EP2627887A1 - Abgasrückführung mit kondensatabführung - Google Patents

Abgasrückführung mit kondensatabführung

Info

Publication number
EP2627887A1
EP2627887A1 EP11761509.6A EP11761509A EP2627887A1 EP 2627887 A1 EP2627887 A1 EP 2627887A1 EP 11761509 A EP11761509 A EP 11761509A EP 2627887 A1 EP2627887 A1 EP 2627887A1
Authority
EP
European Patent Office
Prior art keywords
condensate
egr
path
exhaust gas
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP11761509.6A
Other languages
English (en)
French (fr)
Inventor
Thomas Koch
Johannes Ritzinger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mercedes Benz Group AG
Original Assignee
Daimler AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daimler AG filed Critical Daimler AG
Publication of EP2627887A1 publication Critical patent/EP2627887A1/de
Ceased legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • F02M26/24Layout, e.g. schematics with two or more coolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/35Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with means for cleaning or treating the recirculated gases, e.g. catalysts, condensate traps, particle filters or heaters

Definitions

  • the present invention relates to a method for removing condensate from an EGR path (EGR exhaust gas recirculation) of an internal combustion engine. Furthermore, the invention relates to an EGR device and an exhaust system with such an EGR device.
  • EGR path EGR exhaust gas recirculation
  • EGR exhaust gas recirculation
  • a certain proportion of the exhaust gas is returned to the internal combustion engine via an EGR path.
  • condensate can precipitate out of the exhaust gas or out of an exhaust gas / fresh air mixture in the EGR path.
  • the condensate can lead to sooting and corrosion of the components in the EGR path. It thus makes sense to remove the condensate as quickly and completely as possible from the EGR path or to suppress the formation of condensate.
  • the formation in the case of a low-pressure EGR is avoided in that the charge air cooler is designed as a downflow cooler, so that any condensate that may form can collect at the lowest point of the vertical intercooler and can subsequently be discharged.
  • the charge air cooler is designed as a downflow cooler, so that any condensate that may form can collect at the lowest point of the vertical intercooler and can subsequently be discharged.
  • at least one EGR cooler preferably the last EGR cooler in the exhaust gas flow direction, is designed as such a downflow cooler, so that any condensate formed can collect at the lowest point of the EGR cooler designed as a downflow cooler.
  • EP 2 161 430 A1 a charge air cooler with condensate drain is described.
  • the EGR device is designed as a low-pressure EGR. Any condensate that may accumulate at the lowest point of the intercooler can be collected in the intercooler.
  • the intercooler is equipped with a condensate drain opening, which is fluidly connected to the fresh air path via a condensate drain line.
  • the condensing Sat inlet point arranged in the charge air flow direction after the intercooler.
  • the condensate discharge opening can be closed by means of a closure element.
  • any accumulating condensate can be retained by the charge air cooler when an introduction of the condensate in the fresh air path is unfavorable due to the respective operating state. If an introduction of condensate is unproblematic, the closure element can be opened and the condensate introduced into the fresh air path.
  • the exhaust system of the internal combustion engine of WO 2009/048408 A1 is equipped with a
  • High pressure EGR equipped In this case, one or two first EGR coolers and a second EGR cooler are arranged in the EGR path.
  • the exhaust gas may be circulated in the EGR path area of the first radiator (s). Due to the longer contact time of the exhaust gas with the / the first EGR cooler / n condensate can be increasingly separated from the circulating exhaust gas.
  • the first or the first EGR cooler can be at least partially cleaned of soiling.
  • WO 2009 / 072963A1 an internal combustion engine is described with a high-pressure EGR.
  • EGR path of the EGR device two ARG coolers are arranged.
  • condensate occurring in the second EGR cooler can be introduced via an EGR discharge line in the EGR path in front of the first EGR cooler.
  • the EGR cooler is formed air-cooled and has a condensate collecting region, which is connected via the Kondensatabschreib with the EGR path before the first EGR cooler or with the first EGR cooler fludisch conductive.
  • a pump is arranged in the condensate discharge line, with which the condensate can be transported in the event of a back pressure in the EGR path.
  • a promotion of the condensate by means of a pump in the EGR path is structurally complex and are also other components present, they can be damaged due to the aggressive, corrosive atmosphere of the recirculated exhaust gas and impaired in their function.
  • the present invention addresses the problem of providing an improved or at least one alternative embodiment for a method of removing condensate from its internal combustion engine EGR path, for an EGR device, and an exhaust system having such an EGR device in particular by a simplified, less vulnerable transport of the
  • the invention is based on the general idea, in a method for
  • An EGR path is to be understood as that line region, including the components arranged therein and through which the exhaust gas recirculated flows, by means of which the recirculated exhaust gas is supplied to the fresh air path and the part of the fresh air path through which the recirculated exhaust gas flows.
  • the EGR path is disposed between a branch point of the exhaust gas from the exhaust path and the engine.
  • the exhaust path is consequently the line region through which exhaust gas flows.
  • the fresh air path is the line area over which the
  • Internal combustion engine is supplied fresh air, wherein at least a portion of the
  • Line area can also be attributed to the EGR path.
  • a high-pressure EGR is understood to mean an EGR device in which the point of introduction is arranged downstream of a compressor of a charging device.
  • the recirculated exhaust gas is introduced into a high-pressure region.
  • a low-pressure EGR Consequently, one stands for an EGR device in which the introduction point for the recirculated exhaust gas is arranged in front of a compressor of a charging device.
  • the recirculated exhaust gas is introduced into a low pressure region. It is the combination of low pressure EGR and high pressure EGR possible in an EGR device, as well as the single application of high pressure or low pressure EGR is conceivable.
  • the separated in a respective heat exchanger condensate consists of mainly water and sulfur oxides, which react in conjunction with the water to sulfurous acid or sulfuric acid or a mixture thereof. Furthermore, nitrogen oxides or nitrogen oxide acids can occur in the condensate, as can combustion residues.
  • the problem with the condensate, especially in the case of sulfur-containing fuel, is the occurrence of sulfuric acid or sulfurous acid or a mixture of the two acids.
  • a concentration of the sulfuric acid or of the sulfurous acid occurs when it is attempted to evaporate the condensate.
  • the condensate can be evaporated again only at very high temperatures. Accordingly, either complete prevention of condensate formation or complete removal of the condensate is advantageous, with complete removal of the condensate formed reducing the recirculated exhaust gas to less aggressive and corrosive and improving exhaust emission levels.
  • the discharge of the condensate from the condensate collecting region can be controlled / regulated in accordance with a preferred embodiment of the invention by means of a closure element. It can always be when in the
  • Condensate collecting a higher pressure prevails than in the Kondensatabriol Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoff Kunststoffneck, a closure element are opened, so that due to the pressure difference, the condensate is discharged from the condensate collection area.
  • the closure element is preferably opened when the pressure in the condensate collecting region is greater than 20%, particularly preferably greater than 40% or greater than 60%, than the pressure in the condensate discharge region.
  • the closure element is preferably opened for a short time.
  • the opening is carried out so fast that the short-term pressure drop in the EGR path has only a negligible effect with respect to a boost pressure and / or with respect to a lambda control.
  • the closure element can be designed as an electronically controllable valve, as a pressure-controlled valve or the like.
  • the opening of the closure element can be carried out at least in a partial load range such that it simultaneously accumulates the accumulated
  • Engine throttling in a partial load range provide dynamic advantages, since the charging device starts at a higher speed level.
  • the EGR device in particular an internal combustion engine with a charging device having a turbine and a compressor.
  • the EGR device has at least one condensate discharge device for removing condensate from an EGR path of the AGL device, wherein the condensate discharge device has a condensate collection region arranged in the EGR path and a closure element arranged before or after a discharge opening.
  • the EGR device is designed such that due to a pressure difference between the
  • Closing element accumulated condensate is discharged from the condensate collection area in the Kondensatabloom Kunststoff Edition.
  • Closure element are removed from the EGR path.
  • Kondensatab Wenninger Wenninger arranged components in the EGR path are exposed to a lower corrosive load, resulting in a longer for these components
  • control regulation device may be provided which controls the opening and closing of the closure element controls. It can the Control device may be formed integrally with the engine controller or constitute a separate unit, optionally with the engine control
  • At least one condensate discharge area may be the EGR path before the compressor, an exhaust path after the turbine, the exhaust path after one
  • the condensate can be re-introduced into the fresh air path.
  • the condensate can be introduced after the turbine of the charger or after the exhaust gas catalyst in the exhaust path.
  • the Kondensatab2020 Colour may be fluidly connected.
  • the Kondensatab2020vorides may be arranged in the exhaust gas flow direction in front of a throttle element for limiting the air supply to the internal combustion engine. Furthermore, the
  • Kondensatab Wenninger be arranged in the exhaust gas flow direction after a compressor of the charging device.
  • the arrangement of the Kondensatab Wennvorides in the exhaust gas flow direction after a heat exchanger is advantageous. It may be formed integrally with the heat exchanger, the Kondensatab centuryvorides.
  • the heat exchanger may be an EGR cooler and / or a charge air cooler.
  • the Kondensatab Wennvorides is arranged after the charge air cooler and in front of the throttle element. In this case, simply by controlling the throttle element in the area of the condensate discharge device, a high pressure can be generated, so that by controlling the
  • Throttle element a pressure difference between the condensate collection area and the Kondensatab réelle Scheme is generated.
  • Kondensatab Wenninger Kunststoffvoriques with its closure element are also advantageous given the possibilities of Brennkraftmaschinenent throttling in a partial load range.
  • An exhaust system equipped with such an EGR device is characterized by a significantly lower load on the components in the EGR path.
  • FIG. 1 shows an internal combustion engine with an exhaust system according to the invention, which has a low-pressure EGR, and with an introduction of the condensate in the exhaust path,
  • 3 shows the internal combustion engine with the exhaust system, which has a low-pressure EGR and with a discharge of the condensate into the environment
  • 4 shows a heat exchanger with downstream in the exhaust gas flow direction condensate discharge device.
  • An internal combustion engine 1 shown in FIG. 1 is equipped with an exhaust path 2 and a fresh air path 3 and a charging device 4.
  • a turbine 5 of the charging device 4 is driven.
  • a compressor 6 of the charging device 4 the fluids flowing in the fresh air path 3 are compressed.
  • the fresh air path 3 is divided into a low-pressure region 7 and a high-pressure region 8.
  • the low-pressure region 7 is arranged in front of the compressor 6 and the high-pressure region 8 downstream of the compressor 6.
  • a throttle element 1 1 with the fresh air supply to the engine 1 can be limited arranged. Accordingly, there is a pressure ⁇ ⁇ in the fresh air path 3 in the low-pressure region 7 and a pressure in the high-pressure region 8 in front of the throttle element 11 and a pressure p 2 s downstream of the throttle element 11. In operation of the internal combustion engine 1, the pressure is thus in most cases p 2 greater than the pressure p 2 s and also greater than the pressure p
  • a catalyst 12 may be arranged in the exhaust path 2.
  • a low-pressure EGR 13 shown in FIG. 1 in the exhaust gas flow direction 14 after the catalyst 12 at a branch point 15 partial exhaust gas can be taken off and introduced into the fresh air path 3 via an EGR path 16 at an introduction point 17.
  • the point of introduction 17 in the direction of fresh air flow 9 lies in front of the compressor 6, so that the recirculated exhaust gas is introduced into the low-pressure region 7 of the fresh air path 3.
  • an EGR valve 18 can be arranged at the branching point 15, with which the amount of recirculated exhaust gas can be controlled.
  • at least one heat exchanger 19, which is designed as an EGR cooler may be arranged, with which the recirculated exhaust gas can be cooled.
  • a Kondensatab fertilvorraum 20 After the formed as charge air cooler heat exchanger 10 can be arranged in the fresh air path 3 a Kondensatab Wennvortechnisch 20.
  • the Kondensatab Wennvortechnisch 20 is equipped with a closure element 21 and has a Kondensatabrios effet für 22.
  • the closure element 21 can be used as a throttle element, as a valve or the like. be trained.
  • the discharge of the condensate from a condensate collecting region 23 in a Kondensatabfueled Scheme 24 can be controlled / regulated.
  • the condensate collecting region 23 is connected to the condensate discharge region 24 in a fluid-conducting manner via the condensate discharge line 22.
  • the condensate discharge region 24 is arranged in the exhaust gas path 2 in the exhaust gas flow direction 14 downstream of the catalytic converter 12 and downstream of the EGR valve 18 or downstream of the branching point 15.
  • the condensate is introduced into the exhaust path 2 so that it can no longer get back into the EGR path 16 and thus no concentration of the condensate takes place in the EGR path 16.
  • the condensate formed is introduced via the Kondensatab2020 Gustav 22 in a Kondensatab réelle Scheme 24 '.
  • the condensate discharge region 24 ' lies in the fresh air flow direction 9 in front of the compressor 6.
  • the condensate can also be released to the environment.
  • the condensate discharge area 24 is the environment, in which case the condensate must be discharged against the atmospheric pressure or against the normal pressure p 0 , consequently, the pressure p 2 must be greater than the ambient pressure P 0 so that the pressure Condensate in the Kondensatab réelle Scheme 24 "can be discharged.
  • the condensate should be diluted or neutralized due to its aggressiveness and corrosiveness.
  • a Kondensatab Wennvortechnisch 20 shown in Fig. 4 is arranged in the fresh air flow direction 9 after the heat exchanger 10.
  • the heat exchanger 10 is preferably inclined so that any condensate formed in the heat exchanger 10 can run off in a simplified manner to the condensate discharge device 20.
  • the Kondensatab Wennvortechnisch 20 is preferably located at the lowest point with respect to the fresh air path 3 and the heat exchanger 10.
  • the condensate discharge device 20 may have a condensate collecting region 23 ', which is designed in the manner of a collecting container, a pipe cavity, a pipe casing or the like.
  • an EGR device 25 may comprise as essential components the EGR path 16, at least one heat exchanger 19 designed as an EGR cooler, and at least one closure element 21.
  • the closure element 21 as
  • the EGR device 25 has the condensate discharge device 20.
  • Condensate removal device 25 may in turn have the condensate collection area 23 and the condensate discharge line 22.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Abführung von Kondensat aus einem AGR-Pfad (AGR -Abgasrückführung) (16) einer Brennkraftmaschine (1), insbesondere eines Kraftfahrzeugs, wobei aufgrund eines Druckunterschiedes zwischen einem in dem AGR-Pfad (16) angeordneten Kondensatsammelbereichs (23) und einem Kondensatabführbereich (24, 24', 24") angesammeltes Kondensat zumindest teilweise aus dem Kondensatsammelbereich (23) in den Kondensatabführbereich (24, 24', 24") abgeführt wird, wenn in dem Kondensatsammelbereich (23) ein höherer Druck herrscht als in dem Kondensatabführbereich (24, 24', 24").

Description

Abgasrückführung mit Kondensatabführung
Die vorliegende Erfindung betrifft ein Verfahren zur Abführung von Kondensat aus einem AGR-Pfad (AGR- Abgasrückführung) einer Brennkraftmaschine. Des Weiteren betrifft die Erfindung eine AGR-Vorrichtung und eine Abgasanlage mit einer derartigen AGR- Vorrichtung.
Bei Brennkraftmaschinen mit Abgasrückführung (AGR) wird ein bestimmter Anteil des Abgases über einen AGR-Pfad wieder der Brennkraftmaschine zugeführt. Unter bestimmten Bedingungen kann dabei im AGR-Pfad Kondensat aus dem Abgas bzw. aus einem Abgas-/Frischluftgemisch ausfallen. Durch das Kondensat kann es zur Versottung und Korrosion der Bauteile im AGR-Pfad kommen. Es ist somit sinnvoll, das Kondensat möglichst schnell und vollständig aus dem AGR-Pfad abzutransportieren oder die Kondensat-Bildung zu unterdrücken.
In der WO 2006/087062 A1 wird die Bildung im Falle einer Niederdruck-AGR dadurch vermieden, dass der Ladeluftkühler als Fallstromkühler ausgebildet ist, sodass sich eventuell entstehendes Kondensat am tiefsten Punkt des senkrecht stehenden Ladeluftkühlers ansammeln und nachfolgend abgeleitet werden kann. Im Falle einer Hochdruck-AGR ist zumindest ein AGR-Kühler bevorzugt der in Abgasströmungsrichtung letzte AGR-Kühler als ein derartiger Fallstromkühler ausgebildet, sodass sich das eventuell gebildete Kondensat am tiefsten Punkt des als Fallstromkühler ausgebildeten AGR-Kühlers sammeln kann.
In der EP 2 161 430 A1 ist ein Ladeluftkühler mit Kondensat-Ablauf beschrieben. Die AGR-Vorrichtung ist als Niederdruck-AGR ausgebildet. In dem Ladeluftkühler kann eventuell anfallendes Kondensat am tiefsten Punkt des Ladeluftkühlers gesammelt werden. Der Ladeluftkühler ist mit einer Kondensatablauföffnung ausgestattet, die über eine Kondensat-Ablaufleitung mit dem Frischluftpfad fluidisch verbunden ist. Dabei ist die Konden- sat-Einleitungsstelle in Ladeluftströmungsrichtung nach dem Ladeluftkühler angeordnet. Die Kondensat-Ablauföffnung ist mittels eines Verschlusselementes verschließbar. Somit kann durch den Ladeluftkühler eventuell anfallendes Kondensat zurückgehalten werden, wenn eine Einleitung des Kondensates in den Frischluftpfad aufgrund des jeweiligen Betriebszustandes ungünstig ist. Ist eine Einleitung von Kondensat unproblematisch, so kann das Verschlusselement geöffnet werden und das Kondensat in den Frischluftpfad eingeleitet werden.
Die Abgasanlage der Brennkraftmaschine der WO 2009/048408 A1 ist mit einer
Hochdruck-AGR ausgerüstet. Dabei sind im AGR-Pfad ein oder zwei erste/r AGR-Kühler und ein zweiter AGR-Kühler angeordnet. Mittels eines Vierwegeventils kann das Abgas in dem AGR-Pfad-Bereich der/des ersten Kühler/s zirkuliert werden. Durch die längere Kontaktzeit des Abgases mit dem/den ersten AGR-Kühler/n kann vermehrt Kondensat aus dem zirkulierenden Abgas abgeschieden werden. Mittels des abgeschiedenen Kondensates können der/die erste/n AGR-Kühler von Verschmutzungen zumindest teilweise gereinigt werden.
In der WO 2009/072963A1 ist eine Brennkraftmaschine mit einer Hochdruck-AGR beschrieben. Im AGR-Pfad der AGR-Vorrichtung sind zwei ARG-Kühler angeordnet. Dabei kann in dem zweiten AGR-Kühler auftretendes Kondensat über eine AGR- Abführleitung in dem AGR-Pfad vor den ersten AGR-Kühler eingeleitet werden. Dabei ist der AGR-Kühler luftgekühlt ausgebildet und weist einen Kondensatsammelbereich auf, der über die Kondensatabführleitung mit dem AGR-Pfad vor dem ersten AGR-Kühler bzw. mit dem ersten AGR-Kühler fludisch leitend verbunden ist. Zum Abtransport des gebildeten Kondensates aus dem AGR-Pfad ist in der Kondensatabführleitung eine Pumpe angeordnet, mit der das Kondensat im Falle eines Gegendrucks in den AGR-Pfad transportiert werden kann. Eine Förderung des Kondensates mittels einer Pumpe im AGR-Pfad ist jedoch konstruktiv aufwendig und sind zudem weitere Bauteile vorhanden, können diese aufgrund der aggressiven, korrosiven Atmosphäre des rückgeführten Abgases geschädigt und in ihrer Funktion beeinträchtigt werden.
Die vorliegende Erfindung beschäftigt sich mit dem Problem, für ein Verfahren zur Abführung von Kondensat aus seinem AGR-Pfad einer Brennkraftmaschine, für eine AGR-Vorrichtung und eine Abgasanlage mit einer derartigen AGR-Vorrichtung eine verbesserte oder zumindest eine alternative Ausführungsform anzugeben, die sich insbesondere durch einen vereinfachten, weniger anfälligeren Transport des
Kondensates in den jeweiligen Kondensatabführbereich auszeichnet.
Erfindungsgemäß wird dieses Problem durch die Gegenstände der unabhängigen Ansprüche gelöst. Vorteilhafte Ausführungsformen sind Gegenstand der abhängigen Ansprüche.
Die Erfindung beruht auf dem allgemeinen Gedanken, bei einem Verfahren zur
Abführung von Kondensat aus einem AGR-Pfad einer Brennkraftmaschine, insbesondere eines Kraftfahrzeuges, einen eventuell auftretenden Druckunterschied zwischen einem in dem AGR-Pfad angeordneten Kondensatsammelbereich und einem
Kondensatabführbereich derart zu nutzen, dass mittels des Druckunterschiedes in dem Kondensatsammelbereich angesammeltes Kondensat zumindest teilweise aus dem Kondensatsammelbereich in den Kondensatabführbereich abgeführt wird, wenn in dem Kondensatsammelbereich ein höherer Druck herrscht als in dem
Kondensatabführbereich. Vorteilhaft kann durch Ausnutzung des Druckunterschiedes zwischen dem Kondensatsammelbereich und dem Kondensatabführbereich das
Kondensat mittels dieses einfachen Verfahrensschrittes aus dem
Kondensatsammelbereich abgeführt werden. Diese Art der Abführung von Kondensat aus einem AGR-Pfad kann bei aufgeladenen Ottomotoren und auch bei aufgeladenen Dieselmotoren angewendet werden. Dabei können die jeweiligen Brennkraftmaschinen mit einer Hochdruck- und/oder Niederdruck-AGR ausgerüstet sein. Unter einem AGR- Pfad ist derjenige Leitungsbereich, inklusive der darin angeordneten und von dem rückgeführten Abgas durchströmten Bauteile, zu verstehen, mittels dem das rückgeführte Abgas dem Frischluftpfad zugeführt wird und der Teil des Frischluftpfades, der von dem rückgeführten Abgas durchströmt wird. Demzufolge ist der AGR-Pfad zwischen einer Abzweigungsstelle des Abgases aus dem Abgaspfad und der Brennkraftmaschine angeordnet. Der Abgaspfad ist demzufolge der Leitungsbereich, der von Abgas durchströmt wird. Der Frischluftpfad ist derjenige Leitungsbereich, über den der
Brennkraftmaschine Frischluft zugeführt wird, wobei zumindest ein Abschnitt des
Leitungsbereiches auch dem AGR-Pfad zugerechnet werden kann.
Unter einer Hochdruck-AGR versteht man eine AGR-Vorrichtung, bei der die Einleitungsstelle nach einem Verdichter einer Ladeeinrichtung angeordnet ist. Somit wird das rückgeführte Abgas in einen Hochdruckbereich eingeleitet. Unter einer Niederdruck-AGR ver- steht man demzufolge eine AGR-Vorrichtung, bei der die Einleitungsstelle für das rückgeführte Abgas vor einem Verdichter einer Ladeeinrichtung angeordnet ist. Somit wird bei einer Niederdruck-AGR das rückgeführte Abgas in einen Niederdruckbereich eingeleitet. Es ist die Kombination von Niederdruck-AGR und Hochdruck-AGR bei einer AGR- Vorrichtung möglich, sowie auch die einzelne Anwendung von Hochdruck- oder Niederdruck-AGR denkbar ist. Das in einem jeweiligen Wärmetauscher abgeschiedene Kondensat besteht aus hauptsächlich Wasser und Schwefeloxiden, die in Verbindung mit dem Wasser zur schwefeliger Säure beziehungsweise Schwefelsäure oder einem Gemisch daraus reagieren. Des Weiteren können im Kondensat Stickoxide beziehungsweise Stickoxidsäuren auftreten, sowie auch Verbrennungsrückstände. Problematisch an dem Kondensat ist vor allem bei schwefelhaltigem Kraftstoff das Auftreten von Schwefelsäure beziehungsweise schwefeliger Säure oder einem Gemisch aus beiden Säuren. So wird als Kondensat hauptsächlich hochkonzentrierte Schwefelsäure abgeschieden, die erst ab Erreichen des Taupunktes des Wasserdampfes signifikant verdünnt werden kann. Des Weiteren tritt bei dem Kondensat eine Aufkonzentration der Schwefelsäure beziehungsweise der schwefeligen Säure statt, wenn versucht wird, das Kondensat zu verdampfen. Dadurch kann das Kondensat erst bei sehr hohen Temperaturen wieder verdampft werden. Demzufolge ist entweder die vollständige Verhinderung der Kondensat- Bildung oder eine vollständige Abführung des Kondensates vorteilhaft, wobei durch eine vollständige Entfernung des gebildeten Kondensates das rückgeführte Abgas zu dem weniger aggressiv und korrosiv ist, und die Abgas-Emissionswerte verbessert werden können.
Das Abführen des Kondensates aus dem Kondensatsammelbereich kann gemäß einer bevorzugten Ausführungsform der Erfindung mittels eines Verschlusselementes gesteuert/geregelt werden. Dabei kann immer dann, wenn in dem
Kondensatsammelbereich ein höherer Druck herrscht als in dem Kondensatabführbereich das Verschlusselement geöffnet werden, sodass aufgrund des Druckunterschiedes das Kondensat aus dem Kondensatsammelbereich abgeführt wird. Bevorzugt wird dabei das Verschlusselement geöffnet, wenn der Druck in dem Kondensatsammelbereich größer als 20 %, besonders bevorzugt größer als 40 % oder größer als 60 % ist als der Druck in dem Kondensatabführbereich.
Ebenfalls wird das Verschlusselement bevorzugt kurzzeitig geöffnet. Dabei wird das Öffnen derartig schnell durchgeführt, dass der kurzzeitig auftretende Druckabfall in dem AGR-Pfad sich hinsichtlich eines Ladedruckes und/oder hinsichtlich einer Lambda- Regelung nur vernachlässigbar auswirkt. Das Verschlusselement kann als elektronisch ansteuerbares Ventil, als druckgesteuertes Ventil oder dergleichen ausgebildet sein. Das Öffnen des Verschlusselementes kann zumindest in einem Teillastbereich derart durchgeführt werden, dass es gleichzeitig zur Abführung des angesammelten
Kondensats und zur Entdrosselung der Brennkraftmaschine dient. Demzufolge kann gegebenenfalls ein Schubumluftventil zur Vermeidung von einem Pumpen des
Verdichters einer Ladeeinrichtung bei Lastsprüngen, wie es derzeit bei Ottomotoren eingesetzt wird, ersetzt werden. Des Weiteren kann ein derartiges Öffnen des
Verschlusselementes zur gleichzeitigen Kondensatabführung und
Brennkraftmaschinenentdrosselung in einem Teillastbereich Dynamikvorteile bieten, da die Ladeeinrichtung auf einem höheren Drehzahlniveau startet.
Ein weiterer allgemeiner Gedanke der Erfindung ist eine AGR-Vorrichtung, insbesondere einer Brennkraftmaschine mit einer eine Turbine und einen Verdichter aufweisenden Ladeeinrichtung. Als wesentlichen Bestandteil weist die AGR-Vorrichtung zumindest eine Kondensatabführvorrichtung zur Abführung von Kondensat aus einem AGR-Pfad der AGL-Vorrichtung auf, wobei die Kondensatabführvorrichtung einen in dem AGR-Pfad angeordneten Kondensatsammelbereich und ein vor oder nach einer Abführöffnung angeordnetes Verschlusselement aufweist. Die AGR-Vorrichtung ist aber derartig ausgebildet, dass aufgrund eines Druckunterschiedes zwischen dem
Kondensatsammelbereich und einem Kondensatabführbereich bei Öffnen des
Verschlusselementes angesammeltes Kondensat von dem Kondensatsammelbereich in den Kondensatabführbereich abgeführt wird.
Vorteilhaft kann somit in dem AGR-Pfad abgeschiedenes Kondensat mittels der
Kondensatabführvorrichtung gesammelt und gezielt durch das Öffnen des
Verschlusselementes aus dem AGR-Pfad entfernt werden. Somit kann mittels der Kondensatabführvorrichtung das aggressive, korrosive Kondensat aus dem rückgeführten Abgas zumindest teilweise entfernt werden, so dass die nach der
Kondensatabführvorrichtung angeordneten Bauteile in dem AGR-Pfad einer geringeren korrosiven Belastung ausgesetzt sind, was für diese Bauteile zu einer längeren
Haltbarkeit und zu geringeren Ausfällen führt. Bevorzugt ist eine möglichst vollständige Entfernung des Kondensates.
Des Weiteren kann eine Steuerungs-Regelungsvorrichtung vorgesehen sein, die das Öffnen und Schließen des Verschlusselements steuert regelt. Dabei kann die Steuerungs-/Regelungsvorrichtung integral mit der Motorsteuerung ausgebildet sein oder eine separate Einheit darstellen, die gegebenenfalls mit der Motorsteuerung
kommuniziert. Zumindest ein Kondensatabführbereich kann der AGR-Pfad vor dem Verdichter, ein Abgaspfad nach der Turbine, der Abgaspfad nach einem
Abgaskatalysator und/oder eine außerhalb der AGR-Vorrichtung liegende Umgebung sein. Somit kann das Kondensat wieder in den Frischluftpfad eingeleitet werden.
Bevorzugt ist dabei die Einleitung vor dem Verdichter der Ladeeinrichtung zu wählen, da in diesem Frischluftpfadbereich ein geringer Druck herrscht. Des Weiteren ist auch ein Einleiten des Kondensates in den Abgaspfad möglich. So kann in den Abgaspfad das Kondensat nach der Turbine der Ladeeinrichtung eingeleitet werden oder nach dem Abgaskatalysator. Bevorzugt ist die Einleitung des Kondensates in den Abgaspfad in Abgasströmungsrichtung nach der Abzweigstelle des AGR-Pfades vorzunehmen, da in diesem Fall das in den Abgaspfad eingeleitete Kondensat nicht mehr in den AGR-Pfad gelangen kann und somit keine Aufkonzentrierung des Kondensates in dem
rückgeführten Abgas möglich ist. Zum Abführen des Kondensates kann der
Kondensatsammelbereich über eine Kondensatabführleitung mit dem
Kondensatabführbereich fluidisch verbunden sein. Die Kondensatabführvorrichtung kann in Abgasströmungsrichtung vor einem Drosselelement zur Begrenzung der Luftzufuhr zur Brennkraftmaschine angeordnet sein. Des Weiteren kann die
Kondensatabführvorrichtung in Abgasströmungsrichtung nach einem Verdichter der Ladeeinrichtung angeordnet sein.
Auch ist die Anordnung der Kondensatabführvorrichtung in Abgasströmungsrichtung nach einem Wärmetauscher vorteilhaft. Es kann die Kondensatabführvorrichtung auch integral mit dem Wärmetauscher ausgebildet sein. Der Wärmetauscher kann dabei ein AGR- Kühler und/oder ein Ladeluftkühler sein. Bevorzugt ist die Kondensatabführvorrichtung nach dem Ladeluftkühler und vor dem Drosselelement angeordnet. In diesem Fall kann durch Steuerung des Drosselelementes im Bereich der Kondensatabführvorrichtung einfach ein hoher Druck erzeugt werden, sodass durch Ansteuerung des
Drosselelements ein Druckunterschied zwischen dem Kondensatsammelbereich und dem Kondensatabführbereich erzeugbar ist. In dieser Anordnung der
Kondensatabführvorrichtung mit ihrem Verschlusselement sind auch vorteilhaft die Möglichkeiten der Brennkraftmaschinenentdrosselung in einem Teillastbereich gegeben.
Bevorzugt ist eine Schrägstellung des jeweiligen Wärmetauschers, insbesondere des Ladeluftkühlers, sodass das in dem jeweiligen Wärmetauscher gebildete Kondensat schnell in die Kondensatabführvorrichtung einfließen kann. In Abgasströmungsrichtung vor der Kondensatabführvorrichtung kann auch ein Wasserscheider angeordnet sein. Dieser Wasserabscheider kann auch in Abgasströmungsrichtung nach dem jeweiligen Wärmetauscher angeordnet sein. Bevorzugt ist dabei die Verwendung eines
Wasserabscheiders zusammen mit einem AGR-Kühler. Durch Verwendung des
Wasserabscheiders kann das Kondensat vollständiger aus dem Abgas abgeschieden werden. Es ist auch eine integrale Ausbildung des jeweiligen Wärmeaustauschers mit einem Wasserabscheider denkbar.
Eine Abgasanlage, die mit einer derartigen AGR-Vorrichtung ausgestattet ist, zeichnet sich durch eine wesentlich geringere Belastung der Bauteile in dem AGR-Pfad aus.
Weitere wichtige Merkmale und Vorteile der Erfindung ergeben sich aus den
Unteransprüchen, aus den Zeichnungen und aus der zugehörigen Fig. Beschreibung anhand der Zeichnungen.
Es versteht sich, dass die vorstehend genannten und die nachstehend noch zu erläuternden Merkmale nicht nur in der jeweils angegebenen Kombination, sondern auch in anderen Kombinationen oder in Alleinstellung verwendbar sind, ohne den Rahmen der vorliegenden Erfindung zu verlassen.
Bevorzugte Ausführungsbeispiele der Erfindung sind in den Zeichnungen dargestellt und werden in der nachfolgenden Beschreibung näher erläutert, wobei sich gleiche
Bezugszeichen auf gleiche oder ähnliche oder funktional gleiche Bauteile beziehen.
Es zeigen, jeweils schematisch:
Fig. 1 : eine Brennkraftmaschine mit einer erfindungsgemäßen Abgasanlage, die eine Niederdruck-AGR aufweist, und mit einer Einleitung des Kondensates in den Abgaspfad,
Fig. 2: die Brennkraftmaschine mit der Abgasanlage, die eine Niederdruck-AGR aufweist, und mit einer Einleitung des Kondensates in den AGR-Pfad,
Fig. 3: die Brennkraftmaschine mit der Abgasanlage, die eine Niederdruck-AGR aufweist und mit einer Abführung des Kondensates in die Umgebung, Fig. 4: einen Wärmetauscher mit in Abgasströmungsrichtung nachgelagerter Kondensat-Abführungsvorrichtung.
Eine in der Fig. 1 dargestellte Brennkraftmaschine 1 ist mit einem Abgaspfad 2 und einem Frischluftpfad 3 sowie einer Ladeeinrichtung 4 ausgerüstet. Mittels des in dem Abgaspfad 2 strömenden Abgases wird eine Turbine 5 der Ladeeinrichtung 4 angetrieben. Mittels eines Verdichters 6 der Ladeeinrichtung 4 werden die in dem Frischluftpfad 3 strömenden Fluide verdichtet. Somit unterteilt sich der Frischluftpfad 3 in einen Niederdruckbereich 7 und einen Hochdruckbereich 8. In Frischluftströmungsrichtung 9 ist der Niederdruck-Bereich 7 vor dem Verdichter 6 angeordnet und der Hochdruck-Bereich 8 nach dem Verdichter 6. Ebenfalls in Frischluftströmungsrichtung 9 sind im Frischluftpfad 3 nach dem Verdichter 6 ein als Ladeluftkühler ausgebildeter Wärmetauscher 10 und nach dem als Ladeluftkühler ausgebildeten Wärmetauscher 10 ein Drosselelement 1 1 , mit dem die Frischluftzufuhr zur Brennkraftmaschine 1 begrenzt werden kann, angeordnet. Demzufolge herrscht im Frischluftpfad 3 im Niederdruckbereich 7 ein Druck ρΊ und im Hochdruck-Bereich 8 vor dem Drosselelement 1 1 ein Druck und nach dem Drosselelement 11 ein Druck p2s- Im Betrieb der Brennkraftmaschine 1 ist es somit in den meisten Fällen der Druck p2 größer als der Druck p2s und auch größer als der Druck p
Im Abgaspfad 2 kann ein Katalysator 12 angeordnet sein. Üblicherweise kann bei einer in Fig. 1 gezeigten Niederdruck-AGR 13 in Abgasströmungsrichtung 14 nach dem Katalysator 12 an einer Abzweigstelle 15 teilweise Abgas entnommen und über einen AGR-Pfad 16 an einer Einleitungsstelle 17 in den Frischluftpfad 3 eingeleitet werden. Dabei liegt bei der Niederdruck-AGR 13 die Einleitungsstelle 17 in Frischluftströmungsrichtung 9 vor dem Verdichter 6, so dass das rückgeführte Abgas in den Niederdruckbereich 7 des Frischluftpfades 3 eingeleitet wird. Zudem kann an der Abzweigstelle 15 wie in Fig. 1 gezeigt oder im AGR-Pfad 16 ein AGR- Ventil 18 angeordnet sein, mit dem die Menge an rückgeführtem Abgas gesteuert/geregelt werden kann. Des Weiteren kann in dem AGR- Pfad 16 zumindest ein Wärmetauscher 19, der als AGR-Kühler ausgebildet ist, angeordnet sein, mit dem das rückgeführte Abgas gekühlt werden kann.
Nach dem als Ladeluftkühler ausgebildeten Wärmetauscher 10 kann im Frischluftpfad 3 eine Kondensatabführvorrichtung 20 angeordnet sein. Die Kondensatabführvorrichtung 20 ist mit einem Verschlusselement 21 ausgestattet und weist eine Kondensatabführleitung 22 auf. Das Verschlusselement 21 kann als Drosselelement, als Ventil oder derglei- chen ausgebildet sein. Mittels des Verschlusselements 21 kann die Abführung des Kondensates aus einem Kondensatsammelbereich 23 in einen Kondensatabführbereich 24 gesteuert/geregelt werden. Dabei ist der Kondensatsammelbereich 23 mit dem Kondensatabführbereich 24 fluidsch leitend über die Kondensatabführleitung 22 verbunden. In der in der Fig. 1 gezeigten Ausführungsform ist der Kondensatabführbereich 24 im Abgaspfad 2 in Abgasströmungsrichtung 14 nach dem Katalysator 12 und nach dem AGR- Ventil 18 bzw. nach der Abzweigstelle 15 angeordnet. Somit wird das Kondensat derart in den Abgaspfad 2 eingeleitet, dass es nicht mehr in den AGR-Pfad 16 zurückgelangen kann und somit keine Aufkonzentrierung des Kondensates in dem AGR-Pfad 16 stattfindet.
In der in der Fig. 2 gezeigten Ausführungsform wird das gebildete Kondensat über die Kondensatabführleitung 22 in einen Kondensatabführbereich 24' eingeleitet. Dabei liegt der Kondensatabführbereich 24' in Frischluftströmungsrichtung 9 vor dem Verdichter 6.
Gemäß Fig. 3 kann das Kondensat auch an die Umgebung abgegeben werden. Demzufolge ist der Kondensatabführbereich 24" die Umgebung bzw. die Umwelt, wobei in diesem Fall das Kondensat gegen den atmosphärischen Umgebungsdruck bzw. gegen den Normaldruck p0 abgegeben werden muss. Demzufolge muss der Druck p2 größer als der Umgebungsdruck P0 sein, damit das Kondensat in den Kondensatabführbereich 24" abgegeben werden kann. In diesem Fall ist zu berücksichtigen, dass das Kondensat aufgrund seiner Aggressivität und Korrosivität ggf. verdünnt bzw. neutralisiert werden sollte.
Eine in Fig. 4 gezeigte Kondensatabführvorrichtung 20 ist in Frischluftströmungsrichtung 9 nachdem Wärmetauscher 10 angeordnet. Bevorzugt ist dabei der Wärmetauscher 10 schräg gestellt, sodass eventuell in dem Wärmetauscher 10 gebildetes Kondensat vereinfacht zur Kondensatabführvorrichtung 20 ablaufen kann. Demzufolge ist bevorzugt die Kondensatabführvorrichtung 20 am tiefsten Punkt bezüglich des Frischluftpfades 3 und des Wärmetauschers 10 angeordnet. Dabei kann die Kondensatabführvorrichtung 20 zusätzlich zur Kondensatabführleitung 22 und zum Verschlusselement 21 einen Kondensatsammelbereich 23' aufweisen, der in Art eines Sammelbehälters, einer Rohrausbuchtung, einer Rohrversackung oder dergleichen ausgebildet ist. Dies vereinfacht die Kollektierung des Kondensates in dem Kondensatsammelbereich 23' und es ist dadurch vorteilhaft eine Bevorratung des Kondensates in dem Kondensatsammelbereich 23' möglich, sodass das Kondensat bei einem günstigen Druckunterschied zwischen dem Kondensatsammelbereich 23' und den Kondensatabführbereich 24" abgeführt werden kann.
Somit kann eine AGR-Vorrichtung 25 als wesentliche Bestandteile den AGR-Pfad 16, zumindest einem als AGR-Kühler ausgebildeten Wärmetauscher 19 und zumindest ein Verschlusselement 21 aufweisen. Dabei kann das Verschlusselement 21 als
Drosselklappe ausgebildet sein. Als weiteres, wesentliches Bestandteil weist die AGR- Vorrichtung 25 die Kondensatabführvorrichtung 20 auf. Diese
Kondensatabführvorrichtung 25 kann wiederum die Kondensatsammelbereich 23 und die Kondensatabführleitung 22 aufweisen.

Claims

Patentansprüche
Verfahren zur Abführung von Kondensat aus einem AGR-Pfad (AGR - Abgasrückführung) (16) einer Brennkraftmaschine (1), insbesondere eines Kraftfahrzeugs, wobei aufgrund eines Druckunterschiedes zwischen einem in dem AGR-Pfad (16) angeordneten Kondensatsammelbereichs (23) und einem
Kondensatabführbereich (24,24',24") angesammeltes Kondensat zumindest teilweise aus dem Kondensatsammelbereich (23) in den Kondensatabführbereich (24,24',24") abgeführt wird, wenn in dem Kondensatsammelbereich (23) ein höherer Druck herrscht als in dem Kondensatabführbereich (24, 24', 24").
Verfahren nach Anspruch 1 ,
dadurch gekennzeichnet, dass
in einem Volllastbereich und/oder in einem Teillastbereich der Brennkraftmaschine (1 ) durch ein derartig kurzzeitiges Öffnen eines Verschlusselements (21 ), das den Kondensatsammelbereich (23) fluidisch von dem Kondensatabführbereich (24, 24', 24") trennt, das angesammelte Kondensat abgeführt wird, so dass der kurzzeitig auftretende Druckabfall hinsichtlich eines Ladedruckes und/oder hinsichtlich einer Lambda-Regelung vernachlässigbar ist.
Verfahren nach Anspruch 2,
dadurch gekennzeichnet, dass
in einem Teillastbereich das Öffnen des Verschlusselementes (21 ) gleichzeitig zur Abführung des angesammelten Kondensates und zur Entdrosselung der
Brennkraftmaschine (1 ) durchgeführt wird.
AGR-Vorrichtung (25), insbesondere einer Brennkraftmaschine (1 ) mit einer eine Turbine (5) und einen Verdichter (6) aufweisenden Ladeeinrichtung (4), mit zumindest einer Kondensatabführvorrichtung (20) zur Abführung von Kondensat aus einem AGR-Pfad (16) der AGR- Vorrichtung (25), wobei die
Kondensatabführvorrichtung (20) einen in dem AGR-Pfad (16) angeordneten Kondensatsammelbereich (23) und ein vor oder nach einer Abführöffnung angeordnetes Verschlusselement (21 ) aufweist, wobei die AGR- Vorrichtung (25) derart ausgebildet ist, dass aufgrund eines Druckunterschiedes zwischen dem Kondensatsammelbereich (23) und einem Kondensatabführbereich (24, 24', 24") bei Öffnen des Verschlusselementes (21 ) angesammeltes Kondensat von dem
Kondensatsammelbereich (23) in den Kondensatabführbereich (24,24',24") abgeführt wird.
5. AGR-Vorrichtung nach Anspruch 4,
dadurch gekennzeichnet, dass
die AGR-Vorrichtung (25) eine Niederdruck-AGR (13) und/oder eine Hochdruck- AGR aufweist ist.
6. AGR-Vorrichtung nach einem der Ansprüche 4 oder 5,
dadurch gekennzeichnet, dass
eine Steuerungs-/Regelungsvorrichtung vorgesehen ist, die das Öffnen und Schließen des Verschlusselementes (21 ) steuert/regelt.
7. AGR-Vorrichtung nach einem der Ansprüche 4 bis 6,
dadurch gekennzeichnet, dass
zumindest ein Kondensatabführbereich (24,24',24") aus folgender Gruppe ausgewählt ist, der AGR-Pfad (16) vor dem Verdichter (6), ein Abgaspfad (2) nach der Turbine (6), der Abgaspfad (2) nach einem Abgaskatalysator (12), eine außerhalb der AGR-Vorrichtung (25) liegende Umgebung.
8. AGR-Vorrichtung nach einem der Ansprüche 4 bis 7,
dadurch gekennzeichnet, dass
der Kondensatsammelbereich (23) über eine Kondensatabführleitung (22) mit dem Kondensatabführbereich (24,24',24") fluidisch verbunden ist.
9. AGR-Vorrichtung nach einem der Ansprüche 4 bis 8,
dadurch gekennzeichnet, dass die Kondensatabführvorrichtung (20) in Abgasströmungsrichtung (14) vor oder nach einem Drosselelement (11 ) zur Begrenzung der Luftzufuhr zur Brennkraftmaschine (1) angeordnet ist.
10. AGR-Vorrichtung nach einem der Ansprüche 4 bis 9,
dadurch gekennzeichnet, dass
die Kondensatabführvorrichtung (20) in Abgasströmungsrichtung (14) nach dem Verdichter (6) angeordnet ist.
11. AGR-Vorrichtung nach einem der Ansprüche 4 bis 10,
dadurch gekennzeichnet, dass
die Kondensatabführvorrichtung (20) in Abgasströmungsrichtung (14) nach einem Wärmetauscher (10,19) positioniert ist und/oder integral mit dem Wärmetauscher (10,19) ausgebildet ist.
12. AGR-Vorrichtung nach Anspruch 11 ,
dadurch gekennzeichnet, dass
der Wärmetauscher (10,19) ein AGR-Kühler (19) und/oder ein Ladeluftkühler (10) ist.
13. AGR-Vorrichtung nach einem der Ansprüche 4 bis 12,
dadurch gekennzeichnet, dass
in Abgasströmungsrichtung (14) vor der Kondensatabführvorrichtung (20) ein Wasserabscheider angeordnet ist.
14. Abgasanlage, insbesondere eines Kraftfahrzeuges, mit einer AGR-Vorrichtung (25) nach einer der Ansprüche 4 bis 13.
EP11761509.6A 2010-10-14 2011-09-20 Abgasrückführung mit kondensatabführung Ceased EP2627887A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010048465A DE102010048465A1 (de) 2010-10-14 2010-10-14 Abgasrückführung mit Kondensatabführung
PCT/EP2011/004692 WO2012048786A1 (de) 2010-10-14 2011-09-20 Abgasrückführung mit kondensatabführung

Publications (1)

Publication Number Publication Date
EP2627887A1 true EP2627887A1 (de) 2013-08-21

Family

ID=44719832

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11761509.6A Ceased EP2627887A1 (de) 2010-10-14 2011-09-20 Abgasrückführung mit kondensatabführung

Country Status (4)

Country Link
US (1) US20130219886A1 (de)
EP (1) EP2627887A1 (de)
DE (1) DE102010048465A1 (de)
WO (1) WO2012048786A1 (de)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE531841C2 (sv) * 2007-12-07 2009-08-25 Scania Cv Ab Arrangemang och förfarande för återcirkulation av avgaser hos en förbränningsmotor
US9297296B2 (en) * 2012-08-07 2016-03-29 Ford Global Technologies, Llc Method for discharging condensate from a turbocharger arrangement
US9359941B2 (en) 2012-10-17 2016-06-07 Ford Global Technologies, Llc Method for purging condensate from a charge air cooler
US9109505B2 (en) * 2013-08-13 2015-08-18 Ford Global Technologies, Llc Methods and systems for condensation control
US9261051B2 (en) * 2013-08-13 2016-02-16 Ford Global Technologies, Llc Methods and systems for boost control
FR3010447A1 (fr) * 2013-09-12 2015-03-13 Peugeot Citroen Automobiles Sa Systeme de recuperation et d'evacuation de condensat genere par un dispositif equipant un vehicule automobile
JP6049577B2 (ja) * 2013-09-16 2016-12-21 愛三工業株式会社 過給機付きエンジンの排気還流装置
FR3014498B1 (fr) * 2013-12-10 2015-12-25 Peugeot Citroen Automobiles Sa Architecture de moteur thermique comprenant un dispositif d'evacuation de condensats
US10094337B2 (en) 2015-03-10 2018-10-09 Fca Us Llc Dual path cooled exhaust gas recirculation for turbocharged gasoline engines
US20160305374A1 (en) * 2015-04-14 2016-10-20 General Electric Company Method and systems for managing condensate
DE102015009668A1 (de) 2015-07-25 2017-01-26 Daimler Ag Ansaugtrakt für Verbrennungskraftmaschine eines Kraftwagens
DE102016000951A1 (de) 2016-01-28 2017-08-03 Daimler Ag Ansaugtrakt für eine Verbrennungskraftmaschine eines Kraftwagens
CN107013377B (zh) * 2016-01-28 2020-12-29 福特环球技术公司 低压egr阀
DE102016213936A1 (de) * 2016-07-28 2018-02-01 Mahle International Gmbh Brennkraftmaschine mit einem Ladeluftkühler
US11085405B2 (en) 2019-04-04 2021-08-10 GM Global Technology Operations LLC Charge air cooler (CAC) condensate dispersion system and method of dispersing condensate from a CAC
DE102019206448B4 (de) * 2019-05-06 2021-03-18 Ford Global Technologies, Llc Motorsystem
DE102020208983A1 (de) 2020-07-17 2022-01-20 Volkswagen Aktiengesellschaft Brennkraftmaschine mit Abgasrückführleitung und Heizvorrichtung

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6301887B1 (en) * 2000-05-26 2001-10-16 Engelhard Corporation Low pressure EGR system for diesel engines
FR2922961A1 (fr) * 2007-10-24 2009-05-01 Valeo Systemes Thermiques Refroidisseur d'air de suralimentation d'un moteur de vehicule automobile
FR2940366A1 (fr) * 2008-12-22 2010-06-25 Renault Sas Dispositif de traitement d'un melange gazeux pour moteur a combustion interne

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3139594B2 (ja) * 1994-03-29 2001-03-05 日産ディーゼル工業株式会社 Egr用冷却装置
JP2000027715A (ja) * 1998-07-14 2000-01-25 Toyota Autom Loom Works Ltd 過給機付きディーゼルエンジンのegr装置
US6301888B1 (en) * 1999-07-22 2001-10-16 The United States Of America As Represented By The Administrator Of The Environmental Protection Agency Low emission, diesel-cycle engine
US6367256B1 (en) * 2001-03-26 2002-04-09 Detroit Diesel Corporation Exhaust gas recirculation with condensation control
US6748741B2 (en) * 2002-10-23 2004-06-15 Honeywell International Inc. Charge air condensation collection system for engines with exhaust gas recirculation
DE102005008103A1 (de) * 2005-02-21 2006-08-31 Behr Gmbh & Co. Kg Abgasturboladerbrennkraftmaschine
JP4396581B2 (ja) * 2005-06-02 2010-01-13 株式会社デンソー 内燃機関のegr制御装置
DE102005048911A1 (de) * 2005-10-10 2007-04-12 Behr Gmbh & Co. Kg Anordnung zur Rückführung und Kühlung von Abgas einer Brennkraftmaschine
US7281529B2 (en) * 2005-10-17 2007-10-16 International Engine Intellectual Property Company, Llc EGR cooler purging apparatus and method
JP2008002351A (ja) * 2006-06-22 2008-01-10 Toyota Motor Corp 内燃機関の排気還流装置
JP2008088817A (ja) * 2006-09-29 2008-04-17 Hino Motors Ltd Egr装置
US7530336B2 (en) * 2007-07-10 2009-05-12 Deere & Company Intake condensation removal for internal combustion engine
SE531599C2 (sv) 2007-10-08 2009-06-02 Scania Cv Ab Arrangemang och förfarande för återcirkulation av avgaser hos en förbränningsmotor
SE531841C2 (sv) 2007-12-07 2009-08-25 Scania Cv Ab Arrangemang och förfarande för återcirkulation av avgaser hos en förbränningsmotor
US8015809B2 (en) * 2008-02-14 2011-09-13 Dresser, Inc. Recirculation of exhaust gas condensate
JP2009275673A (ja) * 2008-05-16 2009-11-26 Isuzu Motors Ltd Egrシステム及びegrシステムの制御方法
DE102008045685A1 (de) 2008-09-04 2010-09-23 Pierburg Gmbh Ladeluftkühler mit Kondensatablauf
US8418461B2 (en) * 2009-10-06 2013-04-16 International Engine Intellectual Property Company, Llc System and method for condensate removal from EGR system
DE102010007092B4 (de) * 2010-02-06 2019-05-16 Bayerische Motoren Werke Aktiengesellschaft Abgasrückführsystem für eine Brennkraftmaschine
DE102011109221B4 (de) * 2011-08-03 2016-05-12 Mann + Hummel Gmbh Abgasrückführungssystem für eine Brennkraftmaschine
DE102012004368A1 (de) * 2012-03-02 2013-09-05 Daimler Ag Brennkraftmaschine, insbesondere ein Dieselmotor oder ein Ottomotor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6301887B1 (en) * 2000-05-26 2001-10-16 Engelhard Corporation Low pressure EGR system for diesel engines
FR2922961A1 (fr) * 2007-10-24 2009-05-01 Valeo Systemes Thermiques Refroidisseur d'air de suralimentation d'un moteur de vehicule automobile
FR2940366A1 (fr) * 2008-12-22 2010-06-25 Renault Sas Dispositif de traitement d'un melange gazeux pour moteur a combustion interne

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2012048786A1 *

Also Published As

Publication number Publication date
WO2012048786A1 (de) 2012-04-19
US20130219886A1 (en) 2013-08-29
DE102010048465A1 (de) 2012-04-19

Similar Documents

Publication Publication Date Title
EP2627887A1 (de) Abgasrückführung mit kondensatabführung
DE102017200800B4 (de) Verfahren zum Betreiben einer aufgeladenen Brennkraftmaschine mit Ladeluftkühlung
WO2012048784A1 (de) Abgasrückführung mit kondensat-abführung
EP1724453B1 (de) Turboladeranordnung und Verfahren zum Betreiben eines Turboladers
DE102009028354B4 (de) Gasführungssystem für eine Peripherie einer Brennkraftmaschine zur Führung von Gas der Brennkraftmaschine, Brennkraftsystem und Verfahren zum Betrieb der Brennkraftmaschine
DE102017210962B4 (de) Aufgeladene Brennkraftmaschine mit Abgasrückführung und Verfahren zum Betreiben einer derartigen Brennkraftmaschine
DE102018218665B4 (de) Sekundärlufteinspritzsystem
DE102011002553A1 (de) Aufgeladene Brennkraftmaschine und Verfahren zum Betreiben einer derartigen Brennkraftmaschine
DE102011052288A1 (de) Einrichtung und Verfahren zum Steuern eines Niederdruck-Abgasrückführungs(EGR)-Systems
DE102011002552A1 (de) Aufgeladene Brennkraftmaschine und Verfahren zum Betreiben einer derartigen Brennkraftmaschine
DE102008056337A1 (de) Brennkraftmaschine mit Abgasrückführung
DE102012004368A1 (de) Brennkraftmaschine, insbesondere ein Dieselmotor oder ein Ottomotor
DE102010034131A1 (de) Verfahren zur Regelung der Temperatur des Gassystems einer Brennkraftmaschine
DE102017100479A1 (de) Kondensatmanagementsystem für einen abgaskühler und wärmerückgewinnungsvorrichtung
DE102013206690A1 (de) Brennkraftmaschine mit Ladeluftkühler und Abgasrückführung und Verfahren zum Herstellen einer derartigen Brennkraftmaschine
DE202017102032U1 (de) Brennkraftmaschine mit Ladeluftkühlung
EP1926905B1 (de) Wärmetauschersystem und verfahren zum betreiben eines derartigen wärmetauschersystems
DE102010063694B4 (de) Anordnung zum Transport eines gasförmigen Mediums
DE102017210648A1 (de) Kondensatfalle in einem Verdichter-Einlass
DE102015219625B4 (de) Aufgeladene Brennkraftmaschine mit Niederdruck-Abgasrückführung und Verfahren zum Betreiben einer derartigen Brennkraftmaschine
DE102007019089A1 (de) Abgaswärmetauscher, Abgaswärmetauschersystem, Brennkraftmotor und Verfahren zum Behandeln von Abgasen eines Brennkraftmotors
DE102015016030A1 (de) Abgasturbolader für ein Kraftfahrzeug
DE102016200104B4 (de) Reduktion von Kondensat in einem Abgasrückführungssystem
DE102015208684B4 (de) Kraftfahrzeug mit einem Abgasrückführungsstrang und zwei Verdichtern
DE102016013704A1 (de) Verbrennungskraftmaschine für einen Kraftwagen und Verfahren zum Betreiben einer Verbrennungskraftmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130223

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

17Q First examination report despatched

Effective date: 20131212

DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: DE

Ref legal event code: R003

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20150130