EP2622986B1 - Elektrischer Haarglätter - Google Patents

Elektrischer Haarglätter Download PDF

Info

Publication number
EP2622986B1
EP2622986B1 EP13152116.3A EP13152116A EP2622986B1 EP 2622986 B1 EP2622986 B1 EP 2622986B1 EP 13152116 A EP13152116 A EP 13152116A EP 2622986 B1 EP2622986 B1 EP 2622986B1
Authority
EP
European Patent Office
Prior art keywords
resistance
electric
contact
hair straightener
heating plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP13152116.3A
Other languages
English (en)
French (fr)
Other versions
EP2622986A2 (de
EP2622986A3 (de
Inventor
Daniela Blischke
Thomas Copitzky
Christian Hafer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BSH Hausgeraete GmbH
Original Assignee
BSH Hausgeraete GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BSH Hausgeraete GmbH filed Critical BSH Hausgeraete GmbH
Publication of EP2622986A2 publication Critical patent/EP2622986A2/de
Publication of EP2622986A3 publication Critical patent/EP2622986A3/de
Application granted granted Critical
Publication of EP2622986B1 publication Critical patent/EP2622986B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A45HAND OR TRAVELLING ARTICLES
    • A45DHAIRDRESSING OR SHAVING EQUIPMENT; EQUIPMENT FOR COSMETICS OR COSMETIC TREATMENTS, e.g. FOR MANICURING OR PEDICURING
    • A45D2/00Hair-curling or hair-waving appliances ; Appliances for hair dressing treatment not otherwise provided for
    • A45D2/001Hair straightening appliances
    • AHUMAN NECESSITIES
    • A45HAND OR TRAVELLING ARTICLES
    • A45DHAIRDRESSING OR SHAVING EQUIPMENT; EQUIPMENT FOR COSMETICS OR COSMETIC TREATMENTS, e.g. FOR MANICURING OR PEDICURING
    • A45D1/00Curling-tongs, i.e. tongs for use when hot; Curling-irons, i.e. irons for use when hot; Accessories therefor
    • A45D1/02Curling-tongs, i.e. tongs for use when hot; Curling-irons, i.e. irons for use when hot; Accessories therefor with means for internal heating, e.g. by liquid fuel
    • A45D1/04Curling-tongs, i.e. tongs for use when hot; Curling-irons, i.e. irons for use when hot; Accessories therefor with means for internal heating, e.g. by liquid fuel by electricity

Definitions

  • Embodiments relate to an electric hair straightener, which is often referred to as Straightener.
  • Hair straighteners which are often referred to as Straightener, are well known and serve, as the name suggests, for smoothing, for example, wavy hair.
  • the smoothness effect is achieved, inter alia, by heating the hair, wherein the heating is caused by one or more heat sources.
  • the material of the continuous casting profile here is usually an aluminum alloy, which has a high thermal conductivity, which depends on the exact alloy composition.
  • electrical heating plates which are based for example on a glass, a ceramic or a glass ceramic.
  • Electric hair straighteners typically further comprise an electrical circuit, for example, for controlling or for supplying energy to the heating plate or the Serve heating plates. These are typically arranged outside of the heating plates, so spaced therefrom and connected via an electrical supply line with the one or more electric heating plates. The contacting of the electrical leads with the heating plates moves here in a field of tension, which is determined on the one hand from manufacturing costs, mechanical stability, reliability, overall visual impression and other boundary conditions.
  • a hair straightener with a heating plate which consists of several layers. The layers are joined together by pressure lamination. On one of these layers, a resistance heater is applied by screen printing before the pressure lamination. The resistance heater includes terminals to which cables are soldered.
  • a hair care device in particular a hair straightener with at least one heated plate known, which has a printed on it heating element.
  • the plate consists of ceramic material. Terminal contacts are provided as part of the printed heating element to allow electrical connection to the heating element.
  • a styling bar for effecting a curling state of hair strands which comprises a flexible and preferably flexible resistance heating element.
  • An embodiment of an electric hair straightener comprises an electric heating plate having a substantially two-dimensional electrical resistance structure.
  • the hair straightener further comprises an electrical circuit arranged outside the heating plate and a first electrical contact structure and a second electrical contact structure different from the first contact structure, which are arranged on the heating plate and provide an electrically conductive connection of the resistance structure with the electrical circuit via an electrical supply line.
  • An embodiment of an electric hair straightener is based on the finding that by providing the first and the second electrical contact structure, an electrical connection between the electric heating plate and the electrical circuit arranged outside the electric heating plate can be created. Embodiments thus relate to an electrical contacting of two-dimensional radiators on heating plates of hair straighteners.
  • the electrical circuit which is arranged outside the heating plate, in this case does not necessarily represent a complete electrical circuit. Rather, it may, if appropriate, comprise only individual, possibly even only a single component of an electrical circuit.
  • the electrical circuit can comprise an electrical switch, a display element, that is to say for example a light-emitting diode or a potentiometer, or, if appropriate, also consist entirely of the abovementioned components.
  • the electrical circuit can be connected to one or more other electrical circuits or components in addition to the electrical heating plate.
  • the circuit may be connected to an electrical supply line which is provided with a mains plug and via which the electric hair straightener can be supplied with electrical energy.
  • the first and / or the second electrical contact structure can provide the electrical connection via the supply line with the resistance structure such that the supply line extends beyond a plane defined by the resistance structure.
  • a plane is defined by the substantially two-dimensional implementation of the resistance structure.
  • the electrical supply line For example, it may include a wire, a leaf spring, or another electrically conductive structure that is at least partially in the third dimension as compared to the two-dimensional electrical structure.
  • the first and / or the second contact structure may comprise a soldering and / or an electrically conductive bonding of the supply line to the resistance structure.
  • the first and / or the second contact structure can thus also provide a mechanical connection of the electrical supply line to the electrical heating plate. This can, for example, allow a certain mechanical displacement of the electric heating plate in the interior of the electric hair straightener with a suitable design of the electrical supply line, without the electrical connection between the supply line and resistor structure is interrupted. As a result, mechanical stresses, for example vibrations or a mechanical force during operation on the electric heating plate can be compensated if necessary.
  • the soldering can be done here, for example, using classical solders, but possibly also with materials that are used in the context of the heating plate and / or the electrical contact structure.
  • An electrically conductive bond can be carried out, for example, based on one-, two- or multi-component synthetic resins or solvent-based or solvent-free paints, which an electrically conductive filler, for example silver, gold, carbon, copper, tin, nickel, platinum, palladium or bronze admixed or added is.
  • the soldering and / or the electrically conductive bonding thus creates an at least partially cohesive and at the same time electrically conductive connection between the supply line and the electrical resistance structure.
  • the first and / or the second contact structure comprises an electrical spring contact which is electrically connected to the supply line.
  • the resistor structure includes a contact surface electrically connected thereto, the spring contact causing a force and being in contact with the contact surface by the force so as to provide electrical connection to the resistor structure.
  • the spring contact may comprise a leaf spring and / or a spring contact pin.
  • a spring contact pin may in this case comprise, for example, a spring element and a contact surface electrically connected to the supply line, which is designed to be brought into contact with the contact surface of the resistance structure.
  • the contact surface can be formed, for example, by an electrically conductive sleeve which at least partially surrounds the spring element.
  • the heating plate may comprise at least one mechanical attachment structure configured to mechanically connect with a mechanical connection element of the first and / or second contact structure.
  • the connecting element can in this case be mechanically connected to the supply line and at least partially configured to be electrically conductive in order to create the electrical connection to the resistance structure with the resistance structure.
  • the attachment structure may comprise a recess in the heating plate, for example a blind hole, a bore, a threaded blind hole and / or a threaded bore and / or a projection, for example a pin and / or a threaded pin.
  • the connecting element may comprise an electrically contactable connecting element, for example a screw connection, a clamping element and / or a sleeve.
  • the resistance structure may comprise an electrically conductive, two-dimensionally structured resistance layer.
  • the electrical connection can be efficiently implemented by means of the first and the second contact structure.
  • the resistive layer may include or consist of tin oxide, zinc oxide, doped tin oxide, doped zinc oxide, graphite, graphene and / or carbon nanotubes (CNT).
  • a layer thickness of the resistive layer may be at most 100 ⁇ m. In other embodiments, it may be at most 50 ⁇ m, at most 20 ⁇ m, at most 10 ⁇ m, at most 5 ⁇ m, at most 3 ⁇ m, at most 1000 nm, at most 500 nm, at most 300 nm, at most 200 nm, at most 100 nm, or at most 50 nm.
  • the exact layer thickness can in this case of the used Material, the intended heating power, the available electrical voltage, the geometry of the resistor structure and other parameters. In other embodiments, however, larger thicknesses than 100 .mu.m may also be used.
  • the resistance structure comprises an electrically conductive, two-dimensionally structured resistance layer
  • the resistance structure can at least one location, at which the first and / or the second contact structure causes the electrical connection to the resistance structure, a direct on comprise the resistor layer applied further resistive layer.
  • the further resistance layer can thus be used as a contact surface or contact layer, in order to allow easier and / or improved contacting of the resistance layer.
  • the further resistive layer may have a lower electrical resistance in a plane defined by the resistive structure than an equally large area of the resistive layer.
  • the further resistance layer may be used to achieve a better distribution of an electrical current fed or drawn off via the first and / or second contact structure.
  • an improved distribution of the current flow can be achieved by connecting the further resistance layer in parallel through the further resistance layer at least at these locations.
  • the further resistance layer may in this case be interrupted between the locations at which the first and the second contact structure brings about the electrical connection to the resistance structure, so that the resistance layer is not completely short-circuited by the further resistance layer.
  • the heating plate may include an electrically insulating substrate, for example, a ceramic substrate, a glass-ceramic substrate, a glass substrate, or a quartz glass substrate having a main surface, and the resistance structure is directly applied to the main surface.
  • a substrate is understood to mean a volume-like material which enables a mechanical stabilization of the resistance structure. Defining boundaries is therefore the substrate in particular of a coating or a thin layer, such as may comprise the resistance structure, for example.
  • an optically pleasing, possibly mechanically stable and / or safety-relevant implementation of an electric hair straightener may possibly be possible.
  • the main surface of the substrate may constitute a main surface of the heating plate.
  • the resistance structure can thus be applied directly to the main surface of the heating plate or of the substrate. As a result, a production of the hair straightener can optionally be simplified.
  • the major surface of the substrate may independently extend parallel to the above-defined plane defined by the substantially two-dimensional resistance structure.
  • the resistor structure may include at least three first resistor sections extending in parallel, each of which directly electrically connects two first resistor sections through a second resistor section, the second resistor sections being connected to the first resistor sections at an angle other than 0 ° ,
  • the first resistor sections can optionally be designed to be rectilinear or curved.
  • the resistance structure may also comprise a spiral resistance section.
  • the resistance structure can thus be configured to be at least partially meander-shaped and / or spiral-shaped on the basis of an angular or a round shape. In this way, if appropriate, a particularly efficient distribution of the heat-producing resistance sections on the surface of the heating element can be produced, which may be advantageous especially for substrates with a non-optimal thermal conductivity.
  • the electrical lead to the first and / or the second contact structure may comprise a wire or a leaf spring.
  • Exemplary embodiments of an electric hair straightener can thus make possible, with simple structural and cost-effective means, an easier and / or more resistant connection of an electrical connection between a substantially two-dimensional electrical resistance structure of an electrical heating plate and an electrical circuit arranged outside the same. If appropriate, this can be visually pleasing and / or robust.
  • Fig. 1 shows a schematic representation of an electric hair straightener 100 according to an embodiment, which is also referred to as Straightener.
  • the hair straightener 100 has two arms 120-1 and 120-2, which are pivotable relative to one another about a hinge 110, on each of which an electric heating plate 130-1 and 130-2, which is also referred to as a smoothing plate, are arranged.
  • the two heating plates 130 are in this case arranged such that they are opposite each other at a pivoting together of the two arms 120, so that between these hair can be introduced, which should be smoothed by a heat effect of the electric heating plates 130.
  • the heating plates 130 here each have a substrate 140-1, 140-2, which is or can be made of an electrically insulating material, for example.
  • the substrates 140 may thus be made, for example, of a ceramic, for example of a glass ceramic, but also of a glass, for example a quartz glass, consist.
  • the substrates 140 are in this case designed such that they form mechanically stable objects that can impart mechanical stability to other structures. They thus differ in particular from coatings and layers.
  • the substrates 140 and the heating plates 130 each have a front side 150-1 and 150-2, which are arranged and aligned so that the hair of a user of the electric hair straightener between the two front sides 150 are inserted during operation can.
  • the front sides 150 of the two heating plates 130 and their substrates are so designed substantially flush with a housing of the arms 120 or stand out about this so out so that the hair can be brought into contact with the front sides 150 of the heating plates 130.
  • the heating plates 130 also each have a rear side, which coincide with main surfaces 160-1, 160-2 of the two substrates 140-1, 140-2 in the embodiment shown here. These are opposite to the front sides 150 and facing an interior of each arm 120.
  • the substrates 140 in this case form both the front sides 150 and the main surfaces 160, ie the rear sides of the respective heating plates 130.
  • the main surfaces 160 thus also represent those of the substrates 140.
  • the main surface 160 of the substrate 140 can also be separated from the front surface 160. or rear side of the heating plate 130 may be different.
  • the heating plates 130 furthermore each have an electrical resistance structure 170 - 1, 170 - 2, which is configured substantially two-dimensionally and has an electrically conductive design.
  • the electrical resistance structure 170 can thus be realized, for example, on the basis of an electrically conductive, two-dimensionally structured resistance layer 180-1, 180-2 or comprise this.
  • the resistive layers 180 may thus comprise, for example, tin oxide or zinc oxide, preferably in doped form, graphite, graphene and / or carbon nanotubes (CNT). However, they can also be made of other materials.
  • the resistive layers 180 each have a layer thickness which is adapted to the exact operating conditions of the resistive structures 170.
  • the layer thicknesses of the resistive layers 180 thus go next to a geometric one Embodiment of the resistor structures 170, the choice of materials and the same other parameters in the realized resistance value of the electrical resistance structure 170 a.
  • the electrical resistance values of the resistor structures 170 are determined accordingly. In other words, based on the voltages applied to the electrical resistance patterns 170, an intended heating power of the corresponding heating plate 130, and the exact geometry of the resistance structure 170, the layer thickness of the resistance layer 180 is determined.
  • the layer thickness may be limited to at most 50 ⁇ m, at most 20 ⁇ m, at most 10 ⁇ m, at most 5 ⁇ m, at most 3 ⁇ m or at most 1000 nm and below.
  • the layer thickness may be, for example, at most 500 nm, at most 300 nm, at most 200 nm, at most 100 nm, or even at most 50 nm.
  • the heating plates 130 each have a first contact structure 190-1 or 190-1 'and a second electrical contact structure 190-2 or 190-2', which are arranged on the heating plate 130.
  • the contact structures 190 are designed in such a way that they allow an electrically conductive connection between the respective resistance structures 170 and an electrical circuit 200 arranged outside the heating plate 130 via an electrical supply line 210.
  • the electrical circuit 200 does not necessarily form a complete circuit. Rather, it may also comprise only part of a circuit, possibly even only a single electrical switching component.
  • the electrical circuit 200 may thus comprise, for example, only a switch, a potentiometer or a display, for example a light-emitting diode.
  • the electrical contact structures 190 are in the in Fig. 1 shown embodiment of an electric hair straightener 100 configured such that the supply line 210 extends beyond a defined by the resistive structures 170 level.
  • the plane concerned corresponds to the plane of the corresponding resistance layers 180 due to the essentially two-dimensional configuration of the resistance structures 170. Since the resistance layers 180 are here on of the main surface 160 of the substrates 140 and the heating plates 130, the plane is also substantially coincident with the main surface 160 of the respective heating plates 130.
  • the supply line 210 which connects the resistance structure 170-2 of the heating plate 130-2 to the circuit 200, in this case runs over the hinge 110.
  • Today hairglätterrichplatten is used in conventional electric hair straighteners largely consisting of a continuous casting, in which a heater, usually a ceramic heater or a PTC thermistor (positive temperature coefficient) is pressed.
  • the material of the continuous casting profile is usually an aluminum alloy, which has a high thermal conductivity with values of about 200 W / (m ⁇ K), the exact value of which may depend on the alloy composition.
  • comparable configurations can also be used for hair straightener hotplates made of ceramic or glass ceramic.
  • ceramic, glass ceramic and glasses have a much lower thermal conductivity compared to aluminum alloys, which is only about 1 W / (m ⁇ K) in some cases.
  • the heating ie the electrical resistance structure 170, directly on the underside, the main surface 160 of the substrates 140, that is to say the plates 130, for example to place.
  • the resistance structures can then be produced from coatings which, depending on the heating conductor material, can be a few nanometers to a few 10 .mu.m thick and can be applied, for example, as part of a thin-film or thick-film process.
  • these resistor structures 170 are configured substantially two-dimensional, for example, implemented on the basis of an electrically conductive, two-dimensionally structured resistor layer 180.
  • the first and second contact structures 190 are used for this purpose.
  • the basic structure of such a heating system (resistance structure 170) on the Haarglättereuerumblen Wegseite so includes a coating having an electrical resistance value, whereby this coating is heated when current flows.
  • These coatings can, for. As tin oxide or zinc oxide layers, which are often doped with other chemical elements. Likewise, graphite, graphene or CNT-containing coatings can be used.
  • Starting and ending point of the corresponding resistive coating ie the points or locations at which the current is fed or subtracted, can hereby preferably be formed by contact surfaces.
  • These contact surfaces are preferably made of highly electrically conductive materials, for example, with a high proportion of silver and / or copper in contact. However, the implementation of such contact surfaces is optional.
  • these contact surfaces can be applied by a screen-printing method or another two-dimensional structuring technique of the thin-film or thick-film technique.
  • an electric hair straightener 100 may also be implemented with only a single heating plate 130, for example, provided only in one of the arms 120 concerned.
  • the arms 120 need as little, as in Fig. 1 is hinted to be formally matched to each other. They can be different from each other.
  • FIG. 2 shows a plan view of the main surface 160 of a heating plate 130 and of the substrate 140 behind it.
  • the electrical resistance structure 170 in this case has a first contact surface 220-1 and a second contact surface 220-2, via which the current is fed to heat up the resistance structure 170 can be deducted.
  • the two contact surfaces 220 are in the in Fig. 2 shown embodiment of a heating plate 130 via a meandering resistance structure connected with each other. This has a plurality of first resistance sections 230-1, ..., 230-5, which are interconnected by second resistance sections 240-1, ..., 240-4.
  • first resistor sections 230 are electrically connected to each other by a second resistor section 240, with the second resistor sections 240 opening into the first resistor sections 230 at an angle different from 0 °.
  • the second resistance portions 240 and the first resistance portions 230 are substantially interconnected by right angles, ie by angles of substantially 90 °.
  • the corresponding angles may be different, for example, a corresponding resistor structure 170 may be implemented based on a hexagonal geometry.
  • the number of the parallel straight line first connecting portions 230 and the number of the corresponding second connecting portions 240 can be varied.
  • the resistance structure 170 has only at least three corresponding first resistance sections 230.
  • the second resistance sections do not have to be implemented in a straight line by far, but can for example be bent.
  • the first resistance portions 230 may be performed bent accordingly, provided that they are parallel to each other. For example, these can not only be found in the Fig. 2 shown straight lines, ie as sections of mathematical lines, but also in the form of waves or other curved structures are implemented.
  • Fig. 3 shows a further heating plate 130 according to an embodiment or its underlying substrate 140. Also on this heating plate 130, an electrical resistance structure 170 has been implemented on a main surface 160, which connects two contact surfaces 220-1 and 220-2 together. Unlike the in Fig. 2 However, this embodiment shown is configured spiral and not meandering. For the sake of completeness, it should be mentioned at this point that it is also possible to implement a helical resistance structure 170 based on an angular or straight line first and second resistance sections 230, 240.
  • Fig. 4 shows a cross-sectional view through a heating plate 130, as can be used in an electric hair straightener 100 according to an embodiment used.
  • the heating plate 130 has, as already associated with Fig. 1 has been described, a substrate 140 on which on a main surface 160, an electrical resistance structure 170 is arranged.
  • the main surface 160 is the main surface of the substrate 140, which simultaneously forms the main surface 130 of the heating plate.
  • the substrate 140 or the heating plate 130 further has a front side 150, to which, during the later operation of the electric hair straightener 100, for example, the hair of the user or the user can be guided along.
  • the electrical resistance structure 170 is formed directly or directly on the main surface 160 of the substrate 140. Due to the electrical insulation property of the substrate 140, therefore, an additional layer for electrical insulation of the resistor structure 170 can be omitted.
  • the electrical resistance structure 170 includes a resistive layer 180 that may include any of the foregoing materials.
  • the resistance layer 180 is embodied as an electrically conductive, two-dimensionally structured resistance layer.
  • the substrate 140 is typically designed as an electrically insulating substrate, so that this touching or contacting the user with the electrical resistance structure 170, which is also referred to as a heat conductor layer, is prevented.
  • the substrate 140 can be made, for example, from a ceramic, for example, a glass ceramic, or from a glass, that is, for example, from a quartz glass, or can consist of this.
  • the electrical resistance structure 170 comprises in the in Fig. 4 shown layer system further comprises a further resistive layer 250 which is applied directly to the resistive layer 180.
  • the further resistance layer 250 here forms the contact surface 220, via which the electrical contacting of the resistance structure 170 can take place.
  • the further resistance layer 250 is thus arranged at at least one location at which the first and / or the second contact structure 190 are arranged.
  • the contact structure 190 is in this case Fig. 4 not shown why it is in the representation in Fig. 4 is only a schematic structure of the heating plate 130 in cross section.
  • the further resistance layer 250 has a lower electrical resistance value parallel to the main surface 160 than an equally large area of the resistance layer 180. This makes it possible for an electrical current introduced into the resistance structure 170 via the contact surface 220 to be essentially parallel to the main surface 160 distribute the further resistive layer 250 before the current is introduced into and transferred through the resistive layer 180.
  • the resistance layer 180 ie the heat conductor layer
  • the resistance layer 250 is often made of a material which has a comparatively high electrical resistance value, for example tin oxide or zinc oxide (preferably doped), graphite, graphene or carbon nanotubes
  • the further resistance layer 250 is often made of one material manufactured, which has a higher electrical conductivity.
  • the corresponding material of the further resistance layer may comprise a higher proportion of silver, copper or another material.
  • the contact surfaces 220 and / or the further resistance layer 250, just like the resistance layer 180, can also be applied, for example, by means of a screen-printing method or another method of the thin-film or thick-film technique.
  • the contact surfaces 220 preferably have a high layer thickness compared to the resistive coating of the resistive layer 180 in order to reliably ensure a good current flow within the contact surfaces 220 and to be able to conduct the current as uniformly as possible to the resistive coating 180.
  • a heating plate 130 it may be advisable to perform the further resistance layer 250 such that it between the locations where the first and the second contact structure 190 causes the electrical connection to the resistance structure 170, to interrupt. This may make it possible to avoid or prevent a short circuit of the electrical resistance layer 180.
  • FIG. Fig. 1 shown circuit 200 to electrically connect.
  • FIG. 5 shows Fig. 5 an embodiment of a heating plate 130, in which, in contrast to the in Fig. 4 shown layer structure the contact surface 220 is an electrical lead 210 applied by means of a solder 260.
  • solders for example, solders 260 tuned to the corresponding material pairings of the resistance layer 180, the further resistance layer 250 and the electrical supply line 210 can be used. These may be, for example, conventional solders, but it may also be used other materials, such as the material from which the contact surface 220 is made, so for example, the material of the further resistive layer 250. In other embodiments may optionally also a Implementation of the further resistive layer 250 is omitted, so that in such a case, the contact surface 220 is formed directly through the resistive layer 180.
  • the electrical supply line 210 serves in this case the Stromzu- or -abschreib and may for example comprise a wire or a leaf spring.
  • Fig. 5 shows a contact structure 190, which is realized on the basis of a solder connection between the contact surface 220 and the electrical supply line 210 forming wire.
  • the contact surface 220 in the context of the contact structure 190 can also be implemented, for example, with a leaf spring, for example made of a silver foil.
  • a leaf spring thus allows in principle an additional strain relief of the overall system, wherein to improve a connection between the leaf spring and the corresponding contact surface, the leaf spring may also have one or more holes to allow additional mechanical clamping.
  • the supply line 210 can also be formed as part of the contact structure 190 by means of an electrically conductive bond or comprise this.
  • the electrical supply line 210 can be mechanically and electrically fixed in the context of the contact structure 190, for example by means of an electrically conductive adhesive, wherein the adhesive can be adjusted with respect to its material pairing of the materials used of the supply line 210 and the material of the contact surface 220 to a corresponding warranty the electrical conductivity of the overall structure and a corresponding To allow temperature resistance.
  • other requirements may be taken into account when selecting the materials to be used.
  • electrically conductive adhesives for example, one- or two-component synthetic resins or solvent-based or solvent-free paints can be used, to which a corresponding electrically conductive filler material is attached.
  • suitable filling materials are silver, gold, carbon, copper, tin, nickel, platinum, palladium or bronze.
  • the lead 210 can be attached to the contact surface 220 by means of conductive silver.
  • Fig. 6 shows a cross-sectional view through a heating plate 130 according to an embodiment in which the supply line 210 is formed by means of a spring-contact connection with the resistor structure 170.
  • the contact structure 190 comprises an electrical spring contact 270.
  • the spring contact 270 is in this case designed such that it is in contact with the contact surface 220 of the resistance structure 170 by a force brought about by the spring contact 270 such that the electrical connection between the supply line 210 and the resistance structure 170 is created.
  • the spring contact 270 is designed as a spring contact pin or contact pin unit, which comprises a spring element 280 and a contact surface 290 electrically connected to the supply line.
  • the contact surface 290 is hereby designed to be brought into contact with the contact surface 220 of the resistance structure 170.
  • the contact surface 290 is in this case formed by a sleeve 300, in the interior of which the spring element 280 is arranged in the form of a spring.
  • the spring element 280 is in this case electrically connected to the electrical supply line 210.
  • the electrical contact of the contact surface 290, so the sleeve 300, in this case takes place via a contacting contact between the spring element 280 and the sleeve 300th
  • the contact structure 190 in the form of a spring contact so the power feed component or Stromabzugskomponente by means of acting as a spring spring element 280 on the Contact surface 220 pressed.
  • the sleeve 300 at least partially surrounds the spring element 280.
  • Fig. 6 shows an embodiment in which a spring contact pin or a component which is modeled after a spring contact pin is used
  • a leaf spring can also be used. It makes sense to design the components on the material side so that they conduct the current well. It may therefore be advisable, if appropriate, to manufacture the sleeve 300 and / or the spring element 280 from a material which forms a good electrical conductivity with the material of the contact surface 220.
  • Fig. 7 shows a cross-sectional view through a further heating plate 130 according to an embodiment, in which the contact structure 190 by means of a mechanical fastening structure 310 and a connecting element 320 takes place. More specifically, this is a screw contact connection, as described in more detail below.
  • the heating plate has at least one mechanical fastening structure 310, which on or in the substrate 140 in the in Fig. 7 shown embodiment is formed.
  • the mechanical fastening structure 310 is in this case designed in such a way as to create a mechanical connection with the mechanical connecting element 320 of the contact structure 190, which likewise makes possible an electrical connection.
  • the connecting element 320 is in this case mechanically connected to the supply line 210 and at least partially designed to be electrically conductive in order to provide the electrical connection to the supply line 210 with the resistance structure 170.
  • the attachment structure 310 is configured as a threaded blind hole 330 in the substrate 140, which extends from the main surface 160 into this.
  • a screw 340 which is connected to the supply line 210 extends.
  • the screw 340 also extends through the further resistance layer 250 and the resistance structure 180.
  • FIG. 14 shows such an embodiment in which the contact structure 190 comprises a screwed connection element.
  • the contact structure 190 comprises a screwed connection element.
  • a thread has been introduced into the substrate 140, via which, for example, wires of the feed line 210 can then be screwed to the connecting element 320, clamped or soldered there.
  • the contact structure 190 is designed here as a screwed contact, in which the supply line 210 can be connected, for example with the aid of a cable lug with the screw 340.
  • attachment structure 310 and connectors 320 may also be used.
  • the attachment structure 310 can be implemented as a blind hole, bore or threaded hole.
  • the connecting element 320 can also be designed as a clamping element. This may make it possible to use a clamped, clipped or latched connection element 320.
  • a heating plate 130 it may be possible to interchange the "positive” and “negative” structures.
  • the mechanical fastening structure in such a way that it comprises a projection, for example a pin or a threaded pin, which extends beyond the contact surface 220, for example.
  • a raised wire is implemented on the contact surface 220, via which a sleeve connected to the power line wire, that is to say the lead 210, can be slipped.
  • the connecting element 320 which is connected to the feed line 210, would in this case comprise, for example, the aforementioned sleeve.
  • connection techniques can be combined. So it may be possible, for example, in the Fig. 6 or 7 shown contact structures 190 additionally provided with a soldering. Further combinations, for example the combination of a mechanical fastening structure and a corresponding connecting element together with a spring contact, can optionally be implemented.
  • Embodiments of an electric hair straightener 100 thus make it possible to electrically contact two-dimensional resistor structures 170, ie corresponding heaters on hair straightener heating plates 130. If appropriate, they can allow a more stable connection of the two-dimensional resistance structures 170 to the third dimension of the power supply components, ie the leads 210; two dimensions are defined by the substantially two-dimensional configuration of the electrical resistance structure 170. This may make it possible, if necessary, to ensure a more reliable feed of the flow of current into the heater, that is to say into the resistance structure 170.
  • an electric hair straightener 100 according to an exemplary embodiment also develop a mechanical damping effect, so that this or its contact structures 190 can support the storage of the heating plate 130.
  • Exemplary embodiments of an electric hair straightener can thus make possible, with simple structural and cost-effective means, an easier and / or more resistant connection of an electrical connection between a substantially two-dimensional electrical resistance structure of an electrical heating plate and an electrical circuit arranged outside the same. If appropriate, this can be visually pleasing and / or robust.

Landscapes

  • Resistance Heating (AREA)

Description

    Hintergrund der Erfindung
  • Ausführungsbeispiele beziehen sich auf einen elektrischen Haarglätter, der häufig auch als Straightener bezeichnet wird.
  • Stand der Technik
  • Haarglätter, die häufig auch als Straightener bezeichnet werden, sind hinlänglich bekannt und dienen, wie bereits der Name verrät, zum Glätten von beispielsweise gewellten Haaren. Der Glätteffekt wird hierbei unter anderem durch ein Erwärmen der Haare erzielt, wobei das Erwärmen von einer oder mehreren Wärmquellen hervorgerufen wird.
  • Viele Haarglätter basieren auf einem zangenartigen Aufbau, der zwei schwenkbar zueinander gelagerte Arme aufweist. In wenigstens einem, häufig in beiden Armen des Haarglätters ist dann eine elektrische Heizplatte integriert, die als die zuvor erwähnte Wärmequelle dient. Ein Großteil der heute gebräuchlichen Haarglätterheizplatten besteht hierbei aus einem Stranggussprofil, in welches eine Heizung, beispielsweise ein Keramikheizkörper oder ein Kaltleiter-Heizkörper (PTC-Heizkörper, PTC = Positive Temperature Coefficient) verpresst wird. Das Material des Stranggussprofils ist hierbei meist eine Aluminiumlegierung, die eine hohe Wärmeleitfähigkeit aufweist, die von der genauen Legierungszusammensetzung abhängt.
  • Aus unterschiedlichen Gründen, denen beispielsweise die Betriebssicherheit, optische und designtechnische aber auch andere technische Erwägungen zugrunde liegen, besteht eine Tendenz darin, elektrische Heizplatten einzusetzen, welche beispielsweise auf einem Glas, einer Keramik oder einer Glaskeramik basieren.
  • Elektrische Haarglätter umfassen typischerweise ferner eine elektrische Schaltung, die beispielsweise zur Steuerung oder auch zur Energieversorgung der Heizplatte oder der Heizplatten dienen. Diese sind typischerweise außerhalb der Heizplatten, also räumlich beabstandet von diesen angeordnet und über eine elektrische Zuleitung mit der oder den elektrischen Heizplatten verbunden. Die Kontaktierung der elektrischen Zuleitungen mit den Heizplatten bewegt sich hierbei in einem Spannungsfeld, das einerseits aus Herstellungskosten, mechanischer Stabilität, Betriebssicherheit, optischem Gesamteindruck und weiterer Randbedingungen bestimmt ist.
  • Aus der DE 10 2007 002879 A1 ist ein Haarglätter mit einer Heizplatte bekannt, welche aus mehreren Schichten besteht. Die Schichten werden durch Drucklaminierung zusammengefügt. Auf eine dieser Schichten wird vor der Drucklaminierung eine Widerstandsheizeinrichtung durch Siebdruck aufgebracht. Die Widerstandsheizung umfasst Klemmen, an welche Kabel angelötet werden.
  • Aus der DE 60200 4013 162T A ist ein Haarpflegegerät, insbesondere einen Haarglätter mit mindestens einer beheizten Platte bekannt, welche ein auf sie gedrucktes Heizelement besitzt. Die Platte besteht dabei aus keramischem Material. Anschluss-Kontakte sind dabei als Teil des gedruckten Heizelements vorgesehen, um eine elektrische Verbindung mit dem Heizelement zu ermöglichen.
  • Aus der EP 0 218 797 A2 ist ein Frisierstab zum Bewirken eines Lockenzustands von Haarsträhnen bekannt, der ein biegsames und vorzugsweise flexibles Widerstandsheizelement aufweist.
  • Der Erfindung zugrunde liegende Aufgabe
  • Es besteht daher ein Bedarf daran, eine elektrische Verbindung zwischen einer elektrischen Heizplatte und einer außerhalb der elektrischen Heizplatte angeordneten elektrischen Schaltung zu schaffen und eine Montage und damit eine Herstellung des elektrischen Haarglätters zu vereinfachen.
  • Erfindungsgemäße Lösung
  • Diesem Bedarf trägt ein elektrischer Haarglätter gemäß Patentanspruch 1 Rechnung.
  • Es sei bereits hier explizit darauf hingewiesen, dass die in sämtlichen Ansprüchen enthaltenen Bezugszeichen nicht zu einer einschränkenden Auslegung des Wortlauts der Ansprüche herangezogen werden sollen und dürfen. Deren implizite Verweise auf spezielle Ausführungsbeispiele der in den Ansprüchen definierten Gegenstände und Verfahren soll vielmehr lediglich das Verständnis des durch den Wortlaut der Ansprüche definierten Schutzumfangs erleichtern.
  • Ein Ausführungsbeispiel eines elektrischen Haarglätters umfasst eine elektrische Heizplatte, die eine im Wesentlichen zweidimensionale elektrische Widerstandsstruktur aufweist. Der Haarglätter umfasst ferner eine außerhalb der Heizplatte angeordnete elektrische Schaltung und eine erste elektrische Kontaktstruktur und eine von der ersten Kontaktstruktur verschiedene zweite elektrische Kontaktstruktur, die an der Heizplatte angeordnet sind und eine elektrisch leitende Verbindung der Widerstandsstruktur mit der elektrischen Schaltung über eine elektrische Zuleitung schaffen.
  • Einem Ausführungsbeispiel eines elektrischen Haarglätters liegt so die Erkenntnis zugrunde, dass durch das Vorsehen der ersten und der zweiten elektrischen Kontaktstruktur eine elektrische Verbindung zwischen der elektrischen Heizplatte und der außerhalb der elektrischen Heizplatte angeordneten elektrischen Schaltung geschaffen werden kann. Ausführungsbeispiele betreffen so eine elektrische Kontaktierung von zweidimensionalen Heizkörpern auf Heizplatten von Haarglättern.
  • Die elektrische Schaltung, die außerhalb der Heizplatte angeordnet ist, stellt hierbei nicht notwendigerweise einen vollständigen elektrischen Schaltkreis dar. Sie kann vielmehr gegebenenfalls nur einzelne, gegebenenfalls sogar nur eine einzige Komponente eines elektrischen Schaltkreises umfassen. So kann die elektrische Schaltung beispielsweise einen elektrischen Schalter, ein Anzeigeelement, also beispielsweise eine Leuchtdiode oder ein Potenziometer umfassen oder gegebenenfalls auch vollständig aus den vorgenannten Komponenten bestehen. Selbstverständlich kann die elektrische Schaltung unabhängig von ihrer Größe und der Anzahl ihrer Komponenten neben der elektrischen Heizplatte auch mit einer oder mehreren weiteren elektrischen Schaltungen oder Komponenten verbunden sein. So kann die Schaltung beispielsweise mit einer elektrischen Versorgungsleitung verbunden sein, die mit einem Netzstecker versehen ist und über die der elektrische Haarglätter mit elektrischer Energie versorgt werden kann.
  • Vorteilhafte Aus- und Weiterbildungen, welche einzeln oder in Kombination miteinander eingesetzt werden können, sind Gegenstand der abhängigen Ansprüche. Die Bezugszeichen in den Ansprüchen haben keine einschränkende Wirkung, sondern sollen lediglich deren Lesbarkeit verbessern.
  • Bei einem elektrischen Haarglätter gemäß einem Ausführungsbeispiel kann die erste und/oder die zweite elektrische Kontaktstruktur die elektrische Verbindung über die Zuleitung mit der Widerstandsstruktur derart schaffen, dass die Zuleitung über eine durch die Widerstandsstruktur definierte Ebene hinaus verläuft. Anders ausgedrückt wird durch die im Wesentlichen zweidimensionale Ausführung der Widerstandsstruktur eine Ebene definiert. Dadurch, dass die Schaltung außerhalb der Heizplatte angeordnet ist, kann so durch die erste und/oder die zweite elektrische Kontaktstruktur die elektrische Verbindung zu der Schaltung nun gerade so geschaffen werden, dass die elektrische Zuleitung nicht mehr in der betreffenden Ebene verläuft, sondern diese verlässt. Die elektrische Zuleitung kann so beispielsweise einen Draht, eine Blattfeder oder eine andere elektrisch leitfähige Struktur umfassen, die im Vergleich zu der zweidimensionalen elektrischen Struktur wenigstens teilweise auch in der dritten Dimension verläuft. Das Vorsehen der ersten und/oder der zweiten elektrischen Kontaktstruktur kann so eine flexiblere Verschaltung der Kontaktstrukturen mit der Schaltung ermöglichen, da die Schaltung freier an oder in dem elektrischen Haarglätter positionierbar ist.
  • Bei einem elektrischen Haarglätter gemäß einem Ausführungsbeispiel kann die erste und/oder die zweite Kontaktstruktur eine Verlötung und/oder eine elektrisch leitfähige Verklebung der Zuleitung mit der Widerstandsstruktur umfassen. Neben der elektrischen Verbindung kann so die erste und/oder die zweite Kontaktstruktur auch eine mechanische Verbindung der elektrischen Zuleitung mit der elektrischen Heizplatte schaffen. Diese kann bei geeigneter Ausführung der elektrischen Zuleitung beispielsweise eine gewisse mechanische Verlagerung der elektrischen Heizplatte im Inneren des elektrischen Haarglätters erlauben, ohne dass die elektrische Verbindung zwischen Zuleitung und Widerstandsstruktur unterbrochen wird. Hierdurch können gegebenenfalls mechanische Belastungen, beispielsweise Vibrationen oder eine mechanische Krafteinwirkung während des Betriebs auf die elektrische Heizplatte ausgeglichen werden. Die Verlötung kann hierbei beispielsweise mithilfe klassischer Lote, gegebenenfalls jedoch auch mit Materialien erfolgen, die im Rahmen der Heizplatte und/oder der elektrischen Kontaktstruktur verwendet werden. Eine elektrisch leitfähige Verklebung kann beispielsweise auf Basis ein-, zwei- oder mehrkomponentiger Kunstharze oder lösungsmittelhaltiger oder lösungsmittelfreier Lacke erfolgen, denen ein elektrisch leitfähiges Füllmaterial, beispielsweise Silber, Gold, Kohlenstoff, Kupfer, Zinn, Nickel, Platin, Palladium oder Bronze beigemischt oder beigefügt ist. Durch die Verlötung und/oder die elektrisch leitfähige Verklebung wird so eine wenigstens teilweise stoffschlüssige und gleichzeitig elektrisch leitfähige Verbindung zwischen Zuleitung und der elektrischen Widerstandsstruktur geschaffen.
  • Hierbei kommt eine kraftschlüssige oder reibschlüssige Verbindung durch Haftreibung, eine stoffschlüssige Verbindung durch molekulare oder atomare Wechselwirkungen und Kräfte und eine formschlüssige Verbindung durch eine geometrische Verbindung der betreffenden Verbindungspartner zustande. Die Haftreibung setzt somit insbesondere eine Normalkraftkomponente zwischen den beiden Verbindungspartnern voraus.
  • Bei einem elektrischen Haarglätter umfasst die erste und/oder die zweite Kontaktstruktur erfindungsgemäß einen mit der Zuleitung elektrisch verbundenen elektrischen Federkontakt. Die Widerstandsstruktur umfasst eine elektrisch mit dieser verbundene Kontaktfläche, wobei der Federkontakt eine Kraft bewirkt und durch die Kraft mit der Kontaktfläche in Kontakt steht, sodass die elektrische Verbindung mit der Widerstandsstruktur geschaffen wird. Hierdurch wird eine Montage und damit eine Herstellung des elektrischen Haarglätters vereinfacht, da die elektrische Heizplatte separat gefertigt und in den elektrischen Haarglätter integriert werden kann, wobei bei dem Zusammenbau über die Federkontakte und ihr Zusammenspiel mit der Kontaktfläche der Widerstandsstruktur beim Zusammenfügen des elektrischen Haarglätters die elektrische Verbindung zwischen der Zuleitung und der Widerstandsstruktur geschaffen werden kann. Eine gesonderte mechanische Verbindung derselben kann hierdurch gegebenenfalls eingespart werden.
  • Bei einem solchen elektrischen Haarglätter gemäß einem Ausführungsbeispiel kann der Federkontakt eine Blattfeder und/oder einen Federkontaktstift aufweisen. Ein Federkontaktstift kann hierbei beispielsweise ein Federelement und eine mit der Zuleitung elektrisch verbundene Anpressfläche umfassen, die ausgebildet ist, um mit der Kontaktfläche der Widerstandsstruktur in Kontakt gebracht zu werden. Die Anpressfläche kann beispielsweise durch eine elektrisch leitfähige Hülse, die das Federelement wenigstens teilweise umgibt, gebildet werden. Hierdurch kann eine gegebenenfalls mechanisch einfache und trotzdem belastbare elektrische Verbindung geschaffen werden.
  • Bei einem elektrischen Haarglätter gemäß einem Ausführungsbeispiel kann die Heizplatte wenigstens eine mechanische Befestigungsstruktur umfassen, die ausgebildet ist, um mit einem mechanischen Verbindungselement der ersten und/oder der zweiten Kontaktstruktur eine mechanische Verbindung zu schaffen. Das Verbindungselement kann hierbei mit der Zuleitung mechanisch verbunden und wenigstens teilweise elektrisch leitfähig ausgestaltet sein, um mit der Widerstandsstruktur die elektrische Verbindung zu der Widerstandsstruktur zu schaffen. Hierdurch kann die erste und/oder die zweite Kontaktstruktur wiederum nicht nur zur Schaffung der elektrischen Verbindung, sondern gegebenenfalls auch zur Schaffung einer mechanischen Verbindung zwischen der Zuleitung und der Widerstandsstruktur der Heizplatte herangezogen werden. Durch Verwendung einer mechanischen Befestigungsstruktur im Rahmen der Heizplatte und eines entsprechenden Verbindungselements im Rahmen der ersten und/oder der zweiten Kontaktstruktur kann hierdurch gegebenenfalls eine leichter herzustellende mechanische und elektrische Verbindung geschaffen werden, sodass die Herstellung des elektrischen Haarglätters gegebenenfalls vereinfacht werden kann. Alternativ oder ergänzend kann es gegebenenfalls auch möglich sein, die mechanische Verbindung hierdurch lösbar auszugestalten.
  • Bei einem solchen elektrischen Haarglätter gemäß einem Ausführungsbeispiel kann die Befestigungsstruktur eine Ausnehmung in der Heizplatte, beispielsweise ein Sackloch, eine Bohrung, ein Gewindesackloch und/oder eine Gewindebohrung und/oder einen Vorsprung, beispielsweise einen Zapfen und/oder einen Gewindezapfen umfassen. Das Verbindungselement kann in einem solchen Fall ein elektrisch kontaktierbares Verbindungselement, beispielsweise eine Verschraubung, ein Verklemmelement und/oder eine Hülse umfassen. Durch diese Ausgestaltungen kann gegebenenfalls eine mechanisch stabile und/oder mechanisch belastbare Verbindung über die erste und/oder die zweite Kontaktstruktur mithilfe konstruktiv einfacher Mittel geschaffen werden.
  • Bei einem elektrischen Haarglätter gemäß einem Ausführungsbeispiel kann die Widerstandsstruktur eine elektrisch leitfähige, zweidimensional strukturierte Widerstandsschicht umfassen. Gerade bei solchen Ausgestaltungen einer Widerstandsstruktur kann die elektrische Verbindung mithilfe der ersten und der zweiten Kontaktstruktur effizient umgesetzt werden.
  • Bei einem solchen elektrischen Haarglätter gemäß einem Ausführungsbeispiel kann die Widerstandsschicht Zinnoxid, Zinkoxid, dotiertes Zinnoxid, dotiertes Zinkoxid, Grafit, Graphen und/oder Kohlenstoffnanoröhren (CNT = Carbon Nano Tubes) umfassen oder aus diesen bestehen. Bei einem solchen elektrischen Haarglätter gemäß einem Ausführungsbeispiel kann eine Schichtdicke der Widerstandsschicht höchstens 100 µm betragen. Bei anderen Ausführungsbeispielen kann diese höchstens 50 µm, höchstens 20 µm, höchstens 10 µm, höchstens 5 µm, höchstens 3 µm, höchstens 1.000 nm, höchstens 500 nm, höchstens 300 nm, höchstens 200 nm, höchstens 100 nm oder höchstens 50 nm betragen. Die genaue Schichtdicke kann hierbei von dem verwendeten Material, der beabsichtigten Heizleistung, der zur Verfügung stehenden elektrischen Spannung, der Geometrie der Widerstandsstruktur und anderer Parameter abhängen. Bei anderen Ausführungsbeispielen können jedoch gegebenenfalls auch größere Schichtdicken als 100 µm zum Einsatz kommen.
  • Bei einem elektrischen Haarglätter gemäß einem Ausführungsbeispiel, bei dem die Widerstandsstruktur eine elektrisch leitfähige, zweidimensional strukturierte Widerstandsschicht umfasst, kann die Widerstandsstruktur an wenigstens einem Ort, an dem die erste und/oder die zweite Kontaktstruktur die elektrische Verbindung zu der Widerstandsstruktur bewirkt, eine unmittelbar auf der Widerstandsschicht aufgebrachte weitere Widerstandsschicht umfassen. Die weitere Widerstandsschicht kann so als Kontaktfläche bzw. Kontaktschicht verwendet werden, um eine leichtere und/oder verbesserte Kontaktierung der Widerstandsschicht zu ermöglichen.
  • Bei einem solchen elektrischen Haarglätter gemäß einem Ausführungsbeispiel kann die weitere Widerstandsschicht einen geringeren elektrischen Widerstandswert in einer durch die Widerstandsstruktur definierten Ebene als eine gleichgroße Fläche der Widerstandsschicht aufweisen. Hierdurch kann es gegebenenfalls möglich sein, mithilfe der weiteren Widerstandsschicht eine bessere Verteilung eines über die erste und/oder zweite Kontaktstruktur eingespeisten bzw. abgezogenen elektrischen Stroms zu erreichen. So kann durch die weitere Widerstandsschicht zumindest an diesen Orten eine verbesserte Verteilung des Stromflusses durch Parallelschalten der weiteren Widerstandsschicht erzielt werden. Die weitere Widerstandsschicht kann hierbei zwischen den Orten, an denen die erste und die zweite Kontaktstruktur die elektrische Verbindung zu der Widerstandsstruktur bewirkt, unterbrochen sein, damit die Widerstandsschicht nicht vollständig durch die weitere Widerstandsschicht kurzgeschlossen wird.
  • Bei einem elektrischen Haarglätter gemäß einem Ausführungsbeispiel kann die Heizplatte ein elektrisch isolierendes Substrat, beispielsweise ein Keramiksubstrat, ein Glaskeramiksubstrat, ein Glassubstrat oder ein Quarzglassubstrat, mit einer Hauptoberfläche umfassen, und bei dem die Widerstandsstruktur unmittelbar auf der Hauptoberfläche aufgebracht ist. Hierbei wird unter einem Substrat ein volumenartiges Material verstanden, welches eine mechanische Stabilisierung der Widerstandsstruktur ermöglicht. Abzugrenzen ist daher das Substrat insbesondere von einer Beschichtung oder einer dünnen Schicht, wie sie beispielsweise die Widerstandsstruktur umfassen kann. Hierdurch kann gegebenenfalls eine optisch gefällige, gegebenenfalls mechanisch stabile und/oder unter Sicherheitsaspekten interessante Implementierung eines elektrischen Haarglätters möglich sein.
  • Bei einem solchen elektrischen Haarglätter gemäß einem Ausführungsbeispiel kann die Hauptoberfläche des Substrats eine Hauptoberfläche der Heizplatte bilden. Die Widerstandsstruktur kann so unmittelbar auf der Hauptoberfläche der Heizplatte bzw. des Substrats aufgebracht sein. Hierdurch kann eine Herstellung des Haarglätters gegebenenfalls vereinfacht werden.
  • Die Hauptoberfläche des Substrats kann unabhängig hiervon bei einem Ausführungsbeispiel jedoch parallel zu der oben genannten Ebene verlaufen, die durch die im Wesentlichen zweidimensionale Widerstandsstruktur definiert ist.
  • Bei einem elektrischen Haarglätter gemäß einem Ausführungsbeispiel kann die Widerstandsstruktur wenigstens drei parallel verlaufende erste Widerstandsabschnitte aufweisen, von denen jeweils zwei erste Widerstandsabschnitte durch einen zweiten Widerstandsabschnitt unmittelbar elektrisch verbunden sind, wobei die zweiten Widerstandsabschnitte unter einem von 0° verschiedenen Winkel mit den ersten Widerstandsabschnitten verbunden sind. Die ersten Widerstandsabschnitte können hierbei optional geradlinig oder gebogen ausgeführt sein. Ergänzend oder alternativ kann die Widerstandsstruktur ebenso einen spiralförmigen Widerstandsabschnitt umfassen. Die Widerstandsstruktur kann so wenigstens teilweise mäanderförmig und/oder auf Basis einer eckigen oder einer runden Formgebung spiralförmig ausgestaltet sein. Hierdurch kann gegebenenfalls eine besonders effiziente Verteilung der die Wärme produzierenden Widerstandsabschnitte auf der Fläche des Heizelements erzeugt werden, was gerade bei Substraten mit einer nicht optimalen Wärmeleitfähigkeit von Vorteil sein kann.
  • Bei einem elektrischen Haarglätter gemäß einem Ausführungsbeispiel kann die elektrische Zuleitung an der ersten und/oder der zweiten Kontaktstruktur einen Draht oder eine Blattfeder umfassen.
  • Ausführungsbeispiele eines elektrischen Haarglätters können so mit einfachen konstruktiven und kostengünstigen Mitteln ein leichteres und/oder widerstandsfähigeres Schaffen einer elektrischen Verbindung zwischen einer im Wesentlichen zweidimensionalen elektrischen Widerstandsstruktur einer elektrischen Heizplatte und einer außerhalb derselben angeordneten elektrischen Schaltung ermöglichen. Dies kann gegebenenfalls optisch gefällig und/oder robust erfolgen.
  • Kurzbeschreibung der Zeichnungen
  • Weitere vorteilhafte Ausgestaltungen werden nachfolgend anhand eines in der Zeichnung dargestellten Ausführungsbeispieles, auf welches die Erfindung jedoch nicht beschränkt ist, näher beschrieben.
  • Die Figuren zeigen hierbei die nachfolgenden Ansichten im Einzelnen.
    • Fig. 1 zeigt eine schematische Darstellung eines elektrischen Haarglätters gemäß einem Ausführungsbeispiel;
    • Fig. 2 zeigt eine mäanderförmige Ausgestaltung einer elektrischen Widerstandsstruktur einer elektrischen Heizplatte eines elektrischen Haarglätters gemäß einem Ausführungsbeispiel;
    • Fig. 3 zeigt eine spiralförmige Ausgestaltung einer elektrischen Widerstandsstruktur einer elektrischen Heizplatte eines elektrischen Haarglätters gemäß einem Ausführungsbeispiel;
    • Fig. 4 zeigt eine Querschnittsdarstellung einer elektrischen Heizplatte eines elektrischen Haarglätters gemäß einem Ausführungsbeispiel ohne eine elektrische Kontaktstruktur;
    • Fig. 5 zeigt eine Querschnittsdarstellung einer elektrischen Heizplatte und einer auf einer Verlötung basierenden elektrischen Kontaktstruktur;
    • Fig. 6 zeigt eine Querschnittsdarstellung einer elektrischen Heizplatte mit einer auf einem Federkontakt beruhenden elektrischen Kontaktstruktur gemäß einem Ausführungsbeispiel; und
    • Fig. 7 zeigt eine Querschnittsdarstellung einer elektrischen Heizplatte und einer elektrischen Kontaktstruktur auf Basis einer mechanischen Befestigungsstruktur und eines Verbindungselements gemäß einem Ausführungsbeispiel.
    Detaillierte Beschreibung der Zeichnungen
  • Bei der nachfolgenden Beschreibung der beigefügten Figuren, die Ausführungsformen der vorliegenden Erfindung zeigen, bezeichnen gleiche Bezugszeichen gleiche oder vergleichbare Komponenten. Ferner werden zusammenfassende Bezugszeichen für Komponenten und Objekte verwendet, die mehrfach in einem Ausführungsbeispiel oder in einer Zeichnung auftreten, jedoch hinsichtlich eines oder mehrerer Merkmale gemeinsam beschrieben werden. Komponenten oder Objekte, die mit gleichen oder zusammenfassenden Bezugszeichen beschrieben werden, können hinsichtlich einzelner, mehrerer oder aller Merkmale, beispielsweise ihrer Dimensionierungen, gleich, jedoch gegebenenfalls auch unterschiedlich ausgeführt sein, sofern sich aus der Beschreibung nicht etwas anderes explizit oder implizit ergibt.
  • Fig. 1 zeigt eine schematische Darstellung eines elektrischen Haarglätters 100 gemäß einem Ausführungsbeispiel, der auch als Straightener bezeichnet wird. Der Haarglätter 100 weist zwei zueinander um ein Scharnier 110 verschwenkbare Arme 120-1 und 120-2 auf, an denen jeweils eine auch als Glättplatte bezeichnete elektrische Heizplatte 130-1 und 130-2 angeordnet sind. Die beiden Heizplatten 130 sind hierbei derart angeordnet, dass diese bei einem Zusammenschwenken der beiden Arme 120 einander gegenüberliegen, sodass zwischen diese Haare eingebracht werden können, die durch eine Hitzeeinwirkung der elektrischen Heizplatten 130 geglättet werden sollen.
  • Die Heizplatten 130 wiesen hierbei jeweils ein Substrat 140-1, 140-2 auf, welches beispielsweise aus einem elektrisch isolierenden Material gefertigt ist oder bestehen kann. Die Substrate 140 können so beispielsweise aus einer Keramik, also beispielsweise aus einer Glaskeramik, jedoch auch aus einem Glas, also beispielsweise einem Quarzglas, bestehen. Die Substrate 140 sind hierbei derart ausgestaltet, dass diese mechanisch stabile Objekte bilden, die anderen Strukturen eine mechanische Stabilität verleihen können. Sie unterscheiden sich somit insbesondere von Beschichtungen und Schichten.
  • Die Substrate 140 bzw. die Heizplatten 130 weisen hierbei jeweils eine Vorderseite 150-1 und 150-2 auf, die derart angeordnet und ausgerichtet sind, sodass die Haare eines Benutzers oder einer Benutzerin des elektrischen Haarglätters zwischen die beiden Vorderseiten 150 während des Betriebs eingeführt werden können. Die Vorderseiten 150 der beiden Heizplatten 130 bzw. ihrer Substrate sind so im Wesentlichen fluchtend mit einem Gehäuse der Arme 120 ausgestaltet oder aber stehen entsprechend über dieses derart hervor, sodass die Haare in den Kontakt mit den Vorderseiten 150 der Heizplatten 130 bringbar sind.
  • Die Heizplatten 130 weisen ferner jeweils eine Rückseite auf, die mit Hauptoberflächen 160-1, 160-2 der beiden Substrate 140-1, 140-2 bei dem hier gezeigten Ausführungsbeispiel zusammenfallen. Diese liegen den Vorderseiten 150 gegenüber und sind einem Inneren jeweils eines Arms 120 zugewandt. Die Substrate 140 bilden hierbei sowohl die Vorderseiten 150 wie auch die Hauptoberflächen 160, also die Rückseiten der betreffenden Heizplatten 130.Die Hauptoberflächen 160 stellen so auch die der Substrate 140 dar. Bei anderen Ausführungsbeispielen kann die Hauptoberfläche 160 des Substrats 140 auch von der Vorder- oder Rückseite der Heizplatte 130 verschieden sein.
  • Die Heizplatten 130 weisen ferner jeweils eine elektrische Widerstandsstruktur 170-1, 170-2 auf, die im Wesentlichen zweidimensional ausgestaltet und elektrisch leitend ausgeführt ist. Die elektrische Widerstandsstruktur 170 kann so beispielsweise auf Basis einer elektrisch leitfähigen, zweidimensional strukturierten Widerstandsschicht 180-1, 180-2 realisiert sein oder diese umfassen. Die Widerstandsschichten 180 können so beispielsweise Zinnoxid oder Zinkoxid vorzugsweise in dotierter Form, Grafit, Graphen und/oder Kohlenstoffnanoröhren bzw. Kohlenstoffnanoröhrchen (CNT = Carbon Nano Tubes) umfassen. Sie können jedoch auch aus anderen Materialien gefertigt sein.
  • Die Widerstandsschichten 180 weisen hierbei jeweils eine Schichtdicke auf, die an die genauen Einsatzbedingungen der Widerstandsstrukturen 170 angepasst ist. Die Schichtdicken der Widerstandsschichten 180 gehen so neben einer geometrischen Ausgestaltung der Widerstandsstrukturen 170, der Materialwahl derselben und anderer Parameter in den realisierten Widerstandswert der elektrischen Widerstandsstruktur 170 ein. Unter Maßgabe einer beabsichtigten oder spezifizierten Heizleistung und an den Widerstandsstrukturen 170 anliegenden Spannungen werden die elektrischen Widerstandswerte der Widerstandsstrukturen 170 entsprechend bestimmt. Anders ausgedrückt wird auf Basis der an den elektrischen Widerstandsstrukturen 170 anliegenden Spannungen, einer beabsichtigten Heizleistung der entsprechenden Heizplatte 130 sowie der genauen Geometrie der Widerstandsstruktur 170 die Schichtdicke der Widerstandsschicht 180 bestimmt. Diese beträgt häufig höchstens 100 µm, kann jedoch bei anderen Ausführungsbeispielen auch geringere Werte annehmen. So kann die Schichtdicke beispielsweise auf höchstens 50 µm, auf höchstens 20 µm, auf höchstens 10 µm, auf höchstens 5 µm, auf höchstens 3 µm oder auf höchstens 1000 nm und darunter beschränkt sein. So kann bei Ausführungsbeispielen die Schichtdicke beispielsweise höchstens 500 nm, höchstens 300 nm, höchstens 200 nm, höchstens 100 nm oder auch höchstens 50 nm betragen.
  • Die Heizplatten 130 weisen hierbei jeweils eine erste Kontaktstruktur 190-1 bzw. 190-1' sowie eine zweite elektrische Kontaktstruktur 190-2 bzw. 190-2' auf, die an der Heizplatte 130 angeordnet sind. Die Kontaktstrukturen 190 sind hierbei derart ausgebildet, dass diese eine elektrisch leitende Verbindung zwischen den betreffenden Widerstandsstrukturen 170 und einer außerhalb der Heizplatte 130 angeordneten elektrischen Schaltung 200 über eine elektrische Zuleitung 210 ermöglichen. Die elektrische Schaltung 200 bildet hierbei nicht notwendigerweise einen vollständigen Schaltkreis. Sie kann vielmehr auch nur einen Teil eines Schaltkreises umfassen, gegebenenfalls sogar nur eine einzelne elektrische Schaltkomponente. Die elektrische Schaltung 200 kann so beispielsweise lediglich einen Schalter, ein Potenziometer oder eine Anzeige, beispielsweise eine Leuchtdiode, umfassen.
  • Die elektrischen Kontaktstrukturen 190 sind bei dem in Fig. 1 gezeigten Ausführungsbeispiel eines elektrischen Haarglätters 100 derart ausgestaltet, dass die Zuleitung 210 über eine durch die Widerstandsstrukturen 170 definierte Ebene hinaus verläuft. Die betreffende Ebene entspricht hierbei aufgrund der im Wesentlichen zweidimensionalen Ausgestaltung der Widerstandsstrukturen 170 der Ebene der entsprechenden Widerstandsschichten 180. Da die Widerstandsschichten 180 hier auf der Hauptoberfläche 160 der Substrate 140 bzw. der Heizplatten 130 angeordnet sind, stimmt die Ebene auch im Wesentlichen mit der Hauptoberfläche 160 der betreffenden Heizplatten 130 überein. Die Zuleitung 210, die die Widerstandsstruktur 170-2 der Heizplatte 130-2 mit der Schaltung 200 verbindet, verläuft hierbei über das Scharnier 110.
  • Die nähere Ausgestaltung der elektrischen Kontaktstrukturen 190 wird im Zusammenhang mit den Fig. 4 bis 7 näher erläutert.
  • Im Unterschied zu dem elektrischen Haarglätter 100 aus Fig. 1 wird bei konventionellen elektrischen Haarglättern heute zum Großteil Haarglätterheizplatten verwendet, die aus einem Stranggussprofil bestehen, in welches eine Heizung, meist ein Keramikheizkörper oder ein Kaltleiter-Heizkörper (PTC = positive temperature coefficient = positiver Temperaturkoeffizient) verpresst wird. Das Material des Stranggussprofils ist meist eine Aluminiumlegierung, die eine hohe Wärmeleitfähigkeit mit Werten von etwa 200 W/(m · K) aufweist, wobei der genaue Wert von der Legierungszusammensetzung abhängen kann. Vergleichbare Konfigurationen können grundsätzlich auch für Haarglätterheizplatten aus Keramik oder Glaskeramik eingesetzt werden. Keramik, Glaskeramik und Gläser besitzen jedoch eine gegenüber Aluminiumlegierungen sehr viel geringere Wärmeleitfähigkeit, die teilweise nur ca. 1 W/(m · K) beträgt.
  • Bei einer Heizplatte 130, wie sie bei einem Ausführungsbeispiel eines elektrischen Haarglätters 100 zum Einsatz kommt, bietet es sich daher an, die Heizung, also die elektrische Widerstandsstruktur 170, direkt auf der Unterseite, der Hauptoberfläche 160 der Substrate 140, also beispielsweise der Platten 130 zu platzieren. Die Widerstandsstrukturen können dann aus Beschichtungen gefertigt werden, die - abhängig vom Heizleitermaterial - wenige Nanometer bis einige 10 µm dick sein und beispielsweise im Rahmen eines Dünnschicht- oder Dickschichtprozesses aufgebracht werden können.
  • Wie im Zusammenhang mit den Fig. 2 und 3 noch näher erläutert werden wird, sind diese Widerstandsstrukturen 170 im Wesentlichen zweidimensional ausgestaltet, beispielsweise auf Basis einer elektrisch leitfähigen, zweidimensional strukturierten Widerstandsschicht 180 implementiert. Ein wesentlicher Aspekt dieser zweidimensionalen Heizungen an der Rückseite der Haarglätterheizplatten 130 stellt jedoch ihre elektrische Kontaktierung dar. Im Rahmen von Ausführungsbeispielen werden hierzu die ersten und zweiten Kontaktstrukturen 190 eingesetzt.
  • Der grundsätzliche Aufbau eines solchen Heizsystems (Widerstandsstruktur 170) auf der Haarglätterheizplattenrückseite umfasst so eine Beschichtung, die einen elektrischen Widerstandswert aufweist, wodurch diese Beschichtung bei Stromfluss erwärmt wird. Diese Beschichtungen können z. B. Zinnoxid- oder Zinkoxidschichten umfassen, die häufig mit anderen chemischen Elementen dotiert werden. Ebenso können Grafit-, Graphen- oder CNT-haltige Beschichtungen verwendet werden.
  • Anfangs- und Endpunkt der entsprechenden Widerstandsbeschichtung, also die Punkte oder Orte, an denen der Strom eingespeist bzw. abgezogen wird, können hierbei bevorzugt durch Kontaktflächen gebildet werden. Diese Kontaktflächen stehen bevorzugt aus elektrisch gut leitfähigen Materialien, beispielsweise mit einem hohen Anteil an Silber und/oder Kupfer in Kontakt. Die Implementierung solcher Kontaktflächen ist jedoch optional.
  • Beispielhaft können diese Kontaktflächen ebenso wie die elektrischen Widerstandsstrukturen 170 durch ein Siebdruckverfahren oder eine andere zweidimensionale Strukturierungstechnik der Dünn- oder Dickschichttechnik aufgebracht werden.
  • Bei anderen Ausführungsbeispielen kann ein elektrischer Haarglätter 100 auch mit lediglich einer einzigen Heizplatte 130 implementiert werden, die beispielsweise nur in einem der betreffenden Arme 120 vorgesehen ist. Darüber hinaus müssen die Arme 120 ebenso wenig, wie dies in Fig. 1 angedeutet ist, formentechnisch aufeinander abgestimmt sein. Sie können sich vielmehr voneinander unterscheiden.
  • Fig. 2 zeigt eine Aufsicht auf die Hauptoberfläche 160 einer Heizplatte 130 bzw. des dahinter stehenden Substrats 140. Die elektrische Widerstandsstruktur 170 weist hierbei eine erste Kontaktfläche 220-1 und eine zweite Kontaktfläche 220-2 auf, über die der Strom zum Aufheizen der Widerstandsstruktur 170 eingespeist bzw. abgezogen werden kann. Die beiden Kontaktflächen 220 sind bei dem in Fig. 2 gezeigten Ausführungsbeispiel einer Heizplatte 130 über eine mäanderförmige Widerstandsstruktur miteinander verbunden. Diese weist mehrere erste Widerstandsabschnitte 230-1, ..., 230-5 auf, die durch zweite Widerstandsabschnitte 240-1, ..., 240-4 miteinander verbunden sind. Genauer gesagt sind hierbei jeweils zwei erste Widerstandsabschnitte 230 durch einen zweiten Widerstandsabschnitt 240 miteinander elektrisch verbunden, wobei die zweiten Widerstandsabschnitte 240 unter einem von 0° verschiedenen Winkel in die ersten Widerstandsabschnitte 230 einmünden. Bei dem in Fig. 2 gezeigten Ausführungsbeispiel einer Heizplatte 130 sind die zweiten Widerstandsabschnitte 240 und die ersten Widerstandsabschnitte 230 im Wesentlichen durch rechte Winkel, also durch Winkel von im Wesentlichen 90° miteinander verbunden.
  • Selbstverständlich können bei anderen Ausführungsbeispielen die entsprechenden Winkel auch anders verlaufen, beispielsweise kann eine entsprechende Widerstandsstruktur 170 auf Basis einer hexagonalen Geometrie implementiert wird. Auch kann die Anzahl der parallel verlaufenden, geradlinigen ersten Verbindungsabschnitte 230 sowie die Anzahl der entsprechenden zweiten Verbindungsabschnitte 240 variiert werden. Die Widerstandsstruktur 170 weist hierbei lediglich wenigstens drei entsprechende erste Widerstandsabschnitte 230 auf. Auch die zweiten Widerstandsabschnitte müssen bei Weitem nicht geradlinig implementiert werden, sondern können beispielsweise gebogen ausgeführt sein. Auch die ersten Widerstandsabschnitte 230 können entsprechend gebogen ausgeführt sein, sofern diese parallel zueinander verlaufen. Diese können beispielsweise nicht nur in der in Fig. 2 gezeigten geradlinigen Form, also als Abschnitte von mathematischen Geraden, sondern auch in Form von Wellen oder anderen gebogenen Strukturen implementiert werden.
  • Fig. 3 zeigt eine weitere Heizplatte 130 gemäß einem Ausführungsbeispiel bzw. das ihr zugrunde liegende Substrat 140. Auch auf dieser Heizplatte 130 ist eine elektrische Widerstandsstruktur 170 auf einer Hauptoberfläche 160 implementiert worden, die zwei Kontaktflächen 220-1 und 220-2 miteinander verbindet. Im Unterschied zu der in Fig. 2 gezeigten Ausgestaltung ist diese jedoch spiralförmig und nicht mäanderförmig ausgestaltet. Lediglich der Vollständigkeit halber sollte an dieser Stelle erwähnt werden, dass auch auf Basis einer eckigen bzw. auf geradlinigen ersten und zweiten Widerstandsabschnitten 230, 240 basierende Implementierung einer spiralförmigen Widerstandsstruktur 170 möglich ist.
  • Fig. 4 zeigt eine Querschnittsdarstellung durch eine Heizplatte 130, wie sie bei einem elektrischen Haarglätter 100 gemäß einem Ausführungsbeispiel zum Einsatz kommen kann. Die Heizplatte 130 weist, wie bereits im Zusammenhang mit Fig. 1 beschrieben wurde, ein Substrat 140 auf, auf dem an einer Hauptoberfläche 160 eine elektrische Widerstandsstruktur 170 angeordnet ist. Die Hauptoberfläche 160 ist hierbei die Hauptoberfläche des Substrats 140, die gleichzeitig die Hauptoberfläche 130 der Heizplatte bildet. Das Substrat 140 bzw. die Heizplatte 130 weist ferner eine Vorderseite 150 auf, an die während des späteren Betriebs des elektrischen Haarglätters 100 beispielsweise die Haare des Benutzers oder der Benutzerin entlang geführt werden können. Die elektrische Widerstandsstruktur 170 ist hierbei unmittelbar bzw. direkt auf der Hauptoberfläche 160 des Substrats 140 gebildet. Aufgrund der elektrischen Isolationseigenschaft des Substrats 140 kann daher eine zusätzliche Schicht zur elektrischen Isolation der Widerstandsstruktur 170 entfallen.
  • Wie bereits zuvor erläutert wurde, weist die elektrische Widerstandsstruktur 170 eine Widerstandsschicht 180 auf, die eines der vorgenannten Materialien umfassen kann. Die Widerstandsschicht 180 ist hierbei also als elektrisch leitfähige, zweidimensional strukturierte Widerstandsschicht ausgeführt. Das Substrat 140 ist hierbei typischerweise als elektrisch isolierendes Substrat ausgeführt, sodass dieses ein Berühren oder ein in Kontakt treten des Benutzers mit der elektrischen Widerstandsstruktur 170, die auch als Heizleiterschicht bezeichnet wird, verhindert wird. Das Substrat 140 kann hierbei beispielsweise aus einer Keramik, also beispielsweise einer Glaskeramik, oder aus einem Glas, also beispielsweise aus einem Quarzglas, gefertigt sein oder aus diesem bestehen.
  • Die elektrische Widerstandsstruktur 170 umfasst bei dem in Fig. 4 gezeigten Schichtsystem ferner eine weitere Widerstandsschicht 250, die unmittelbar auf der Widerstandsschicht 180 aufgebracht ist. Die weitere Widerstandsschicht 250 bildet hier die Kontaktfläche 220, über die die elektrische Kontaktierung der Widerstandsstruktur 170 erfolgen kann. Die weitere Widerstandsschicht 250 ist somit an wenigstens einem Ort angeordnet, an dem die erste und/oder die zweite Kontaktstruktur 190 angeordnet sind. Die Kontaktstruktur 190 ist hierbei in Fig. 4 nicht gezeigt, weshalb es sich bei der Darstellung in Fig. 4 auch nur um einen schematischen Aufbau der Heizplatte 130 im Querschnitt handelt.
  • Die weitere Widerstandsschicht 250 weist hierbei parallel zu der Hauptoberfläche 160 einen geringeren elektrischen Widerstandswert auf als eine gleich große Fläche der Widerstandsschicht 180. Hierdurch ist es möglich, einen über die Kontaktfläche 220 in die Widerstandsstruktur 170 eingeleiteten elektrischen Strom parallel zu der Hauptoberfläche 160 im Wesentlichen über die weitere Widerstandsschicht 250 zu verteilen, bevor der Strom in die Widerstandsschicht 180 eingeleitet und durch diese transferiert wird. Während die Widerstandsschicht 180, also die Heizleiterschicht, häufig aus einem Material gefertigt ist, welches einen vergleichsweise hohen elektrischen Widerstandswert aufweist, also beispielsweise Zinnoxid oder Zinkoxid (bevorzugt dotiert), Grafit, Graphen oder Kohlenstoffnanoröhren umfasst, ist die weitere Widerstandsschicht 250 häufig aus einem Material gefertigt, welches eine höhere elektrische Leitfähigkeit aufweist. So kann das entsprechende Material der weiteren Widerstandsschicht beispielsweise einen höheren Anteil an Silber, Kupfer oder einem anderen Material umfassen. Die Kontaktflächen 220 bzw. die weitere Widerstandsschicht 250 kann genau wie die Widerstandsschicht 180 auch beispielsweise mithilfe eines Siebdruckverfahrens oder eines anderen Verfahrens der Dünnschicht- oder Dickschichttechnik aufgebracht werden.
  • Anders ausgedrückt weisen die Kontaktflächen 220 bevorzugt eine im Vergleich zu der Widerstandsbeschichtung der Widerstandsschicht 180 hohe Schichtdicke auf, um zuverlässig einen guten Stromfluss innerhalb der Kontaktflächen 220 zu gewährleisten und um den Strom möglichst gleichmäßig an die Widerstandsbeschichtung 180 weiterleiten zu können.
  • Bei einer konkreten Implementierung einer Heizplatte 130 kann es gegebenenfalls ratsam sein, die weitere Widerstandsschicht 250 derart auszuführen, dass diese zwischen den Orten, an denen die erste und die zweite Kontaktstruktur 190 die elektrische Verbindung zu der Widerstandsstruktur 170 bewirkt, zu unterbrechen. Hierdurch kann es möglich sein, einen Kurzschluss der elektrischen Widerstandsschicht 180 zu vermeiden oder zu unterbinden.
  • Im Folgenden sollen nun verschiedene Möglichkeiten ausgeführt werden, um die Kontaktflächen 220 mit einer äußeren Stromzufuhr, also beispielsweise der in Fig. 1 gezeigten Schaltung 200, elektrisch zu verbinden. So zeigt Fig. 5 ein Ausführungsbeispiel einer Heizplatte 130, bei der im Unterschied zu der in Fig. 4 gezeigten Schichtstruktur auf die Kontaktfläche 220 eine elektrische Zuleitung 210 mithilfe eines Lots 260 aufgebracht ist.
  • Als Lote können so beispielsweise auf die entsprechenden Materialpaarungen der Widerstandsschicht 180, der weiteren Widerstandsschicht 250 und der elektrischen Zuleitung 210 abgestimmte Lote 260 zum Einsatz kommen. Bei diesen kann es sich beispielsweise um herkömmliche Lote handeln, es können jedoch auch gegebenenfalls andere Materialien verwendet werden, wie beispielsweise das Material, aus dem die Kontaktfläche 220 gefertigt ist, also beispielsweise das Material der weiteren Widerstandsschicht 250. Bei anderen Ausführungsbeispielen kann gegebenenfalls auch eine Implementierung der weiteren Widerstandsschicht 250 entfallen, sodass in einem solchen Fall die Kontaktfläche 220 direkt durch die Widerstandsschicht 180 gebildet wird.
  • Die elektrische Zuleitung 210 dient hierbei der Stromzu- oder -abfuhr und kann beispielsweise einen Draht oder eine Blattfeder umfassen. Fig. 5 zeigt so eine Kontaktstruktur 190, die auf Basis einer Lötverbindung zwischen der Kontaktfläche 220 und dem die elektrische Zuleitung 210 bildenden Draht realisiert ist. Alternativ oder ergänzend kann die Kontaktfläche 220 im Rahmen der Kontaktstruktur 190 auch beispielsweise mit einer Blattfeder, beispielsweise aus einer Silberfolie, implementiert werden.
  • Eine Blattfeder ermöglicht so grundsätzlich eine zusätzliche Zugentlastung des Gesamtsystems, wobei zu einer Verbesserung einer Anbindung zwischen der Blattfeder und der entsprechenden Kontaktfläche die Blattfeder ebenfalls eines oder mehrere Löcher aufweisen kann, um eine zusätzliche mechanische Verklammerung zu ermöglichen.
  • Alternativ zu der in Fig. 5 gezeigten Verlötung kann gegebenenfalls auch die Zuleitung 210 im Rahmen der Kontaktstruktur 190 mithilfe einer elektrisch leitfähigen Verklebung gebildet werden oder diese umfassen. So kann die elektrische Zuleitung 210 im Rahmen der Kontaktstruktur 190 beispielsweise mithilfe eines elektrisch leitfähigen Klebstoffs mechanisch und elektrisch fixiert werden, wobei der Klebstoff hinsichtlich seiner Materialpaarung an die verwendeten Materialien der Zuleitung 210 und das Material der Kontaktfläche 220 angepasst werden kann, um eine entsprechende Gewährleistung der elektrischen Leitfähigkeit des Gesamtaufbaus sowie eine entsprechende Temperaturbeständigkeit zu ermöglichen. Ebenso können gegebenenfalls andere Anforderungen bei der entsprechenden Auswahl der verwendeten Materialien berücksichtigt werden.
  • Als elektrisch leitfähige Klebstoffe können beispielsweise ein- oder zweikomponentige Kunstharze oder lösungsmittelhaltige oder lösungsmittelfreie Lacke verwendet werden, denen ein entsprechendes elektrisch leitfähiges Füllmaterial beigefügt ist. Als entsprechende Füllmaterialien können beispielsweise Silber, Gold, Kohlenstoff, Kupfer, Zinn, Nickel, Platin, Palladium oder Bronze dienen. So kann beispielsweise die Zuleitung 210 mit Hilfe von Leitsilber an der Kontaktfläche 220 befestigt werden. Gegebenenfalls kann es ratsam sein, die entsprechende Kontaktstruktur 190 entsprechend auszuhärten.
  • Fig. 6 zeigt eine Querschnittsdarstellung durch eine Heizplatte 130 gemäß einem Ausführungsbeispiel, bei der die Zuleitung 210 mithilfe einer Federkontaktverbindung mit der Widerstandsstruktur 170 gebildet ist. Anders ausgedrückt zeigt Fig. 6 ein Ausführungsbeispiel einer Heizplatte 130, bei der die Kontaktstruktur 190 einen elektrischen Federkontakt 270 umfasst. Der Federkontakt 270 ist hierbei derart ausgebildet, dass dieser durch eine von dem Federkontakt 270 bewirkte Kraft mit der Kontaktfläche 220 der Widerstandsstruktur 170 derart in Kontakt steht, dass die elektrische Verbindung zwischen der Zuleitung 210 und der Widerstandsstruktur 170 geschaffen wird. Zu diesem Zweck ist der Federkontakt 270 als Federkontaktstift bzw. Kontaktstifteinheit ausgeführt, die ein Federelement 280 und eine mit der Zuleitung elektrisch verbundene Anpressfläche 290 umfasst. Die Anpressfläche 290 ist hierbei ausgebildet, um mit der Kontaktfläche 220 der Widerstandsstruktur 170 in Kontakt gebracht zu werden. Die Anpressfläche 290 ist hierbei über eine Hülse 300 gebildet, in deren Inneren das Federelement 280 in Form einer Feder angeordnet ist. Das Federelement 280 ist hierbei mit der elektrischen Zuleitung 210 elektrisch verbunden. Die elektrische Kontaktierung der Anpressfläche 290, also der Hülse 300, erfolgt hierbei über einen berührenden Kontakt zwischen dem Federelement 280 und der Hülse 300.
  • Bei der in Fig. 6 gezeigten Ausgestaltung der Kontaktstruktur 190 in Form eines Federkontakts wird also die Stromeinspeisungskomponente bzw. Stromabzugskomponente mittels einer als Feder wirkenden Federelements 280 auf die Kontaktfläche 220 gepresst. Die Hülse 300 umgibt hierbei wenigstens teilweise das Federelement 280.
  • Während Fig. 6 eine Ausführungsform zeigt, bei der ein Federkontaktstift bzw. ein Bauteil, welches einem Federkontaktstift nachempfunden ist, verwendet wird, kann bei anderen Ausführungsbeispielen ebenso eine Blattfeder zum Einsatz kommen. Es bietet sich an, auch hier die Bauteile materialseitig derart so auszulegen, dass sie den Strom gut leiten. Es kann daher gegebenenfalls ratsam sein, die Hülse 300 und/oder das Federelement 280 aus einem Material zu fertigen, welches mit dem Material der Kontaktfläche 220 eine gute elektrische Leitfähigkeit bildet.
  • Fig. 7 zeigt eine Querschnittsdarstellung durch eine weitere Heizplatte 130 gemäß einem Ausführungsbeispiel, bei der die Kontaktstruktur 190 mithilfe einer mechanischen Befestigungsstruktur 310 und einem Verbindungselement 320 erfolgt. Es handelt sich hierbei genauer gesagt um eine Schraubenkontaktverbindung, wie sie im Nachfolgenden näher beschrieben wird. Die Heizplatte weist hierbei wenigstens eines mechanische Befestigungsstruktur 310 auf, die an oder in dem Substrat 140 bei dem in Fig. 7 gezeigten Ausführungsbeispiel gebildet ist. Die mechanische Befestigungsstruktur 310 ist hierbei derart ausgebildet, um mit dem mechanischen Verbindungselement 320 der Kontaktstruktur 190 eine mechanische Verbindung zu schaffen, die ebenso eine elektrische Verbindung ermöglicht. Das Verbindungselement 320 ist hierbei mechanisch mit der Zuleitung 210 verbunden und wenigstens teilweise elektrische leitfähig ausgestaltet, um mit der Widerstandsstruktur 170 die elektrische Verbindung zu der Zuleitung 210 zu schaffen.
  • So ist bei dem in Fig. 7 gezeigten Ausführungsbeispiel die Befestigungsstruktur 310 als Gewindesackloch 330 in dem Substrat 140 ausgestaltet, das sich ausgehend von der Hauptoberfläche 160 in dieses hinein erstreckt. In das Gewindesackloch 330 erstreckt sich eine Verschraubung 340, die mit der Zuleitung 210 verbunden ist. Die Verschraubung 340 erstreckt sich hierbei ebenso durch die weitere Widerstandsschicht 250 und die Widerstandsstruktur 180.
  • Fig. 7 zeigt so eine Ausführungsform, bei der die Kontaktstruktur 190 ein verschraubtes Verbindungselement umfasst. Je nach Plattenmaterial kann es so möglich sein, lochartige Vertiefungen in die Platte bzw. das Substrat 140 einzuarbeiten, in dem dann die entsprechenden Verbindungselemente 320 der Kontaktstruktur 190 fixiert werden können. Bei dem in Fig. 7 gezeigten Ausführungsbeispiel ist so in das Substrat 140 ein Gewinde eingebracht worden, über das beispielsweise Drähte der Zuleitung 210 dann mit dem Verbindungselement 320 verschraubt, dort eingeklemmt oder verlötet werden können. Die Kontaktstruktur 190 ist hier als verschraubter Kontakt ausgeführt, bei dem die Zuleitung 210 beispielsweise mithilfe eines Kabelschuhs mit der Verschraubung 340 verbunden werden kann.
  • Bei anderen Ausführungsbeispielen können jedoch auch andere Befestigungsstrukturen 310 bzw. Verbindungselemente 320 verwendet werden. So kann beispielsweise die Befestigungsstruktur 310 als Sackloch, Bohrung oder Gewindebohrung implementiert werden. Entsprechend kann das Verbindungselement 320 auch als Verklemmelement ausgeführt werden. Hierdurch kann es möglich sein, ein verklammertes, verklipstes oder verrastetes Verbindungselement 320 zu verwenden.
  • Bei weiteren Ausführungsbeispielen einer Heizplatte 130 kann es möglich sein, die "positiven" und "negativen" Strukturen zu vertauschen. So kann es beispielsweise möglich sein, die mechanische Befestigungsstruktur derart auszugestalten, dass diese einen Vorsprung, beispielsweise einen Zapfen oder einen Gewindezapfen umfasst, der sich beispielsweise über die Kontaktfläche 220 hinaus erstreckt. So kann es beispielsweise möglich sein, dass auf der Kontaktfläche 220 ein hochstehender Draht implementiert ist, über den eine mit dem Stromleitungsdraht, also der Zuleitung 210, verbundene Hülse gestülpt werden kann. Das Verbindungselement 320, welches mit der Zuleitung 210 verbunden ist, würde in diesem Fall beispielsweise die vorgenannte Hülse umfassen. Selbstverständlich können auch die zuvor genannten und in den unterschiedlichen Figuren gezeigten Verbindungstechniken miteinander kombiniert werden. So kann es beispielsweise möglich sein, die in den Fig. 6 oder 7 gezeigten Kontaktstrukturen 190 zusätzlich mit einer Verlötung zu versehen. Auch weitere Kombinationen, beispielsweise die Kombination einer mechanischen Befestigungsstruktur und einem entsprechenden Verbindungselement zusammen mit einem Federkontakt kann gegebenenfalls implementiert werden.
  • Ausführungsbeispiele eines elektrischen Haarglätters 100 ermöglichen so eine elektrische Kontaktierung von zweidimensionalen Widerstandsstrukturen 170, also entsprechender Heizungen auf Haarglätterheizplatten 130. Sie können gegebenenfalls zu einer stabileren Verbindung der zweidimensionalen Widerstandsstrukturen 170 mit der dritten Dimension der Stromeinspeisungskomponenten, also den Zuleitungen 210, ermöglichen, wobei die ersten zwei Dimensionen durch die im Wesentlichen zweidimensionale Ausgestaltung der elektrischen Widerstandsstruktur 170 definiert sind. Hierdurch kann es gegebenenfalls möglich sein, eine zuverlässigere Einspeisung des Stromflusses in die Heizung, also in die Widerstandsstruktur 170, zu gewährleisten. Gegebenenfalls kann ein elektrischer Haarglätter 100 gemäß einem Ausführungsbeispiel auch eine mechanisch dämpfende Wirkung entfalten, sodass dieser bzw. seine Kontaktstrukturen 190 unterstützend hinsichtlich der Lagerung der Heizplatte 130 wirken können.
  • Ausführungsbeispiele eines elektrischen Haarglätters können so mit einfachen konstruktiven und kostengünstigen Mitteln ein leichteres und/oder widerstandsfähigeres Schaffen einer elektrischen Verbindung zwischen einer im Wesentlichen zweidimensionalen elektrischen Widerstandsstruktur einer elektrischen Heizplatte und einer außerhalb derselben angeordneten elektrischen Schaltung ermöglichen. Dies kann gegebenenfalls optisch gefällig und/oder robust erfolgen.
  • Die in der vorstehenden Beschreibung, den Ansprüchen und den Zeichnungen offenbarten Merkmale können sowohl einzeln als auch in beliebiger Kombination für die Verwirklichung der Erfindung in ihren verschiedenen Ausgestaltungen von Bedeutung sein.
  • Bezugszeichenliste
  • 100
    Elektrischer Haarglätter
    110
    Scharnier
    120
    Arm
    130
    Heizplatte
    140
    Substrat
    150
    Vorderseite
    160
    Hauptoberfläche
    170
    Widerstandsstruktur
    180
    Widerstandsschicht
    190
    Kontaktstruktur
    200
    Schaltung
    210
    Zuleitung
    220
    Kontaktfläche
    230
    Erster Widerstandsabschnitt
    240
    Zweiter Widerstandsabschnitt
    250
    Weitere Widerstandsschicht
    260
    Lot
    270
    Federkontakt
    280
    Federelement
    290
    Anpressfläche
    300
    Hülse
    310
    Befestigungsstruktur
    320
    Verbindungselement
    330
    Gewindesackloch
    340
    Verschraubung

Claims (14)

  1. Elektrischer Haarglätter (100) mit folgenden Merkmalen:
    einer elektrischen Heizplatte (130), die eine im Wesentlichen zweidimensionale elektrische Widerstandsstruktur (170) aufweist;
    eine außerhalb der Heizplatte (130) angeordnete elektrische Schaltung (200); und
    eine erste elektrische Kontaktstruktur (190-1) und eine von der ersten Kontaktstruktur (190-1) verschiedene zweite elektrische Kontaktstruktur (190-2), die an der Heizplatte (130) angeordnet sind und eine elektrisch leitende Verbindung der Widerstandsstruktur (170) mit der elektrischen Schaltung (200) über eine elektrische Zuleitung (210) schaffen,
    dadurch gekennzeichnet, dass
    die erste und/oder die zweite Kontaktstruktur (190) einen mit der Zuleitung (210) elektrisch verbundenen elektrischen Federkontakt (270) umfasst,
    und dass die Widerstandsstruktur (170) eine elektrisch mit dieser verbundene Kontaktfläche (220) umfasst, wobei der Federkontakt (270) eine Kraft bewirkt und durch die Kraft mit der Kontaktfläche (220) in Kontakt steht, sodass die elektrische Verbindung mit der Widerstandsstruktur (170) geschaffen wird.
  2. Elektrischer Haarglätter (100) nach Anspruch 1, bei dem die erste und/oder die zweite elektrische Kontaktstruktur (190) die elektrische Verbindung (210) über die Zuleitung mit der Widerstandsstruktur (170) derart schafft, dass die Zuleitung (210) über eine durch die Widerstandsstruktur (170) definierte Ebene hinaus verläuft.
  3. Elektrischer Haarglätter (100) nach einem der vorhergehenden Ansprüche, bei dem die erste und/oder die zweite Kontaktstruktur (190) eine Verlötung und/oder eine elektrisch leitfähige Verklebung der Zuleitung (210) mit der Widerstandsstruktur (170) umfasst.
  4. Elektrischer Haarglätter (100) nach Anspruch 1, bei dem der Federkontakt (270) eine Blattfeder und/oder einen Federkontaktstift aufweist.
  5. Elektrischer Haarglätter (100) nach einem der vorhergehenden Ansprüche, bei dem die Heizplatte (130) wenigstens eine mechanische Befestigungsstruktur (310) umfasst, die ausgebildet ist, um mit einem mechanischen Verbindungselement (320) der ersten und/oder der zweiten Kontaktstruktur (190) eine mechanisch Verbindung zu schaffen, wobei das Verbindungselement (320) mechanisch mit der Zuleitung (210) verbunden und wenigstens teilweise elektrisch leitfähig ausgestaltet ist, um die elektrische Verbindung zu der Widerstandsstruktur (170) zu schaffen.
  6. Elektrischer Haarglätter (100) nach Anspruch 5, bei dem die Befestigungsstruktur (310) eine Ausnehmung in der Heizplatte, beispielsweise ein Sackloch, eine Bohrung, ein Gewindesackloch (330) und/oder eine Gewindebohrung, und/oder einen Vorsprung, beispielsweise einen Zapfen und/oder einen Gewindezapfen umfasst, und/oder bei dem das Verbindungselement (320) ein elektrisch kontaktierbares Verbindungselement, beispielsweise eine Verschraubung, ein Verklemmelement und/oder eine Hülse, umfasst.
  7. Elektrischer Haarglätter (100) nach einem der vorhergehenden Ansprüche, bei dem die Widerstandsstruktur (170) eine elektrisch leitfähige, zweidimensional strukturierte Widerstandsschicht (180) umfasst.
  8. Elektrischer Haarglätter (100) nach Anspruch 7, bei dem die Widerstandsschicht (180) Zinnoxid, dotiertes Zinnoxid, Zinkoxid, dotiertes Zinkoxid, Grafit, Graphen und/oder Kohlenstoffnanoröhren umfasst.
  9. Elektrischer Haarglätter (100) nach einem der Ansprüche 7 oder 8, bei dem eine Schichtdicke der Widerstandsschicht (180) höchstens 100 µm beträgt.
  10. Elektrischer Haarglätter (100) nach einem der Ansprüche 7 bis 9, bei dem die Widerstandsstruktur (180) an wenigstens einem Ort, an dem die erste und/oder die zweite Kontaktstruktur (190) die elektrische Verbindung zu der Widerstandsstruktur (170) bewirkt, eine unmittelbar auf die Widerstandsschicht (180) aufgebrachte weitere Widerstandsschicht (250) umfasst.
  11. Elektrischer Haarglätter (100) nach Anspruch 10, bei dem die weitere Widerstandsschicht (250) einen geringeren elektrischen Widerstandswert in einer durch die Widerstandsstruktur (170) definierten Ebene als eine gleichgroße Fläche der Widerstandsschicht (180) aufweist.
  12. Elektrischer Haarglätter (100) nach einem der vorhergehenden Ansprüche, bei dem die Heizplatte (130) ein elektrisch isolierendes Substrat (140), beispielsweise ein Keramiksubstrat, ein Glaskeramiksubstrat, ein Glassubstrat oder ein Quarzglassubstrat, mit einer Hauptoberfläche umfasst, und bei dem die Widerstandsstruktur (170) unmittelbar auf der Hauptoberfläche (160) aufgebracht ist.
  13. Elektrischer Haarglätter (100) nach Anspruch 12, bei dem die Hauptoberfläche (160) des Substrats (140) eine Hauptoberfläche der Heizplatte (130) bildet.
  14. Elektrischer Haarglätter (100) nach einem der vorhergehenden Ansprüche, bei der die Widerstandsstruktur (170) wenigstens drei parallel verlaufende erste Widerstandsabschnitte (230) aufweist, von denen jeweils zwei erste Widerstandsabschnitte (230) durch einen zweiten Widerstandsabschnitt (240) unmittelbar elektrisch verbunden sind, wobei die zweiten Widerstandsabschnitte (240) unter einem von 0° verschiedenen Winkel mit den ersten Widerstandsabschnitten (230) verbunden sind, und/oder bei der die Widerstandsstruktur (170) einen spiralförmigen Widerstandsabschnitt umfasst.
EP13152116.3A 2012-02-06 2013-01-22 Elektrischer Haarglätter Not-in-force EP2622986B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102012201739A DE102012201739A1 (de) 2012-02-06 2012-02-06 Elektrischer Haarglätter

Publications (3)

Publication Number Publication Date
EP2622986A2 EP2622986A2 (de) 2013-08-07
EP2622986A3 EP2622986A3 (de) 2015-12-30
EP2622986B1 true EP2622986B1 (de) 2017-08-02

Family

ID=47563298

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13152116.3A Not-in-force EP2622986B1 (de) 2012-02-06 2013-01-22 Elektrischer Haarglätter

Country Status (2)

Country Link
EP (1) EP2622986B1 (de)
DE (1) DE102012201739A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013216148A1 (de) * 2013-08-14 2015-03-05 BSH Bosch und Siemens Hausgeräte GmbH Heizteil und Haarformgerät
CN105615237A (zh) * 2015-12-22 2016-06-01 深圳市纳美新材料科技有限公司 美发器

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4697066A (en) * 1985-09-30 1987-09-29 Glucksman Dov Z Electric hair curling waved with improved heating element arrangement
GB0319969D0 (en) * 2003-08-27 2003-09-24 Advanced Ceramics Ltd Hair care appliance
DE102007002879A1 (de) * 2007-01-15 2008-07-17 Duna Enterprises S.A. Heizplatte für Haarglätter und deren Herstellungsverfahren

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP2622986A2 (de) 2013-08-07
EP2622986A3 (de) 2015-12-30
DE102012201739A1 (de) 2013-08-08

Similar Documents

Publication Publication Date Title
EP0866639B1 (de) Widerstands-Heizvorrichtung für flächige Objekte, insbesondere für Spiegel
DE2614433A1 (de) Selbstregelndes heizelement
DE3311803A1 (de) Elektrische heizvorrichtung, insbesondere fuer spiegel
DE112018004669T5 (de) Lötfreier flexibler verbinder mit hoher leistung für gedruckte leiterbahnen
WO2017194261A1 (de) Lötspitze für einen lötkolben
DE102009034306A1 (de) Heizelement sowie Verfahren zu dessen Herstellung
EP3726926B1 (de) Heizmatte
EP2622986B1 (de) Elektrischer Haarglätter
EP2739477B1 (de) Mikrostrukturierter heissprägestempel
EP0218797A2 (de) Frisierstab mit Elektroheizung
EP2696720B1 (de) Haarformgerät-heizplatte
WO2017093476A1 (de) Thermoelektrisches modul
DE102020107515A1 (de) Multimetall Klettwelding
DE102011007138B4 (de) Elektrodenanordnung, Herstellungsverfahren
DE102018100742A1 (de) Heizeinrichtung mit einer Mehrzahl von elektrischen Flächenheizelementen
DE102017212579A1 (de) Heizelement und Verfahren zum Herstellen eines Heizelements
EP4122008A1 (de) Verbindung von bauteilen
DE10335979A1 (de) Verbund-Plattenelement mit einer Schichtheizung
DE102004010713B4 (de) Flexibler Sensor mit Thermistor
DE102004052477B4 (de) Beheizbarer Außenspiegel
EP1457743B1 (de) Elektrische Heizeinrichtung, insbesondere für ein Kraftfahrzeug
WO2022243024A1 (de) Flexibles heizelement mit steckverbindern
EP1685580A1 (de) Verfahren zur herstellung einer bertemperatursicherung und bertemperatursicherung
DE102011120276A1 (de) Widerstand, insbesondere Strommesswiderstand
DE102010060344A1 (de) SMD-bestücktes Folienband

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BSH HAUSGERAETE GMBH

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: A45D 1/04 20060101AFI20151125BHEP

Ipc: A45D 2/00 20060101ALI20151125BHEP

17P Request for examination filed

Effective date: 20160630

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170320

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 913477

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013007892

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170802

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170802

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170802

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170802

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170802

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170802

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170802

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171103

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170802

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170802

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170802

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171102

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170802

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170802

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170802

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013007892

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170802

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170802

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170802

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170802

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20180503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170802

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170802

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180122

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180131

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180122

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 913477

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170802

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170802

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170802

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170802

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170802

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170802

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20210120

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20210131

Year of fee payment: 9

Ref country code: GB

Payment date: 20210122

Year of fee payment: 9

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502013007892

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220122

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220802

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220131