EP2630428B1 - Simplified method for producing a methane-rich stream and a c2+ hydrocarbon-rich fraction from a feed natural-gas stream, and associated facility - Google Patents

Simplified method for producing a methane-rich stream and a c2+ hydrocarbon-rich fraction from a feed natural-gas stream, and associated facility Download PDF

Info

Publication number
EP2630428B1
EP2630428B1 EP11785730.0A EP11785730A EP2630428B1 EP 2630428 B1 EP2630428 B1 EP 2630428B1 EP 11785730 A EP11785730 A EP 11785730A EP 2630428 B1 EP2630428 B1 EP 2630428B1
Authority
EP
European Patent Office
Prior art keywords
stream
heat exchanger
rich
compressor
methane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11785730.0A
Other languages
German (de)
French (fr)
Other versions
EP2630428A2 (en
Inventor
Sandra Armelle Karen Thiebault
Vanessa Marie Stéphanie GAHIER
Julie Anne Gouriou
Loïc Pierre Roger BARTHE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Technip Energies France SAS
Original Assignee
Technip France SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technip France SAS filed Critical Technip France SAS
Publication of EP2630428A2 publication Critical patent/EP2630428A2/en
Application granted granted Critical
Publication of EP2630428B1 publication Critical patent/EP2630428B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0204Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
    • F25J3/0209Natural gas or substitute natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0233Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 1 carbon atom or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0238Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 2 carbon atoms or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0247Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 4 carbon atoms or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/02Processes or apparatus using separation by rectification in a single pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/76Refluxing the column with condensed overhead gas being cycled in a quasi-closed loop refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/02Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
    • F25J2205/04Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum in the feed line, i.e. upstream of the fractionation step
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/04Mixing or blending of fluids with the feed stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/06Splitting of the feed stream, e.g. for treating or cooling in different ways
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/24Multiple compressors or compressor stages in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/60Processes or apparatus involving steps for increasing the pressure of gaseous process streams the fluid being hydrocarbons or a mixture of hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/60Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being (a mixture of) hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/02Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/02Recycle of a stream in general, e.g. a by-pass stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/04Internal refrigeration with work-producing gas expansion loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/04Internal refrigeration with work-producing gas expansion loop
    • F25J2270/06Internal refrigeration with work-producing gas expansion loop with multiple gas expansion loops
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/88Quasi-closed internal refrigeration or heat pump cycle, if not otherwise provided
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/80Retrofitting, revamping or debottlenecking of existing plant

Definitions

  • the present invention relates to a method and a plant for producing a methane-rich stream and a C 2 + hydrocarbon-rich fraction from a dehydrated feed natural gas stream, the process and the plant being according to the preamble of claims 1 and 14 respectively.
  • Such a process is intended to be implemented for the construction of new production units of a methane-rich stream and of a C 2 + hydrocarbon fraction from a natural feed gas, or for modification of existing units, especially in the case where the feed natural gas has a high content of ethane, propane and butane.
  • Such a method is also applicable in the case where it is difficult to implement a refrigeration of the natural gas charge using an outside cycle of propane refrigeration, or in the case where the installation of a Such a cycle would be too costly or too dangerous, for example in floating plants or in urban areas.
  • Such a process is particularly advantageous when the fractionation unit of the C 2 + hydrocarbon fraction which produces propane for use in refrigeration cycles is too far from the recovery unit of this hydrocarbon cut. in C 2 + .
  • the C 2 + hydrocarbon fraction recovered from natural gas is advantageously used to produce ethane and liquids which constitute raw materials in petrochemicals.
  • the requirements of natural gas marketed in a network include, in some cases, a specification of the heating value which must be relatively low.
  • C 2 + hydrocarbon cutting production processes generally include a distillation step, after cooling the feed natural gas, to form a methane-rich overhead stream and a hydrocarbon-rich foot stream. C 2 + .
  • Such a method does not, however, entirely satisfactory when the natural gas feedstock is very rich in heavy hydrocarbons, and especially in ethane, propane, and butane, and when the inlet temperature of the natural gas feedstock is relatively high.
  • An object of the invention is therefore to obtain a process for recovering C 2 + hydrocarbons which is extremely efficient and highly selective, even when the content in the natural gas feedstock of these C 2 + hydrocarbons increases significantly.
  • the subject of the invention is a method according to claim 1.
  • the invention also relates to a facility for producing a methane-rich stream and a C 2 + hydrocarbon-rich fraction from a stream of dehydrated feedstock composed of hydrocarbons, carbon dioxide and nitrogen and CO 2 , and preferably having a molar content of C 2 + hydrocarbons greater than 10%, according to claim 14.
  • the means for forming the turbine feed stream comprise means for dividing the light fraction into the turbine feed flow and into a secondary flow, the plant comprising means for passing the turbine feed stream and secondary flow in the second heat exchanger for cooling and means for introducing the cooled secondary flow in an upper part of the separation column.
  • ambient temperature is meant in what follows the temperature of the gaseous atmosphere that prevails in the installation in which the process according to the invention is implemented. This temperature is generally between -40 ° C and 60 ° C.
  • the figure 1 illustrates a first plant 10 for producing a stream 12 rich in methane and a section 14 rich in C 2 + hydrocarbons according to the invention, from a natural gas charge 15.
  • This plant 10 is intended for the implementation of a first method according to the invention.
  • the method and the installation 10 are advantageously applied in the case of the construction of a new unit for recovering methane and ethane.
  • the plant 10 comprises, from upstream to downstream, a first heat exchanger 16, a separator tank 18, a first expansion turbine 22 and a second heat exchanger 24.
  • the installation 10 further comprises a separation column 26 and, downstream of the column 26, a first compressor 28 coupled to the first expansion turbine 22, a first air cooler 30, a second compressor 32 and a second cooler. Air 34.
  • the installation 10 further comprises a pump 36 of the bottom of the column.
  • the installation 10 further comprises a second expansion turbine 132 and a third compressor 134.
  • a first production method according to the invention, implemented in the installation 10 will now be described.
  • the charge natural gas 15 is, in this example, a dehydrated and decarbonated natural gas comprising in moles 0.3499% of nitrogen, 80.0305% of methane, 11.3333% of ethane, 3.6000% of propane. , 1.6366% i-butane, 2.0000% n-butane, 0.2399% i-pentane, 0.1899% n-pentane, 0.1899% n-hexane, 0.1000% n-heptane, 0.0300% n-octane and 0.3000% carbon dioxide.
  • the charge natural gas 15 thus more generally comprises in mol, between 10% and 25% of C 2 + hydrocarbons to be recovered and between 74% and 89% of methane.
  • the C 2 + hydrocarbon content is advantageously greater than 15%.
  • decarbonated gas is meant a gas whose carbon dioxide content is lowered so as to avoid the crystallization of carbon dioxide, this content being generally less than 1 mol%.
  • dehydrated gas is meant a gas whose water content is as low as possible and in particular less than 1 ppm.
  • the content of hydrogen sulphide in the feed natural gas is preferably less than 10 ppm and the content of sulfur compounds of the mercaptan type is preferably less than 30 ppm.
  • the natural gas charge has a pressure greater than 40 bars and in particular substantially equal to 62 bars. It also has a temperature close to room temperature and in particular equal to 40 ° C.
  • the flow rate of the charge natural gas stream 15 is, in this example, 15000 kgmol / h.
  • the charge natural gas stream 15 is first introduced into the first heat exchanger 16 where it is cooled and partially condensed at a temperature greater than -50 ° C and in particular substantially equal to -24.5 ° C to give a cooled charge natural gas stream 40 which is introduced in its entirety into the separator tank 18.
  • the cooled charge natural gas stream 40 is separated into a light gas fraction 42 and a heavy liquid fraction 44.
  • the ratio of the molar flow rate of the light fraction 42 to the molar rate of the heavy fraction 44 is generally between 4 and 10.
  • the light fraction 42 is separated into a feed flow 46 of the first expansion turbine and into a secondary flow 48 which is introduced successively into the heat exchanger 24 and into a first static expansion valve 50 to form a flow secondary expanded cooled and at least partially liquefied 52.
  • the cooled expanded secondary stream 52 is introduced at a higher level N1 of the separation column 26 corresponding in this example to the fifth stage from the top of the column 26.
  • the flow rate of the secondary flow 48 represents less than 40% of the flow rate of the light fraction 42.
  • the pressure of the secondary flow 52, after expansion in the valve 50, is less than 20 bar and in particular equal to 16 bar.
  • This pressure substantially corresponds to the pressure of the column 26 which is more generally greater than 15 bars, advantageously between 15 bars and 25 bars.
  • the cooled expanded secondary stream 52 comprises a molar content of ethane greater than 5% and in particular substantially equal to 9.5 mol% of ethane.
  • the heavy fraction 44 is directed to an expansion valve 66 which opens depending on the level of liquid in the separator tank 18.
  • the entire heavy fraction 44 is introduced into the column 26, without entering a heat exchange relationship with the feed gas 15, in particular upstream of the balloon 18.
  • the heavy fraction 44 does not pass through the first heat exchanger 16.
  • the heavy fraction 44 is also not separated between the balloon 18 and the column 26.
  • the foot fraction 44 after having been expanded at the pressure of the column 26, is then introduced at a level N3 of the column located under the level N1, advantageously located at the twelfth stage of the column 26 starting from the head.
  • An upper reboiling stream 70 is taken at a bottom level N4 of the column 26 located below the level N3 and corresponding to the thirteenth stage from the top of the column 26.
  • This reboiling current is available at a temperature greater than 55 ° C, in this example at -53 ° C, and passed into the first heat exchanger 16 for be partially vaporized and exchange a thermal power of approximately 2710 kW with the other currents flowing in the exchanger 16.
  • This partially vaporized liquid reboiling stream is heated to a temperature above -40 ° C and in particular equal to -35.1 ° C and sent to the N5 level just below the N4 level, and corresponding to the fourteenth stage of the column 26 since the head.
  • a second intermediate reboil stream 72 is collected at a level N6 located below the level N5 and corresponding to the seventeenth stage starting from the top of the column 26.
  • This second reboiling stream 72 is taken at a temperature greater than -25. ° C, especially at -21.4 ° C to be sent into the first exchanger 16 and exchange a thermal power of about 1500 kW with the other currents flowing in this exchanger 16.
  • the partially vaporized liquid reboiling stream coming from exchanger 16 is then reintroduced at a temperature above -20 ° C. and in particular equal to -13.7 ° C. at a level N7 situated just below the level N6 and in particular at ten -th floor starting from the head of column 26.
  • a third lower reboiling current 74 is taken near the bottom of the column 26 at a temperature above -10 ° C and in particular substantially equal to -3.3 ° C at a level N8 advantageously located in the twenty-first floor starting from the head of column 26.
  • the lower reboiling current 74 is fed to the first heat exchanger 16 where it is heated to a temperature above 0 ° C and in particular equal to 3.2 ° C before being returned to a level N9 corresponding to the twenty-second stage from the top of the column 26.
  • This reboiling current exchanges a thermal power of approximately 2840 kW with the other currents flowing in the exchanger 16.
  • a stream 80 rich in C 2 + hydrocarbons is taken from the bottom of the column 26 at a temperature above -5 ° C and especially equal to 3.2 ° C. This stream comprises less than 1% methane and more than 98% C 2 + hydrocarbons. It contains more than 99% of the C 2 + hydrocarbons of the charge natural gas stream 15.
  • the stream 80 contains in mol, 0.52% of methane, 57.80% of ethane, 18.5% of propane, 8.4% of i-butane, 10.30% of n -butane, 1.23% i-pentane, 0.98% n-pentane, 0.98% n-hexane, 0.51% n-heptane, 0.15% n-octane, 0, 54% carbon dioxide, 0% nitrogen.
  • This liquid stream 80 is pumped into the bottom pump 36 and is introduced into the first heat exchanger 16 to be heated to a temperature above 25 ° C while remaining liquid. It thus produces the section 14 rich in C 2 + hydrocarbons at a pressure greater than 25 bar and in particular equal to 31.2 bar, advantageously at 38 ° C.
  • a methane-rich overhead stream 82 is produced at the top of the column 26.
  • This overhead stream 82 comprises a molar content of greater than 99.1% methane and a molar content of less than 0.15% ethane. It contains more than 99.8% of the methane contained in the natural gas charge 15.
  • the methane-rich head stream 82 is successively heated in the second heat exchanger 24, then in the first heat exchanger 16 to give a methane-rich head stream 84 heated to a temperature below 40 ° C and in particular equal to 30, 8 ° C.
  • a first portion of the stream 84 is compressed a first time in the first compressor 28, and is then cooled in the first air cooler 30.
  • the resulting stream is then compressed a second time in the second compressor 32 and is cooled in the second air cooler 34, to give a compressed methane-rich head stream 86.
  • the temperature of the compressed current 86 is substantially equal to 40 ° C and its pressure is greater than 60 bar is and in particular substantially equal to 63.1 bar.
  • the compressed stream 86 is then separated into a methane-rich stream 12 produced by the plant 10, and into a first recirculation stream 88.
  • the ratio of the molar flow rate of the methane-rich stream 12 with respect to the molar flow rate of the first recirculation stream is greater than 1 and is in particular between 1 and 20.
  • Stream 12 has a methane content greater than 99.0%. In this example, it is composed of 99.18 mol% of methane, 0.14 mol% of ethane, 0.43 mol% of nitrogen and 0.24 mol% of carbon dioxide. This stream 12 is then sent into a gas pipeline.
  • the first recirculation stream 88 rich in methane is then directed to the first heat exchanger 16 to give the first cooled recirculation stream 90 at a temperature below -30 ° C and in particular equal to -45 ° C.
  • a first part 92 of the first cooled recirculation stream 90 is then introduced into the second exchanger 24 to be liquefied before passing through the flow control valve 95.
  • the stream thus obtained forms a first portion 94 cooled and at least partially liquefied introduced at a level N10 of column 26 located above level N1, including the first stage of this column from the head.
  • the temperature of the first cooled part 94 is greater than -120 ° C. and in particular equal to -113.8 ° C. Its pressure after passing through the valve 95 is substantially equal to the pressure of the column 26.
  • a second portion 96 of the first cooled recirculation stream 90 is taken to form a second recirculation stream rich in methane.
  • This second portion 96 is expanded in an expansion valve 98 before being mixed with the turbine feed stream 46 to form a feed flow 100 of the first expansion turbine 22 intended to be dynamically expanded in this turbine 22 to produce frigories.
  • the feed stream 100 is expanded in the turbine 22 to form a expanded flow 102 which is introduced into the column 26 at a level N11 situated between the level N1 and the level N3, in particular at the tenth stage starting from the head of the column at a pressure substantially equal to 16 bar.
  • the dynamic expansion of the flow 100 in the turbine 22 makes it possible to recover 3732 kW of energy which originate for a fraction greater than 50% and in particular equal to 99.5% of the turbine feed flow 46 and for a fraction less than 50%. and in particular equal to 0.5% of the second recirculation current.
  • the flow 100 thus forms a dynamic expansion current which by its expansion in the turbine 22 produces frigories.
  • the method further comprises taking a fourth recirculation stream 136 in the first recirculation stream 88.
  • This fourth recirculation stream 136 is taken from the first recirculation stream 88 downstream of the second compressor 32 and upstream of the recirculation stream 88. the first recirculation current 88 in the first exchanger 16 and in the second exchanger 24.
  • the molar flow rate of the fourth recirculation stream 136 represents less than 80% of the molar flow rate of the first recirculation stream 88 taken at the outlet of the second compressor 32.
  • the fourth recirculation stream 136 is then brought to the second dynamic expansion turbine 132 to be expanded at a pressure lower than the pressure of the separation column 26 and in particular equal to 15.4 bar and produce frigories.
  • the temperature of the cooled fourth recirculation stream 138 from the turbine 132 is thus less than -30 ° C. and in particular substantially equal to -43.1 ° C.
  • the cooled fourth recirculation stream 138 is then reintroduced into the methane-rich head stream 82 between the outlet of the second exchanger 24 and the inlet of the first exchanger 16.
  • the frigories generated by the dynamic expansion in the turbine 132 are transmitted. by heat exchange in the first exchanger 16 to the charge natural gas stream 15. This dynamic expansion allows to recover 2677 kW of energy.
  • a recompression fraction 140 is taken from the heated methane rich head stream 84 between the outlet of the first exchanger 16 and the inlet of the first compressor 28.
  • This recompression fraction 140 is introduced into the third compressor 134 coupled to the second turbine 132 to be compressed to a pressure of less than 30 bars and in particular equal to 22.6 bars and a temperature of about 68.2 ° C.
  • the compression recompression fraction 142 is reintroduced into the cooled methane-rich stream between the outlet of the first compressor 28 and the inlet of the first air cooler 30.
  • the molar flow rate of the recompression fraction 140 is greater than 20% of the molar flow rate of the feed gas stream 15.
  • the process according to the invention makes it possible to obtain identical ethane recovery, greater than or equal to 99%, while significantly reducing the power to be supplied by the second compressor 32 from 19993 kW to 18063 kW.
  • the installation is devoid of the second dynamic expansion turbine 132 and the third compressor 134 coupled to the second dynamic expansion turbine 132.
  • the entire heated head stream 84 from the first heat exchanger 16 is then introduced into the first compressor 28. Similarly, the entire first stream recirculation 88 is introduced into the first heat exchanger 16 to form the stream 90.
  • a second installation 110 according to the invention is illustrated on the figure 3 .
  • This second installation 110 is intended for the implementation of a second method according to the invention.
  • the second portion 96 of the first cooled recirculation stream 90 forming the second recirculation stream is reintroduced, after expansion in the control valve 98, upstream of the column 26, into the stream of cooled charge natural gas 40, between the first exchanger 16 and the separator balloon 18.
  • this second stream 96 contributes to the formation of the light fraction 42, as well as to the formation of the feed stream of the first expansion turbine 22.
  • the flow 100 is formed exclusively by the feed flow 46.
  • a third installation 120 according to the invention is represented on the figure 4 .
  • This third installation 120 is intended for the implementation of a third method according to the invention.
  • the second compressor 32 of the third installation 120 comprises two compression stages 122A, 122B and an intermediate air cooler 124 interposed between the two stages.
  • the third method according to the invention comprises taking a third recirculation stream 126 in the heated methane rich head stream 84.
  • This third recirculation stream 126 is drawn between the two stages 122A, 122B at the outlet of the Intermediate refrigerant 124.
  • the stream 126 has a pressure greater than 30 bars and a temperature substantially equal to the ambient temperature.
  • the ratio of the flow rate of the third recirculation stream to the total flow rate of the heated methane-rich head stream 84 from the first heat exchanger 16 is less than 0.15 and is in particular between 0.08 and 0.15.
  • the third recirculation stream 126 is then introduced successively into the first exchanger 16, then into the second exchanger 24 to be cooled to a temperature above -110.5 ° C.
  • a decrease in power consumption is observed, about 3% of which is due to the medium pressure liquefaction of the third recirculation stream 126.
  • a fourth installation 130 according to the invention is represented on the figure 5 .
  • This fourth installation 130 is intended for the implementation of a fourth method according to the invention.
  • the fourth method according to the invention differs from the variant of the first method according to the invention in that it comprises taking a third recirculation stream 126 in the heated methane-rich head stream 84, as in the third process. according to the invention.
  • the third recirculation stream 126 is then successively introduced into the first exchanger 16, then into the second exchanger 24 to be cooled to a temperature greater than -109.7 ° C.
  • substantially all of the first cooled recirculation stream 90 from the first exchanger 16 is introduced into the second exchanger 24.
  • the flow rate of the second part 96 of this current represented on the figure 5 is almost nil.
  • the second recirculation stream is then formed by the fourth recirculation stream 136 which is brought to the dynamic expansion turbine 132 to produce frigories.
  • this variant of the method according to the invention does not require providing a pipe for diverting part of the first cooled recirculation stream 90 to the first turbine 22, so that the installation 130 can in to be deprived.
  • a fifth installation 150 according to the invention is represented on the figure 6 .
  • This fifth installation 150 is intended for the implementation of a fifth method according to the invention.
  • This installation 150 is intended to improve an existing production unit of the state of the art, as described for example in the US patent. US 6,578,379 , keeping the power consumed by the second compressor 32 constant, especially when the content of C 2 + hydrocarbons in the feed gas 15 increases substantially.
  • the initial feedstock gas is, in this and the following examples, a dehydrated and decarbonated natural gas composed mainly of methane and C2 + hydrocarbons, comprising 0.3499% nitrogen, 89.56% methane, 5.2579% ethane, 2.3790% propane, 0.5398% i-butane, 0.6597% n-butane, 0.2399% i-pentane, 0.1899% n pentane, 0.1899% n-hexane, 0.1000% n-heptane, 0.0300% n-octane, 0.4998% CO 2 .
  • the C 2 + hydrocarbon fraction always has the same composition as that shown in Table 3: ⁇ u> TABLE 3 ⁇ / u> Ethane 54.8494 % mole Propane 24.8173 % mole i-Butane 5.6311 % mole n-Butane 6.8815 % mole i-Pentane 2.5026 % mole n-Pentane 1.9810 % mole C6 + 3.3371 % mole Total 100 % mole
  • the fifth installation 150 differs from the variant 10A of the first installation represented on the figure 2 in that it comprises a third heat exchanger 152, a fourth heat exchanger 154 and a third compressor 134.
  • the installation 150 is furthermore devoid of the air cooler at the outlet of the first compressor 28.
  • the first air cooler 30 is located at the outlet of the second compressor 32.
  • the fifth method according to the invention differs from the variant of the first method according to the invention in that a sampling stream 158 is taken from the top stream. rich in methane 82 between the outlet of the separation column 26 and the second heat exchanger 24.
  • the sampling current flow rate 158 is less than 15% of the flow rate of the methane-rich head stream 82 from column 26.
  • the sampling stream 158 is then introduced successively into the third heat exchanger 152, to be heated to a first temperature below room temperature, then in the fourth heat exchanger 154, to be heated up to substantially the temperature. room.
  • the first temperature is furthermore lower than the temperature of the cooled charge natural gas stream 40 supplying the separator tank 18.
  • the stream 158 thus cooled is passed into the third compressor 134 and into the cooler 34, to cool it to ambient temperature before being introduced into the fourth heat exchanger 154 and form a cooled compressed sampling stream 160.
  • This cooled compressed sampling stream 160 has a pressure greater than or equal to that of the feed gas stream 15. This pressure is less than 63 bar.
  • Current 160 has a temperature below 40 ° C. This temperature is substantially equal to the temperature of the cooled charge natural gas stream 40 supplying the separator tank 18.
  • the cooled compressed sampling stream 160 is separated into a first portion 162 which is successively passed into the third heat exchanger 152 to be cooled to substantially the first temperature, and then to a pressure control valve 164 to form a first portion. relaxed cooled 166.
  • the molar flow rate of the first portion 162 represents at least 4% of the molar flow rate of the charge natural gas stream 15.
  • the pressure of the cooled first cooled portion 166 is substantially equal to the pressure of the column 26.
  • the ratio of the molar flow rate of the first portion 162 to the molar flow rate of the cooled compressed sampling stream 160 is greater than 0.25.
  • the molar flow rate of the first portion 162 is greater than 4% of the molar flow rate of the charge natural gas stream 15.
  • a second portion 168 of the cooled compressed sampling stream is introduced, after passing through a static expansion valve 170, in admixture with the feed stream 46 of the first turbine 22 to form the feed stream 100 of this turbine 22.
  • the second portion 168 constitutes the second recirculation stream according to the invention which is introduced into the turbine 22 to produce frigories.
  • the second portion 168 is introduced into the stream of cooled feed natural gas 40 upstream of the separator tank 18, as shown in FIG. figure 3 .
  • a sixth installation according to the invention 180 is represented on the figure 7 .
  • This sixth installation 180 is intended for the implementation of a sixth method according to the invention.
  • This sixth installation 180 differs from the fifth installation 150 in that it further comprises a fourth compressor 182, a second expansion turbine 132 coupled to the fourth compressor 182, and a third air cooler 184.
  • the sampling stream 158 is introduced, after passing through the fourth exchanger 154, successively into the fourth compressor 182, into the third air cooler 184 before being introduced into the third compressor 134.
  • a secondary bypass stream 186 is withdrawn from the first portion 162 of the cooled compressed bleed stream 160 prior to its passage through the third exchanger 152.
  • the secondary bypass stream 186 is then conveyed to the second expansion turbine 132 to be expanded to a pressure below 25 bar, which lowers its temperature to below -90 ° C.
  • the expanded secondary bypass stream 188 thus formed is introduced as a mixture into the sampling stream 158 before it passes through the third exchanger 152.
  • the flow rate of the secondary bypass current is less than 75% of the flow rate of the current 160 taken at the outlet of the fourth exchanger 154
  • a seventh installation 190 according to the invention is represented on the figure 8 .
  • This seventh installation is intended for the implementation of a seventh method according to the invention.
  • the seventh installation 190 differs from the second installation 110 by the presence of a third heat exchanger 152, by the presence of a third compressor 134 and a second air cooler 34, and by the presence of a fourth compressor 182 coupled to a third air cooler 184.
  • the fourth compressor 182 is coupled to a second expansion turbine 132.
  • the seventh method according to the invention differs from the second method according to the invention in that the second recirculation stream is formed by a sampling fraction 192 taken in the compressed methane-rich head stream 86, downstream of the sampling of the first stream. recirculation 88.
  • sampling fraction 192 is then conveyed to the third heat exchanger 152, after passing through a valve 194 to form a cooled cooled sampling fraction 196.
  • This fraction 196 has a pressure lower than 63 bar and a temperature below 40 ° C. .
  • the flow rate of the sampling fraction 192 is less than 1% of the flow rate of the stream 82 taken at the outlet of the column 26.
  • the charge natural gas stream 15 is separated into a first charge stream 191A conveyed to the first heat exchanger 16 and a second charge stream 191B conveyed to the third heat exchanger 152, by flow control through the valve 191C. .
  • the charge flows 191A, 191B, after their cooling in the respective exchangers 16, 152, are mixed with each other at the outlet of the respective exchangers 16, and 152 to form the stream of cooled charge natural gas 40 before its introduction into the separator balloon 18.
  • the ratio of the flow rate of the charge flow 191A to the flow rate of the charge flow 191B is between 0 and 0.5.
  • the collected fraction 196 is introduced into the first charge stream 191A at the outlet of the first exchanger 16 before it is mixed with the second charge stream 191 B.
  • a secondary cooling stream 200 is withdrawn from the compressed methane-rich top stream 86, downstream of the sampling of the sampling fraction 192.
  • This secondary cooling stream 200 is transferred to the dynamic expansion turbine 132 to be expanded to a pressure below the pressure of the column 26 and provide frigories.
  • the expanded secondary cooling stream 202 coming from the turbine 132 is then introduced, at a temperature below 40 ° C. into the third heat exchanger 152, to heat it by heat exchange with the flows 191B and 192 up to substantially the ambient temperature. .
  • the heated secondary cooling stream 204 is reintroduced into the methane-rich head stream 84 at the outlet of the first exchanger 16, before passing through the first compressor 28.
  • a recompression fraction 206 is taken from the heated methane-rich head stream 84 downstream of the introduction of the heated secondary cooling stream 204, and passed successively into the fourth compressor 182, into the third air cooler 184, in the third compressor 134, then in the second air cooler 34.
  • This fraction 208 is then reintroduced into the compressed methane-rich head stream 86 from the second compressor 32, upstream of the sampling of the first recirculation stream 88.
  • the stream rich in compressed methane 86 from the cooler 30 and receiving the fraction 208 is advantageously at room temperature.
  • the seventh method according to the invention makes it possible to keep the compressor 32 and the turbine 22 identical when the content of ethane and those of the C 3 + hydrocarbons in the feed gas increase, while obtaining an ethane recovery greater than 99%. .
  • the light fraction 42 from the separator balloon 18 is not divided. All of this fraction then forms the turbine feed stream 46 which is sent to the first dynamic expansion turbine 22.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Description

La présente invention concerne un procédé et une installation de production d'un courant riche en méthane et d'une coupe riche en hydrocarbures en C2 + à partir d'un courant de gaz naturel de charge déshydraté, le procédé et l'installation étant selon le préambule des revendications 1 et 14 respectivement.The present invention relates to a method and a plant for producing a methane-rich stream and a C 2 + hydrocarbon-rich fraction from a dehydrated feed natural gas stream, the process and the plant being according to the preamble of claims 1 and 14 respectively.

Un tel procédé est destiné à être mis en oeuvre pour la construction de nouvelles unités de production d'un courant riche en méthane et d'une coupe d'hydrocarbures en C2 + à partir d'un gaz naturel de charge, ou pour la modification d'unités existantes, notamment dans le cas où le gaz naturel de charge présente une teneur élevée en éthane, en propane, et en butane.Such a process is intended to be implemented for the construction of new production units of a methane-rich stream and of a C 2 + hydrocarbon fraction from a natural feed gas, or for modification of existing units, especially in the case where the feed natural gas has a high content of ethane, propane and butane.

Un tel procédé s'applique également dans le cas où il est difficile de mettre en oeuvre une réfrigération du gaz naturel de charge à l'aide d'un cycle extérieur de réfrigération au propane, ou dans le cas où l'installation d'un tel cycle serait trop coûteuse ou trop dangereuse, comme par exemple dans les usines flottantes, ou dans les régions urbaines.Such a method is also applicable in the case where it is difficult to implement a refrigeration of the natural gas charge using an outside cycle of propane refrigeration, or in the case where the installation of a Such a cycle would be too costly or too dangerous, for example in floating plants or in urban areas.

Un tel procédé est particulièrement avantageux lorsque l'unité de fractionnement de la coupe d'hydrocarbures en C2 + qui produit le propane destiné à être utilisé dans les cycles de réfrigération est trop éloignée de l'unité de récupération de cette coupe d'hydrocarbures en C2 +.Such a process is particularly advantageous when the fractionation unit of the C 2 + hydrocarbon fraction which produces propane for use in refrigeration cycles is too far from the recovery unit of this hydrocarbon cut. in C 2 + .

La séparation de la coupe d'hydrocarbures en C2 + à partir d'un gaz naturel extrait du sous-sol permet de satisfaire à la fois à des impératifs économiques et à des impératifs techniques.The separation of the C 2 + hydrocarbon fraction from a natural gas extracted from the subsoil makes it possible to satisfy both economic requirements and technical requirements.

En effet, la coupe d'hydrocarbures en C2 + récupérée à partir du gaz naturel est avantageusement utilisée pour produire de l'éthane et des liquides qui constituent des matières premières en pétrochimie. En outre, il est possible de produire à partir d'une coupe d'hydrocarbures en C2 + des coupes d'hydrocarbures en C5 + qui sont utilisées dans les raffineries de pétrole. Tous ces produits peuvent être valorisés économiquement et contribuer à la profitabilité de l'installation.In fact, the C 2 + hydrocarbon fraction recovered from natural gas is advantageously used to produce ethane and liquids which constitute raw materials in petrochemicals. In addition, it is possible to produce from a hydrocarbon cut C 2 + hydrocarbon fractions, C 5 +, which are used in oil refineries. All these products can be valued economically and contribute to the profitability of the installation.

Techniquement, les exigences du gaz naturel commercialisé en réseau incluent, dans certains cas, une spécification au niveau du pouvoir calorifique qui doit être relativement bas.Technically, the requirements of natural gas marketed in a network include, in some cases, a specification of the heating value which must be relatively low.

Des procédés de production de coupe d'hydrocarbures en C2 + comprennent généralement une étape de distillation, après refroidissement du gaz naturel de charge, pour former un courant de tête riche en méthane et un courant de pied riche en hydrocarbures en C2 +.C 2 + hydrocarbon cutting production processes generally include a distillation step, after cooling the feed natural gas, to form a methane-rich overhead stream and a hydrocarbon-rich foot stream. C 2 + .

Pour améliorer la sélectivité du procédé, il est connu de prélever une partie du courant riche en méthane produit en tête de la colonne, après compression, et de le réintroduire, après un refroidissement, en tête de colonne, pour constituer un reflux de cette colonne. Un tel procédé est par exemple décrit dans US 2008/0190136 ou dans US 6 578 379 .To improve the selectivity of the process, it is known to take part of the methane-rich stream produced at the top of the column, after compression, and to reintroduce it, after cooling, at the top of the column, to constitute a reflux of this column. . Such a method is for example described in US 2008/0190136 or in US 6,578,379 .

De tels procédés permettent d'obtenir une récupération d'éthane supérieure à 95% et dans le dernier cas, même supérieure à 99%.Such methods make it possible to obtain an ethane recovery greater than 95% and in the latter case, even greater than 99%.

Un tel procédé ne donne cependant pas entière satisfaction lorsque le gaz naturel de charge est très riche en hydrocarbures lourds, et notamment en éthane, en propane, et en butane, et lorsque la température d'entrée du gaz naturel de charge est relativement élevée.Such a method does not, however, entirely satisfactory when the natural gas feedstock is very rich in heavy hydrocarbons, and especially in ethane, propane, and butane, and when the inlet temperature of the natural gas feedstock is relatively high.

Dans ces cas, la quantité de réfrigération à fournir est élevée, ce qui nécessite l'ajout d'un cycle additionnel de réfrigération si l'on souhaite maintenir une bonne sélectivité. Un tel cycle est consommateur en énergie. En outre, dans certaines installations, notamment flottantes, il n'est pas possible de mettre en oeuvre de tels cycles de réfrigération.In these cases, the amount of refrigeration to be supplied is high, which requires the addition of an additional refrigeration cycle if it is desired to maintain good selectivity. Such a cycle is energy consuming. In addition, in some installations, including floating, it is not possible to implement such refrigeration cycles.

US 2004/0159122 décrit un procédé et une installation selon le préambule des revendications 1 et 14 respectivement. US 2004/0159122 discloses a method and an installation according to the preamble of claims 1 and 14 respectively.

Un but de l'invention est donc d'obtenir un procédé de récupération des hydrocarbures en C2 + qui soit extrêmement efficace et très sélectif, même lorsque la teneur dans le gaz naturel de charge de ces hydrocarbures en C2 + augmente significativement.An object of the invention is therefore to obtain a process for recovering C 2 + hydrocarbons which is extremely efficient and highly selective, even when the content in the natural gas feedstock of these C 2 + hydrocarbons increases significantly.

A cet effet, l'invention a pour objet un procédé selon la revendication 1.For this purpose, the subject of the invention is a method according to claim 1.

Le procédé selon l'invention peut comprendre l'une ou plusieurs des caractéristiques des revendications 2 à 13 ou des caractéristiques suivantes, prise(s) isolément ou suivant toute(s) combinaison(s) techniquement possible(s) :

  • le courant de pied riche en hydrocarbures en C2 + est pompé et est réchauffé par échange thermique à contre courant d'au moins une partie du courant de gaz naturel de charge, avantageusement jusqu'à une température inférieure ou égale à la température du courant de gaz naturel de charge avant son passage dans le premier échangeur thermique ;
  • la pression du courant riche en hydrocarbures en C2 + après pompage est choisie pour maintenir le courant riche en hydrocarbures en C2 + après réchauffement dans le premier échangeur thermique, sous forme liquide ;
  • le débit molaire du deuxième courant de recirculation est supérieur à 10% du débit molaire du courant de gaz naturel de charge ;
  • la température du deuxième courant de recirculation est sensiblement égale à la température du courant de gaz naturel refroidi introduit dans le ballon séparateur ;
  • la pression du troisième courant de recirculation est inférieure à la pression du courant de gaz naturel de charge et est supérieure à la pression de la colonne de séparation ;
  • le débit molaire du troisième courant de recirculation est supérieur à 10% du débit molaire du courant de gaz naturel de charge ;
  • le débit molaire du courant de prélèvement est supérieur à 4%, avantageusement à 10% du débit molaire du courant de gaz naturel de charge ;
  • la température du courant de prélèvement, après passage dans le troisième échangeur thermique est inférieure à celle du courant de gaz naturel de charge refroidi alimentant le ballon séparateur ;
  • le débit molaire du courant de dérivation secondaire est supérieur à 10% du débit molaire du courant de gaz naturel de charge ;
  • le débit molaire du courant de refroidissement secondaire est supérieur à 10% du débit molaire du courant de gaz naturel de charge ;
  • la pression du courant de refroidissement secondaire détendu est supérieure à 15 bars ;
  • le rapport entre le débit d'éthane contenu dans la coupe riche en hydrocarbures en C2 + et le débit d'éthane contenu dans le gaz naturel de charge est supérieur à 0,98 ;
  • le rapport entre le débit d'hydrocarbures en C3 + contenu dans la coupe riche en hydrocarbures en C2 + et le débit d'hydrocarbures en C3 + contenu dans le gaz naturel de charge est supérieur à 0,998.
The method according to the invention may comprise one or more of the features of claims 2 to 13 or the following characteristics, taken alone or in any combination (s) technically possible (s):
  • the foot stream rich in C 2 + hydrocarbons is pumped and is heated by countercurrent heat exchange of at least a portion of the feed natural gas stream, preferably to a temperature less than or equal to the temperature of the current charge natural gas before it passes through the first heat exchanger;
  • the pressure of the hydrocarbon-rich C 2 + stream after pumping is chosen to maintain the C 2 + hydrocarbon-rich stream after heating in the first heat exchanger, in liquid form;
  • the molar flow rate of the second recirculation stream is greater than 10% of the molar flow rate of the charge natural gas stream;
  • the temperature of the second recirculation stream is substantially equal to the temperature of the cooled natural gas stream introduced into the separator tank;
  • the pressure of the third recirculation stream is lower than the pressure of the charge natural gas stream and is greater than the pressure of the separation column;
  • the molar flow rate of the third recirculation stream is greater than 10% of the molar flow rate of the charge natural gas stream;
  • the molar flow rate of the sampling stream is greater than 4%, advantageously 10% of the molar flow rate of the feed natural gas stream;
  • the temperature of the sampling stream after passing through the third heat exchanger is lower than that of the cooled charge natural gas stream supplying the separator tank;
  • the molar flow rate of the secondary bypass stream is greater than 10% of the molar flow rate of the feed natural gas stream;
  • the molar flow rate of the secondary cooling stream is greater than 10% of the molar flow rate of the charge natural gas stream;
  • the pressure of the expanded secondary cooling stream is greater than 15 bar;
  • the ratio of the ethane flow rate in the C 2 + hydrocarbon rich fraction to the ethane flow rate in the feed natural gas is greater than 0.98;
  • the ratio between the flow rate of C 3 + hydrocarbons contained in the cut rich in C 2 + hydrocarbons and the flow rate of C 3 + hydrocarbons contained in the feed natural gas is greater than 0.998.

L'invention a également pour objet une installation de production d'un courant riche en méthane et d'une coupe riche en hydrocarbures en C2 + à partir d'un courant de gaz naturel de charge déshydraté, composé d'hydrocarbures, d'azote et de CO2, et présentant avantageusement une teneur molaire en hydrocarbures en C2 + supérieure à 10 %, selon la revendication 14.The invention also relates to a facility for producing a methane-rich stream and a C 2 + hydrocarbon-rich fraction from a stream of dehydrated feedstock composed of hydrocarbons, carbon dioxide and nitrogen and CO 2 , and preferably having a molar content of C 2 + hydrocarbons greater than 10%, according to claim 14.

Dans un autre mode de réalisation, les moyens de formation du flux d'alimentation de turbine comportent des moyens de division de la fraction légère en le flux d'alimentation de turbine et en un flux secondaire, l'installation comprenant des moyens de passage du flux secondaire dans le deuxième échangeur thermique pour le refroidir et des moyens d'introduction du flux secondaire refroidi dans une partie haute de la colonne de séparation.In another embodiment, the means for forming the turbine feed stream comprise means for dividing the light fraction into the turbine feed flow and into a secondary flow, the plant comprising means for passing the turbine feed stream and secondary flow in the second heat exchanger for cooling and means for introducing the cooled secondary flow in an upper part of the separation column.

Par «température ambiante», on entend dans ce qui suit la température de l'atmosphère gazeuse qui règne dans l'installation dans laquelle le procédé selon l'invention est mis en oeuvre. Cette température est généralement comprise entre -40°C et 60°C.By "ambient temperature" is meant in what follows the temperature of the gaseous atmosphere that prevails in the installation in which the process according to the invention is implemented. This temperature is generally between -40 ° C and 60 ° C.

L'invention sera mieux comprise à la lecture de la description qui va suivre, donnée uniquement à titre d'exemple, et faite en se référant aux dessins annexés, sur lesquels :

  • la figure 1 est un schéma synoptique d'une première installation selon l'invention, pour la mise en oeuvre d'un premier procédé selon l'invention ;
  • la figure 2 est une vue analogue à la figure 1 d'une variante de l'installation de la figure 1 ;
  • la figure 3 est une vue analogue à la figure 1 d'une deuxième installation selon l'invention, pour la mise en oeuvre d'un deuxième procédé selon l'invention ;
  • la figure 4 est une vue analogue à la figure 1 d'une troisième installation selon l'invention, pour la mise en oeuvre d'un troisième procédé selon l'invention ;
  • la figure 5 est une vue analogue à la figure 1 d'une quatrième installation selon l'invention, pour la mise en oeuvre d'un quatrième procédé selon l'invention ;
  • la figure 6 est une vue analogue à la figure 1 d'une cinquième installation selon l'invention, pour la mise en oeuvre d'un cinquième procédé selon l'invention ;
  • la figure 7 est une vue analogue à la figure 1 d'une sixième installation selon l'invention, pour la mise en oeuvre d'un sixième procédé selon l'invention ;
  • la figure 8 est une vue analogue à la figure 1 d'une septième installation selon l'invention, pour la mise en oeuvre d'un septième procédé selon l'invention.
The invention will be better understood on reading the description which follows, given solely by way of example, and with reference to the appended drawings, in which:
  • the figure 1 is a block diagram of a first installation according to the invention, for the implementation of a first method according to the invention;
  • the figure 2 is a view similar to the figure 1 of a variant of the installation of the figure 1 ;
  • the figure 3 is a view similar to the figure 1 a second installation according to the invention, for the implementation of a second method according to the invention;
  • the figure 4 is a view similar to the figure 1 a third installation according to the invention, for the implementation of a third method according to the invention;
  • the figure 5 is a view similar to the figure 1 a fourth installation according to the invention, for the implementation of a fourth method according to the invention;
  • the figure 6 is a view similar to the figure 1 a fifth installation according to the invention, for the implementation of a fifth method according to the invention;
  • the figure 7 is a view similar to the figure 1 a sixth installation according to the invention, for the implementation of a sixth method according to the invention;
  • the figure 8 is a view similar to the figure 1 of a seventh installation according to the invention, for the implementation of a seventh method according to the invention.

La figure 1 illustre une première installation 10 de production d'un courant 12 riche en méthane et d'une coupe 14 riche en hydrocarbures en C2 + selon l'invention, à partir d'un gaz naturel de charge 15. Cette installation 10 est destinée à la mise en oeuvre d'un premier procédé selon l'invention.The figure 1 illustrates a first plant 10 for producing a stream 12 rich in methane and a section 14 rich in C 2 + hydrocarbons according to the invention, from a natural gas charge 15. This plant 10 is intended for the implementation of a first method according to the invention.

Le procédé et l'installation 10 s'appliquent avantageusement dans le cas de la construction d'une nouvelle unité de récupération de méthane et d'éthane.The method and the installation 10 are advantageously applied in the case of the construction of a new unit for recovering methane and ethane.

L'installation 10 comprend, d'amont en aval, un premier échangeur thermique 16, un ballon séparateur 18, une première turbine de détente 22 et un deuxième échangeur thermique 24.The plant 10 comprises, from upstream to downstream, a first heat exchanger 16, a separator tank 18, a first expansion turbine 22 and a second heat exchanger 24.

L'installation 10 comprend en outre une colonne de séparation 26 et, en aval de la colonne 26, un premier compresseur 28 accouplé à la première turbine de détente 22, un premier refroidisseur à air 30, un deuxième compresseur 32 et un deuxième refroidisseur à air 34. L'installation 10 comprend en outre une pompe 36 de fond de colonne.The installation 10 further comprises a separation column 26 and, downstream of the column 26, a first compressor 28 coupled to the first expansion turbine 22, a first air cooler 30, a second compressor 32 and a second cooler. Air 34. The installation 10 further comprises a pump 36 of the bottom of the column.

Dans l'exemple représenté sur la Figure 1, l'installation 10 comporte en outre une deuxième turbine de détente 132 et un troisième compresseur 134.In the example shown on the Figure 1 , the installation 10 further comprises a second expansion turbine 132 and a third compressor 134.

Dans tout ce qui suit, on désignera par les mêmes références un courant circulant dans une conduite, et la conduite qui le transporte. En outre, sauf indications contraires, les pourcentages cités sont des pourcentages molaires et les pressions sont données en bars absolus.In all that follows, the same references will refer to a current flowing in a pipe, and the pipe that carries it. In addition, unless otherwise indicated, the percentages mentioned are molar percentages and the pressures are given in absolute bar.

En outre, pour les simulations numériques, le rendement de chaque compresseur est de 82 % polytropique et le rendement de chaque turbine est de 85 % adiabatique.In addition, for numerical simulations, the efficiency of each compressor is 82% polytropic and the efficiency of each turbine is 85% adiabatic.

Un premier procédé de production selon l'invention, mis en oeuvre dans l'installation 10 va maintenant être décrit.A first production method according to the invention, implemented in the installation 10 will now be described.

Le gaz naturel de charge 15 est, dans cet exemple, un gaz naturel déshydraté et décarbonaté comprenant en moles 0,3499 % d'azote, 80,0305 % de méthane, 11,3333 % d'éthane, 3,6000 % de propane, 1,6366 % de i-butane, 2,0000 % de n-butane, 0,2399 % de i-pentane, 0,1899 % de n-pentane, 0,1899 % de n-hexane, 0,1000 % de n-heptane, 0,0300 % de n-octane et 0,3000 % de dioxyde de carbone.The charge natural gas 15 is, in this example, a dehydrated and decarbonated natural gas comprising in moles 0.3499% of nitrogen, 80.0305% of methane, 11.3333% of ethane, 3.6000% of propane. , 1.6366% i-butane, 2.0000% n-butane, 0.2399% i-pentane, 0.1899% n-pentane, 0.1899% n-hexane, 0.1000% n-heptane, 0.0300% n-octane and 0.3000% carbon dioxide.

Le gaz naturel de charge 15 comprend donc plus généralement en mole, entre 10 % et 25 % d'hydrocarbures en C2 + à récupérer et entre 74 % et 89 % de méthane. La teneur en hydrocarbures en C2 + est avantageusement supérieure à 15 %.The charge natural gas 15 thus more generally comprises in mol, between 10% and 25% of C 2 + hydrocarbons to be recovered and between 74% and 89% of methane. The C 2 + hydrocarbon content is advantageously greater than 15%.

Par gaz décarbonaté, on entend un gaz dont la teneur en dioxyde de carbone est abaissée de façon à éviter la cristallisation du dioxyde de carbone, cette teneur étant généralement inférieure à 1 % molaire.By decarbonated gas is meant a gas whose carbon dioxide content is lowered so as to avoid the crystallization of carbon dioxide, this content being generally less than 1 mol%.

Par gaz déshydraté, on entend un gaz dont la teneur en eau est la plus basse possible et notamment inférieure à 1 ppm.By dehydrated gas is meant a gas whose water content is as low as possible and in particular less than 1 ppm.

En outre, la teneur en sulfure d'hydrogène du gaz naturel de charge 15 est préférentiellement inférieure à 10 ppm et la teneur en composés soufrés de type mercaptans est préférentiellement inférieure à 30 ppm.In addition, the content of hydrogen sulphide in the feed natural gas is preferably less than 10 ppm and the content of sulfur compounds of the mercaptan type is preferably less than 30 ppm.

Le gaz naturel de charge présente une pression supérieure à 40 bars et notamment sensiblement égale à 62 bars. Il présente en outre une température voisine de la température ambiante et notamment égale à 40°C. Le débit du courant de gaz naturel de charge 15 est, dans cet exemple, de 15000 kgmol/h.The natural gas charge has a pressure greater than 40 bars and in particular substantially equal to 62 bars. It also has a temperature close to room temperature and in particular equal to 40 ° C. The flow rate of the charge natural gas stream 15 is, in this example, 15000 kgmol / h.

Le courant de gaz naturel de charge 15 est tout d'abord introduit dans le premier échangeur thermique 16 où il est refroidi et partiellement condensé à une température supérieure à - 50°C et notamment sensiblement égale à -24,5°C pour donner un courant de gaz naturel de charge refroidi 40 qui est introduit dans sa totalité dans le ballon séparateur 18.The charge natural gas stream 15 is first introduced into the first heat exchanger 16 where it is cooled and partially condensed at a temperature greater than -50 ° C and in particular substantially equal to -24.5 ° C to give a cooled charge natural gas stream 40 which is introduced in its entirety into the separator tank 18.

Dans le ballon séparateur 18, le courant de gaz naturel de charge refroidi 40 est séparé en une fraction légère 42 gazeuse et en une fraction lourde liquide 44.In the separator flask 18, the cooled charge natural gas stream 40 is separated into a light gas fraction 42 and a heavy liquid fraction 44.

Le rapport du débit molaire de la fraction légère 42 au débit molaire de la fraction lourde 44 est généralement compris entre 4 et 10.The ratio of the molar flow rate of the light fraction 42 to the molar rate of the heavy fraction 44 is generally between 4 and 10.

Puis, la fraction légère 42 est séparée en un flux 46 d'alimentation de la première turbine de détente et en un flux 48 secondaire qui est introduit successivement dans l'échangeur thermique 24 et dans une première vanne de détente statique 50 pour former un flux secondaire détendu refroidi et au moins partiellement liquéfié 52.Then, the light fraction 42 is separated into a feed flow 46 of the first expansion turbine and into a secondary flow 48 which is introduced successively into the heat exchanger 24 and into a first static expansion valve 50 to form a flow secondary expanded cooled and at least partially liquefied 52.

Le flux secondaire détendu refroidi 52 est introduit à un niveau supérieur N1 de la colonne de séparation 26 correspondant dans cet exemple au cinquième étage depuis le haut de la colonne 26.The cooled expanded secondary stream 52 is introduced at a higher level N1 of the separation column 26 corresponding in this example to the fifth stage from the top of the column 26.

Le débit du flux secondaire 48 représente moins de 40 % du débit de la fraction légère 42.The flow rate of the secondary flow 48 represents less than 40% of the flow rate of the light fraction 42.

La pression du flux secondaire 52, après sa détente dans la vanne 50, est inférieure à 20 bars et notamment égale à 16 bars. Cette pression correspond sensiblement à la pression de la colonne 26 qui est plus généralement supérieure à 15 bars, avantageusement comprise entre 15 bars et 25 bars.The pressure of the secondary flow 52, after expansion in the valve 50, is less than 20 bar and in particular equal to 16 bar. This pressure substantially corresponds to the pressure of the column 26 which is more generally greater than 15 bars, advantageously between 15 bars and 25 bars.

Le flux secondaire détendu refroidi 52 comprend une teneur molaire en éthane supérieure à 5 % et notamment sensiblement égale à 9.5 % molaire d'éthane.The cooled expanded secondary stream 52 comprises a molar content of ethane greater than 5% and in particular substantially equal to 9.5 mol% of ethane.

La fraction lourde 44 est dirigée vers une vanne de détente 66 qui s'ouvre en fonction du niveau de liquide dans le ballon séparateur 18.The heavy fraction 44 is directed to an expansion valve 66 which opens depending on the level of liquid in the separator tank 18.

La totalité de la fraction lourde 44 est introduite dans la colonne 26, sans entrer en relation d'échange thermique avec le gaz de charge 15, en particulier, en amont du ballon 18. La fraction lourde 44 ne passe pas par le premier échangeur thermique 16.The entire heavy fraction 44 is introduced into the column 26, without entering a heat exchange relationship with the feed gas 15, in particular upstream of the balloon 18. The heavy fraction 44 does not pass through the first heat exchanger 16.

Avantageusement, la fraction lourde 44 n'est non plus pas séparée entre le ballon 18 et la colonne 26.Advantageously, the heavy fraction 44 is also not separated between the balloon 18 and the column 26.

La fraction de pied 44 , après avoir été détendue à la pression de la colonne 26, est ensuite introduite à un niveau N3 de la colonne situé sous le niveau N1, situé avantageusement au douzième étage de la colonne 26 en partant de la tête.The foot fraction 44, after having been expanded at the pressure of the column 26, is then introduced at a level N3 of the column located under the level N1, advantageously located at the twelfth stage of the column 26 starting from the head.

Un courant de rebouillage supérieur 70 est prélevé à un niveau de fond N4 de la colonne 26 situé sous le niveau N3 et correspondant au treizième étage en partant de la tête de la colonne 26. Ce courant de rebouillage est disponible à une température supérieure à-55°C, dans cet exemple à -53°C, et est passé dans le premier échangeur thermique 16 pour y être partiellement vaporisé et échanger une puissance thermique d'environ 2710 kW avec les autres courants circulant dans l'échangeur 16.An upper reboiling stream 70 is taken at a bottom level N4 of the column 26 located below the level N3 and corresponding to the thirteenth stage from the top of the column 26. This reboiling current is available at a temperature greater than 55 ° C, in this example at -53 ° C, and passed into the first heat exchanger 16 for be partially vaporized and exchange a thermal power of approximately 2710 kW with the other currents flowing in the exchanger 16.

Ce courant de rebouillage liquide partiellement vaporisé est réchauffé à une température supérieure à -40°C et notamment égale à - 35.1 °C et envoyé au niveau N5 situé juste au dessous du niveau N4, et correspondant au quatorzième étage de la colonne 26 depuis la tête.This partially vaporized liquid reboiling stream is heated to a temperature above -40 ° C and in particular equal to -35.1 ° C and sent to the N5 level just below the N4 level, and corresponding to the fourteenth stage of the column 26 since the head.

Un deuxième courant de rebouillage 72 intermédiaire est collecté à un niveau N6 situé sous le niveau N5 et correspondant au dix-septième étage en partant de la tête de la colonne 26. Ce deuxième courant de rebouillage 72 est prélevé à une température supérieure à-25°C, notamment à -21,4°C pour être envoyé dans le premier échangeur 16 et échanger une puissance thermique d'environ 1500 kW avec les autres courants circulant dans cet échangeur 16.A second intermediate reboil stream 72 is collected at a level N6 located below the level N5 and corresponding to the seventeenth stage starting from the top of the column 26. This second reboiling stream 72 is taken at a temperature greater than -25. ° C, especially at -21.4 ° C to be sent into the first exchanger 16 and exchange a thermal power of about 1500 kW with the other currents flowing in this exchanger 16.

Le courant de rebouillage liquide partiellement vaporisé issu de l'échangeur 16 est alors réintroduit à une température supérieure à -20°C et notamment égale à -13,7°C à un niveau N7 situé juste au dessous du niveau N6 et notamment au dix-huitième étage en partant de la tête de la colonne 26.The partially vaporized liquid reboiling stream coming from exchanger 16 is then reintroduced at a temperature above -20 ° C. and in particular equal to -13.7 ° C. at a level N7 situated just below the level N6 and in particular at ten -th floor starting from the head of column 26.

En outre, un troisième courant de rebouillage inférieur 74 est prélevé au voisinage du fond de la colonne 26 à une température supérieure à -10°C et notamment sensiblement égale à -3.3°C à un niveau N8 situé avantageusement au vingt-et-unième étage en partant de la tête de la colonne 26.In addition, a third lower reboiling current 74 is taken near the bottom of the column 26 at a temperature above -10 ° C and in particular substantially equal to -3.3 ° C at a level N8 advantageously located in the twenty-first floor starting from the head of column 26.

Le courant de rebouillage inférieur 74 est amené jusqu'au premier échangeur thermique 16 où il est réchauffé jusqu'à une température supérieure à 0°C et notamment égale à 3.2°C avant d'être renvoyé à un niveau N9 correspondant au vingt-deuxième étage en partant du haut de la colonne 26. Ce courant de rebouillage échange une puissance thermique d'environ 2840 kW avec les autres courants circulant dans l'échangeur 16.The lower reboiling current 74 is fed to the first heat exchanger 16 where it is heated to a temperature above 0 ° C and in particular equal to 3.2 ° C before being returned to a level N9 corresponding to the twenty-second stage from the top of the column 26. This reboiling current exchanges a thermal power of approximately 2840 kW with the other currents flowing in the exchanger 16.

Un courant 80 riche en hydrocarbures en C2 + est prélevé dans le fond de la colonne 26 à une température supérieure à - 5°C et notamment égale à 3,2°C. Ce courant comprend moins de 1 % de méthane et plus de 98 % d'hydrocarbures en C2 +. Il contient plus de 99% des hydrocarbures en C2 + du courant de gaz naturel de charge 15.A stream 80 rich in C 2 + hydrocarbons is taken from the bottom of the column 26 at a temperature above -5 ° C and especially equal to 3.2 ° C. This stream comprises less than 1% methane and more than 98% C 2 + hydrocarbons. It contains more than 99% of the C 2 + hydrocarbons of the charge natural gas stream 15.

Dans l'exemple représenté, le courant 80 contient en mole, 0,52 % de méthane, 57,80 % d'éthane, 18,5 % de propane, 8,4 % de i-butane, 10,30 % de n-butane, 1,23 % de i-pentane, 0,98 % de n-pentane, 0,98 % de n-hexane, 0,51 % de n-heptane, 0,15 % de n-octane, 0,54 % de dioxyde de carbone, 0% d'azote.In the example represented, the stream 80 contains in mol, 0.52% of methane, 57.80% of ethane, 18.5% of propane, 8.4% of i-butane, 10.30% of n -butane, 1.23% i-pentane, 0.98% n-pentane, 0.98% n-hexane, 0.51% n-heptane, 0.15% n-octane, 0, 54% carbon dioxide, 0% nitrogen.

Ce courant liquide 80 est pompé dans la pompe de fond de colonne 36 puis est introduit dans le premier échangeur thermique 16 pour y être réchauffé jusqu'à une température supérieure à 25°C tout en restant liquide. Il produit ainsi la coupe 14 riche en hydrocarbures en C2 + à une pression supérieure à 25 bars et notamment égale à 31.2 bars, avantageusement à 38 °C.This liquid stream 80 is pumped into the bottom pump 36 and is introduced into the first heat exchanger 16 to be heated to a temperature above 25 ° C while remaining liquid. It thus produces the section 14 rich in C 2 + hydrocarbons at a pressure greater than 25 bar and in particular equal to 31.2 bar, advantageously at 38 ° C.

Un courant de tête 82 riche en méthane est produit en tête de la colonne 26. Ce courant de tête 82 comprend une teneur molaire supérieure à 99.1 % en méthane et une teneur molaire inférieure à 0.15 % en éthane. Il contient plus de 99.8 % du méthane contenu dans le gaz naturel de charge 15.A methane-rich overhead stream 82 is produced at the top of the column 26. This overhead stream 82 comprises a molar content of greater than 99.1% methane and a molar content of less than 0.15% ethane. It contains more than 99.8% of the methane contained in the natural gas charge 15.

Le courant de tête riche en méthane 82 est successivement réchauffé dans le deuxième échangeur thermique 24, puis dans le premier échangeur thermique 16 pour donner un courant de tête riche en méthane 84 réchauffé à une température inférieure à 40°C et notamment égale à 30,8°C.The methane-rich head stream 82 is successively heated in the second heat exchanger 24, then in the first heat exchanger 16 to give a methane-rich head stream 84 heated to a temperature below 40 ° C and in particular equal to 30, 8 ° C.

Dans cet exemple, une première partie du courant 84 est comprimée une première fois dans le premier compresseur 28, puis est refroidie dans le premier réfrigérant à air 30.In this example, a first portion of the stream 84 is compressed a first time in the first compressor 28, and is then cooled in the first air cooler 30.

Le courant obtenu est ensuite comprimé une deuxième fois dans le deuxième compresseur 32 et est refroidi dans le deuxième réfrigérant à air 34, pour donner un courant de tête riche en méthane comprimé 86.The resulting stream is then compressed a second time in the second compressor 32 and is cooled in the second air cooler 34, to give a compressed methane-rich head stream 86.

La température du courant comprimé 86 est sensiblement égale à 40°C et sa pression est supérieure à 60 bars est et notamment sensiblement égale à 63,1 bars.The temperature of the compressed current 86 is substantially equal to 40 ° C and its pressure is greater than 60 bar is and in particular substantially equal to 63.1 bar.

Le courant comprimé 86 est ensuite séparé en un courant riche en méthane 12 produit par l'installation 10, et en un premier courant de recirculation 88.The compressed stream 86 is then separated into a methane-rich stream 12 produced by the plant 10, and into a first recirculation stream 88.

Le rapport du débit molaire du courant riche en méthane 12 par rapport au débit molaire du premier courant de recirculation est supérieur à 1 et est notamment compris entre 1 et 20.The ratio of the molar flow rate of the methane-rich stream 12 with respect to the molar flow rate of the first recirculation stream is greater than 1 and is in particular between 1 and 20.

Le courant 12 comporte une teneur en méthane supérieure à 99,0 %. Dans cet exemple, il est composé de 99,18% molaire de méthane, 0,14% molaire d'éthane, 0,43% molaire d'azote et 0,24% molaire de dioxyde de carbone. Ce courant 12 est ensuite envoyé dans un gazoduc.Stream 12 has a methane content greater than 99.0%. In this example, it is composed of 99.18 mol% of methane, 0.14 mol% of ethane, 0.43 mol% of nitrogen and 0.24 mol% of carbon dioxide. This stream 12 is then sent into a gas pipeline.

Le premier courant de recirculation 88 riche en méthane est ensuite dirigé vers le premier échangeur thermique 16 pour donner le premier courant de recirculation refroidi 90 à une température inférieure à - 30°C et notamment égale à - 45°C.The first recirculation stream 88 rich in methane is then directed to the first heat exchanger 16 to give the first cooled recirculation stream 90 at a temperature below -30 ° C and in particular equal to -45 ° C.

Une première partie 92 du premier courant de recirculation refroidi 90 est ensuite introduite dans le deuxième échangeur 24 pour y être liquéfiée avant de passer par la vanne de contrôle de débit 95. Le courant ainsi obtenu forme une première partie 94 refroidie et au moins partiellement liquéfiée introduite à un niveau N10 de la colonne 26 situé au-dessus du niveau N1, notamment au premier étage de cette colonne depuis la tête. La température de la première partie refroidie 94 est supérieure à - 120°C et notamment égale à - 113.8°C. Sa pression, après passage dans la vanne 95 est sensiblement égale à la pression de la colonne 26.A first part 92 of the first cooled recirculation stream 90 is then introduced into the second exchanger 24 to be liquefied before passing through the flow control valve 95. The stream thus obtained forms a first portion 94 cooled and at least partially liquefied introduced at a level N10 of column 26 located above level N1, including the first stage of this column from the head. The temperature of the first cooled part 94 is greater than -120 ° C. and in particular equal to -113.8 ° C. Its pressure after passing through the valve 95 is substantially equal to the pressure of the column 26.

Selon l'invention, une deuxième partie 96 du premier courant de recirculation refroidi 90 est prélevée pour former un deuxième courant de recirculation riche en méthane.According to the invention, a second portion 96 of the first cooled recirculation stream 90 is taken to form a second recirculation stream rich in methane.

Cette deuxième partie 96 est détendue dans une vanne de détente 98 avant d'être mélangée au flux d'alimentation de turbine 46 pour former un flux 100 d'alimentation de la première turbine de détente 22 destiné à être détendu dynamiquement dans cette turbine 22 pour produire des frigories.This second portion 96 is expanded in an expansion valve 98 before being mixed with the turbine feed stream 46 to form a feed flow 100 of the first expansion turbine 22 intended to be dynamically expanded in this turbine 22 to produce frigories.

Le flux d'alimentation 100 est détendu dans la turbine 22 pour former un flux détendu 102 qui est introduit dans la colonne 26 à un niveau N11 situé entre le niveau N1 et le niveau N3, notamment au dixième étage en partant de la tête de la colonne à une pression sensiblement égale à 16 bars.The feed stream 100 is expanded in the turbine 22 to form a expanded flow 102 which is introduced into the column 26 at a level N11 situated between the level N1 and the level N3, in particular at the tenth stage starting from the head of the column at a pressure substantially equal to 16 bar.

L'expansion dynamique du flux 100 dans la turbine 22 permet de récupérer 3732 kW d'énergie qui proviennent pour une fraction supérieure à 50 % et notamment égale à 99.5 % du flux d'alimentation de turbine 46 et pour une fraction inférieure à 50 % et notamment égale à 0.5% du deuxième courant de recirculation.The dynamic expansion of the flow 100 in the turbine 22 makes it possible to recover 3732 kW of energy which originate for a fraction greater than 50% and in particular equal to 99.5% of the turbine feed flow 46 and for a fraction less than 50%. and in particular equal to 0.5% of the second recirculation current.

Le flux 100 forme donc un courant de détente dynamique qui par sa détente dans la turbine 22 produit des frigories.The flow 100 thus forms a dynamic expansion current which by its expansion in the turbine 22 produces frigories.

Dans l'exemple représenté sur la Figure 1, le procédé comprend en outre le prélèvement d'un quatrième courant de recirculation 136 dans le premier courant de recirculation 88. Ce quatrième courant de recirculation 136 est prélevé dans le premier courant de recirculation 88 en aval du deuxième compresseur 32 et en amont du passage du premier courant de recirculation 88 dans le premier échangeur 16 et dans le deuxième échangeur 24.In the example shown on the Figure 1 the method further comprises taking a fourth recirculation stream 136 in the first recirculation stream 88. This fourth recirculation stream 136 is taken from the first recirculation stream 88 downstream of the second compressor 32 and upstream of the recirculation stream 88. the first recirculation current 88 in the first exchanger 16 and in the second exchanger 24.

Le débit molaire du quatrième courant de recirculation 136 représente moins de 80 % du débit molaire du premier courant de recirculation 88 prélevé à la sortie du deuxième compresseur 32.The molar flow rate of the fourth recirculation stream 136 represents less than 80% of the molar flow rate of the first recirculation stream 88 taken at the outlet of the second compressor 32.

Le quatrième courant de recirculation 136 est ensuite amené jusqu'à la deuxième turbine de détente dynamique 132 pour être détendu à une pression inférieure à la pression de la colonne de séparation 26 et notamment égale à 15,4 bars et produire des frigories. La température du quatrième courant de recirculation refroidi 138 issu de la turbine 132 est ainsi inférieure à - 30°C et notamment sensiblement égale à - 43,1 °C.The fourth recirculation stream 136 is then brought to the second dynamic expansion turbine 132 to be expanded at a pressure lower than the pressure of the separation column 26 and in particular equal to 15.4 bar and produce frigories. The temperature of the cooled fourth recirculation stream 138 from the turbine 132 is thus less than -30 ° C. and in particular substantially equal to -43.1 ° C.

Le quatrième courant de recirculation refroidi 138 est ensuite réintroduit dans le courant de tête riche en méthane 82 entre la sortie du deuxième échangeur 24 et l'entrée du premier échangeur 16. Ainsi, les frigories engendrées par la détente dynamique dans la turbine 132 sont transmises par échange thermique dans le premier échangeur 16 au courant de gaz naturel de charge 15. Cette détente dynamique permet de récupérer 2677 kW d'énergie.The cooled fourth recirculation stream 138 is then reintroduced into the methane-rich head stream 82 between the outlet of the second exchanger 24 and the inlet of the first exchanger 16. Thus, the frigories generated by the dynamic expansion in the turbine 132 are transmitted. by heat exchange in the first exchanger 16 to the charge natural gas stream 15. This dynamic expansion allows to recover 2677 kW of energy.

En outre, une fraction de recompression 140 est prélevée dans le courant de tête riche en méthane réchauffé 84 entre la sortie du premier échangeur 16 et l'entrée du premier compresseur 28. Cette fraction de recompression 140 est introduite dans le troisième compresseur 134 accouplé à la deuxième turbine 132 pour être comprimée jusqu'à une pression inférieure à 30 bars et notamment égale à 22.6 bars et une température d'environ 68.2°CIn addition, a recompression fraction 140 is taken from the heated methane rich head stream 84 between the outlet of the first exchanger 16 and the inlet of the first compressor 28. This recompression fraction 140 is introduced into the third compressor 134 coupled to the second turbine 132 to be compressed to a pressure of less than 30 bars and in particular equal to 22.6 bars and a temperature of about 68.2 ° C.

La fraction de recompression comprimée 142 est réintroduite dans le courant riche en méthane refroidi entre la sortie du premier compresseur 28 et l'entrée du premier refroidisseur à air 30.The compression recompression fraction 142 is reintroduced into the cooled methane-rich stream between the outlet of the first compressor 28 and the inlet of the first air cooler 30.

Le débit molaire de la fraction de recompression 140 est supérieur à 20% du débit molaire du courant de gaz de charge 15.The molar flow rate of the recompression fraction 140 is greater than 20% of the molar flow rate of the feed gas stream 15.

Par rapport à une installation dans laquelle la totalité du premier courant de recirculation 90 est réinjectée dans la colonne 26, le procédé selon l'invention permet d'obtenir une récupération en éthane identique, supérieure ou égale à 99%, tout en diminuant notablement la puissance à fournir par le deuxième compresseur 32 de 19993 kW à 18063 kW.With respect to an installation in which all of the first recirculation stream 90 is reinjected into the column 26, the process according to the invention makes it possible to obtain identical ethane recovery, greater than or equal to 99%, while significantly reducing the power to be supplied by the second compressor 32 from 19993 kW to 18063 kW.

L'amélioration du rendement de l'installation est illustrée par le tableau 1 ci-après. TABLEAU 1 Récupération d'éthane Débit du courant 136 recyclé à la turbine 132 Puissance du compresseur 32 Pression de la colonne 26 % mole kgmol/h kW bars 99,00 0 19993 14.20 99,00 1000 19268 14.65 99,00 2000 18697 15.00 99,00 3000 18283 15.40 99,00 4000 18063 15.90 The improvement of the efficiency of the installation is illustrated in Table 1 below. <u> TABLE 1 </ u> Ethane recovery Flow rate of stream 136 recycled to turbine 132 Compressor power 32 Pressure of column 26 % mole kgmol / h kW bars 99,00 0 19993 14.20 99,00 1000 19268 14.65 99,00 2000 18697 15.00 99,00 3000 18283 15.40 99,00 4000 18063 15.90

Des exemples de température, de pression et de débit molaire des différents courants sont donnés dans le tableau 2 ci-dessous. TABLEAU 2 Courant Température (°C) Pression (bars) Débit (kgmoles/h) 12 40.0 63,1 12088 14 38.0 31,2 2912 15 40.0 62.0 15000 40 -24,5 61.0 15000 42 -24,5 61.0 12597 44 -24,5 61.0 2403 46 -24,5 61.0 8701 52 -110,2 16,1 3896 80 3,2 16,1 2912 82 -112,4 15,9 13278 84 30,8 14,9 17278 86 40.0 63,1 17278 88 40.0 63.1 5190 90 -45.0 62.6 1190 94 -113.8 16.1 1145 96 -45.0 62,6 45 100 -24.6 61.0 8746 102 -76,2 16,1 8746 138 -43,1 15,4 4000 142 68.2 22.6 7218 Examples of temperature, pressure and molar flow of the different currents are given in Table 2 below. <u> TABLE 2 </ u> Current Temperature (° C) Pressure (bars) Flow (kgmoles / h) 12 40.0 63.1 12088 14 38.0 31.2 2912 15 40.0 62.0 15000 40 -24.5 61.0 15000 42 -24.5 61.0 12597 44 -24.5 61.0 2403 46 -24.5 61.0 8701 52 -110.2 16.1 3896 80 3.2 16.1 2912 82 -112.4 15.9 13278 84 30.8 14.9 17278 86 40.0 63.1 17278 88 40.0 63.1 5190 90 -45.0 62.6 1190 94 -113.8 16.1 1145 96 -45.0 62.6 45 100 -24.6 61.0 8746 102 -76.2 16.1 8746 138 -43.1 15.4 4000 142 68.2 22.6 7218

Dans une variante 10A de la première installation 10 illustrée sur la figure 2, l'installation est dépourvue de la deuxième turbine de détente dynamique 132 et du troisième compresseur 134 accouplé à la deuxième turbine de détente dynamique 132.In a variant 10A of the first installation 10 illustrated on the figure 2 the installation is devoid of the second dynamic expansion turbine 132 and the third compressor 134 coupled to the second dynamic expansion turbine 132.

La totalité du courant de tête réchauffé 84 issu du premier échangeur thermique 16 est alors introduite dans le premier compresseur 28. De même, la totalité du premier courant de recirculation 88 est introduite dans le premier échangeur thermique 16 pour former le courant 90.The entire heated head stream 84 from the first heat exchanger 16 is then introduced into the first compressor 28. Similarly, the entire first stream recirculation 88 is introduced into the first heat exchanger 16 to form the stream 90.

L'installation et le procédé mis en oeuvre dans cette installation 10A sont par ailleurs analogues à la première installation 10 et au premier procédé selon l'inventionThe installation and the method implemented in this installation 10A are moreover similar to the first installation 10 and to the first method according to the invention

Une deuxième installation 110 selon l'invention est illustrée sur la figure 3. Cette deuxième installation 110 est destinée à la mise en oeuvre d'un deuxième procédé selon l'invention.A second installation 110 according to the invention is illustrated on the figure 3 . This second installation 110 is intended for the implementation of a second method according to the invention.

A la différence du premier procédé selon l'invention et de sa variante représentée sur la figure 2, la deuxième partie 96 du premier courant de recirculation refroidi 90 formant le deuxième courant de recirculation est réintroduite, après détente dans la vanne de contrôle 98, en amont de la colonne 26, dans le courant de gaz naturel de charge refroidi 40, entre le premier échangeur 16 et le ballon séparateur 18.Unlike the first method according to the invention and its variant represented on the figure 2 the second portion 96 of the first cooled recirculation stream 90 forming the second recirculation stream is reintroduced, after expansion in the control valve 98, upstream of the column 26, into the stream of cooled charge natural gas 40, between the first exchanger 16 and the separator balloon 18.

Dans cet exemple, ce deuxième courant 96 contribue à la formation de la fraction légère 42, ainsi qu'à la formation du flux d'alimentation de la première turbine de détente 22.In this example, this second stream 96 contributes to the formation of the light fraction 42, as well as to the formation of the feed stream of the first expansion turbine 22.

Par ailleurs, dans cet exemple, le flux 100 est formé exclusivement par le flux d'alimentation 46.Moreover, in this example, the flow 100 is formed exclusively by the feed flow 46.

Cette disposition, qui peut être appliquée à l'ensemble des procédés décrits, permet d'améliorer encore légèrement le rendement de l'installation.This arrangement, which can be applied to all of the processes described, makes it possible to further improve slightly the efficiency of the installation.

Une troisième installation 120 selon l'invention est représentée sur la figure 4.A third installation 120 according to the invention is represented on the figure 4 .

Cette troisième installation 120 est destinée à la mise en oeuvre d'un troisième procédé selon l'invention.This third installation 120 is intended for the implementation of a third method according to the invention.

A la différence de la première installation 10 et de sa variante 10A, le deuxième compresseur 32 de la troisième installation 120 comprend deux étages de compression 122A, 122B et un réfrigérant à air intermédiaire 124 interposé entre les deux étages.Unlike the first installation 10 and its variant 10A, the second compressor 32 of the third installation 120 comprises two compression stages 122A, 122B and an intermediate air cooler 124 interposed between the two stages.

A la différence du premier procédé selon l'invention et de sa variante représentée sur la figure 2, le troisième procédé selon l'invention comprend, le prélèvement d'un troisième courant de recirculation 126 dans le courant de tête riche en méthane réchauffé 84. Ce troisième courant de recirculation 126 est prélevé entre les deux étages 122A, 122B à la sortie du réfrigérant intermédiaire 124. Ainsi, le courant 126 présente une pression supérieure à 30 bars et une température sensiblement égale à la température ambiante.Unlike the first method according to the invention and its variant represented on the figure 2 the third method according to the invention comprises taking a third recirculation stream 126 in the heated methane rich head stream 84. This third recirculation stream 126 is drawn between the two stages 122A, 122B at the outlet of the Intermediate refrigerant 124. Thus, the stream 126 has a pressure greater than 30 bars and a temperature substantially equal to the ambient temperature.

Le rapport du débit du troisième courant de recirculation au débit total du courant de tête riche en méthane réchauffé 84 issu du premier échangeur thermique 16 est inférieur à 0,15 et est notamment compris entre 0,08 et 0,15.The ratio of the flow rate of the third recirculation stream to the total flow rate of the heated methane-rich head stream 84 from the first heat exchanger 16 is less than 0.15 and is in particular between 0.08 and 0.15.

Le troisième courant de recirculation 126 est ensuite introduit successivement dans le premier échangeur 16, puis dans le deuxième échangeur 24 pour être refroidi à une température supérieure à -110.5°C.The third recirculation stream 126 is then introduced successively into the first exchanger 16, then into the second exchanger 24 to be cooled to a temperature above -110.5 ° C.

Ce courant 128, obtenu après détente dans une vanne de contrôle 129, est ensuite réintroduit en mélange avec la première partie 94 du premier courant de recirculation refroidi 90 entre la vanne de contrôle 95 et la colonne 26.This stream 128, obtained after expansion in a control valve 129, is then reintroduced in admixture with the first portion 94 of the first cooled recirculation stream 90 between the control valve 95 and the column 26.

Une diminution de la puissance consommée est observée, dont environ 3% est due à la liquéfaction à moyenne pression du troisième courant de recirculation 126.A decrease in power consumption is observed, about 3% of which is due to the medium pressure liquefaction of the third recirculation stream 126.

Une quatrième installation 130 selon l'invention est représentée sur la figure 5. Cette quatrième installation 130 est destinée à la mise en oeuvre d'un quatrième procédé selon l'invention.A fourth installation 130 according to the invention is represented on the figure 5 . This fourth installation 130 is intended for the implementation of a fourth method according to the invention.

Le quatrième procédé selon l'invention diffère de la variante du premier procédé selon l'invention en ce qu'il comprend le prélèvement d'un troisième courant de recirculation 126 dans le courant de tête riche en méthane réchauffé 84, comme dans le troisième procédé selon l'invention.The fourth method according to the invention differs from the variant of the first method according to the invention in that it comprises taking a third recirculation stream 126 in the heated methane-rich head stream 84, as in the third process. according to the invention.

Comme décrit précédemment pour le procédé de la figure 4, le troisième courant de recirculation 126 est ensuite introduit successivement dans le premier échangeur 16, puis dans le deuxième échangeur 24 pour être refroidi à une température supérieure à -109.7°C.As previously described for the process of figure 4 the third recirculation stream 126 is then successively introduced into the first exchanger 16, then into the second exchanger 24 to be cooled to a temperature greater than -109.7 ° C.

Ce courant 128, obtenu après détente dans une vanne de contrôle 129, est ensuite réintroduit en mélange avec la première partie 94 du premier courant de recirculation refroidi 90 entre la vanne de contrôle 95 et la colonne 26.This stream 128, obtained after expansion in a control valve 129, is then reintroduced in admixture with the first portion 94 of the first cooled recirculation stream 90 between the control valve 95 and the column 26.

Dans cette variante du quatrième procédé, la quasi totalité du premier courant de recirculation refroidi 90 issu du premier échangeur 16 est introduite dans le deuxième échangeur 24. Le débit de la deuxième partie 96 de ce courant représenté sur la figure 5 est quasiment nul.In this variant of the fourth method, substantially all of the first cooled recirculation stream 90 from the first exchanger 16 is introduced into the second exchanger 24. The flow rate of the second part 96 of this current represented on the figure 5 is almost nil.

Dans cette variante, le deuxième courant de recirculation est alors formé par le quatrième courant de recirculation 136 qui est amené jusqu'à la turbine de détente dynamique 132 pour produire des frigories.In this variant, the second recirculation stream is then formed by the fourth recirculation stream 136 which is brought to the dynamic expansion turbine 132 to produce frigories.

En outre, la mise en oeuvre de cette variante du procédé selon l'invention ne nécessite pas de prévoir une conduite permettant de dériver une partie du premier courant de recirculation refroidi 90 vers la première turbine 22, de sorte que l'installation 130 peut en être dépourvue.In addition, the implementation of this variant of the method according to the invention does not require providing a pipe for diverting part of the first cooled recirculation stream 90 to the first turbine 22, so that the installation 130 can in to be deprived.

Une cinquième installation 150 selon l'invention est représentée sur la figure 6. Cette cinquième installation 150 est destinée à la mise en oeuvre d'un cinquième procédé selon l'invention.A fifth installation 150 according to the invention is represented on the figure 6 . This fifth installation 150 is intended for the implementation of a fifth method according to the invention.

Cette installation 150 est destinée à l'amélioration d'une unité de production existante de l'état de la technique, telle que décrite par exemple dans le brevet américain US 6 578 379 , en conservant la puissance consommée par le deuxième compresseur 32 constante, notamment lorsque la teneur en hydrocarbures en C2 + dans le gaz de charge 15 augmente sensiblement.This installation 150 is intended to improve an existing production unit of the state of the art, as described for example in the US patent. US 6,578,379 , keeping the power consumed by the second compressor 32 constant, especially when the content of C 2 + hydrocarbons in the feed gas 15 increases substantially.

Le gaz naturel de charge 15 initial est, dans cet exemple et dans les suivants, un gaz naturel déshydraté et décarbonaté composé principalement de méthane et d'hydrocarbures en C2+, comprenant en moles 0,3499 % d'azote, 89,5642 % de méthane, 5,2579 % d'éthane, 2,3790 % de propane, 0,5398 % de i-butane, 0,6597 % de n-butane, 0,2399 % de i-pentane, 0,1899 % de n-pentane, 0,1899 % de n-hexane, 0,1000 % de n-heptane, 0,0300 % de n-octane, 0,4998 % de CO2.The initial feedstock gas is, in this and the following examples, a dehydrated and decarbonated natural gas composed mainly of methane and C2 + hydrocarbons, comprising 0.3499% nitrogen, 89.56% methane, 5.2579% ethane, 2.3790% propane, 0.5398% i-butane, 0.6597% n-butane, 0.2399% i-pentane, 0.1899% n pentane, 0.1899% n-hexane, 0.1000% n-heptane, 0.0300% n-octane, 0.4998% CO 2 .

Dans l'exemple présenté la coupe d'hydrocarbures en C2 + possède toujours la même composition qui est celle indiquée dans le Tableau 3 : TABLEAU 3 Ethane 54,8494 % mole Propane 24,8173 % mole i-Butane 5,6311 % mole n-Butane 6,8815 % mole i-Pentane 2,5026 % mole n-Pentane 1,9810 % mole C6+ 3,3371 % mole Total 100 % mole In the example presented, the C 2 + hydrocarbon fraction always has the same composition as that shown in Table 3: <u> TABLE 3 </ u> Ethane 54.8494 % mole Propane 24.8173 % mole i-Butane 5.6311 % mole n-Butane 6.8815 % mole i-Pentane 2.5026 % mole n-Pentane 1.9810 % mole C6 + 3.3371 % mole Total 100 % mole

La cinquième installation 150 selon l'invention diffère de la variante 10A de la première installation représentée sur la figure 2 en ce qu'elle comprend un troisième échangeur thermique 152, un quatrième échangeur thermique 154 et un troisième compresseur 134.The fifth installation 150 according to the invention differs from the variant 10A of the first installation represented on the figure 2 in that it comprises a third heat exchanger 152, a fourth heat exchanger 154 and a third compressor 134.

L'installation 150 est en outre dépourvue du refroidisseur à air à la sortie du premier compresseur 28. Le premier refroidisseur à air 30 est situé à la sortie du deuxième compresseur 32.The installation 150 is furthermore devoid of the air cooler at the outlet of the first compressor 28. The first air cooler 30 is located at the outlet of the second compressor 32.

Elle comprend cependant un deuxième refroidisseur à air 34 monté à la sortie du troisième compresseur 134.However, it comprises a second air cooler 34 mounted at the outlet of the third compressor 134.

Le cinquième procédé selon l'invention diffère de la variante du premier procédé selon l'invention en ce qu'un courant de prélèvement 158 est prélevé dans le courant de tête riche en méthane 82 entre la sortie de la colonne de séparation 26 et le deuxième échangeur thermique 24.The fifth method according to the invention differs from the variant of the first method according to the invention in that a sampling stream 158 is taken from the top stream. rich in methane 82 between the outlet of the separation column 26 and the second heat exchanger 24.

Le débit de courant de prélèvement 158 est inférieur à 15 % du débit du courant de tête riche en méthane 82 issu de la colonne 26.The sampling current flow rate 158 is less than 15% of the flow rate of the methane-rich head stream 82 from column 26.

Le courant de prélèvement 158 est alors introduit successivement dans le troisième échangeur thermique 152, pour y être réchauffé jusqu'à une première température inférieure à la température ambiante, puis dans le quatrième échangeur thermique 154, pour y être réchauffé jusqu'à sensiblement la température ambiante.The sampling stream 158 is then introduced successively into the third heat exchanger 152, to be heated to a first temperature below room temperature, then in the fourth heat exchanger 154, to be heated up to substantially the temperature. room.

La première température est en outre inférieure à la température du courant de gaz naturel de charge refroidi 40 alimentant le ballon séparateur 18.The first temperature is furthermore lower than the temperature of the cooled charge natural gas stream 40 supplying the separator tank 18.

Le courant 158 ainsi refroidi est passé dans le troisième compresseur 134 et dans le refroidisseur 34, pour le refroidir jusqu'à la température ambiante avant d'être introduit dans le quatrième échangeur thermique 154 et former un courant de prélèvement comprimé refroidi 160.The stream 158 thus cooled is passed into the third compressor 134 and into the cooler 34, to cool it to ambient temperature before being introduced into the fourth heat exchanger 154 and form a cooled compressed sampling stream 160.

Ce courant de prélèvement comprimé refroidi 160 présente une pression supérieure ou égale à celle du courant de gaz de charge 15. Cette pression est inférieure à 63 bars. Le courant 160 présente une température inférieure à 40°C. Cette température est sensiblement égale à la température du courant de gaz naturel de charge refroidi 40 alimentant le ballon séparateur 18.This cooled compressed sampling stream 160 has a pressure greater than or equal to that of the feed gas stream 15. This pressure is less than 63 bar. Current 160 has a temperature below 40 ° C. This temperature is substantially equal to the temperature of the cooled charge natural gas stream 40 supplying the separator tank 18.

Le courant de prélèvement comprimé refroidi 160 est séparé en une première partie 162 qui est successivement passée dans le troisième échangeur thermique 152 pour y être refroidie jusqu'à sensiblement la première température, puis dans une vanne de contrôle de pression 164 pour former une première partie détendue refroidie 166.The cooled compressed sampling stream 160 is separated into a first portion 162 which is successively passed into the third heat exchanger 152 to be cooled to substantially the first temperature, and then to a pressure control valve 164 to form a first portion. relaxed cooled 166.

Le débit molaire de la première partie 162 représente au moins 4% du débit molaire du courant de gaz naturel de charge 15.The molar flow rate of the first portion 162 represents at least 4% of the molar flow rate of the charge natural gas stream 15.

La pression de la première partie détendue refroidie 166 est sensiblement égale à la pression de la colonne 26.The pressure of the cooled first cooled portion 166 is substantially equal to the pressure of the column 26.

Le rapport du débit molaire de la première partie 162 au débit molaire du courant de prélèvement comprimé refroidi 160 est supérieur à 0,25. Le débit molaire de la première partie 162 est supérieur à 4% du débit molaire du courant de gaz naturel de charge 15.The ratio of the molar flow rate of the first portion 162 to the molar flow rate of the cooled compressed sampling stream 160 is greater than 0.25. The molar flow rate of the first portion 162 is greater than 4% of the molar flow rate of the charge natural gas stream 15.

Une deuxième partie 168 du courant de prélèvement comprimé refroidi est introduite, après passage dans une vanne de détente statique 170, en mélange avec le flux d'alimentation 46 de la première turbine 22 pour former le flux d'alimentation 100 de cette turbine 22.A second portion 168 of the cooled compressed sampling stream is introduced, after passing through a static expansion valve 170, in admixture with the feed stream 46 of the first turbine 22 to form the feed stream 100 of this turbine 22.

Ainsi, la deuxième partie 168 constitue le deuxième courant de recirculation selon l'invention qui est introduit dans la turbine 22 pour y produire des frigories.Thus, the second portion 168 constitutes the second recirculation stream according to the invention which is introduced into the turbine 22 to produce frigories.

En variante (non représentée), la deuxième partie 168 est introduite dans le courant de gaz naturel de charge refroidi 40 en amont du ballon séparateur 18, comme représenté sur la figure 3.Alternatively (not shown), the second portion 168 is introduced into the stream of cooled feed natural gas 40 upstream of the separator tank 18, as shown in FIG. figure 3 .

Il est ainsi possible de conserver le deuxième compresseur 32, sans modifier sa taille, pour une installation de production recevant un gaz plus riche en hydrocarbures en C2 +, sans dégrader la récupération en éthane.It is thus possible to keep the second compressor 32, without changing its size, for a production facility receiving a gas richer in C 2 + hydrocarbons, without degrading the ethane recovery.

Une sixième installation selon l'invention 180 est représentée sur la figure 7. Cette sixième installation 180 est destinée à la mise en oeuvre d'un sixième procédé selon l'invention.A sixth installation according to the invention 180 is represented on the figure 7 . This sixth installation 180 is intended for the implementation of a sixth method according to the invention.

Cette sixième installation 180 diffère de la cinquième installation 150 en ce qu'elle comprend en outre un quatrième compresseur 182, une deuxième turbine de détente 132 accouplée au quatrième compresseur 182, et un troisième refroidisseur à air 184.This sixth installation 180 differs from the fifth installation 150 in that it further comprises a fourth compressor 182, a second expansion turbine 132 coupled to the fourth compressor 182, and a third air cooler 184.

A la différence du cinquième procédé, le courant de prélèvement 158 est introduit, après son passage dans le quatrième échangeur 154, successivement dans le quatrième compresseur 182, dans le troisième refroidisseur à air 184 avant d'être introduit dans le troisième compresseur 134.Unlike the fifth method, the sampling stream 158 is introduced, after passing through the fourth exchanger 154, successively into the fourth compressor 182, into the third air cooler 184 before being introduced into the third compressor 134.

En outre, un courant de dérivation secondaire 186 est prélevé dans la première partie 162 du courant de prélèvement comprimé refroidi 160 avant son passage dans le troisième échangeur 152.In addition, a secondary bypass stream 186 is withdrawn from the first portion 162 of the cooled compressed bleed stream 160 prior to its passage through the third exchanger 152.

Le courant de dérivation secondaire 186 est ensuite convoyé jusqu'à la deuxième turbine de détente 132 pour être détendu jusqu'à une pression inférieure à 25 bars, ce qui abaisse sa température à moins de - 90°C.The secondary bypass stream 186 is then conveyed to the second expansion turbine 132 to be expanded to a pressure below 25 bar, which lowers its temperature to below -90 ° C.

Le courant de dérivation secondaire détendu 188 ainsi formé est introduit en mélange dans le courant de prélèvement 158 avant son passage dans le troisième échangeur 152.The expanded secondary bypass stream 188 thus formed is introduced as a mixture into the sampling stream 158 before it passes through the third exchanger 152.

Le débit du courant de dérivation secondaire est inférieur à 75 % du débit du courant 160 pris à la sortie du quatrième échangeur 154The flow rate of the secondary bypass current is less than 75% of the flow rate of the current 160 taken at the outlet of the fourth exchanger 154

Il est ainsi possible d'augmenter la teneur en C2 + dans le courant de charge sans modifier la puissance consommée par le compresseur 32, ni modifier la puissance développée par la première turbine de détente 22, tout en minimisant la puissance consommée par le compresseur 134.It is thus possible to increase the content of C 2 + in the charging current without modifying the power consumed by the compressor 32, nor to modify the power developed by the first expansion turbine 22, while minimizing the power consumed by the compressor 134.

Une septième installation 190 selon l'invention est représentée sur la figure 8. Cette septième installation est destinée à la mise en oeuvre d'un septième procédé selon l'invention.A seventh installation 190 according to the invention is represented on the figure 8 . This seventh installation is intended for the implementation of a seventh method according to the invention.

La septième installation 190 diffère de la deuxième installation 110 par la présence d'un troisième échangeur thermique 152, par la présence d'un troisième compresseur 134 et d'un deuxième refroidisseur à air 34, et par la présence d'un quatrième compresseur 182 accouplé à un troisième refroidisseur à air 184. En outre, le quatrième compresseur 182 est couplé à une deuxième turbine de détente 132.The seventh installation 190 differs from the second installation 110 by the presence of a third heat exchanger 152, by the presence of a third compressor 134 and a second air cooler 34, and by the presence of a fourth compressor 182 coupled to a third air cooler 184. In addition, the fourth compressor 182 is coupled to a second expansion turbine 132.

Le septième procédé selon l'invention diffère du deuxième procédé selon l'invention en ce que le deuxième courant de recirculation est formé par une fraction de prélèvement 192 prise dans le courant de tête riche en méthane comprimé 86, en aval du prélèvement du premier courant de recirculation 88.The seventh method according to the invention differs from the second method according to the invention in that the second recirculation stream is formed by a sampling fraction 192 taken in the compressed methane-rich head stream 86, downstream of the sampling of the first stream. recirculation 88.

La fraction de prélèvement 192 est ensuite convoyée jusqu'au troisième échangeur thermique 152, après passage dans une vanne 194 pour former une fraction de prélèvement refroidie détendue 196. Cette fraction 196 présente une pression inférieure à 63 bars et une température inférieure à 40 °C.The sampling fraction 192 is then conveyed to the third heat exchanger 152, after passing through a valve 194 to form a cooled cooled sampling fraction 196. This fraction 196 has a pressure lower than 63 bar and a temperature below 40 ° C. .

Le débit de la fraction de prélèvement 192 est inférieur à 1 % du débit du courant 82 pris à la sortie de la colonne 26.The flow rate of the sampling fraction 192 is less than 1% of the flow rate of the stream 82 taken at the outlet of the column 26.

Le courant de gaz naturel de charge 15 est séparé en un premier flux de charge 191A convoyé jusqu'au premier échangeur thermique 16 et en un deuxième flux de charge 191B convoyé jusqu'au troisième échangeur thermique 152, par contrôle de débit par la vanne 191C. Les flux de charge 191A, 191 B, après leur refroidissement dans les échangeurs respectifs 16, 152, sont mélangés entre eux à la sortie des échangeurs respectifs 16, et 152 pour former le flux de gaz naturel de charge refroidi 40 avant son introduction dans le ballon séparateur 18.The charge natural gas stream 15 is separated into a first charge stream 191A conveyed to the first heat exchanger 16 and a second charge stream 191B conveyed to the third heat exchanger 152, by flow control through the valve 191C. . The charge flows 191A, 191B, after their cooling in the respective exchangers 16, 152, are mixed with each other at the outlet of the respective exchangers 16, and 152 to form the stream of cooled charge natural gas 40 before its introduction into the separator balloon 18.

Le rapport du débit du flux de charge 191A au débit du flux de charge 191B est compris entre 0 et 0.5.The ratio of the flow rate of the charge flow 191A to the flow rate of the charge flow 191B is between 0 and 0.5.

La fraction prélevée 196 est introduite dans le premier flux de charge 191A à la sortie du premier échangeur 16 avant son mélange avec le deuxième flux de charge 191 B.The collected fraction 196 is introduced into the first charge stream 191A at the outlet of the first exchanger 16 before it is mixed with the second charge stream 191 B.

Un courant de refroidissement secondaire 200 est prélevé dans le courant de tête riche en méthane comprimé 86, en aval du prélèvement de la fraction de prélèvement 192.A secondary cooling stream 200 is withdrawn from the compressed methane-rich top stream 86, downstream of the sampling of the sampling fraction 192.

Ce courant de refroidissement secondaire 200 est transféré jusqu'à la turbine de détente dynamique 132 pour être détendu jusqu'à une pression inférieure à la pression de la colonne 26 et fournir des frigories. Le courant de refroidissement secondaire détendu 202 issu de la turbine 132 est ensuite introduit, à une température inférieure à 40°C dans le troisième échangeur 152 pour s'y réchauffer par échange thermique avec les flux 191B et 192 jusqu'à sensiblement la température ambiante.This secondary cooling stream 200 is transferred to the dynamic expansion turbine 132 to be expanded to a pressure below the pressure of the column 26 and provide frigories. The expanded secondary cooling stream 202 coming from the turbine 132 is then introduced, at a temperature below 40 ° C. into the third heat exchanger 152, to heat it by heat exchange with the flows 191B and 192 up to substantially the ambient temperature. .

Puis, le courant de refroidissement secondaire réchauffé 204 est réintroduit dans le courant de tête riche en méthane 84 à la sortie du premier échangeur 16, avant passage dans le premier compresseur 28.Then, the heated secondary cooling stream 204 is reintroduced into the methane-rich head stream 84 at the outlet of the first exchanger 16, before passing through the first compressor 28.

En outre, une fraction de recompression 206 est prélevée dans le courant de tête riche en méthane réchauffé 84 en aval de l'introduction du courant de refroidissement secondaire réchauffé 204, puis est passée successivement dans le quatrième compresseur 182, dans le troisième refroidisseur à air 184, dans le troisième compresseur 134, puis dans le deuxième refroidisseur à air 34. Cette fraction 208 est ensuite réintroduite dans le courant de tête riche en méthane comprimé 86 issu du deuxième compresseur 32, en amont du prélèvement du premier courant de recirculation 88.In addition, a recompression fraction 206 is taken from the heated methane-rich head stream 84 downstream of the introduction of the heated secondary cooling stream 204, and passed successively into the fourth compressor 182, into the third air cooler 184, in the third compressor 134, then in the second air cooler 34. This fraction 208 is then reintroduced into the compressed methane-rich head stream 86 from the second compressor 32, upstream of the sampling of the first recirculation stream 88.

Le courant riche en méthane comprimé 86 issu du refroidisseur 30 et recevant la fraction 208 est avantageusement à température ambiante.The stream rich in compressed methane 86 from the cooler 30 and receiving the fraction 208 is advantageously at room temperature.

Le septième procédé selon l'invention permet de conserver le compresseur 32 et la turbine 22 identiques lorsque la teneur en éthane et celles des hydrocarbures en C3 + dans le gaz de charge augmentent, tout en obtenant une récupération d'éthane supérieure à 99 %.The seventh method according to the invention makes it possible to keep the compressor 32 and the turbine 22 identical when the content of ethane and those of the C 3 + hydrocarbons in the feed gas increase, while obtaining an ethane recovery greater than 99%. .

En outre, le rendement de ce procédé est amélioré par rapport à celui du sixième procédé selon l'invention, à teneur en hydrocarbures en C2 + constante. Ceci est d'autant plus vrai que la teneur en hydrocarbures en C2 + dans le gaz de charge est importante.In addition, the yield of this process is improved over that of the sixth process according to the invention, with a constant C 2 + hydrocarbon content. This is all the more true as the content of C 2 + hydrocarbons in the feed gas is important.

Dans une variante (non représentée), la fraction légère 42 issue du ballon séparateur 18 n'est pas divisée. La totalité de cette fraction forme alors le flux d'alimentation de turbine 46 qui est envoyé vers la première turbine de détente dynamique 22.In a variant (not shown), the light fraction 42 from the separator balloon 18 is not divided. All of this fraction then forms the turbine feed stream 46 which is sent to the first dynamic expansion turbine 22.

Claims (15)

  1. A method for producing a methane-rich stream (12) and a C2 + hydrocarbon-rich fraction (14) from a dehydrated feed natural-gas stream (15), consisting of hydrocarbons, nitrogen and of CO2, advantageously having a C2 + hydrocarbon molar content of more than 10%, the method being of the type comprising the following steps:
    - cooling the feed natural-gas stream (15), advantageously at a pressure of more than 40 bars, in a first heat exchanger (16), and introducing the cooled feed natural-gas stream (40) into a separator flask (18);
    - separating the cooled natural gas stream (40) in the separator flask (18) and recovering an essentially gaseous light fraction (42) and an essentially liquid heavy fraction (44);
    - forming a turbine input flow (46) from the light fraction (42);
    - dynamically expanding the turbine input flow (46) in a first expansion turbine (22), and introducing the expanded flow (102) into an intermediate portion of a splitter column (26);
    - expanding the heavy fraction (44) and introducing the heavy fraction (44) into the splitter column (26), the heavy fraction (44) recovered in the separator flask (18) being introduced into the splitter column (26) without passing through the first heat exchanger (16);
    - recovering, at the foot of the splitter column (26), a C2 + hydrocarbon-rich bottom stream (80) intended to form the C2 + hydrocarbon-rich fraction (14);
    - sampling at the head of the splitter column (26) a methane-rich head stream (82);
    - heating up the methane-rich head stream (82) in a second heat exchanger (24) and in the first heat exchanger (16) and compressing this stream in at least one first compressor (28) coupled with the first expansion turbine (22) and in a second compressor (32) in order to form a methane-rich stream (12) from the compressed methane-rich head stream (86);
    - sampling in the methane-rich head stream (82, 84, 86) a first recirculation stream (88);
    - passing the first recirculation stream (88) into the first heat exchanger (16) and into the second heat exchanger (24) in order to cool it down, and then introducing at least one first portion of the cooled recirculation stream (94) into the upper portion of the splitter column (26);
    - forming at least one second recirculation stream (96; 136; 168; 192) obtained from the methane-rich head stream (82) downstream from the splitter column (26);
    characterized in that the method includes the following steps:
    - forming a dynamic expansion stream (100; 136) from the second recirculation stream (96; 136; 168; 192) and introducing the dynamic expansion stream (100; 136) into an expansion turbine (22; 132) in order to produce frigories; and in that the second recirculation stream (96) is introduced into a stream (40; 46) located downstream from the first heat exchanger (16) and upstream from the first expansion turbine (22) in order to form the dynamic expansion stream (100).
  2. The method according to claim 1, characterized in that the formation of the turbine input flow (46) includes the division of the light fraction (42) into the turbine input flow (46) and into a secondary flow (48), the method comprising the cooling of the secondary flow (48) in the second heat exchanger (24) and introducing the cooled secondary flow into an upper portion of the splitter column (26).
  3. The method according to claim 1 or 2, characterized in that the second recirculation stream (96; 168) is mixed with the turbine input flow (46) obtained from the separator flask (18) in order to form the dynamic expansion stream (100), the dynamic expansion turbine receiving the dynamic expansion stream (100) being formed by the first expansion turbine (22).
  4. The method according to any one of the preceding claims, characterized in that the second recirculation stream (96; 192) is mixed with the cooled natural gas stream (40) before its introduction into the separator flask (18), the dynamic expansion stream (100) being formed by the turbine input flow (46) formed from the separator flask (18).
  5. The method according to any of the preceding claims, characterized in that the second recirculation stream (96) is sampled in the first recirculation stream (88).
  6. The method according to any one of claims 1 to 4, characterized in that it comprises the following steps:
    - sampling a sampling stream (158) in the methane-rich head stream (82), before its passing into the first compressor (28) and into the second compressor (32);
    - compressing the sampling stream (158) in a third compressor (134),
    - forming the second recirculation stream (168) from the compressed sampling stream stemming from the third compressor (134), after cooling.
  7. The method according to claim 6, characterized in that it comprises the passing of the sampling stream (158) into a third heat exchanger (152) and into a fourth heat exchanger (154) before its introduction into the third compressor (134), and then the passing of the compressed sampling stream into the fourth heat exchanger (154), and then into the third heat exchanger (152) in order to feed the head of the splitter column (26), the second recirculation stream (168) being sampled in the cooled compressed sampling stream (160), between the fourth heat exchanger (154) and the third heat exchanger (152).
  8. The method according to one of claims 6 or 7, characterized in that the sampling stream (158) is introduced into a fourth compressor (182), the method comprising the following steps:
    - sampling a secondary diversion stream (186) in the cooled compressed sampling stream (160) from the third compressor (134) and from the fourth compressor (182);
    - dynamically expanding the secondary diversion stream (186) in a second expansion turbine (132) coupled with the fourth compressor (182);
    - introducing the expanded secondary diversion stream (188) into the sampling stream (158) before its passing into the third compressor (134) and into the fourth compressor (182).
  9. The method according to any of claims 1 to 4, characterized in that the second recirculation stream (192) is sampled in the compressed methane-rich head stream (86), the method comprising the following steps:
    - introducing the second recirculation stream (192) into a third heat exchanger (152);
    - separating the feed natural-gas stream (15) into a first feed flow (191A) and into a second feed flow (191B);
    - establishing a heat exchange relationship of the second feed flow (191 B) with the second recirculation stream (192) in the third heat exchanger (152)
    - mixing the second feed flow (191B) after cooling in the third heat exchanger (152) with the first feed flow (191 A), downstream from the first exchanger (16) and upstream from the separator flask (18).
  10. The method according to claim 9, characterized in that it comprises the following steps:
    - sampling a secondary cooling stream (200) in the compressed methane-rich head stream (86) downstream from the first compressor (28) and downstream from the second compressor (32);
    - dynamically expanding the secondary cooling stream (200) in a second expansion turbine (132) and passing the expanded secondary cooling stream (202) into the third heat exchanger (152) for establishing a heat exchange relationship with the second feed flow (191 B) and with the second recirculation stream (192);
    - reintroducing the expanded secondary cooling stream (202) into the methane-rich stream (82), before its passing into the first compressor (28) and into the second compressor (32);
    - sampling a recompression fraction (206) in the cooled methane-rich stream (84), downstream from the introduction of the expanded secondary cooling stream (204) and upstream from the first compressor (28) and from the second compressor (32);
    - compressing the recompression fraction (206) in at least one compressor (182) coupled with the second expansion turbine (132) and reintroducing the compressed recompression fraction into the compressed methane-rich stream (86) from the first compressor (26) and from the second compressor (32).
  11. The method according to claim 1 or 2, characterized in that the second recirculation stream (136) is derived from the first recirculation stream (88), in order to form the dynamic expansion stream, the dynamic expansion stream being introduced into a second expansion turbine (132) distinct from the first expansion turbine (22), the dynamic expansion stream (138) from the second expansion turbine (132) being reintroduced into the methane-rich stream (82) before its passing into the first heat exchanger (16).
  12. The method according to claim 11, characterized in that it comprises the following steps:
    - sampling a recompression fraction (140) in the heated-up methane-rich head stream (84) from the first heat exchanger (16) and from the second heat exchanger (24);
    - compressing the recompression fraction (140) in a third compressor (134) coupled with the second expansion turbine (132);
    - introducing the compressed recompression fraction (142) into the compressed methane-rich stream from the first compressor (28).
  13. The method according to any of the preceding claims, characterized in that it comprises the diversion of a third recirculation stream (126), advantageously at room temperature, from the at least partly compressed methane-rich stream (82), advantageously between two stages (122A, 122B) of the second compressor (32), the third recirculation stream (126) being successively cooled in the first heat exchanger (16) and in the second heat exchanger (24) before being mixed with the first recirculation stream in order to be introduced into the splitter column (26).
  14. A facility (10; 10A ; 110; 120; 130; 150; 180; 190) for producing a methane-rich stream (12) and a C2 + hydrocarbon-rich fraction (14) from a dehydrated feed natural-gas stream (15), consisting of hydrocarbons, nitrogen and CO2, and advantageously having a C2 + hydrocarbon molar content of more than 10%, the facility being of the type comprising:
    - a first heat exchanger (16) for cooling the feed natural-gas stream (15) advantageously circulating at a pressure of more than 40 bars,
    - a separator flask (18),
    - means for introducing the cooled feed natural-gas stream (40) into the separator flask (18), the cooled natural-gas stream being separated in the separator flask (18) for recovering an essentially gaseous light fraction (42) and an essentially liquid heavy fraction (44);
    - means for forming a turbine input flow (46) from the light fraction (42);
    - a first dynamic expansion turbine (22) for the turbine input flow (46);
    - a splitter column (26);
    - means for introducing the expanded flow (102) into the first dynamic expansion turbine (22) in an intermediate portion of the splitter column (26);
    - a second heat exchanger (24);
    - means for expansion and introducing the heavy fraction (44) into the splitter column (26) laid out so that the heavy fraction (44) recovered in the separator flask (18) is introduced into the splitter column (26) without passing through the first heat exchanger (16);
    - means for recovering, at the foot of the splitter column (26), a C2 + hydrocarbon-rich foot stream (80), intended to form the C2 + hydrocarbon-rich fraction (14);
    - means for sampling at the head of the splitter column (26) a methane-rich head stream (82);
    - means for introducing the methane-rich head stream (82) into the second heat exchanger (24) and into the first heat exchanger (16) for heating it up;
    - means for compressing the methane-rich head stream comprising at least one first compressor (28) coupled with the first turbine (22) and a second compressor (32) for forming the methane-rich stream (12) from the compressed methane-rich head stream (86);
    - means for sampling in the methane-rich head stream (82, 84, 86) a first recirculation stream (88);
    - means for passing the first recirculation stream (88) into the first heat exchanger (16) and then into the second heat exchanger (24) for cooling it down;
    - means for introducing at least one portion of the first cooled recirculation stream (94) into the upper portion of the splitter column (26);
    - means for forming at least one second recirculation stream (96; 136; 168; 192) obtained from the methane-rich head stream (82) downstream from the splitter column (26);
    characterized in that the installation comprises:
    - means for forming a dynamic expansion stream (100; 136) from the second recirculation stream (96; 136; 168; 192);
    - means for introducing the dynamic expansion stream (100; 136) into an expansion turbine (22; 132) for producing frigories; and in that the means for forming a dynamic expansion stream (100) from the second recirculation stream (96. 168; 192) comprise means for introducing the second recirculation stream (96; 168; 192) into a stream (40; 46) circulating downstream from the first heat exchanger (16) and upstream from the first expansion turbine (22) in order to form the dynamic expansion stream (100).
  15. The facility (10; 10A; 110; 120; 130; 150; 180; 190) according to claim 14, characterized in that the means for forming the turbine input flow include means for dividing the light fraction (42) into the turbine input flow (46) and into a secondary flow (48), the facility comprising means for passing the secondary flow (48) into the second heat exchanger (24) for cooling it down and means for introducing the cooled secondary flow (52) into an upper portion of the splitter column (26).
EP11785730.0A 2010-10-20 2011-10-19 Simplified method for producing a methane-rich stream and a c2+ hydrocarbon-rich fraction from a feed natural-gas stream, and associated facility Active EP2630428B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1058573A FR2966578B1 (en) 2010-10-20 2010-10-20 A SIMPLIFIED PROCESS FOR THE PRODUCTION OF METHANE RICH CURRENT AND A C2 + HYDROCARBON RICH CUT FROM NATURAL LOAD GAS CURRENT, AND ASSOCIATED PLANT.
PCT/FR2011/052439 WO2012052681A2 (en) 2010-10-20 2011-10-19 Simplified method for producing a methane-rich stream and a c2+ hydrocarbon-rich fraction from a feed natural-gas stream, and associated facility

Publications (2)

Publication Number Publication Date
EP2630428A2 EP2630428A2 (en) 2013-08-28
EP2630428B1 true EP2630428B1 (en) 2017-06-07

Family

ID=44201387

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11785730.0A Active EP2630428B1 (en) 2010-10-20 2011-10-19 Simplified method for producing a methane-rich stream and a c2+ hydrocarbon-rich fraction from a feed natural-gas stream, and associated facility

Country Status (8)

Country Link
US (2) US10018411B2 (en)
EP (1) EP2630428B1 (en)
AR (1) AR083476A1 (en)
BR (1) BR112013009582B1 (en)
CA (1) CA2814821C (en)
FR (1) FR2966578B1 (en)
MX (1) MX356799B (en)
WO (1) WO2012052681A2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016003305A1 (en) * 2016-03-17 2017-09-21 Linde Aktiengesellschaft Process for separating an ethane-rich fraction from natural gas
US10330382B2 (en) 2016-05-18 2019-06-25 Fluor Technologies Corporation Systems and methods for LNG production with propane and ethane recovery
MX2019001888A (en) 2016-09-09 2019-06-03 Fluor Tech Corp Methods and configuration for retrofitting ngl plant for high ethane recovery.
MX2020003412A (en) 2017-10-20 2020-09-18 Fluor Tech Corp Phase implementation of natural gas liquid recovery plants.
US20200088465A1 (en) * 2018-09-13 2020-03-19 Air Products And Chemicals, Inc. Helium Extraction from Natural Gas
US10962283B2 (en) 2018-09-13 2021-03-30 Air Products And Chemicals, Inc. Helium extraction from natural gas
FR3088648B1 (en) * 2018-11-16 2020-12-04 Technip France PROCESS FOR TREATMENT OF A SUPPLY GAS FLOW AND ASSOCIATED INSTALLATION

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2601599A (en) * 1948-11-26 1952-06-24 Shell Dev Method of recovering liquefiable hydrocarbons from gases
BE622735A (en) * 1961-09-22 1900-01-01
US4687499A (en) * 1986-04-01 1987-08-18 Mcdermott International Inc. Process for separating hydrocarbon gas constituents
US5600969A (en) * 1995-12-18 1997-02-11 Phillips Petroleum Company Process and apparatus to produce a small scale LNG stream from an existing NGL expander plant demethanizer
FR2817766B1 (en) 2000-12-13 2003-08-15 Technip Cie PROCESS AND PLANT FOR SEPARATING A GAS MIXTURE CONTAINING METHANE BY DISTILLATION, AND GASES OBTAINED BY THIS SEPARATION
US6945075B2 (en) * 2002-10-23 2005-09-20 Elkcorp Natural gas liquefaction
US7484385B2 (en) * 2003-01-16 2009-02-03 Lummus Technology Inc. Multiple reflux stream hydrocarbon recovery process
US7204100B2 (en) * 2004-05-04 2007-04-17 Ortloff Engineers, Ltd. Natural gas liquefaction
US9080810B2 (en) * 2005-06-20 2015-07-14 Ortloff Engineers, Ltd. Hydrocarbon gas processing
US8590340B2 (en) * 2007-02-09 2013-11-26 Ortoff Engineers, Ltd. Hydrocarbon gas processing
US20090282865A1 (en) * 2008-05-16 2009-11-19 Ortloff Engineers, Ltd. Liquefied Natural Gas and Hydrocarbon Gas Processing
FR2944523B1 (en) * 2009-04-21 2011-08-26 Technip France PROCESS FOR PRODUCING METHANE-RICH CURRENT AND CUTTING RICH IN C2 + HYDROCARBONS FROM A NATURAL LOAD GAS CURRENT, AND ASSOCIATED PLANT
FR2947897B1 (en) * 2009-07-09 2014-05-09 Technip France PROCESS FOR PRODUCING METHANE - RICH CURRENT AND CURRENT HYDROCARBON - RICH CURRENT AND ASSOCIATED.

Also Published As

Publication number Publication date
US10018411B2 (en) 2018-07-10
FR2966578A1 (en) 2012-04-27
CA2814821A1 (en) 2012-04-26
CA2814821C (en) 2019-02-19
BR112013009582A2 (en) 2016-07-12
WO2012052681A2 (en) 2012-04-26
EP2630428A2 (en) 2013-08-28
MX2013004340A (en) 2013-06-28
BR112013009582A8 (en) 2020-11-24
US20180180356A1 (en) 2018-06-28
US10760851B2 (en) 2020-09-01
AR083476A1 (en) 2013-02-27
US20130255311A1 (en) 2013-10-03
FR2966578B1 (en) 2014-11-28
BR112013009582B1 (en) 2020-12-08
MX356799B (en) 2018-06-14
WO2012052681A3 (en) 2013-10-03

Similar Documents

Publication Publication Date Title
EP2422152B1 (en) Method for producing a methane-rich stream and a c2+ hydrocarbon-rich fraction from a natural feed gas stream, and corresponding equipment
EP2630428B1 (en) Simplified method for producing a methane-rich stream and a c2+ hydrocarbon-rich fraction from a feed natural-gas stream, and associated facility
EP2452140B1 (en) Method for producing methane-rich stream and c2+ hydrocarbon-rich stream, and related facility
EP1828697B1 (en) Method and installation for producing treated natural gas from a c3+ hydrocarbon-rich cut and ethane-rich stream
EP2659211B1 (en) Method for producing a methane-rich stream and a c2+ hydrocarbon-rich stream, and associated equipment
EP2870226B1 (en) Process and apparatus for the production of treated natural gas and a fraction enriched in c3+ hydrocarbons and a fraction enriched in ethane.
FR2923000A1 (en) Raw natural gas liquefaction method for producing liquid natural gas, involves recycling portion of fraction enriched in ethane by introducing portion of fraction in disengager, and liquefying gas phase to produce liquid natural gas
EP2553055B1 (en) Process for treating a stream of cracked gas coming from a hydrocarbon pyrolysis plant, and associated plant
FR2923001A1 (en) Natural gas liquefying method for transporting liquefied gas, involves choosing operating conditions of fractionator such that liquid phase has molar quantity of methane ranging between specific percentages of molar quantity of ethane
WO2017077203A1 (en) Reflux of demethanization columns
CA2823900C (en) Production process for a fraction rich in c3+ hydrocarbons and for a stream rich in methane and ethane
EP3060629B1 (en) Method for fractionating a stream of cracked gas, using an intermediate recirculation stream, and related plant
EP4244557A1 (en) Method for extracting ethane from an initial natural gas stream and corresponding plant

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130416

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: GAHIER, VANESSA, MARIE, STEPHANIE

Inventor name: BARTHE, LOIC, PIERRE, ROGER

Inventor name: GOURIOU, JULIE, ANNE

Inventor name: THIEBAULT, SANDRA, ARMELLE, KAREN

R17D Deferred search report published (corrected)

Effective date: 20131003

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20170111

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 899555

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170615

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602011038566

Country of ref document: DE

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20170607

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170908

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 899555

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170907

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171007

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602011038566

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602011038566

Country of ref document: DE

26N No opposition filed

Effective date: 20180308

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180501

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171031

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171019

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20171031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20111019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20200914

Year of fee payment: 10

Ref country code: RO

Payment date: 20200918

Year of fee payment: 10

Ref country code: NO

Payment date: 20200922

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20201015

Year of fee payment: 10

REG Reference to a national code

Ref country code: NO

Ref legal event code: MMEP

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20211101

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20211019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211019

Ref country code: NO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211031

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211101

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211019

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230601

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230921

Year of fee payment: 13