EP2625388A1 - Inverseur de poussée - Google Patents
Inverseur de pousséeInfo
- Publication number
- EP2625388A1 EP2625388A1 EP11779789.4A EP11779789A EP2625388A1 EP 2625388 A1 EP2625388 A1 EP 2625388A1 EP 11779789 A EP11779789 A EP 11779789A EP 2625388 A1 EP2625388 A1 EP 2625388A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- front frame
- deflection
- thrust reverser
- flow
- downstream
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D25/00—Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
- F01D25/24—Casings; Casing parts, e.g. diaphragms, casing fastenings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/005—Repairing methods or devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02K—JET-PROPULSION PLANTS
- F02K1/00—Plants characterised by the form or arrangement of the jet pipe or nozzle; Jet pipes or nozzles peculiar thereto
- F02K1/54—Nozzles having means for reversing jet thrust
- F02K1/56—Reversing jet main flow
- F02K1/60—Reversing jet main flow by blocking the rearward discharge by means of pivoted eyelids or clamshells, e.g. target-type reversers
- F02K1/605—Reversing jet main flow by blocking the rearward discharge by means of pivoted eyelids or clamshells, e.g. target-type reversers the aft end of the engine cowling being movable to uncover openings for the reversed flow
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02K—JET-PROPULSION PLANTS
- F02K1/00—Plants characterised by the form or arrangement of the jet pipe or nozzle; Jet pipes or nozzles peculiar thereto
- F02K1/54—Nozzles having means for reversing jet thrust
- F02K1/56—Reversing jet main flow
- F02K1/62—Reversing jet main flow by blocking the rearward discharge by means of flaps
- F02K1/625—Reversing jet main flow by blocking the rearward discharge by means of flaps the aft end of the engine cowling being movable to uncover openings for the reversed flow
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02K—JET-PROPULSION PLANTS
- F02K1/00—Plants characterised by the form or arrangement of the jet pipe or nozzle; Jet pipes or nozzles peculiar thereto
- F02K1/54—Nozzles having means for reversing jet thrust
- F02K1/64—Reversing fan flow
- F02K1/70—Reversing fan flow using thrust reverser flaps or doors mounted on the fan housing
- F02K1/72—Reversing fan flow using thrust reverser flaps or doors mounted on the fan housing the aft end of the fan housing being movable to uncover openings in the fan housing for the reversed flow
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02K—JET-PROPULSION PLANTS
- F02K1/00—Plants characterised by the form or arrangement of the jet pipe or nozzle; Jet pipes or nozzles peculiar thereto
- F02K1/54—Nozzles having means for reversing jet thrust
- F02K1/76—Control or regulation of thrust reversers
- F02K1/766—Control or regulation of thrust reversers with blocking systems or locking devices; Arrangement of locking devices for thrust reversers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2230/00—Manufacture
- F05D2230/80—Repairing, retrofitting or upgrading methods
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2240/00—Components
- F05D2240/10—Stators
- F05D2240/14—Casings or housings protecting or supporting assemblies within
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T50/00—Aeronautics or air transport
- Y02T50/60—Efficient propulsion technologies, e.g. for aircraft
Definitions
- the present invention relates to a thrust reverser of an aircraft propulsion unit.
- An aircraft propulsion unit is formed by a nacelle and a turbojet and is intended to be suspended from a fixed structure of the aircraft, for example under a wing or on the fuselage, by means of a suspended suspension mast. to the turbojet engine or to the nacelle.
- the turbojet engine usually comprises a so-called “upstream” section comprising a fan provided with blades and a so-called “downstream” section housing a gas generator.
- the blades of the fan are surrounded by a housing for mounting said turbojet engine in the nacelle.
- the nacelle for its part, has a generally tubular shape comprising an air inlet upstream of the turbojet, a median section intended to surround the fan of the turbojet engine, as well as a downstream section housing thrust reverser means and intended to to surround the gas generator of the turbojet engine.
- a gas ejection nozzle may extend downstream the thrust reversal means.
- the thrust reversal means improve the braking capacity of the aircraft by redirecting upstream at least a portion of the thrust generated by the turbojet engine.
- the thrust reverser means obstruct the gas ejection nozzle and direct the ejection flow of the engine towards the front of the nacelle, thereby generating a counter-thrust which is added to the braking of the wheels of the aircraft.
- a common structure of thrust reverser means comprises a cowl in which an opening is provided for the deflected flow which, in a situation of direct thrust of the gases, is closed by the sliding cowl and which, in a reverse thrust situation, is released by translational movement downstream (with reference to the direction of flow of gas) of the sliding cover, by means of displacement cylinders, said displacement cylinders being mounted on a front frame upstream of the opening.
- the sliding cowl is most often formed of two semi-cowls, of substantially semicylindrical shape, which are articulated in the upper part on hinges parallel to the direction of translation of the sliding cowl, and which are closed by locks in the lower part.
- This arrangement allows, for maintenance operations, access to the interior of the nacelle, including the turbojet engine or an internal structure of the inverter opening these half-covers.
- this nacelle structure housing the thrust reverser device undergoes aerodynamic axial forces in flight tending to roll back the structure relative to the engine.
- the front frame is linked to the structure of the turbojet engine, and more specifically to the fan case.
- the connection is conventionally performed by a knife / groove system, the maie knife part being generally carried by the front frame while the throat female part is carried by the fan casing.
- Another possible thrust reversal structure comprises an outer assembly in a single part without breaking in the lower part. Such a structure is called structure in O.
- an O-shaped inverter structure it is known to access the interior of the nacelle, and in particular to the turbojet engine or to an internal structure of the inverter by dissociating the external structure of the downstream section of the nacelle of the concentric internal structure of the latter and to translate the external structure downstream in which it simply releases the inversion grids, so as to allow access to the motor body.
- the maintenance between the middle section of the engine and the front frame is made by two female parts generally carried by the front frame and a so-called intermediate housing of the middle section, cooperating with an intermediate piece that is closed on the female part, thus ensuring the connection between the intermediate casing and the front frame of the inverter.
- deflection grids always limit accessibility to the heart of the nacelle. It is therefore necessary to retract them if one wishes to be able to give free access to the heart of the basket.
- Another alternative is to install the grilles on a mobile front frame.
- the front frame is uncoupled from the intermediate casing and the sliding cover assembly, front frame and deflection grids is translated downstream of the nacelle to give access to the motor body.
- the present invention aims to overcome the disadvantages mentioned above.
- An object of the present invention is to provide a thrust reverser simple to implement and use during maintenance operations.
- the invention proposes a thrust reverser for a turbojet engine nacelle comprising at least one fixed front frame adapted to be mounted downstream of a fan casing of said turbojet engine and directly or indirectly supporting at least one flow deflection means. , remarkable in that at least a portion of the flow deflection means is detachable from the front frame and translatable independently of the latter during a maintenance operation of said assembly.
- the flow deflection means and the frame have been associated with the complementary feed / release mechanisms capable of engaging the flow deflection means with the front frame.
- reverse jet and detaching the flow deflection means of the front frame during maintenance of said assembly thereby promoting a connection between the front frame and the optimal reverse jet deflection means including and easily detachable during operations of maintenance.
- the inverter comprises, downstream of the front frame, an outer cowl mounted to be movable in translation along a substantially longitudinal axis of the nacelle, said cowl being capable of driving, once the detached flow deflecting means, into translating the flow deflection means during a maintenance operation.
- the reverser comprises one or more actuators intended to move the cover in translation along a substantially longitudinal axis of the nacelle downstream of the front frame towards at least one thrust reversal position, said hood being able to translate one or more actuators during a maintenance operation, this to provide greater access during maintenance of the assembly.
- the fixed front frame is intended to be mounted downstream of an outer shell of an intermediate casing by a male / female system of the knife / groove type.
- the fixed front frame is intended to be mounted downstream of an outer shell of an intermediate casing, said front frame comprising a deflection edge and a support element either directly or indirectly from the support means. flow deflection, the deflection edge and said support member being integral with the outer shell of the intermediate casing.
- the interface between the front frame and the intermediate casing is thus simplified to the extent that any removable connection is removed between the two elements.
- FIG. 1 is a partial diagrammatic representation of an aircraft propulsion unit comprising one of the aircraft engines comprising a downstream grid thrust reversal structure;
- FIG. 2 is a representation in partial section of an aircraft propulsion unit
- FIG. 3 is a diagrammatic cross-sectional view of a thrust reverser device equipping the nacelle of FIG. 2 according to a first embodiment of the present invention
- FIG. 4 is a diagrammatic sectional view of a thrust reversal device equipping the nacelle of FIG. 2 according to a second embodiment of the present invention
- - Figures 5 and 6 are sectional views of the thrust reverser device of Figure 3 having a thrust reversal cover translated downstream, respectively in the inverted jet position and in the maintenance position;
- FIGS. 7 and 8 are, respectively, longitudinal and perspective sectional views of first and second embodiments of a front frame of the thrust reverser device of FIGS. 3 to 6.
- an aircraft propulsion unit comprises a nacelle 1 of a turbojet engine 2 suspended under a wing (not represented) via an island 3 designed to interface with a mast or pylon (no represent).
- This nacelle 1 is subdivided, conventionally, into an upstream air inlet section, a median section surrounding a blower (not visible) of the rboréacteu r 2 and its housing, and a downstream section housing a thrust reverser device And optionally an end nozzle section.
- the nacelle shown has a downstream section called "O".
- the thrust reverser means 20 may take the form of a movable cowl 21 in longitudinal translation downstream of the nacelle 1 so as to clear an opening in the external downstream structure of the nacelle 1 and discover deflection grids 22 adapted to reorient a portion of the secondary air flow generated by the turbojet engine forward of the nacelle 1 through the opening thus released.
- the thrust reverser device 20 is in position of closure.
- the hood 21 ensures the external aerodynamic continuity of the nacelle 1 with the median section of the nacelle and covers the deflection grids 22.
- the thrust reverser device 20 is shown in the deployed position, that is to say that the outer cover 21 of the downstream section is retracted downstream of the nacelle 1 so as to to release the opening in the outer structure of the nacelle 1 and discover the deflection grids 22 forward of the nacelle 1 through the opening thus released.
- locking flaps 23 ensure the internal aerodynamic continuity of the downstream section with the median section. When the inverter 20 is activated, these flaps 23 pivot to at least partially obstruct the circulation flow of the secondary flow and help its redirection through the deflection grids 22 and the open opening in the external downstream structure of the nacelle 1.
- the retreat of the hood 21 is enough to close the vein.
- the activation of the inverter 20 is conventionally carried out by at least one actuator of the jack type 24 adapted to drive the cover 21 in translation.
- the thrust reverser device 20 comprises at least one fixed front frame 25 closing the thickness of the nacelle 1 upstream of the cover 21 and supporting directly or indirectly at least the flow deflection grids 22.
- front frame 25 in a non-limiting embodiment illustrated in Figure 7, it comprises a front panel 251 for supporting the outer skin of the nacelle, attached to a torsion box 253.
- the shape of the rear of the torsion box 253 provides the aerodynamic deflection edge function.
- An outer ring 255 allows the attachment of torsion box 253 and deflection grids 22.
- the front frame 25 may be made using radial ribs 252 instead of torsion box 253 to stiffen the structure.
- These ribs 252 are placed in the concavity of a deflection edge member 253 of the front frame 25 so as to ensure the aerodynamic line of the front frame 25.
- the front frame 25 is connected at its upstream end to an intermediate casing 40 located at the middle section of the nacelle 1.
- This intermediate casing 40 is connected at its upstream end to an outer fan casing 41 which channels the downstream flow supplied by the fan of the turbojet engine 2 provided with blades 50, designated by the general reference 43.
- This flow also passes through the wheel formed by the intermediate casing 40.
- the blower 43 is rotatably mounted on a fixed hub 44 connected to the fan casing 41 by a plurality of fixed arms 45 which can transmit a portion of the forces between the motor 2 and its support.
- the intermediate casing 40 is a structural element which comprises the hub 44, an annular outer shell 47 which supports the shell of the fan casing 41 and the radial connecting arms 45 which connect the hub 44 to the outer shell 47.
- This intermediate casing 40 may either consist of a single piece, or a welded or bolted assembly of primary parts.
- the front frame 25 is connected to the outer shell 47 of the intermediate casing 40 by knife / groove connection means.
- the intermediate casing 40 integrates in its downstream part and, more specifically, downstream of the outer shell 47, the deflection edge 253 and the elements. forming support of the deflection gratings 22.
- connection between the outer shell 47 of the intermediate casing 40 and the front frame 25 is a complete non-removable connection, that is to say that any mobility is removed between the front frame 25 and the shell 47 .
- This non-removable connection between the front frame 25 and the shell 47 may be riveting, gluing, forced fitting, welding in non-limiting examples of the present invention.
- these may be the outer ring 255 and the torsion box 253.
- the actuating jack or jacks 24 of the cover 21 and the deflection grids 22 are supported on the assembly formed by the front frame 25 and the outer shell 47 of the intermediate casing 40.
- At least one part is detachable from the front frame 25 fixed and translatable independently of the latter during a maintenance operation of the inverter 20.
- the deflection grids 22 are capable of being connected to the front frame 25 in a detachable manner by locking / unlocking means which allow the disengagement of said grids 22 from the front frame 25 and the median section and their downstream translation independently of the frame. before 25.
- the fixed front frame 25 and the removable inversion gates 22 are attached in the operating configuration of the inverter, in the inverted jet phase when the cowl 21 slides downstream of the nacelle 1 and the inversion flaps. 23 obstruct the vein 49, as shown in Figure 5 and in the flight phases.
- the front frame assembly 25 and the intermediate casing 40 form a non-displaceable fixed assembly in a maintenance position while the deflection gratings 22 and the cover 21 form a unitary mobile assembly that can be moved in this position. maintenance position.
- the locking / unlocking means 30 between the deflection gratings 22 and the front frame 25 may be of any type.
- the locking / unlocking means 30 comprise at least one pair of male connectors 31 and female 32, one integral with the front frame assembly 25 / outer shell 47 and the other deflection grids 22 .
- the connectors are arranged in such a way that they cooperate during the flight phases and the inverted jet phases (see FIGS. 3 to 5) joining the deflection grids 22 with the front frame assembly 25 / outer shell 47 of the casing 40 and come off during the maintenance operations illustrated in FIG. 6 to translate the assembly formed by the cover 21 and the deflection means 22.
- the outer shell 47, the torsion box 253 or the edge assembly deflection with its ribs 252 of the front frame 25 are formed in one piece.
- the entire front frame 25 is integrated in the outer shell 47 of the intermediate casing 40 in one piece or not.
- the outer shell 47 of the intermediate casing 40 is integrated with the fan casing 41 alone or with the inner shell of the air inlet structure 48.
- the outer shroud assembly 47 of the intermediate casing 40 and the front frame 25, the flow straightening vanes 46 and / or the hub 44 and / or the connecting arms and the suspension struts are integrated. motor if they are located on the outer shell 47 of the intermediate casing 40.
- the members mentioned in the third and fourth variants are formed of a single structural element.
- outer shell 47 of the intermediate casing 40 and / or the front frame 25 may be made of a composite material.
- the composite material may be selected from materials based on carbon fibers, glass fibers, aramid fibers or a mixture of these materials with a resin.
- This composite material can be obtained by draping pre-impregnated fabrics or by a process called LCM ("Liquid Composite Molding") in which the resin is mixed with dry carbon fabrics or with a woven or braided preform, if appropriate.
- LCM Liquid Composite Molding
- all of the aforementioned members integrated in the outer shell 47 of the intermediate casing that is to say the entire front frame 25, the hub 44, the OGV 46 and the yokes motor suspension, are formed of a single structural element, for example composite material. This makes it possible to obtain a multifunctional part of overall weight that is much lower than all the parts it replaces, and does not require any assembly operation. We gain in structural simplicity as well as in mass.
- the thrust reverser 20 illustrated in FIGS. 3 to 6 is implemented as follows.
- the hood 21 moves from a closed position where it provides aerodynamic continuity with the median section of the nacel 1 at an opening position. downstream of the nacelle 1, this to discover the deflection grids 22 to deflect a portion of the secondary air flow through these grids 22.
- inversion flaps 23 also move during the race of the hood 21 and deploy in the vein 49 of cold flow.
- the locking means 30 are first disengaged between the front frame assembly 22 / outer shell 47 of the intermediate casing 40 and the deflection grilles 22.
- an assembly formed by the hood 21 and the deflection grids 22 can be moved in translation downstream of the nacelle 2 from the closed position of the hood 21 to a maintenance position, either through the actuating cylinders 24 of the cover 21 or by any other suitable means.
- the front frame assembly 25 / outer shell 47 of the intermediate casing 40 meanwhile, remains fixed during this movement.
- the jacks 24 can be translatable to the maintenance position and thus move simultaneously with the hood 21 and the deflection grilles 22.
- the displacement of the cylinders 24 offers the advantage of not impeding access to the engine of the turbojet engine 2.
- the aforementioned maintenance position of the cover 21 may correspond to the position of the inverted jet cover 21 or to a position downstream of the position of the inverted jet cover 21.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
- Wind Motors (AREA)
Abstract
L'invention concerne un inverseur de poussée pour nacelle de turboréacteur comprenant au moins un cadre avant (25) fixe adapté pour être monté en aval d'un carter de soufflante dudit turboréacteur et supportant directement ou indirectement au moins un moyen de déviation (22) de flux caractérisé en ce qu'au moins une partie dudit moyen de déviation (22) de flux est détachable du cadre avant (25) et translatable indépendamment de ce dernier lors d'une opération de maintenance dudit inverseur.
Description
INVERSEUR DE POUSSEE
La présente invention concerne un inverseur de poussée d'un ensemble propulsif d'aéronef.
Un ensemble propulsif d'aéronef est formé par une nacelle et un turboréacteur et est destiné à être suspendu à une structure fixe de l'aéronef, par exemple sous une aile ou sur le fuselage, par l'intermédiaire d'un mât de suspension rattaché au turboréacteur ou à la nacelle.
Le turboréacteur comporte usuellement une section dite « amont » comprenant une soufflante munie d'aubes et une section dite « aval » abritant un générateur de gaz.
Les aubes de la soufflante sont entourées d'un carter permettant de monter ledit turboréacteur dans la nacelle.
La nacelle, quant à elle, présente une forme générale tubulaire comprenant une entrée d'air en amont du turboréacteur, une section médiane destinée à entourer la soufflante du turboréacteur, ainsi qu'une section aval abritant des moyens d'inversion de poussée et destinée à entou rer le générateur de gaz du turboréacteur. Une tuyère d'éjection des gaz peut prolonger en aval les moyens d'inversion de poussée.
Concernant les moyens d'inversion de poussée, ils permettent d'améliorer la capacité de freinage de l'aéronef en redirigeant vers l'amont au moins une partie de la poussée générée par le turboréacteur. En jet inversé, les moyens d'inversion de poussée obstruent la tuyère d'éjection des gaz et dirigent le flux d'éjection du moteur vers l'avant de la nacelle, générant de ce fait une contre-poussée qui vient s'ajouter au freinage des roues de l'aéronef.
Une structure commune de moyens d'inversion de poussée comprend un capot dans lequel est ménagée une ouverture destinée au flux dévié qui, en situation de poussée directe des gaz, est fermée par le capot coulissant et qui, en situation d'inversion de poussée, est dégagée par déplacement en translation vers l'aval (par référence au sens d'écoulement des
gaz) du capot coulissant, au moyen de vérins de déplacement, lesdits vérins de déplacement étant montés sur un cadre avant en amont de l'ouverture.
Le capot coulissant est le plus souvent formé de deux demi-capots, de forme sensiblement hémicylindrique, qui sont articulés en partie supérieure sur des charnières parallèles à la direction de translation du capot coulissant, et qui sont fermés par des verrous en partie inférieure.
Cette disposition permet, pour des opérations de maintenance, d'accéder à l'intérieur de la nacelle, et notamment au turboréacteur ou à une structure interne de l'inverseur en ouvrant ces demi-capots.
Afin de résoudre certains problèmes liés à une ouverture en
« papillon », une ouverture en translation a également été développée.
En tout état de cause, cette structu re de nacelle abritant le dispositif d'inversion de poussée subit en vol des efforts aérodynamiques axiaux tendant à faire reculer la structure par rapport au moteur.
Afin de ne pas reporter ces efforts uniquement sur les points d'attache de la structure d'inverseur à u n mât, le cadre avant, est l ié à la structure du turboréacteur, et plus précisément au carter de soufflante. La liaison s'effectue classiquement par un système couteau / gorge, la partie maie couteau étant généralement portée par le cadre avant tandis que la partie femelle gorge est portée par le carter de soufflante.
Une autre structure d'inversion de poussée possible comprend un ensemble externe en une seule partie sans rupture en partie inférieure. Une telle structure est appelée structure en O.
Lors des opérations de maintenance, dans une structure d'inverseur en O notamment, il est connu d'accéder à l'intérieur de la nacelle, et notamment au turboréacteur ou à une structure interne de l'inverseur en dissociant la structure externe de la section aval de la nacelle de la structure interne concentrique de cette dernière et de translater la structure externe vers l'aval dans laquelle elle dégage simplement les grilles d'inversion, de manière à permettre un accès au corps moteur.
Dans cette structure en O, le maintien entre la section médiane du moteur et le cadre avant est réalisé par deux parties femelles généralement portée par le cadre avant et un carter dit intermédiaire de la section médiane, coopérant avec une pièce intermédiaire venant se refermer sur la partie femelle, assurant ainsi la liaison entre le carter intermédiaire et le cadre avant de l'inverseur.
Quel que soit le mode d'accès de maintenance retenue, structure en C ou structure en O, les grilles de déviation limitent toujours l'accessibilité au cœur de la nacelle. Il est donc nécessaire de les escamoter si l'on souhaite pouvoir donner libre accès au cœur de la nacelle.
Pour ce faire, on connaît certaines réalisations technologiques reposant sur le démontage des grilles pour accéder au capot entourant le corps moteur. Ensuite, le turboréacteur est accessible soit par la présence de trappes, soit en démontant certaines parties du capot.
Une autre alternative consiste à installer les grilles sur un cadre avant mobile. Lors des opérations de maintenance, le cadre avant est désaccouplé du carter intermédiaire et l'ensemble capot coulissant, cadre avant et grilles de déviation est translaté en aval de la nacelle pour donner l'accès au corps moteur.
Quel que soit le mode d'accès de maintenance retenu, de telles manipulations sont longues, peu aisées, et de plus impliquent d'installer des éléments de désaccou plement dans des zones fortement sol l icitées structurellement.
L'accessibilité au moteur est également fastidieuse.
La présente invention vise à pallier les inconvénients précédemment mentionnés.
Un but de la présente invention est de proposer un inverseur de poussée simple à mettre en œuvre et à utiliser lors d'opérations de maintenance.
A cet effet, l'invention propose un inverseur de poussée pour nacelle de turboréacteur comprenant au moins un cadre avant fixe adapté pour être monté en aval d'un carter de soufflante dudit turboréacteur et supportant directement ou indirectement au moins un moyen de déviation de flux, remarquable en ce qu'au moins une partie du moyen de déviation de flux est détachable du cadre avant et translatable indépendamment de ce dernier lors d'une opération de maintenance dudit ensemble.
Ceci offre l'avantage de supprimer tout dépôt des moyens de déviation lors des opérations de maintenance et accélère ces dernières.
De manière avantageuse, le moyen de déviation de flux et le cadre ava n t co m p re n n e n t d es m oye n s d e ve rro u i l l ag e/d éve rro u i l l ag e complémentaires aptes à engager le moyen de déviation de flux avec le cadre avant en jet inversé et à détacher le moyen de déviation de flux du cadre avant lors d'une maintenance dudit ensemble, favorisant, ainsi, une liaison entre le cadre avant et le moyen de déviation optimale en jet inversé notamment et, facilement détachable lors des opérations de maintenance.
Avantageusement, l'inverseur comprend, en aval du cadre avant, un capot externe monté mobile en translation le long d'un axe sensiblement longitudinal de la nacelle, ledit capot étant apte à entraîner, une fois le moyen de déviation de flux détachés, en translation le moyen de déviation de flux lors d'une opération de maintenance.
Ceci offre l'avantage de simplifier les dispositifs supplémentaires nécessaires pour les opérations de maintenance.
De man ière préférentielle, l'inverseu r com prend u n ou des actionneurs destinés à déplacer le capot en translation le long d'un axe sensiblement longitudinal de la nacelle en aval du cadre avant vers au moins une position d'inversion de poussée, ledit capot étant apte à entraîner en translation un ou des actionneurs lors d'une opération de maintenance, ceci permettant d'offrir un accès plus important lors de la maintenance de l'ensemble.
Dans une variante de réalisation, le cadre avant fixe est destiné à être monté en aval d 'u ne virole externe d'un carter interméd iaire par un système mâle / femelle du type couteau / gorge.
Dans une autre variante de réalisation, le cadre avant fixe est destiné à être monté en aval d'une virole externe d'un carter intermédiaire, ledit cadre avant comprenant un bord de déviation et un élément formant support d irectement ou ind irectement du moyen de déviation de fl ux, le bord de déviation et ledit élément formant support étant intégrés à la virole externe du carter intermédiaire. L'interface entre le cadre avant et le carter intermédiaire est ainsi simplifiée dans la mesure où toute liaison démontable est supprimée entre les deux éléments.
En outre, la diminution du nombre de pièces à cette interface permet de réduire la masse de la nacelle et les coûts de production associés mais également de réduire la longueur de cette dernière.
Par ailleurs, on supprime tout jeu entre le cadre avant et le carter intermédiaire, favorisant de meilleures performances aérodynamiques.
La présente invention sera mieux comprise à la lumière de la description détaillée qui suit en regard des dessins annexés dans lesquels :
- la figure 1 est une représentation schématique partielle d'un ensemble propulsif d'aéronef com prenant u ne nacel le de tu rboréacteu r comprenant une structure aval d'inversion de poussée à grilles;
- la figu re 2 est une représentation en coupe partielle d'un ensemble propulsif d'aéronef ;
- la figure 3 est une vue schématique en coupe d'un dispositif d'inversion de poussée équ ipant la nacelle de la figure 2 selon un premier mode de réalisation de la présente invention ;
- la figure 4 est vu e schématique en coupe d'un dispositif d'inversion de poussée équ ipant la nacelle de la figure 2 selon un second mode de réalisation de la présente invention ;
- les figures 5 et 6 sont des vues en coupe du dispositif d'inversion de poussée de la figure 3 présentant un capot d'inversion de poussée translaté vers l'aval, respectivement en position de jet inversé et en position de maintenance ;
- les figures 7 et 8 sont, respectivement, des vues en coupe longitudinale et en perspective d'une première et d'une seconde variantes de réalisation d'un cadre avant du dispositif d'inversion de poussée des figures 3 à 6.
Su r l 'ensem ble de ces figu res, des références identiques ou analogues désignent des organes ou ensembles d'organes identiques ou analogues.
En référence à la figure 1 , un ensemble propulsif d'aéronef comprend une nacelle 1 de turboréacteur 2 suspendue sous une aile (non représentée) par l'intermédiaire d'un îlot 3 destiné à servir d'interface avec un mât ou pylône (non représenté).
Cette nacelle 1 se subdivise, classiquement, en une section amont d'entrée d'air, une section médiane entourant une soufflante (non visible) du tu rboréacteu r 2 et son carter, et une section aval abritant un dispositif d'inversion de poussée 20 et éventuellement une section de tuyère terminale.
La nacelle représentée possède une section aval dite en « O ».
Comme illustré sur les figures 3 ou 4, les moyens d'inversion de poussée 20 peuvent prendre la forme d'un capot mobile 21 en translation longitudinale vers l'aval de la nacelle 1 de manière à dégager une ouverture dans la structure aval externe de la nacelle 1 et découvrir des grilles de déviation 22 aptes à réorienter une partie du flux d'air secondaire généré par le turboréacteur vers l'avant de la nacelle 1 à travers l'ouverture ainsi dégagée.
Sur la figu re 3, le dispositif d'inversion de poussée 20 est en pos ition de fermetu re . Da n s ce cas , l e capot 21 assu re l a conti n u ité aérodynamique externe de la nacelle 1 avec la section médiane de la nacelle et recouvre les grilles de déviations 22.
Sur la figure 1 , en revanche, le dispositif d'inversion de poussée 20 est représenté en position déployée, c'est-à-dire que le capot externe 21 de la section aval est reculé vers l'aval de la nacelle 1 de manière à dégager l'ouverture dans la structure externe de la nacelle 1 et découvrir les grilles de déviation 22 vers l'avant de la nacelle 1 à travers l'ouverture ainsi dégagée.
Dans une variante de réalisation illustrée notamment sur les figures 3 et 4, des volets de blocage 23 assurent la continuité aérodynamique interne de la section aval avec la section médiane. Lorsque l'inverseur 20 est activé, ces volets 23 pivotent pour venir obstruer au moins partiellement la veine de circulation du flux secondaire et aider à sa redirection à travers les grilles de déviation 22 et l'ouverture dégagée dans la structure aval externe de la nacelle 1 .
Ces volets de blocage 23 ne sont pas toujours nécessaires.
En particulier, dans certaines configurations le recul du capot 21 suffit à obturer la veine.
L'activation de l'inverseur 20 est classiquement effectuée par au moins un actionneur de type vérin 24 apte à entraîner en translation le capot 21 .
Par ailleurs, le dispositif d'inversion de poussée 20 comprend au moins un cadre avant 25 fixe fermant l'épaisseur de la nacelle 1 en amont du capot 21 et supportant directement ou indirectement au moins les grilles de déviation de flux 22.
Concernant le cadre avant 25, dans une variante de réalisation non limitative illustrée sur la figure 7, il comprend un panneau avant 251 destiné à supporter la peau externe de la nacelle, fixé à un caisson de torsion 253.
Dans l'exemple donné, la forme de l'arrière du caisson de torsion 253 assure la fonction aérodynamique de bord de déviation.
Un anneau externe 255 permet la fixation du caisson de torsion 253 et des grilles de déviation 22.
Dans une autre variante de réal isation illustrée sur la figure 8, le cadre avant 25 peut être réalisé en utilisant des nervures 252 radiales au lieu d'un caisson de torsion 253 pour raidir la structure.
Ces nervures 252 sont mises en place dans la concavité d'un élément 253 formant bord de déviation du cadre avant 25 de façon à assurer la ligne aérodynamique du cadre avant 25.
En référence aux figures 2 à 4 notamment, le cadre avant 25 est relié à son extrémité amont à un carter intermédiaire 40 appartement à la section médiane de la nacelle 1 .
Ce carter intermédiaire 40 est relié à son extrémité amont à un carter extérieur de soufflante 41 qui canal ise vers l'aval le flux secondaire délivré par la soufflante du turboréacteur 2 munie d'aubes 50, désignée par la référence générale 43.
Ce flux traverse également la roue formée par le carter intermédiaire 40.
La soufflante 43 est montée rotative sur un moyeu fixe 44 relié au carter de soufflante 41 par une pluralité de bras fixes 45 qui peuvent transmettre une partie des efforts entre le moteur 2 et son support.
En amont de ces bras fixes 45, entre le rotor de la soufflante 43 et les bras 45 se trouvent des aubes de redressement de flux 46, appelées aussi OGV (acronyme de « Outlet Guide Vanes »), permettant de redresser le flux secondaire engendré par la soufflante 43 et éventuellement de transmettre les efforts vers le carter de soufflante 41 .
Le carter intermédiaire 40 est un élément structural qui comprend le moyeu 44, une virole externe annulaire 47 qui supporte la virole du carter de soufflante 41 et les bras 45 de liaison radiaux qui relient le moyeu 44 à la virole externe 47.
Il peut avoir une fonction structurale dans la mesure où les efforts sont transmis par son intermédiaire en particulier les moyens de fixation du moteur, s'ils ont accrochés sur ce carter, à la structure de l'aéronef dans la partie avant sont solidaires du carter intermédiaire 40.
Ce carter intermédiaire 40 peut soit être constitué d'une seule pièce monobloc, soit d'un assemblage soudé ou boulonné de pièces primaires.
Dans un prem ier mode de réalisation du cadre avant 25 fixe, le cadre avant 25 est relié à la virole externe 47 du carter intermédiaire 40 par des moyens de liaison de type couteau/gorge.
Dans un second mode de réalisation du cadre avant 25 fixe, illustré sur les figures 3 à 6, le carter intermédiaire 40 intègre dans sa partie aval et, plus précisément, en aval de la virole externe 47, le bord de déviation 253 et les éléments formant support des grilles de déviation 22.
Par intégré, on entend que la liaison entre la virole externe 47 du carter intermédiaire 40 et le cadre avant 25 est une liaison non démontable complète, c'est-à- dire que toute mobilité est supprimée entre le cadre avant 25 et la virole 47.
Cette liaison non démontable entre le cadre avant 25 et la virole 47 peut être de type rivetage, collage, emmanchement forcé, soudage dans des exemples non limitatifs de la présente invention.
Concernant les éléments formant support des grilles de déviation, ceux-ci peuvent être l'anneau externe 255 et le caisson de torsion 253.
Par ailleurs, en référence aux figures 3 à 6, le ou les vérins d'actionnement 24 du capot 21 et les grilles de déviation 22 sont supportés sur l 'ensemble formé par le cadre avant 25 et la virole externe 47 du carter intermédiaire 40.
Selon l'invention, concernant les grilles de déviation de flux 22, au moins u ne partie est détachable d u cadre avant 25 fixe et transl atabl e indépendamment de ce dern ier lors d 'u ne opération de maintenance de l'inverseur 20.
Les grilles de déviation 22 sont aptes à être liées au cadre avant 25 de manière détachable par des moyens de verrouillage/déverrouillage qui permettent le désengagement desdites grilles 22 du cadre avant 25 et de la section médiane et leur translation vers l'aval indépendamment du cadre avant 25.
Ainsi, le cadre avant 25 fixe et les grilles d'inversion 22 amovibles sont rattachés en configuration de fonctionnement de l'inverseur, en phase de jet inversé lorsque le capot 21 coulisse vers l'aval de la nacelle 1 et les volets d'inversion 23 obstruent la veine 49, comme illustré sur la figure 5 et dans les phases de vol.
Elles peuvent être séparées, lors d'une opération de maintenance, pour permettre une translation des grilles 22 avec le capot 21 vers l'aval de la nacelle 1 jusque dans une configuration de maintenance dans laquelle un accès est ainsi ouvert au moteur et à la structure interne de l'inverseur 20, comme illustré sur la figure 6.
Ainsi, sur cette figure 6, on observe que l'ensemble cadre avant 25 et carter intermédiaire 40 forme un ensemble fixe non déplaçable dans une position de maintenance tandis que les grilles de déviation 22 et le capot 21 forme un ensemble mobile unitaire déplaçable dans cette position de maintenance.
Les moyens de verrouillage/déverrouillage 30 entre les grilles de déviation 22 et le cadre avant 25 pourront être de tout type.
Dans une variante de réalisation, les moyens de verrouillage/déverrouillage 30 comprennent au moins un couple de connecteurs mâle 31 et femelle 32, l'un solidaire de l'ensemble cadre avant 25/virole externe 47 et l'autre des grilles de déviation 22.
Les connecteurs sont disposés de telle sorte qu'ils coopèrent pendant les phases de vol et les phases de jet inversé (voir figures 3 à 5) solidarisant les grilles de déviation 22 avec l'ensemble cadre avant 25/virole externe 47 du carter 40 et se détachent lors des opérations de maintenance illustrées sur la figure 6 pour translater l'ensemble formé par le capot 21 et les moyens de déviation 22.
Par ailleurs, concernant la liaison entre le cadre avant fixe 25 et la virole externe 47 du carter intermédiaire 40, dans une première variante de réalisation, la virole externe 47, le caisson de torsion 253 ou l'ensemble bord
de déviation avec ses nervures 252 du cadre avant 25 sont formés d'une seule pièce.
Dans une seconde variante de réalisation, la totalité du cadre avant 25 est intégré à la virole externe 47 du carter intermédiaire 40 en une seule pièce ou non.
Dans une troisième variante de réalisation, on intègre, à la virole externe 47 du carter intermédiaire 40 le carter de soufflante 41 seul ou avec la virole interne de la structure d'entrée d'air 48.
Dans une quatrième variante de réalisation, on intègre à l'ensemble virole externe 47 du carter intermédiaire 40 et cadre avant 25, les aubes de redressement de flux 46 et/ou le moyeu 44 et/ ou les bras de liaison et les chapes de suspension moteur si elles sont situées sur la virole externe 47 du carter intermédiaire 40.
Dans une cinquième variante de réalisation, les organes mentionnés aux troisième et quatrième variantes sont formés d'un élément structural unique.
Par ailleurs, la virole externe 47 du carter intermédiaire 40 et/ou le cadre avant 25 peuvent être réalisés dans un matériau composite.
Le matériau composite peut être choisi parmi des matériaux à base de fibres de carbone, de fibres de verre, de fibres d'aramide ou un mélange de ces matériaux avec une résine.
Ce matériau composite peut être obtenu par drapage de tissus préimprégnés ou par un procédé dit LCM (« Liquid Composite Molding ») dans lequel la résine est mélangée à des tissus secs de carbone ou à une préforme tissée ou tressée, le cas échéant.
De man ière encore pl us préférée, l 'ensem ble des organes susmentionnés intégrés à la virole externe 47 du carter intermédiaire, c'est-à- dire la totalité du cadre avant 25, le moyeu 44, les OGV 46 et les chapes de suspension moteur, sont formés d'un élément structural unique, par exemple en matériau composite.
Ceci permet d'obtenir une pièce multifonction de poids global très inférieur à l'ensemble des pièces qu'elle remplace, et ne nécessitant aucune opération d'assemblage. On gagne en simplicité structurelle ainsi qu'en masse.
En outre, il n'est plus nécessaire d'avoir des fixations au niveau du bord de déviation 253 du cadre avant 25 si bien que les pertes de charge aérodynamiques sont diminuées.
L'inverseur de poussée 20 illustré sur les figures 3 à 6 est mis en œuvre de la façon suivante.
Lors d'une inversion de poussée, illustrée sur la figure 5, le capot 21 se déplace d'une position de fermeture où il assure la continuité aérodynam ique avec la section méd iane d e la nacel le 1 à u n e pos ition d'ouvertu re en aval de la nacelle 1 , ceci afin de découvrir les grilles de déviation 22 pour dévier une partie du flux d'air secondaire à travers ces grilles 22.
Par ailleurs, les volets d'inversion 23 se déplacent également lors de la course du capot 21 et se déploient dans la veine 49 de flux froid.
Lors d'une opération de maintenance illustré sur la figure 6, on désengage, tout d'abord, les moyens de verrouillage 30 entre l'ensemble cadre avant 22/virole externe 47 du carter intermédiaire 40 et les grilles de déviation 22.
En référence aux figures 5 à 6, une fois ces éléments détachés, un ensemble formé par le capot 21 et les grilles de déviation 22 peut être déplacé en translation vers l'aval de la nacelle 2 de la position de fermeture du capot 21 à une position de maintenance, soit grâce aux vérins d'actionnement 24 du capot 21 soit par tout autre moyen adapté.
L'ensemble cadre avant 25/virole externe 47 du carter intermédiaire 40, quant à lui, reste fixe durant ce déplacement.
Dans une première variante de réalisation, il en est de même pour les vérins d'actionnement qui restent fixes.
Toutefois, dans une seconde variante de réalisation, les vérins 24 peuvent être translatables vers la position de maintenance et ainsi se déplacer simultanément avec le capot 21 et les grilles de déviation 22.
Le déplacement des vérins 24 offre l'avantage de ne pas gêner l'accès au moteur du turboréacteur 2.
Les différents déplacements terminés, une ouverture est alors dégagée, ce qui permet à toute personne d'accéder notamment à la structure interne fixe de la nacelle 1 ou au corps du moteur.
Il est à noter que la position de maintenance susmentionnée du capot 21 peut correspondre à la position du capot 21 en jet inversé ou à une position en aval de la position du capot 21 en jet inversé.
Dans ce dernier cas, un recul supplémentaire du capot 21 peut-être rendu possible par une surcourse des vérins 24 ou par des moyens adaptés pour déconnecter les vérins 24 du capot et faire coulisser le capot 21 par tout moyen adapté.
Bien que l'invention ait été décrite avec des exemples particuliers de réalisation, il est bien évident qu'elle n'y est nullement limitée et qu'elle comprend tous les équivalents techniques des moyens décrits ainsi que leurs combinaisons si celles-ci entrent dans le cadre de l'invention.
Claims
1 . Inverseur de poussée pour nacel le de turboréacteur comprenant au moins un cadre avant (25) fixe, adapté pour être monté en aval d'un carter de soufflante (41 ) du turboréacteur et supportant, directement ou indirectement, des grilles de déviation de flux (22), caractérisé en ce qu'il comprend, en outre, des moyens pour détacher au moins une partie des grilles de déviation de flux (22) du cadre avant (25) et des moyens pour translater, indépendamment du cadre avant, lesdites grilles de déviation de flux (22), lors d'une opération de maintenance de l'inverseur.
2. Inverseur de poussée selon la revendication 1 , caractérisé en ce q ue le moyen de déviation (22) de fl ux et le cad re avant (25) comprennent des moyens de verrouillage/déverrouillage (30) complémentaires aptes à engager le moyen de déviation (22) de flux avec le cadre avant (25) en jet inversé et à détacher le moyen de déviation (22) de flux du cadre avant (25) lors d'une maintenance dudit ensemble.
3. Inverseur de poussée selon l'une des revendications 1 à 2, caractérisé en ce qu'il comprend, en aval du cadre avant, un capot externe (21 ) monté mobile en translation le long d'un axe sensiblement longitudinal de la nacelle, ledit capot (21 ) étant apte à entraîner, une fois le moyen de déviation (22) de flux détaché, en translation le moyen de déviation (22) de flux lors d'une opération de maintenance.
4. Inverseur de poussée selon la revendication 3, caractérisé en ce qu'il comprend un ou des actionneurs destinés à déplacer le capot (21 ) en translation le long d'un axe sensiblement longitudinal de la nacelle en aval du cadre avant (25) vers au moins une position d'inversion de poussée, ledit capot (21 ) étant apte à entraîner en translation un ou des actionneurs lors d'une opération de maintenance.
5. Inverseur de poussée selon la revendication 1 caractérisé en ce que le cadre avant fixe (25) est destiné à être monté en aval d'une virole externe (47) d'un carter intermédiaire (40) par un système mâle/femelle du type couteau/gorge.
6. Inverseur de poussée selon la revendication 1 caractérisé en ce que le cadre avant fixe (25) est destiné à être monté en aval d'une virole externe (47) d'un carter intermédiaire (40), ledit cadre avant comprenant un bord de déviation et un élément formant support directement ou indirectement du moyen de déviation de flux, le bord de déviation et ledit élément formant support étant intégrés à la virole externe (47) du carter intermédiaire (40).
7. Nacelle comprenant un inverseur de poussée selon l'une des revendications 1 à 6.
8. Procédé de maintenance d'un inverseur de poussée selon l ' u ne des revend ication s 1 à 7 d ans leq uel , lors d 'u ne opération de maintenance dudit inverseur, on détache au moins une partie des grilles de déviation de flux (22) du cadre avant (25) et on translate, indépendamment du cadre avant, lesdites grilles de déviation de flux (22) en aval de l'inverseur.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1057999A FR2965589B1 (fr) | 2010-10-04 | 2010-10-04 | Inverseur de poussee |
PCT/FR2011/052308 WO2012045970A1 (fr) | 2010-10-04 | 2011-10-04 | Inverseur de poussée |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2625388A1 true EP2625388A1 (fr) | 2013-08-14 |
Family
ID=43983765
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP11779789.4A Withdrawn EP2625388A1 (fr) | 2010-10-04 | 2011-10-04 | Inverseur de poussée |
Country Status (8)
Country | Link |
---|---|
US (1) | US8899013B2 (fr) |
EP (1) | EP2625388A1 (fr) |
CN (1) | CN103154435B (fr) |
BR (1) | BR112013005384A2 (fr) |
CA (1) | CA2810204A1 (fr) |
FR (1) | FR2965589B1 (fr) |
RU (1) | RU2013119073A (fr) |
WO (1) | WO2012045970A1 (fr) |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2981989B1 (fr) * | 2011-10-31 | 2013-11-01 | Aircelle Sa | Inverseur de poussee a grilles mobiles et capot mobile monobloc |
FR2991670B1 (fr) | 2012-06-12 | 2014-06-20 | Aircelle Sa | Inverseur de poussee a grilles retractables et tuyere variable |
FR2995026B1 (fr) | 2012-09-03 | 2019-06-07 | Safran Nacelles | Cadre avant pour une structure d'inverseur de poussee a grilles de deviation |
US9212624B2 (en) * | 2013-05-06 | 2015-12-15 | Rohr, Inc. | Aircraft nacelles, cascade assemblies having coupling catches, and thrust reverser systems |
US20160076484A1 (en) * | 2013-06-07 | 2016-03-17 | Aircelle | Turbojet engine nacelle thrust reverser comprising cascades secured to the mobile cowls |
US20150107222A1 (en) * | 2013-10-18 | 2015-04-23 | Rohr, Inc. | Thrust reverser fan ramp partially formed on aft end of fan case |
US9869190B2 (en) | 2014-05-30 | 2018-01-16 | General Electric Company | Variable-pitch rotor with remote counterweights |
US10309343B2 (en) | 2014-11-06 | 2019-06-04 | Rohr, Inc. | Split sleeve hidden door thrust reverser |
US10072510B2 (en) | 2014-11-21 | 2018-09-11 | General Electric Company | Variable pitch fan for gas turbine engine and method of assembling the same |
US10100653B2 (en) | 2015-10-08 | 2018-10-16 | General Electric Company | Variable pitch fan blade retention system |
US10514004B2 (en) | 2015-12-14 | 2019-12-24 | Rohr, Inc. | Cascade assembly for a thrust reverser of an aircraft nacelle |
US10428764B2 (en) | 2016-02-10 | 2019-10-01 | Rohr, Inc. | Deflection limiter for a cascade assembly of a thrust reverser |
US10605198B2 (en) | 2016-04-15 | 2020-03-31 | Rohr, Inc. | Nacelle thrust reverser |
FR3075885B1 (fr) | 2017-12-21 | 2020-01-10 | Safran Aircraft Engines | Turboreacteur equipe d'un actionneur a double effet, pouvant etre utilise pour commander une inversion de poussee |
FR3078108B1 (fr) * | 2018-02-20 | 2020-01-31 | Safran Nacelles | Ensemble propulsif comportant des points de levage disposes sur des supports de verins d’inverseur de poussee |
US11674435B2 (en) | 2021-06-29 | 2023-06-13 | General Electric Company | Levered counterweight feathering system |
US11795964B2 (en) | 2021-07-16 | 2023-10-24 | General Electric Company | Levered counterweight feathering system |
FR3141216A1 (fr) * | 2022-10-24 | 2024-04-26 | Airbus Operations | Turboréacteur double flux comportant des déflecteurs mobiles et un système d’actionnement des déflecteurs |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2758161B1 (fr) * | 1997-01-09 | 1999-02-05 | Hispano Suiza Sa | Inverseur de poussee a grilles a installation de verin de commande optimisee |
FR2849113B1 (fr) * | 2002-12-24 | 2005-02-04 | Hurel Hispano | Inverseur de poussee a grilles de deflection optimisees |
US6824101B2 (en) * | 2003-02-17 | 2004-11-30 | The Boeing Company | Apparatus and method for mounting a cascade support ring to a thrust reverser |
US20060145001A1 (en) * | 2004-12-30 | 2006-07-06 | Smith Matthew C | Fan cowl door elimination |
FR2911372B1 (fr) * | 2007-01-15 | 2009-02-27 | Aircelle Sa | Inverseur de poussee translatable pour moteur a reaction |
FR2912378B1 (fr) * | 2007-02-14 | 2009-03-20 | Aircelle Sa | Nacelle de moteur a reaction pour un avion |
US8201390B2 (en) * | 2007-12-12 | 2012-06-19 | Spirit Aerosystems, Inc. | Partial cascade thrust reverser |
US8109466B2 (en) * | 2008-06-23 | 2012-02-07 | Rohr, Inc. | Thrust reverser cascade assembly and AFT cascade ring with flow deflector portion |
FR2965588B1 (fr) * | 2010-10-04 | 2015-05-01 | Aircelle Sa | Ensemble propulsif d'aeronef |
-
2010
- 2010-10-04 FR FR1057999A patent/FR2965589B1/fr active Active
-
2011
- 2011-10-04 CA CA2810204A patent/CA2810204A1/fr not_active Abandoned
- 2011-10-04 RU RU2013119073/06A patent/RU2013119073A/ru unknown
- 2011-10-04 BR BR112013005384A patent/BR112013005384A2/pt not_active IP Right Cessation
- 2011-10-04 EP EP11779789.4A patent/EP2625388A1/fr not_active Withdrawn
- 2011-10-04 WO PCT/FR2011/052308 patent/WO2012045970A1/fr active Application Filing
- 2011-10-04 CN CN201180047681.1A patent/CN103154435B/zh active Active
-
2013
- 2013-04-03 US US13/855,947 patent/US8899013B2/en active Active
Non-Patent Citations (1)
Title |
---|
See references of WO2012045970A1 * |
Also Published As
Publication number | Publication date |
---|---|
FR2965589A1 (fr) | 2012-04-06 |
US8899013B2 (en) | 2014-12-02 |
CA2810204A1 (fr) | 2012-04-12 |
US20130280031A1 (en) | 2013-10-24 |
CN103154435A (zh) | 2013-06-12 |
FR2965589B1 (fr) | 2015-05-15 |
BR112013005384A2 (pt) | 2016-06-07 |
RU2013119073A (ru) | 2014-11-20 |
WO2012045970A1 (fr) | 2012-04-12 |
CN103154435B (zh) | 2015-09-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2625388A1 (fr) | Inverseur de poussée | |
EP2501920B1 (fr) | Inverseur de poussée | |
EP2129901B1 (fr) | Inverseur de poussee pour moteur a reaction | |
EP2773861B1 (fr) | Inverseur de poussée à grilles mobiles et capot mobile monobloc | |
EP1905689B1 (fr) | Système propusif intégré comportant un moteur à turboreacteur à double flux | |
EP0960051B1 (fr) | Ensemble propulseur a capots de soufflante munis de securites de maintien et de positionnement, pour aeronef | |
EP2931607B1 (fr) | Ensemble propulsif pour aéronef | |
FR2922059A1 (fr) | Actionneur lineaire telescopique double action a systeme d'entrainement a moteur unique | |
CA2811481A1 (fr) | Ensemble propulsif d'aeronef | |
EP3191368B1 (fr) | Ensemble propulsif pour aéronef et procédé d'ouverture d'un capot mobile dudit ensemble propulsif | |
EP2509870B1 (fr) | Ensemble arrière de nacelle pour turboréacteur | |
WO2020115382A1 (fr) | Ensemble moteur pour aeronef presentant un support de systeme d'echangeur air-huile a fixation optimisee | |
WO2019162610A1 (fr) | Ensemble propulsif comportant des points de levage disposés sur des supports de vérins d'inverseur de poussée | |
EP3724481A1 (fr) | Ensemble propulsif pour aéronef comportant un caisson d'assemblage six heures | |
EP2917109A1 (fr) | Nacelle pour turboreacteur comprenant un ensemble unitaire mobile le long d'un ensemble de guidage | |
EP2841340B1 (fr) | Nacelle de turboréacteur à section aval | |
EP4288652A1 (fr) | Inverseur de poussee comprenant des grilles et des capots mobiles assembles par embrevement | |
CA2882726A1 (fr) | Cadre avant pour une structure d'inverseur de poussee a grilles de deviation | |
WO2024069110A1 (fr) | Inverseur de poussee comprenant un systeme ameliore de deplacement de la structure mobile vers sa position reculee d'inversion de poussee | |
WO2024069111A1 (fr) | Inverseur de poussee comprenant un systeme ameliore de deplacement de la structure mobile vers sa position reculee d'inversion de poussee | |
FR3132545A1 (fr) | Ensemble propulsif pour aeronef comprenant un inverseur de poussee a grilles mobiles et a actionneur monte de maniere optimisee |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20130410 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20170503 |