EP2633142A1 - Door drive and control method therefor - Google Patents
Door drive and control method thereforInfo
- Publication number
- EP2633142A1 EP2633142A1 EP11752543.6A EP11752543A EP2633142A1 EP 2633142 A1 EP2633142 A1 EP 2633142A1 EP 11752543 A EP11752543 A EP 11752543A EP 2633142 A1 EP2633142 A1 EP 2633142A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- motor
- temperature
- electric motor
- door
- gear
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 15
- 238000012544 monitoring process Methods 0.000 claims abstract description 6
- 230000005540 biological transmission Effects 0.000 claims description 70
- 238000001514 detection method Methods 0.000 claims description 5
- 230000007246 mechanism Effects 0.000 claims description 5
- 238000012806 monitoring device Methods 0.000 abstract description 5
- 239000000463 material Substances 0.000 description 13
- 239000004033 plastic Substances 0.000 description 13
- 230000008878 coupling Effects 0.000 description 7
- 238000010168 coupling process Methods 0.000 description 7
- 238000005859 coupling reaction Methods 0.000 description 7
- 230000008901 benefit Effects 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 4
- 230000001419 dependent effect Effects 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000013519 translation Methods 0.000 description 2
- 229920004943 Delrin® Polymers 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 210000000078 claw Anatomy 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
Classifications
-
- E—FIXED CONSTRUCTIONS
- E05—LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
- E05F—DEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION; CHECKS FOR WINGS; WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
- E05F15/00—Power-operated mechanisms for wings
- E05F15/60—Power-operated mechanisms for wings using electrical actuators
- E05F15/603—Power-operated mechanisms for wings using electrical actuators using rotary electromotors
-
- E—FIXED CONSTRUCTIONS
- E05—LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
- E05F—DEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION; CHECKS FOR WINGS; WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
- E05F15/00—Power-operated mechanisms for wings
- E05F15/40—Safety devices, e.g. detection of obstructions or end positions
-
- E—FIXED CONSTRUCTIONS
- E05—LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
- E05F—DEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION; CHECKS FOR WINGS; WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
- E05F15/00—Power-operated mechanisms for wings
- E05F15/60—Power-operated mechanisms for wings using electrical actuators
- E05F15/603—Power-operated mechanisms for wings using electrical actuators using rotary electromotors
- E05F15/665—Power-operated mechanisms for wings using electrical actuators using rotary electromotors for vertically-sliding wings
- E05F15/668—Power-operated mechanisms for wings using electrical actuators using rotary electromotors for vertically-sliding wings for overhead wings
- E05F15/681—Power-operated mechanisms for wings using electrical actuators using rotary electromotors for vertically-sliding wings for overhead wings operated by flexible elongated pulling elements, e.g. belts
-
- E—FIXED CONSTRUCTIONS
- E05—LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
- E05F—DEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION; CHECKS FOR WINGS; WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
- E05F15/00—Power-operated mechanisms for wings
- E05F15/70—Power-operated mechanisms for wings with automatic actuation
-
- E—FIXED CONSTRUCTIONS
- E05—LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
- E05Y—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES E05D AND E05F, RELATING TO CONSTRUCTION ELEMENTS, ELECTRIC CONTROL, POWER SUPPLY, POWER SIGNAL OR TRANSMISSION, USER INTERFACES, MOUNTING OR COUPLING, DETAILS, ACCESSORIES, AUXILIARY OPERATIONS NOT OTHERWISE PROVIDED FOR, APPLICATION THEREOF
- E05Y2201/00—Constructional elements; Accessories therefor
- E05Y2201/20—Brakes; Disengaging means; Holders; Stops; Valves; Accessories therefor
- E05Y2201/214—Disengaging means
- E05Y2201/216—Clutches
-
- E—FIXED CONSTRUCTIONS
- E05—LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
- E05Y—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES E05D AND E05F, RELATING TO CONSTRUCTION ELEMENTS, ELECTRIC CONTROL, POWER SUPPLY, POWER SIGNAL OR TRANSMISSION, USER INTERFACES, MOUNTING OR COUPLING, DETAILS, ACCESSORIES, AUXILIARY OPERATIONS NOT OTHERWISE PROVIDED FOR, APPLICATION THEREOF
- E05Y2201/00—Constructional elements; Accessories therefor
- E05Y2201/60—Suspension or transmission members; Accessories therefor
- E05Y2201/622—Suspension or transmission members elements
- E05Y2201/71—Toothed gearing
- E05Y2201/716—Pinions
-
- E—FIXED CONSTRUCTIONS
- E05—LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
- E05Y—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES E05D AND E05F, RELATING TO CONSTRUCTION ELEMENTS, ELECTRIC CONTROL, POWER SUPPLY, POWER SIGNAL OR TRANSMISSION, USER INTERFACES, MOUNTING OR COUPLING, DETAILS, ACCESSORIES, AUXILIARY OPERATIONS NOT OTHERWISE PROVIDED FOR, APPLICATION THEREOF
- E05Y2400/00—Electronic control; Electrical power; Power supply; Power or signal transmission; User interfaces
- E05Y2400/10—Electronic control
- E05Y2400/20—Electronic control of brakes, disengaging means, holders or stops
-
- E—FIXED CONSTRUCTIONS
- E05—LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
- E05Y—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES E05D AND E05F, RELATING TO CONSTRUCTION ELEMENTS, ELECTRIC CONTROL, POWER SUPPLY, POWER SIGNAL OR TRANSMISSION, USER INTERFACES, MOUNTING OR COUPLING, DETAILS, ACCESSORIES, AUXILIARY OPERATIONS NOT OTHERWISE PROVIDED FOR, APPLICATION THEREOF
- E05Y2400/00—Electronic control; Electrical power; Power supply; Power or signal transmission; User interfaces
- E05Y2400/10—Electronic control
- E05Y2400/30—Electronic control of motors
- E05Y2400/31—Force or torque control
-
- E—FIXED CONSTRUCTIONS
- E05—LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
- E05Y—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES E05D AND E05F, RELATING TO CONSTRUCTION ELEMENTS, ELECTRIC CONTROL, POWER SUPPLY, POWER SIGNAL OR TRANSMISSION, USER INTERFACES, MOUNTING OR COUPLING, DETAILS, ACCESSORIES, AUXILIARY OPERATIONS NOT OTHERWISE PROVIDED FOR, APPLICATION THEREOF
- E05Y2400/00—Electronic control; Electrical power; Power supply; Power or signal transmission; User interfaces
- E05Y2400/10—Electronic control
- E05Y2400/32—Position control, detection or monitoring
- E05Y2400/334—Position control, detection or monitoring by using pulse generators
- E05Y2400/336—Position control, detection or monitoring by using pulse generators of the angular type
-
- E—FIXED CONSTRUCTIONS
- E05—LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
- E05Y—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES E05D AND E05F, RELATING TO CONSTRUCTION ELEMENTS, ELECTRIC CONTROL, POWER SUPPLY, POWER SIGNAL OR TRANSMISSION, USER INTERFACES, MOUNTING OR COUPLING, DETAILS, ACCESSORIES, AUXILIARY OPERATIONS NOT OTHERWISE PROVIDED FOR, APPLICATION THEREOF
- E05Y2400/00—Electronic control; Electrical power; Power supply; Power or signal transmission; User interfaces
- E05Y2400/10—Electronic control
- E05Y2400/44—Sensors not directly associated with the wing movement
-
- E—FIXED CONSTRUCTIONS
- E05—LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
- E05Y—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES E05D AND E05F, RELATING TO CONSTRUCTION ELEMENTS, ELECTRIC CONTROL, POWER SUPPLY, POWER SIGNAL OR TRANSMISSION, USER INTERFACES, MOUNTING OR COUPLING, DETAILS, ACCESSORIES, AUXILIARY OPERATIONS NOT OTHERWISE PROVIDED FOR, APPLICATION THEREOF
- E05Y2800/00—Details, accessories and auxiliary operations not otherwise provided for
- E05Y2800/20—Combinations of elements
- E05Y2800/205—Combinations of elements forming a unit
-
- E—FIXED CONSTRUCTIONS
- E05—LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
- E05Y—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES E05D AND E05F, RELATING TO CONSTRUCTION ELEMENTS, ELECTRIC CONTROL, POWER SUPPLY, POWER SIGNAL OR TRANSMISSION, USER INTERFACES, MOUNTING OR COUPLING, DETAILS, ACCESSORIES, AUXILIARY OPERATIONS NOT OTHERWISE PROVIDED FOR, APPLICATION THEREOF
- E05Y2800/00—Details, accessories and auxiliary operations not otherwise provided for
- E05Y2800/25—Emergency conditions
- E05Y2800/254—Emergency conditions the elements not functioning in case of emergency
-
- E—FIXED CONSTRUCTIONS
- E05—LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
- E05Y—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES E05D AND E05F, RELATING TO CONSTRUCTION ELEMENTS, ELECTRIC CONTROL, POWER SUPPLY, POWER SIGNAL OR TRANSMISSION, USER INTERFACES, MOUNTING OR COUPLING, DETAILS, ACCESSORIES, AUXILIARY OPERATIONS NOT OTHERWISE PROVIDED FOR, APPLICATION THEREOF
- E05Y2800/00—Details, accessories and auxiliary operations not otherwise provided for
- E05Y2800/40—Physical or chemical protection
- E05Y2800/414—Physical or chemical protection against high or low temperatures
-
- E—FIXED CONSTRUCTIONS
- E05—LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
- E05Y—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES E05D AND E05F, RELATING TO CONSTRUCTION ELEMENTS, ELECTRIC CONTROL, POWER SUPPLY, POWER SIGNAL OR TRANSMISSION, USER INTERFACES, MOUNTING OR COUPLING, DETAILS, ACCESSORIES, AUXILIARY OPERATIONS NOT OTHERWISE PROVIDED FOR, APPLICATION THEREOF
- E05Y2800/00—Details, accessories and auxiliary operations not otherwise provided for
- E05Y2800/72—Sets of mutually exchangeable elements, e.g. modular
-
- E—FIXED CONSTRUCTIONS
- E05—LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
- E05Y—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES E05D AND E05F, RELATING TO CONSTRUCTION ELEMENTS, ELECTRIC CONTROL, POWER SUPPLY, POWER SIGNAL OR TRANSMISSION, USER INTERFACES, MOUNTING OR COUPLING, DETAILS, ACCESSORIES, AUXILIARY OPERATIONS NOT OTHERWISE PROVIDED FOR, APPLICATION THEREOF
- E05Y2900/00—Application of doors, windows, wings or fittings thereof
- E05Y2900/10—Application of doors, windows, wings or fittings thereof for buildings or parts thereof
- E05Y2900/106—Application of doors, windows, wings or fittings thereof for buildings or parts thereof for garages
Definitions
- the invention relates to a door drive for driving a door with a
- Electric motor and a self-locking motor gearbox has.
- Such a door drive is known for example from WO 2010/009952 A1.
- the invention relates to an advantageous control method for such a door drive.
- Such a door shaft may for example be part of a weight balancing device and is e.g. connected to a torsion spring, which serves to balance the gate weight.
- the door shaft is connected by gearing to a gate to be moved, so that moves on rotation of the Torsionsfederwelle the gate between its opening and closing position.
- the door drive known from WO 2010/009952 A1 has a
- Electric motor unit and a transmission device As a gear device is used in the known door drive a traction mechanism, such as
- Chain transmission which connects an engine output shaft of the electric motor unit with a to be connected to the door shaft output shaft of the transmission device.
- the transmission device is formed by selecting its output shaft from an assortment of output shafts. You can do that create different gear ratios, so as to adapt the door drive to different goals. Due to the adaptable translation of the transmission device, the electric motor unit with relatively less
- the electric motor unit can therefore be designed as a particularly favorable geared motor.
- This geared motor has an electric motor, which has its power via a self-locking
- Motor transmission which is also part of the gear motor derives.
- Most such self-locking motor gear are designed as worm gear, wherein a worm is mounted on the shaft of the electric motor, which drives a seated on the output shaft of the electric motor unit gear.
- the motor gear is self-locking against forces exerted by the gate on the electric motor unit. This has the effect that on the one hand the gate is held over this self-locking gear and thus opposes unauthorized opening attempts; On the other hand, even when a spring or other element of a weight balancing device breaks, the raised leaf can not fall down.
- door drives of the type mentioned are those in the company brochure "garage and entrance gate drives - compatible
- the transmission device has a driver guided along a guide rail, which is connected to the motor output shaft of an electric motor unit designed as a corresponding geared motor
- the motor output shaft of the geared motor drives a gate drive gear meshing with a rack on the sliding gate.
- Electric motor unit can be used for driving.
- the invention has now taken on the task of optimizing such door drives such that they deliver high durability and reliability despite cost-effective manufacturability.
- the invention provides a door operator for driving a door with a
- the electric motor unit is designed as a geared motor, an electric motor and a
- a drive shaft of the motor gear is driven by the electric motor to rotate an engine output shaft of the engine gear, wherein the transmission means for receiving driving forces from the engine output shaft of the engine gear and to
- Motor gear temperature monitor provided for monitoring a temperature of the motor gear.
- the invention therefore provides to monitor the temperature of this engine transmission by a monitoring device. This gives a further control parameter by means of which a control of the door drive can be carried out.
- a control of the drive takes place in dependence on the monitored engine transmission temperature.
- Motor gear is made of plastic.
- the invention is also applicable to other materials.
- the motor unit comprises a housing having a motor gear housing portion in which the motor gear is housed, and with an electric motor housing portion in which the electric motor is housed, wherein the motor gear temperature monitoring means comprises a sensor device accommodated in the motor gear housing portion for detecting a temperature in the motor gear housing portion having. As a result, exactly the temperature within the motor gear housing is detected.
- a rotation sensor for detecting a rotation of at least one rotating part of the motor gear.
- at least one Hall element could be provided to detect the rotation of a shaft of the electric motor, a rotation of a worm of a worm gear or the rotation of a driven by the worm, sitting on the output shaft of the motor gear.
- the rotation sensor could be a Hall sensor, e.g. for detecting the rotational speed and the direction of rotation of one of said rotating part may be formed. It is now preferred in a particularly preferred embodiment of the invention, a Hall sensor for detecting a rotation of at least one rotating part of the motor gear.
- Temperature sensing element of the engine transmission temperature detection device to be arranged together with a rotation sensor.
- Connection element and / or electronic element for detecting a rotation is present, the cost of providing a further connection element and / or electronic element for sensing the temperature is very low.
- the same connections or different lines could be the same Connection for connecting the rotary sensor and a temperature sensor may be formed on a door drive control.
- the invention provides, according to a further aspect thereof, a control method for controlling a door drive for driving a door, wherein the door drive with an electric motor unit and a transmission device for transmitting
- Driving forces of the electric motor unit is provided on a driven element of the door, wherein the electric motor unit is designed as a geared motor having an electric motor and a self-locking motor gear, wherein the
- a further preferred embodiment includes the step of limiting an engine output of the electric motor when the engine transmission temperature exceeds a predetermined first threshold temperature.
- the monitoring of the engine transmission temperature can of course also serve to output corresponding warning messages or explanatory messages.
- a e.g. coded message For example, via a display, a e.g. coded message
- Geared motor of a door drive designed such that on the screw of a self-locking electric motor gear, a temperature sensor sits, which measures the temperature of the motor gearbox.
- the software for example one
- Control - can monitor this temperature and at certain
- the motor gear preferably has a plastic wheel.
- a high performance plastic e.g. Delrin or Teflon, used, but the durability of such materials - as with other materials - temperature dependent.
- a motor gear temperature is monitored to provide high reliability.
- the motor gearbox can be designed for peak load at room temperature and need not be designed for peak loads in the heated state.
- FIG. 1 is a schematic, partially sectioned side view of a gate with Torwelle and Wellentorantrieb
- Fig. 2 is a view of a corner region of the door of Fig. 1 of
- 3 is a first perspective view of a basic structure of the
- FIG. 4 is a second perspective view of the basic structure of FIG.
- Fig. 5 is an illustration of the trained as a geared motor
- Fig. 6 shows a further illustration of the electric motor unit with open
- Fig. 7 shows a further illustration of the electric motor unit
- Fig. 8 is an illustration of a detail of the motor gear housing cover with temperature sensor and rotary sensors.
- FIGs. 1 and 2 an automatically driven gate 10 with a door shaft 12 and designed as a Wellentorantrieb or direct drive door drive 14 is shown.
- the door drive 14 is attached to a door drive attachment 15.
- the gate 10 has a movable in a guide 16 between a closing end position and an opening end position door leaf 18.
- the door shaft 12 is formed as part of a weight balancing device 20 and has a force storage, for example in the form of a torsion spring 22, which balances the weight of the door leaf 18 as far as possible during its movement.
- the door shaft 12 is coupled in a gear to the door leaf 18 such that the door shaft 12 rotates when moving the door leaf 18. In the example shown this is
- the door operator 14 is connected to one end of the door shaft 12 for rotatably driving the same.
- FIGS. 1 and 2 further show walls 28 of a building 30, which has a door opening 32 which can be closed by the door 10.
- the door drive 14 is produced in industrial mass production and is - as described in more detail in WO 2010/009952 A1 - in its manufacture so adaptable that he
- the door drive 14 has, as shown in FIG. 2, a drive housing 34.
- the drive housing 34 has a plurality of hoods or covers 36, 37.
- the drive elements are mounted on a support structure or base structure 40.
- 3 and 4 show the door drive 14 without the covers 36 and 37, so that the drive elements and the base structure 40 can be seen.
- the door operator 14 has an electric motor unit 50 for supplying the driving force and a transmission device 100 which transmits the driving force of the electric motor unit 50 to an element of the door 10 to be driven.
- the transmission device 100 is designed to transmit the drive force to the door shaft 12.
- Example in the embodiment of the door drive 14 provided here, a traction mechanism 94 is provided, which will be explained in more detail hereafter.
- the base structure 40 has a first base structure part 42 and a second base structure part 44, which are detachably connected together at a fastening interface 46.
- the first base structure part 42 is formed as a base plate or base plate 48.
- the electric motor unit 50, a Elektroan gleichiser 52, a decoupling device 54 and a decoupling sensor 56 are attached.
- the electric motor unit 50 is designed as a gear motor 102 and has a motor housing 58, in which an electric motor 60 and a self-locking motor gear 61, for example in the form of a worm gear 62,
- an engine output shaft 64 is the
- Electric motor unit 50 connected to an output shaft of the worm gear 62.
- This motor output shaft 64 has on the side of the base plate 48, which is opposite to the electric motor unit, a first gear of the
- Transmission device 100 e.g. in the form of a first sprocket 66.
- the electrical connection unit 52 has a power unit 68 with transformer and
- Power electronics and a control device 70 which controls the electric motor 50 via the power unit 68.
- the electrical connection unit 52 has only the power unit 68.
- the control device 70 is then housed in a separate control housing (not shown), which is fixed in the area of the door drive 14 fixed.
- the decoupling device 54 By means of the decoupling device 54, the first gear - eg chain crack I 66 - the transmission device 100 of the motor gear 61 uncoupled, so that the transmission device 100 can rotate freely in the uncoupled state while it is held in the engaged state by the self-locking motor gear 61.
- the uncoupling device 54 has a manually actuated by not shown actuating elements coupling pin 72, which is controlled by a cam 74 axially movable upon rotation.
- This axial movement is transmitted to the chain sprocket 66 or the motor output shaft 64, on which the sprocket 66 sits, via a coupling element acting as a lever element, so that the sprocket 66 or the motor output shaft 64 can be moved in the axial direction out of engagement with the motor gear 61 , Of the Uncoupling sensor 56 detects a movement of the clutch pawl 76 and thus a decoupling process.
- the electric motor unit 50 further has a rotation detecting device 104 for detecting a rotation of the motor gear 61.
- a rotation sensor 05 e.g. in the form of a two-channel Hall sensor, provided with the rotation of the output shaft of the worm gear 62 is detected.
- this direction of rotation and further rotational speed can be detected by angular momentum.
- the position of the connected gate - e.g. Door leaf 18 - be detected. This position and in particular the end positions of the gate leaf can be taught by performing a learning trip after the first commissioning.
- the control device 70 is designed such that upon receipt of a signal of the uncoupling sensor 56, which indicates a re-established after a disengaging clutch state, a new reference run for the gate 10 is performed in which the position, in particular at least one of the end positions of the door leaf 18 are taught again.
- the second base structure part 44 is likewise designed as a plate, which can be connected to the base plate 48 via the attachment interface 46.
- the second base structure part 44 has an output shaft 80 of the door drive 14, which is rotatably mounted on a bearing 82 arranged at a certain radial distance from the motor output shaft 64.
- the output shaft 80 has on one side a shaft coupling 84 with a connection part 86, which can be placed on the end of the door shaft 12.
- a radially inwardly pointing projection 88 engages when placed on an existing on the door shaft 12 longitudinal groove 90 (FIG. 2), so that the connecting part 86 rotatably seated on the door shaft 12.
- the Both gears on the engine output shaft 64 and the output shaft 80 of the transmission device 100 are connected via the traction mechanism 94 with each other geared.
- the traction mechanism 94 has, for example, a drive chain 96.
- the motor housing 58 of the electric motor unit 50 has a
- Motor gearbox housing portion 106 and a motor housing portion 108 on.
- the motor gear 61 is housed in the motor gear housing portion 106.
- the electric motor housing portion 108 of the electric motor 60 is housed in the electric motor housing portion 108 .
- the motor gear housing portion 106 has a detachable gear cover 1 10 on. While the electric motor unit 50 is shown in Fig. 5 with attached and fixed gear cover 1 10, the
- Gear cover 1 10 removed in the illustrations of Figs. 6, 7 and 8 from the remaining part of the motor gear housing portion 106.
- an electrical connection 12 of the rotation detection device 104 is provided on the transmission cover 110 on the outside thereof, where the signals of the rotation sensor 105 can be tapped off.
- the electric motor unit 50 further has one
- the motor gear 61 has a connected to the rotor of the electric motor 60 screw 122 and a
- Motor gear 124 which meshes with the worm 122.
- Motor gear 124 forms the part of the output shaft of the worm gear 62.
- the motor gear 124 is made of plastic, in particular
- the motor gear 61 is strongly heated by friction, which can lead to a deterioration in the material strength of parts of the engine gear 61, in particular of the motor gear 124.
- heating of the engine transmission 61 can be detected by means of the engine transmission temperature monitoring device 120. If engine transmission temperatures are in a range, e.g. empirically
- control device 70 can reduce the maximum power of the electric motor 60 accordingly, so that the door drive 14 now only the door leaf 18 can move slowly. This will prevent further heating. If the engine transmission temperature is in an even higher range, the control device 70 can also completely stop the electric motor 60 until the engine transmission temperature has returned to normal.
- Engine transmission temperature monitor 120 includes a temperature sensor 126 which detects the temperature within the engine transmission housing portion 106.
- the temperature sensor 126 is seated together with the rotation sensor 105 on a common board 128. In this way, the manufacturing and installation costs for the
- FIG. 4 shows the gear motor 102 with the gear cover 1 10 mounted as a DC motor.
- the terminal 112 is provided with a 6-pin terminal strip for two Hall sensors (rotation sensor 105) and the temperature sensor 126.
- Fig. 7 shows another view of the unscrewed gear cover.
- the motor connections can be recognized by two elongated pin lugs 132 in another plastic insert 134.
- a metal pin 136 is provided, the only to
- FIG. 8 shows a detail of the sensors 105, 126.
- the temperature sensor 126 shown above in the image is an NTC resistor in the example shown here, in particular in the range 3 to 6 kOhm.
- circuit board 130 plastic insert
Landscapes
- Power-Operated Mechanisms For Wings (AREA)
- Gear Transmission (AREA)
- Hybrid Electric Vehicles (AREA)
- General Details Of Gearings (AREA)
Abstract
Description
Claims
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PL11752543T PL2633142T3 (en) | 2010-10-11 | 2011-09-05 | Door drive and control method therefor |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102010048124 | 2010-10-11 | ||
DE102010050827A DE102010050827A1 (en) | 2010-10-11 | 2010-11-09 | Door drive and control method for this |
PCT/EP2011/065315 WO2012048953A1 (en) | 2010-10-11 | 2011-09-05 | Door drive and control method therefor |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2633142A1 true EP2633142A1 (en) | 2013-09-04 |
EP2633142B1 EP2633142B1 (en) | 2014-12-17 |
Family
ID=44583028
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP11752543.6A Active EP2633142B1 (en) | 2010-10-11 | 2011-09-05 | Door drive and control method therefor |
Country Status (6)
Country | Link |
---|---|
EP (1) | EP2633142B1 (en) |
DE (1) | DE102010050827A1 (en) |
ES (1) | ES2532767T3 (en) |
PL (1) | PL2633142T3 (en) |
RU (1) | RU2557731C2 (en) |
WO (1) | WO2012048953A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021156338A1 (en) * | 2020-02-06 | 2021-08-12 | Assa Abloy Entrance Systems Ab | Sectional door operator system |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102014010275A1 (en) * | 2014-07-12 | 2016-01-14 | Novoferm Tormatic Gmbh | driving device |
DE102016106702B3 (en) * | 2016-04-12 | 2017-08-10 | Hörmann KG Antriebstechnik | Geared motor for a building closure drive and thus provided building closure drive |
EP3601708B1 (en) * | 2017-03-30 | 2024-08-14 | ASSA ABLOY Entrance Systems AB | Door operator |
WO2020011341A1 (en) * | 2018-07-10 | 2020-01-16 | Fraba B.V. | Maintenance system and method for maintaining a gate device |
DE202019100171U1 (en) * | 2019-01-14 | 2020-04-15 | DOCO International B.V. NL | gate |
JP7094258B2 (en) * | 2019-10-24 | 2022-07-01 | 株式会社ハイレックスコーポレーション | Window glass lifting device |
WO2024132846A1 (en) * | 2022-12-22 | 2024-06-27 | Assa Abloy Entrance Systems Ab | Cam release system for jackshaft conversion from a ceiling garage door opener |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2289351B (en) | 1992-04-21 | 1996-05-22 | Koito Mfg Co Ltd | Power window apparatus having improved safety device |
DE10259142B4 (en) * | 2002-03-05 | 2022-03-31 | Sew-Eurodrive Gmbh & Co Kg | Drive Component and Method |
DE102004022863B4 (en) * | 2004-05-06 | 2010-08-05 | Sew-Eurodrive Gmbh & Co. Kg | transmission |
EP1607563A1 (en) | 2004-05-28 | 2005-12-21 | Cardo Door Ab | Drive unit and method for temperature regulation of the transmission in a building door arrangement |
DE102007005881B3 (en) | 2007-02-06 | 2008-07-31 | Marantec Antriebs- Und Steuerungstechnik Gmbh & Co. Kg | Door drive operating method, involves determining load-dependent operating parameters of door drive, and switching from fast running mode to normal running mode based on parameters for preventing overloading of door drive |
DE102008034359B4 (en) | 2008-07-23 | 2014-07-31 | Hörmann KG Antriebstechnik | A method for producing a Wellentorantriebs and provided therewith a gate and Wellentorantriebssystem for performing this method |
DE102009004508A1 (en) | 2009-01-09 | 2010-07-15 | Dorma Gmbh + Co. Kg | Method for operating a door drive with overload protection and door drives equipped therewith |
-
2010
- 2010-11-09 DE DE102010050827A patent/DE102010050827A1/en not_active Ceased
-
2011
- 2011-09-05 RU RU2013111295/12A patent/RU2557731C2/en active
- 2011-09-05 WO PCT/EP2011/065315 patent/WO2012048953A1/en active Application Filing
- 2011-09-05 PL PL11752543T patent/PL2633142T3/en unknown
- 2011-09-05 EP EP11752543.6A patent/EP2633142B1/en active Active
- 2011-09-05 ES ES11752543.6T patent/ES2532767T3/en active Active
Non-Patent Citations (1)
Title |
---|
See references of WO2012048953A1 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021156338A1 (en) * | 2020-02-06 | 2021-08-12 | Assa Abloy Entrance Systems Ab | Sectional door operator system |
Also Published As
Publication number | Publication date |
---|---|
ES2532767T3 (en) | 2015-03-31 |
DE102010050827A1 (en) | 2012-04-12 |
EP2633142B1 (en) | 2014-12-17 |
RU2557731C2 (en) | 2015-07-27 |
PL2633142T3 (en) | 2015-05-29 |
WO2012048953A1 (en) | 2012-04-19 |
RU2013111295A (en) | 2014-11-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2633142B1 (en) | Door drive and control method therefor | |
DE102004017264B4 (en) | Control device for powered swing door on motor vehicles | |
EP1612446B1 (en) | Calibrating method for a incremental displacement measuring device used in actuators for clutches closed by pressure and actuator of this kind. | |
DE102009050185A1 (en) | Door drive device with absolute travel sensor | |
DE19500844B4 (en) | door drive | |
WO2010012610A1 (en) | Shaft door drive, and door provided therewith | |
EP2459827B1 (en) | Door drive device having traction means monitoring and door provided therewith | |
DE102017118566A1 (en) | Detection system for detecting an actuation in a grip device of a vehicle | |
DE102005027602A1 (en) | Method for balancing incremental path measuring device in actuator device of depressed clutch uses incremental sensor whose output signal at sudden change of force is fixed as reference signal | |
EP1902995A2 (en) | Door drive for an automatic door | |
DE102008034359B4 (en) | A method for producing a Wellentorantriebs and provided therewith a gate and Wellentorantriebssystem for performing this method | |
DE102008042979A1 (en) | Window adjustment drive for side window of door of motor vehicle, has adjusting unit adjusting motor vehicle window i.e. side window, between two positions, where unit comprises spindle drive with drive motor and threaded spindle | |
DE19706209A1 (en) | Appliance for controlling motorised drive of winding shaft e.g. for roller blind, garage door etc | |
DE102010014806A1 (en) | Door drive device, thus provided building closure, door system and manufacturing and drive method | |
DE4343695C2 (en) | Drive unit for a garage door | |
EP2630072B1 (en) | Method and apparatus for determining a force, and use of the method and/or of the apparatus | |
DE102009039623B4 (en) | Door drive device with Zugmittelüberwachungseinrichtung and thus provided gate | |
WO2001091271A1 (en) | Drive device for a door | |
DE10318674B4 (en) | actuator | |
EP1832775A2 (en) | Method and device for monitoring the operation of a coupling actuated in the closed position by an actuator and moving automatically to the open position | |
DE29817616U1 (en) | Gate shaft drive unit for gates with a drive and / or torsion spring shaft | |
EP1749964B1 (en) | Drive system for a rolling shutter strap | |
DE102009037400B4 (en) | Operating and diagnostic method for an electromotive drive device with slip clutch of a movable vehicle component | |
EP2248958B1 (en) | Sliding sunroof | |
DE102011001884B3 (en) | Method for controlling driving of door installed in e.g. machine, involves transmitting error message when values of motor current and rotation angle signals of motor are varied |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20130118 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20140827 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Ref document number: 502011005335 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: E05F0015000000 Ipc: E05F0015700000 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: BRAUNPAT BRAUN EDER AG, CH Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 702070 Country of ref document: AT Kind code of ref document: T Effective date: 20150115 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Ref document number: 502011005335 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: E05F0015000000 Ipc: E05F0015700000 Effective date: 20141218 Ref country code: DE Ref legal event code: R096 Ref document number: 502011005335 Country of ref document: DE Effective date: 20150129 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2532767 Country of ref document: ES Kind code of ref document: T3 Effective date: 20150331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150317 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141217 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141217 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150318 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141217 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141217 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141217 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141217 |
|
REG | Reference to a national code |
Ref country code: PL Ref legal event code: T3 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141217 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141217 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141217 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141217 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141217 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150417 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502011005335 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141217 |
|
26N | No opposition filed |
Effective date: 20150918 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141217 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141217 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 502011005335 Country of ref document: DE Representative=s name: KASTEL PATENTANWAELTE, DE Ref country code: DE Ref legal event code: R082 Ref document number: 502011005335 Country of ref document: DE Representative=s name: KASTEL PATENTANWAELTE PARTG MBB, DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150905 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141217 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20150905 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150905 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150905 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 6 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 502011005335 Country of ref document: DE Representative=s name: KASTEL PATENTANWAELTE, DE Ref country code: DE Ref legal event code: R082 Ref document number: 502011005335 Country of ref document: DE Representative=s name: KASTEL PATENTANWAELTE PARTG MBB, DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141217 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20110905 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141217 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141217 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141217 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150930 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 7 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PCAR Free format text: NEW ADDRESS: HOLEESTRASSE 87, 4054 BASEL (CH) |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141217 Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141217 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141217 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141217 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20220919 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PL Payment date: 20220825 Year of fee payment: 12 Ref country code: FR Payment date: 20220920 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20221018 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20220928 Year of fee payment: 12 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230526 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20231120 Year of fee payment: 13 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 702070 Country of ref document: AT Kind code of ref document: T Effective date: 20230905 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230905 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230930 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230930 Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230905 |