BAUER STAHL PATENTANWAELTE PARTNERSCHAFT, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502013009625

Country of ref document: DE

Owner name: KATHREIN SE, DE

Free format text: FORMER OWNER: KATHREIN-WERKE KG, 83022 ROSENHEIM, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180314

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180314

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180314

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180314

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180314

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180314

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180314

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013009625

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180716

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: KATHREIN SE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180314

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: KATHREIN SE, DE

Free format text: FORMER OWNER: KATHREIN-WERKE KG, DE

26N No opposition filed

Effective date: 20181217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180314

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180314

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502013009625

Country of ref document: DE

Representative=s name: FLACH BAUER STAHL PATENTANWAELTE PARTNERSCHAFT, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502013009625

Country of ref document: DE

Owner name: KATHREIN DIGITAL SYSTEMS GMBH, DE

Free format text: FORMER OWNER: KATHREIN SE, 83022 ROSENHEIM, DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180314

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190221

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190228

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: KATHREIN DIGITAL SYSTEMS GMBH, DE

Free format text: FORMER OWNER: KATHREIN SE, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190221

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190228

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180314

REG Reference to a national code

Ref country code: AT

Ref legal event code: PC

Ref document number: 979820

Country of ref document: AT

Kind code of ref document: T

Owner name: KATHREIN DIGITAL SYSTEMS GMBH, DE

Effective date: 20200629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180714

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180314

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20230307

Year of fee payment: 11

Ref country code: AT

Payment date: 20230215

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230216

Year of fee payment: 11

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230517