EP2621796A1 - System comprising an underwater vehicle and a base situated at the surface - Google Patents

System comprising an underwater vehicle and a base situated at the surface

Info

Publication number
EP2621796A1
EP2621796A1 EP11779759.7A EP11779759A EP2621796A1 EP 2621796 A1 EP2621796 A1 EP 2621796A1 EP 11779759 A EP11779759 A EP 11779759A EP 2621796 A1 EP2621796 A1 EP 2621796A1
Authority
EP
European Patent Office
Prior art keywords
float
underwater vehicle
optical fiber
base
winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP11779759.7A
Other languages
German (de)
French (fr)
Other versions
EP2621796B1 (en
Inventor
Jean-François DROGOU
Vincent Rigaud
Laurent Artzner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institut Francais de Recherche pour lExploitation de la Mer (IFREMER)
Original Assignee
Institut Francais de Recherche pour lExploitation de la Mer (IFREMER)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institut Francais de Recherche pour lExploitation de la Mer (IFREMER) filed Critical Institut Francais de Recherche pour lExploitation de la Mer (IFREMER)
Publication of EP2621796A1 publication Critical patent/EP2621796A1/en
Application granted granted Critical
Publication of EP2621796B1 publication Critical patent/EP2621796B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B21/00Tying-up; Shifting, towing, or pushing equipment; Anchoring
    • B63B21/56Towing or pushing equipment
    • B63B21/66Equipment specially adapted for towing underwater objects or vessels, e.g. fairings for tow-cables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G8/00Underwater vessels, e.g. submarines; Equipment specially adapted therefor
    • B63G8/001Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations

Definitions

  • the present disclosure relates to a system comprising an underwater vehicle and a surface-based base.
  • Such a system can be used to perform any type of underwater work and, more particularly, for underwater exploration.
  • the underwater vehicle is generally provided with various on-board equipment (sensors, cameras, articulated arms, sampling means, etc.).
  • the underwater vehicle is a remotely operated submarine vehicle or ROV (for "Remotely Operated Vehicle”).
  • ROV Remotely Operated Vehicle
  • This unmanned vehicle is usually remotely controlled from a larger vehicle such as a boat, which is the base, on which the ROV pilot is located.
  • a negative float profile body is interposed between the ROV and a surface vessel.
  • the shaped body is maintained substantially at the same depth of immersion as the ROV.
  • the profiled body is wired to the ROV via a first cable.
  • the profiled body is bonded to the boat by means of a second cable, a diameter greater than that of the first cable. Both the first and second cables allow the transmission of electrical power and control signals from the boat to the ROV.
  • the propulsion means of the ROV are supplied with electrical energy via these cables, the ROV having no onboard energy reserve.
  • the length of the first cable is dependent, on the one hand, on the need for the vehicle to travel around the position of the profiled body and, on the other hand, on the need to hold the fixed point of the vehicle. vehicle when the profiled body moves in the case where holding the boat at the fixed point is not sufficient.
  • this other system uses a Hybrid Remotely Operated Vehicle (HROV).
  • HROV Hybrid Remotely Operated Vehicle
  • This vehicle is said to be hybrid because it is equipped with on-board propulsion means powered by an onboard battery.
  • a depressor ballast and a float pack are interposed, in that order, between the boat and the HROV.
  • the depressant ballast is tied to the boat directly or via a cable, and is tied to the HROV by an optical fiber that passes through the float pack.
  • the HROV is therefore tied to the diver and the float only by the optical fiber.
  • This optical fiber being of diameter (250 microns) and of very low linear density, its length can be very important (between 20 and 60 km) without generating a drag or a too important weight and, thus, without that hindering the maneuverability HROV or boat.
  • the optical fiber is cut with a shear present on the float pack. Moreover, a gripping member can be provided on the step-down to recover the cut optical fiber.
  • a gripping member can be provided on the step-down to recover the cut optical fiber.
  • a first mode of operation consists, if the autonomy of the HROV allows, to remotely control the HROV from the first to the second zone but, then, the autonomy of the HROV may be insufficient to work on the second zone.
  • a second mode of operation consists of working on the first zone, cutting the optical fiber, raising the HROV to the surface, recovering the HROV on the boat, moving the boat from the first to the second working area, using a new fiber optic, down the HROV to the seabed of the second zone. This second mode of operation is therefore laborious and takes a lot of time.
  • This presentation concerns a system comprising an underwater vehicle and a surface-based base, enabling work to be carried out at all depths, to the most important depths (eg 11000m), this system being devoid, at least in part, of aforementioned drawbacks.
  • it is a system comprising an underwater vehicle and a surface-based base, in which the underwater vehicle comprises an onboard energy reserve and is remotely controlled from the base by the intermediate of at least one first optical fiber, this system comprising:
  • a positive float element referred to as a float
  • a float connected by wire to the underwater vehicle, solely via the first optical fiber (s)
  • diver a negative buoyancy element, called diver, linked to the base.
  • the float and the plunger are wired together via a first flexible link, and the system further comprises:
  • a first device for winding and unwinding the first optical fiber provided on the float and / or the underwater vehicle
  • the system can, on the one hand, be deployed by unfolding the first optical fiber and the first flexible link and, on the other hand, be retracted by winding the first optical fiber and the first flexible link.
  • the term "surface-based base” means any type of installation or device, whether terrestrial or marine, situated at or above the surface of the surface of water, from which it It is possible to remotely control the underwater vehicle.
  • the base is a boat. It could however be a platform, an off-shore platform, etc.
  • the proposed system offers the possibility of working with, as a basis, a small ship with no means of dynamic positioning.
  • said underwater vehicle is, more particularly, a submarine engine without crew and self-propelled like, for example, a HROV. It could however be a drone, a torpedo, etc.
  • the energy reserve of this machine is usually a reserve of electrical energy such as a battery.
  • the diver When the system is in deployed configuration, the diver hangs in the water under the base, the float is remote from the diver and the underwater vehicle is distant from the float.
  • the plunger and the float allow a decoupling that limits the forces exerted on the underwater vehicle to those exerted by the first optical fiber.
  • This first optical fiber being of limited linear density and diameter (compared to known cables, metal or Kevlar), the forces exerted by the fiber on the underwater vehicle are also limited, even for long fiber lengths. This ensures good maneuverability of the underwater vehicle.
  • the first optical fiber may be reinforced, in particular by an outer envelope, so as to have sufficient mechanical strength to withstand the traction forces between the float and the machine, in particular during the winding phase of the fiber .
  • the geometry of the system in deployed configuration can be adapted by increasing / decreasing the lengths of the first flexible link and the first optical fiber, which is possible due to the presence of the first and second winding devices and unwinding .
  • the proposed system is, moreover, well adapted to work on two relatively distant areas of each other. Indeed, in this case, after having worked on the first zone, the first optical fiber and the first flexible link are wound, respectively, by means of the first and second winding / unwinding devices, so that the sub-machine marine, float and diver are united in a unit. This unitary assembly can then be easily pulled by the boat that is moved from the first to the second zone. The first optical fiber and the first flexible link are then unwound to find the deployed configuration and to work on the second site.
  • the energy used for the displacement of the underwater vehicle between the two work areas is not taken from the energy reserve of the gear and the autonomy of the machine is preserved.
  • it is not necessary to raise the underwater vehicle surface and install a new optical fiber which simplifies operations and saves time.
  • the underwater vehicle comprises an onboard remote-controlled, propulsion system via the first optical fiber (ie the control signals pass through the first optical fiber), the on-board energy reserve being adapted to power this propulsion system.
  • the propulsion system is powered solely by said onboard energy reserve and therefore receives no energy from a source external to the underwater vehicle.
  • the connection between the float and the underwater vehicle is not used to supply energy to the propulsion system.
  • the underwater vehicle is a HROV.
  • the first winding and unwinding device of the first optical fiber is provided on the float and / or on the underwater vehicle.
  • the first winding / unwinding device is provided on the underwater vehicle, the onboard energy reserve being adapted to feed this first winding device / unwinding.
  • the onboard energy reserve of the underwater vehicle is provided on the underwater vehicle.
  • the first winding / unwinding device is provided on the float.
  • an on-board energy reserve is provided on the float, or energy is transferred from the base to the float, via the plunger and the first flexible link.
  • the first winding and unwinding device is a constant voltage winch for maintaining the first optical fiber under a certain tension when unwound. This makes it possible to keep this optical fiber relatively stretched between the float and the underwater vehicle and, thus, to prevent it from dragging on the ocean floor where it could be damaged, or that too much length of fiber is generating loops in open water, likely to hang on.
  • the second winding and unwinding device of the first flexible link is provided on the float and / or the plunger.
  • the second winding device is provided on the plunger.
  • the system includes a first attachment device adapted to detachably attach the float and the underwater vehicle together.
  • a first attachment device adapted to detachably attach the float and the underwater vehicle together.
  • This subassembly can be easily moved in the water and, in particular, can be moved closer and / or away from the diver.
  • the subset moves using the propulsion system of the underwater vehicle and is remotely controlled from the base.
  • the system includes a second fastener adapted to releasably secure the plunger to the underwater vehicle and / or the float.
  • a second fastener adapted to releasably secure the plunger to the underwater vehicle and / or the float.
  • the plunger includes a cage defining a housing within which at least a portion of the underwater craft can penetrate. This makes it possible to create a compact assembly uniting the plunger, the float and the underwater vehicle.
  • the machine when the machine is housed at least partly in the cage, it is protected by it against external shocks. In particular, it is necessary to protect the fragile parts of the machine (e.g. possible fins, possible articulated arms, etc.).
  • the underwater vehicle is housed entirely in the cage.
  • the float includes a locating system for determining, at a given moment, the position of the float underwater, and a remotely controlled propulsion system from the base.
  • a locating system for determining, at a given moment, the position of the float underwater, and a remotely controlled propulsion system from the base.
  • the first optical fiber must be strong enough to withstand the tensile forces between the plunger and the machine, especially during the winding of the fiber.
  • the breaking strength of the fiber is related to the diameter of the fiber and a high tensile strength is accompanied by a large diameter.
  • the diameter of the fiber must remain small in order to limit the drawbacks associated with the weight, drag and bulk of the fiber when it is wound up. A breaking strength is therefore a disadvantage.
  • the first optical fiber has a breaking strength of between 500 and 1500 N, which constitutes a good compromise between the mechanical strength and the weight / volume of the optical fiber.
  • the first flexible link has a breaking strength of between 3,000 and 10,000 N. This is, again, a good compromise between the mechanical strength and the weight / volume. flexible link.
  • At least one second optical fiber is connected to the first and is associated with the first soft link.
  • the second optical fiber can be integrated inside the first flexible link so as to be protected.
  • At least one first electrical cable is associated with the first flexible link, this first electrical cable being adapted to supply power to the potential equipment of the float, such as, for example, the propulsion means thereof.
  • the first electrical cable can be integrated inside the first flexible link so as to be protected.
  • the plunger is wire bonded to the base by a second flexible link.
  • This second flexible link is a solution to keep the diver away from the base while controlling the diver's altitude relative to the ocean floor.
  • a device for winding and unwinding the second flexible link is provided on the base.
  • This second flexible link must be strong enough to withstand the pulling forces between the plunger and the base.
  • the breaking strength of the second flexible link therefore depends in particular on the weight / volume of the plunger.
  • At least one third optical fiber is associated with the second flexible link, this third optical fiber being connected to the second optical fiber.
  • the third optical fiber can be integrated inside the second flexible link so as to be protected.
  • the first, second and third optical fibers provide an optical connection between the base and the underwater vehicle, this optical connection allowing the transfer of the control signals from the base to the machine and being able to allow, in the other direction, the transfer of data from the machine to the base.
  • at least a second electrical cable is associated with the second flexible link, the second electrical cable being adapted to supply power to the potential equipment of the plunger and / or the float.
  • the second electric cable can be integrated inside the second flexible link so as to be protected.
  • the proposed system comprises at least a first, at least a second and at least a third optical fiber and that, therefore, several first, several second and several third optical fibers can be provided. This also applies to the first and second electric cables.
  • FIG. 1 represents an exemplary system according to the present disclosure, comprising an underwater vehicle, a surface-based base, a plunger and a float.
  • FIG 2 is a detail view of FIG 1 showing the float, the first optical fiber and the winding device / unwinding of this first optical fiber.
  • FIG 3 is a detail view of another example of a float.
  • FIGS. 4 to 7 illustrate the successive steps of deploying the system of FIG. 1 in the water.
  • FIG 1 shows a system comprising an underwater vehicle 10 and a base 40 located on the surface.
  • the underwater vehicle 10 is remotely controlled from the base 40 via one or more (in the example only one) first optical fiber 15.
  • This system includes;
  • a positive buoyancy element said float 20, linked by wire (i.e. by a wire link) to the underwater vehicle 10;
  • plunger 30 a negative buoyancy element, called plunger 30, connected by wire to the base 40 and the float;
  • first optical fiber (s) 15 constituting the only wired connection between the underwater vehicle 10 and the float 20;
  • first flexible link (s) 25 forming a wire connection between the plunger 30 and the float 20;
  • one (or more) second flexible link (s) 35 forming a wire connection between the plunger 30 and the base 40.
  • This system also includes:
  • the base 40 is a boat.
  • the underwater vehicle 10 is unmanned and includes an electric battery 14 on board constituting a reserve of energy within the meaning of this presentation.
  • the underwater vehicle 10 is self-propelled, its embedded propulsion system 16 being powered by the battery 14 on board.
  • This propulsion system 16 is remotely controlled from the base 40, via the first optical fiber 15, the link 25 and the link 35.
  • the underwater vehicle 10 is a HROV.
  • the battery 14 also supplies the first winding / unwinding device 12 with electrical energy.
  • the first winding / unwinding device 12 is a winch with constant tension and it makes it possible to keep the first optical fiber 15 under a certain tension when it is unwound.
  • the main technical characteristics of such a winch may be the following: winding of 200 to 500 m of optical fiber; holding force from 10 to 50 N.
  • the plunger 30 comprises a cage 33 (eg a metal cage) defining a housing 31 open laterally via an opening 31a.
  • the shape and dimensions of the housing 31 are such that the underwater vehicle 10 and the plunger 20 can enter it (see FIG 4).
  • the second device 32 for winding / unfolding the first flexible link 25 is, in the example, a winch.
  • This winch is mounted on the cage 33.
  • the main technical characteristics of such a winch can be, the following: winding 50 to 100 m of link; winding force of the order of 5000 N.
  • the winch is disposed above the housing and pulleys 34 fixed on the cage 33 can deflect the path of the first flexible link 25.
  • One of the pulleys 34 is located on the opposite side to the lateral opening 31a, so that link 25 passes through the housing 31.
  • the system comprises a first attachment device adapted to detachably attach together the float 20 and the underwater vehicle 10.
  • this first fixing device comprises a hook (not shown) integral with the underwater vehicle 10, which can be switched on and off automatically or piloted. This hook blocks the float as soon as the float is in contact with the bottom of its housing in the underwater vehicle.
  • the system also comprises a second fixing device adapted to detachably attach the plunger 30 to the underwater vehicle 10 and / or to the float 20.
  • this second fixing device comprises a hook integral with the structure of the plunger 30, which can be switched on or off automatically or controlled. This hook blocks the float 20 and the underwater vehicle as soon as they come into contact with the bottom of the housing 31 of the cage 33.
  • FIG. 3 A particular example of a float 120 is shown in FIG. 3.
  • the first and second optical fibers 15, 25 are connected to the body of the float 120.
  • this float 120 comprises a propulsion system 127 and a locating system 126 allowing, at a precise moment, to determine the position of the float 120 under water.
  • the propulsion system 127 can be remotely controlled from the base 40 via the second and third optical fibers 25, 35.
  • the position of the plunger 30 is known by means of another locating system 36 fixed on the cage 33 (see FIG 1).
  • the float 20 comprises a fastening element 128 for its fixing on the plunger 30 and a fixing element 129 for its attachment to the machine 10.
  • These two fastening elements 128, 129 have at their free end a flange configured to cooperate, respectively, with the hooks of the plunger 30 and of the cage 33.
  • the first optical fiber 15 has a tensile strength of between 500 and 1500 N, a diameter typically between 5 and 8 mm and a linear density typically between 0.4 and 0.8 N / m in the water.
  • This optical fiber 15 is, for example, reinforced by an aramid fiber envelope.
  • This optical fiber 15 is sufficiently strong to withstand the tensile forces between the float 20 and the machine 10, particularly during the winding phase of the fiber 15, while generating a limited weight, drag and space. Note that the size of the housing provided in the machine 10 for housing the fiber 15, when it is wound around the winch 12, depends on the length and the diameter of the fiber 15.
  • the first flexible link 25 has a breaking strength of between 3000 and 10000 N, a diameter typically between 10 and 20 mm and a linear density in the low water making it practically neutral in water.
  • This first flexible link 25 is, for example, a cable having a multilayer coaxial structure with an outer Kevlar protection layer.
  • This first flexible link 25 integrates one (or more) second (s) optical fiber (s), this second optical fiber being close to the core of the link and thus protected by the outer protective layer.
  • the first flexible link 25 may also include one (or more) first (s) electric cable (s). This cable makes it possible to supply energy to the equipment of the float, that is to say the propulsion system 127 and the locating system 126 in the example of the float 120.
  • the second flexible link 35 integrates one (or more) third (s) optical fiber (s) and one (or more) second (s) electric cable (s).
  • the third optical fiber is connected to the second optical fiber which, itself, is connected to the first optical fiber 15.
  • the first, second and third optical fibers provide an optical connection between the base 40 and the underwater vehicle. 10, this optical connection allows the transfer of the control signals from the base 40 to the machine 10.
  • the second electric cable makes it possible to supply power to the equipment of the plunger, that is to say, in the example, the winch 32 and the locating system 36.
  • FIGS. 1, 4-7 the system of FIG. 1 can be deployed in the following manner.
  • the base 40 is moved substantially over the work area.
  • the machine 10 the float 20 and the plunger 30 are aboard the base 40 and are united in a unitary assembly.
  • the float is fixed and locked on the machine 10, and the machine 10 is locked in the waiting position inside the cage 33.
  • the driver of the machine 10 is aboard the base 40.
  • the cage 33 is then launched and lowered to the bottom by unwinding the second flexible link 35.
  • the cage 33 is stabilized, for example, about 50 meters from the bottom.
  • FIG 4 represents the cage in this last position.
  • the altitude of the cage 33 is controlled using the location system 36.
  • the machine 10 is then unlocked vis-à-vis the cage on command of the pilot.
  • the pilot remotely controls the craft 10 (and the float 20 still fixed and locked on the craft 10) out of the cage 33, the craft 10 moving by means of its propulsion system 16.
  • the winch 32 of the cage 33 is actuated, on command of the pilot, to unwind the first flexible link 25.
  • the first flexible link 25 is unwound, for example, over 50 meters.
  • the movements of the base 40 are retransmitted to the cage 33 but almost not to the machine 10, due to the decoupling allowed by the first flexible link 25.
  • the float 20 is then unlocked vis-à-vis the machine 10, on the pilot's command.
  • the course (ie unwinding) of the first optical fiber 15 is then done automatically through the winch 12, depending on the movements of the machine 10 (the machine 10 applying a slight traction on the fiber 15 in s' away from the float 20).
  • the machine 10 is remotely controlled by the pilot to reach the work area. At this stage, the machine 10 is completely decoupled from the movements of the base 40 and the cage 33.
  • the position of the float can be checked and modified by the pilot to control the configuration adopted by the first flexible link 25 and the fiber 15.
  • the system can be retracted as follows.
  • the machine 10 is reassembled at the pilot's command at the same altitude as the cage 33, so as to clear the bottom.
  • the machine is then moved towards the cage 33, preferably in reverse, so as to facilitate the automatic winding (ie rewinding) of the fiber 15 around the winch 12.
  • the float 20 is automatically locked on the machine 10.
  • the machine 10 and the float then form a unit subset.
  • the pilot then controls the winding of the winch 32 of the cage 33, which has the effect of bringing the machine 10 (and the float 20) to the cage.
  • the pilot remotely navigates the machine 10 to the approach of the cage 33 to ensure proper alignment of the machine with the opening 31a of the housing 31 of the cage 33 and thus limit the risk of shocks.
  • the machine 10 is then pulled inside the housing 31 by the winch 32, via the first flexible link 25.
  • the plunger 30, the float 20 and the craft 10 then form a unitary unit. This assembly can either remain in the water and be pulled by the base 40 to another work area, or be raised to the surface by winding the second flexible link 35 and be recovered on board the base 40.

Abstract

System comprising an underwater vehicle (10) and a base (40) situated at the surface. The underwater vehicle (10) has an on-board reserve of energy and is controlled remotely from the base via at least one first optical fibre (15). The system comprises: a positive-buoyancy element known as a float (20), connected by wire to the underwater vehicle (10), only via the first optical fibre (15); and a negative-buoyancy element known as a sinker (30) connected to the base (40). The float (20) and the sinker (30) are connected by wire by means of a first flexible link (25). This system also comprises: a first device (12), provided on the float (20) and/or on the underwater vehicle (10), for winding in and paying out the first optical fibre (15); and a second device (32), provided on the float (20) and/or on the sinker (30), for winding in and paying out the first flexible link (25).

Description

SYSTEME COMPRENANT UN ENGIN SOUS- MARIN ET  SYSTEM COMPRISING A SUBMARINE ENGINE AND
UNE BASE SITUEE EN SURFACE  A BASE LOCATED IN SURFACE
DOMAINE DE L'INVENTION FIELD OF THE INVENTION
Le présent exposé concerne un système comprenant un engin sous- marin et une base située en surface.  The present disclosure relates to a system comprising an underwater vehicle and a surface-based base.
Un tel système peut être utilisé pour réaliser tout type de travaux sous- marins et, plus particulièrement, pour l'exploration sous-marine. L'engin sous- marin est généralement pourvu de divers équipements embarqués (capteurs, caméras, bras articulés, moyens de prélèvement d'échantillon, etc.).  Such a system can be used to perform any type of underwater work and, more particularly, for underwater exploration. The underwater vehicle is generally provided with various on-board equipment (sensors, cameras, articulated arms, sampling means, etc.).
ETAT DE LA TECHNIQUE ANTERIEURE  STATE OF THE PRIOR ART
Il existe déjà des systèmes avec un engin sous-marin et une base, située en surface, dans lesquels l'engin sous-marin est télécommandé depuis la base.  Systems already exist with an underwater vehicle and a base, located on the surface, in which the underwater vehicle is remotely controlled from the base.
Dans la plupart des cas, l'engin sous-marin est un véhicule sous-marin télécommandé ou ROV (pour "Remotely Operated Vehicle"). Ce véhicule sans équipage est généralement télécommandé depuis un véhicule plus gros comme un bateau, faisant office de base, sur lequel se trouve le pilote du ROV.  In most cases, the underwater vehicle is a remotely operated submarine vehicle or ROV (for "Remotely Operated Vehicle"). This unmanned vehicle is usually remotely controlled from a larger vehicle such as a boat, which is the base, on which the ROV pilot is located.
Un exemple de système connu utilisant un ROV est décrit dans la demande de brevet français publiée n° FR 2668446.  An example of a known system using an ROV is described in the published French patent application No. FR 2668446.
Dans cet exemple, un corps profilé de flotta bilité négative est intercalé entre le ROV et un bateau en surface. Le corps profilé est maintenu sensiblement à la même profondeur d'immersion que le ROV. Le corps profilé est lié filairement au ROV par l'intermédiaire d'un premier câble. De plus, le corps profilé est lié filairement au bateau par l'intermédiaire d'un deuxième câble, d'un diamètre plus grand que celui du premier câble. Les premier et deuxième câbles permettent tous les deux la transmission d'énergie électrique et de signaux de commande du bateau vers le ROV. Les moyens de propulsion du ROV sont alimentés en énergie électrique via ces câbles, le ROV n'ayant pas de réserve d'énergie embarquée. On notera que, dans ce système, la longueur du premier câble est dépendante, d'une part, du besoin d'excursion du véhicule autour de la position du corps profilé et, d'autre part, du besoin de tenue au point fixe du véhicule quand le corps profilé se déplace dans le cas où la tenue du bateau au point fixe n'est pas suffisante. Il est prévu dans la demande publiée n° FR 2668446 d'utiliser un premier câble du type de celui décrit dans la demande de brevet français publiée n° FR 2668643. Or, la traînée de ce câble augmentant avec sa longueur, au delà d'une valeur limite de longueur de câble, cette traînée devient si élevée que les forces de traction exercées par le câble sur le ROV et/ou sur le bateau empêchent de manœuvrer ceux-ci correctement. In this example, a negative float profile body is interposed between the ROV and a surface vessel. The shaped body is maintained substantially at the same depth of immersion as the ROV. The profiled body is wired to the ROV via a first cable. In addition, the profiled body is bonded to the boat by means of a second cable, a diameter greater than that of the first cable. Both the first and second cables allow the transmission of electrical power and control signals from the boat to the ROV. The propulsion means of the ROV are supplied with electrical energy via these cables, the ROV having no onboard energy reserve. It should be noted that, in this system, the length of the first cable is dependent, on the one hand, on the need for the vehicle to travel around the position of the profiled body and, on the other hand, on the need to hold the fixed point of the vehicle. vehicle when the profiled body moves in the case where holding the boat at the fixed point is not sufficient. It is provided in the published application No. FR 2668446 to use a first cable of the type described in the published French patent application No. FR 2668643. Now, the drag of this cable increasing with its length, beyond a limit value of cable length, this drag becomes so high that the traction forces exerted by the cable on the ROV and / or on the boat prevent them from being handled correctly.
En particulier, il est impossible d'utiliser ce type de câble avec un navire de petite taille, ne disposant pas de moyens de positionnement dynamique, car la longueur de câble nécessaire pour travailler sur les fonds marins dépasse généralement la valeur limite précitée et les forces de traction exercées par le câble sur le navire sont trop importantes pour permettre de manœuvrer correctement celui-ci.  In particular, it is impossible to use this type of cable with a small ship, having no dynamic positioning means, because the length of cable necessary to work on the seabed generally exceeds the aforementioned limit value and the forces The pulling forces exerted by the cable on the ship are too great to allow it to be maneuvered correctly.
Un autre exemple de système connu est décrit dans la demande de brevet PCT publiée n° WO 2008/130682.  Another example of a known system is described in published PCT Patent Application No. WO 2008/130682.
Pour permettre de travailler à de grandes profondeurs et, typiquement, entre 7000 et 11000 m de profondeurs, cet autre système utilise un véhicule sous-marin télécommandé hybride ou HROV (pour "Hybrid Remotely Operated Vehicle"). Ce véhicule est dit hybride car il est doté de moyens de propulsion embarqués alimentés en énergie électrique par une batterie embarquée.  To allow work at great depths and, typically, between 7000 and 11000 m depth, this other system uses a Hybrid Remotely Operated Vehicle (HROV). This vehicle is said to be hybrid because it is equipped with on-board propulsion means powered by an onboard battery.
Dans cet autre système, un lest dépresseur ("depressor") et un pack de flotteurs ("float pack") sont intercalés, dans cet ordre, entre le bateau et le HROV. Le lest dépresseur est lié au bateau directement ou par l'intermédiaire d'un câble, et est lié au HROV par une fibre optique qui traverse le pack de flotteurs. Le HROV est donc lié filairement au plongeur et au flotteur uniquement par la fibre optique. Cette fibre optique étant de diamètre (250 microns) et de masse linéique très faible, sa longueur peut être très importante (entre 20 et 60 km) sans engendrer une traînée ou un poids trop important et, donc, sans que cela ne gêne la manœuvrabilité du HROV ou du bateau.  In this other system, a depressor ballast and a float pack are interposed, in that order, between the boat and the HROV. The depressant ballast is tied to the boat directly or via a cable, and is tied to the HROV by an optical fiber that passes through the float pack. The HROV is therefore tied to the diver and the float only by the optical fiber. This optical fiber being of diameter (250 microns) and of very low linear density, its length can be very important (between 20 and 60 km) without generating a drag or a too important weight and, thus, without that hindering the maneuverability HROV or boat.
Cet autre système présente toutefois certains inconvénients détaillés ci- dessous.  This other system, however, has some drawbacks detailed below.
Une fois l'opération du HROV terminée, la fibre optique est coupée à l'aide d'une cisaille présente sur le pack de flotteurs. Par ailleurs, un organe de préhension ("gripper") peut être prévu sur l'abaisseur pour récupérer la fibre optique coupée. Or, il parait difficile de récupérer l'intégralité de la fibre optique avec un tel organe. Il existe donc un risque de pollution des fonds marins par tes débris de fibre non récupérés. Dans tous les cas, les morceaux de fibre optique récupérés sont endommagés et ne sont pas réutilisables. Ces morceaux doivent donc être jetés, ce qui pollue également. Once the operation of the HROV is complete, the optical fiber is cut with a shear present on the float pack. Moreover, a gripping member can be provided on the step-down to recover the cut optical fiber. However, it seems difficult to recover the entirety of the optical fiber with such an organ. There is therefore a risk of pollution of the seabed by unretrieved fiber debris. In all cases, the pieces of optical fiber recovered are damaged and are not reusable. These pieces must be discarded, which also pollutes.
Par ailleurs, cet autre système se révèle mal adapté au travail sur deux zones relativement éloignées l'une de l'autre. En effet, dans ce cas, un premier mode d'opération consiste, si l'autonomie du HROV le permet, à téléguider le HROV de la première à la deuxième zone mais, alors, l'autonomie du HROV risque d'être insuffisante pour travailler sur la deuxième zone. Un second mode d'opération consiste à travailler sur la première zone, couper la fibre optique, faire remonter le HROV à la surface, récupérer le HROV à bord du bateau, déplacer le bateau de la première vers la deuxième zone de travail, utiliser une nouvelle fibre optique, redescendre le HROV vers les fonds marins de la deuxième zone. Ce second mode d'opération est donc laborieux et prend beaucoup de temps.  Moreover, this other system proves poorly suited to work on two relatively distant areas of each other. Indeed, in this case, a first mode of operation consists, if the autonomy of the HROV allows, to remotely control the HROV from the first to the second zone but, then, the autonomy of the HROV may be insufficient to work on the second zone. A second mode of operation consists of working on the first zone, cutting the optical fiber, raising the HROV to the surface, recovering the HROV on the boat, moving the boat from the first to the second working area, using a new fiber optic, down the HROV to the seabed of the second zone. This second mode of operation is therefore laborious and takes a lot of time.
PRESENTATION DE L'INVENTION  PRESENTATION OF THE INVENTION
Le présent exposé concerne un système comprenant un engin sous- marin et une base située en surface, permettant de travailler à toutes les profondeurs, jusqu'aux profondeurs les plus importantes (e.g. 11000m), ce système étant dépourvu, au moins en partie, des inconvénients précités.  This presentation concerns a system comprising an underwater vehicle and a surface-based base, enabling work to be carried out at all depths, to the most important depths (eg 11000m), this system being devoid, at least in part, of aforementioned drawbacks.
Selon un mode de réalisation, il s'agit d'un système comprenant un engin sous-marin et une base située en surface, dans lequel l'engin sous- marin comprend une réserve d'énergie embarquée et est télécommandé depuis la base par l'intermédiaire d'au moins une première fibre optique, ce système comprenant:  According to one embodiment, it is a system comprising an underwater vehicle and a surface-based base, in which the underwater vehicle comprises an onboard energy reserve and is remotely controlled from the base by the intermediate of at least one first optical fiber, this system comprising:
- un élément de flotta bilité positive, dit flotteur, lié filairement à l'engin sous- marin, uniquement par l'intermédiaire de la (des) première(s) fibre(s) optique(s), et  a positive float element, referred to as a float, connected by wire to the underwater vehicle, solely via the first optical fiber (s), and
- un élément de flottabilité négative, dit plongeur, lié à la base. a negative buoyancy element, called diver, linked to the base.
Dans ce système, le flotteur et le plongeur sont reliés filairement par l'intermédiaire d'un premier lien souple, et le système comprend, en outre: In this system, the float and the plunger are wired together via a first flexible link, and the system further comprises:
- un premier dispositif d'enroulement et de déroulement de la première fibre optique, prévu sur le flotteur et/ou l'engin sous-marin, et - un deuxième dispositif d'enroulement et de déroulement du premier lien souple, prévu sur le flotteur et/ou le plongeur. a first device for winding and unwinding the first optical fiber, provided on the float and / or the underwater vehicle, and - A second device for winding and unwinding the first flexible link, provided on the float and / or the plunger.
Ainsi, le système peut, d'une part, être déployé par déroulement de la première fibre optique et du premier lien souple et, d'autre part, être rétracté par enroulement de la première fibre optique et du premier lien souple.  Thus, the system can, on the one hand, be deployed by unfolding the first optical fiber and the first flexible link and, on the other hand, be retracted by winding the first optical fiber and the first flexible link.
Dans le présent exposé, on entend désigner par "base située en surface" tout type d'installation ou d'engin, terrestre ou marin, situé au niveau de la surface de l'eau ou au dessus de cette surface, à partir duquel il est possible de télécommander l'engin sous-marin. Typiquement, la base est un bateau. Il pourrait toutefois s'agir d'un quai, d'une plateforme off-shore, etc. En particulier, le système proposé offre la possibilité de travailler avec, comme base, un navire de petite taille ne disposant pas de moyens de positionnement dynamique.  In this presentation, the term "surface-based base" means any type of installation or device, whether terrestrial or marine, situated at or above the surface of the surface of water, from which it It is possible to remotely control the underwater vehicle. Typically, the base is a boat. It could however be a platform, an off-shore platform, etc. In particular, the proposed system offers the possibility of working with, as a basis, a small ship with no means of dynamic positioning.
Par ailleurs, ledit engin sous-marin est, plus particulièrement, un engin sous-marin sans équipage et autopropulsé comme, par exemple, un HROV. Il pourrait toutefois s'agir d'un drone, d'une torpille, etc. La réserve d'énergie de cet engin est généralement une réserve d'énergie électrique comme une batterie.  Moreover, said underwater vehicle is, more particularly, a submarine engine without crew and self-propelled like, for example, a HROV. It could however be a drone, a torpedo, etc. The energy reserve of this machine is usually a reserve of electrical energy such as a battery.
Lorsque le système est en configuration déployée, le plongeur pend dans l'eau sous la base, le flotteur est distant du plongeur et l'engin sous marin est distant du flotteur.  When the system is in deployed configuration, the diver hangs in the water under the base, the float is remote from the diver and the underwater vehicle is distant from the float.
Une telle configuration déployée permet d'éviter que les efforts exercés par le bateau sur le plongeur, notamment en cas de mauvaises conditions de navigations, se répercutent sur l'engin sous-marin. Le plongeur et le flotteur permettent un découplage qui limite les efforts exercés sur l'engin sous-marin à ceux exercés par la première fibre optique. Cette première fibre optique étant de masse linéique et de diamètre limités (comparativement aux câbles connus, métalliques ou en Kevlar), les efforts exercés par la fibre sur l'engin sous-marin sont également limités, même pour de grandes longueurs de fibre. Ceci garantit une bonne manœuvrabilité de l'engin sous-marin. On notera que la première fibre optique peut être renforcée, notamment par une enveloppe extérieure, afin de présenter une résistance mécanique suffisante pour supporter les efforts de traction entre le flotteur et l'engin, en particulier lors de la phase d'enroulement de la fibre. De plus, la géométrie du système en configuration déployée peut être adaptée en augmentant/diminuant les longueurs du premier lien souple et de la première fibre optique, ce qui est possible du fait de la présence des premier et deuxième dispositifs d'enroulement et de déroulement. Such an extended configuration avoids that the efforts exerted by the boat on the diver, especially in case of poor conditions of navigation, have repercussions on the underwater vehicle. The plunger and the float allow a decoupling that limits the forces exerted on the underwater vehicle to those exerted by the first optical fiber. This first optical fiber being of limited linear density and diameter (compared to known cables, metal or Kevlar), the forces exerted by the fiber on the underwater vehicle are also limited, even for long fiber lengths. This ensures good maneuverability of the underwater vehicle. It will be noted that the first optical fiber may be reinforced, in particular by an outer envelope, so as to have sufficient mechanical strength to withstand the traction forces between the float and the machine, in particular during the winding phase of the fiber . In addition, the geometry of the system in deployed configuration can be adapted by increasing / decreasing the lengths of the first flexible link and the first optical fiber, which is possible due to the presence of the first and second winding devices and unwinding .
Par ailleurs, un tel système permet de récupérer la première fibre optique en fin d'opération en la ré-enroulant au moyen du premier dispositif d'enroulement/déroulement. Cette première fibre optique peut ensuite être réutilisée pour une prochaine opération. Ainsi, la production de déchets est limitée.  Moreover, such a system makes it possible to recover the first optical fiber at the end of the operation by rewinding it by means of the first winding / unwinding device. This first optical fiber can then be reused for a next operation. Thus, the production of waste is limited.
Le système proposé se révèle, en outre, bien adapté au travail sur deux zones relativement éloignées l'une de l'autre. En effet, dans ce cas, après avoir travaillé sur la première zone, la première fibre optique et le premier lien souple sont enroulés, respectivement, au moyen des premier et deuxième dispositifs d'enroulement/déroulement, de sorte que l'engin sous- marin, le flotteur et le plongeur sont réunis en un ensemble unitaire. Cet ensemble unitaire peut alors être facilement tiré par le bateau qui est déplacé de la première vers la deuxième zone. La première fibre optique et le premier lien souple sont ensuite déroulés pour retrouver la configuration déployée et pouvoir travailler sur le second site. Ainsi, contrairement au système décrit dans la demande publiée n° WO 2008/130682, l'énergie utilisée pour le déplacement de l'engin sous-marin entre les deux zones de travail n'est pas prélevée dans la réserve d'énergie de l'engin et l'autonomie de l'engin est donc préservée. De plus, il n'est pas nécessaire de remonter l'engin sous- marin en surface et d'installer une nouvelle fibre optique, ce qui simplifie les opérations et permet de gagner du temps.  The proposed system is, moreover, well adapted to work on two relatively distant areas of each other. Indeed, in this case, after having worked on the first zone, the first optical fiber and the first flexible link are wound, respectively, by means of the first and second winding / unwinding devices, so that the sub-machine marine, float and diver are united in a unit. This unitary assembly can then be easily pulled by the boat that is moved from the first to the second zone. The first optical fiber and the first flexible link are then unwound to find the deployed configuration and to work on the second site. Thus, unlike the system described in the published application No. WO 2008/130682, the energy used for the displacement of the underwater vehicle between the two work areas is not taken from the energy reserve of the gear and the autonomy of the machine is preserved. In addition, it is not necessary to raise the underwater vehicle surface and install a new optical fiber, which simplifies operations and saves time.
Dans certains modes de réalisation, l'engin sous-marin comprend un système de propulsion embarqué, télécommandé depuis la base, via la première fibre optique (i.e. les signaux de commande passent par la première fibre optique), la réserve d'énergie embarquée étant adaptée pour alimenter ce système de propulsion. Le système de propulsion est alimenté en énergie uniquement par ladite réserve d'énergie embarquée et il ne reçoit donc aucune énergie en provenance d'une source extérieure à l'engin sous-marin. En particulier, il est à noter que la liaison entre le flotteur et l'engin sous- marin n'est pas utilisée pour alimenter en énergie le système de propulsion. Par exemple, l'engin sous-marin est un HROV. Comme indiqué précédemment, le premier dispositif d'enroulement et de déroulement de la première fibre optique est prévu sur le flotteur et/ou sur l'engin sous-marin. In some embodiments, the underwater vehicle comprises an onboard remote-controlled, propulsion system via the first optical fiber (ie the control signals pass through the first optical fiber), the on-board energy reserve being adapted to power this propulsion system. The propulsion system is powered solely by said onboard energy reserve and therefore receives no energy from a source external to the underwater vehicle. In particular, it should be noted that the connection between the float and the underwater vehicle is not used to supply energy to the propulsion system. For example, the underwater vehicle is a HROV. As indicated above, the first winding and unwinding device of the first optical fiber is provided on the float and / or on the underwater vehicle.
Dans certains modes de réalisation, le premier dispositif d'enroulement/déroulement est prévu sur l'engin sous-marin, la réserve d'énergie embarquée étant adaptée pour alimenter ce premier dispositif d'enroulement/déroulement. On utilise ainsi» avantageusement, la réserve d'énergie embarquée de l'engin sous-marin. In some embodiments, the first winding / unwinding device is provided on the underwater vehicle, the onboard energy reserve being adapted to feed this first winding device / unwinding. Thus used "Advantageously, the onboard energy reserve of the underwater vehicle.
Dans d'autres modes de réalisation, le premier dispositif d'enroulement/déroulement est prévu sur le flotteur. Dans ce cas, soit une réserve d'énergie embarquée est prévue sur le flotteur, soit de l'énergie est transférée de la base au flotteur, via le plongeur et le premier lien souple.  In other embodiments, the first winding / unwinding device is provided on the float. In this case, an on-board energy reserve is provided on the float, or energy is transferred from the base to the float, via the plunger and the first flexible link.
Dans certains modes de réalisation, le premier dispositif d'enroulement et de déroulement est un treuil à tension constante permettant de maintenir la première fibre optique sous une certaine tension lorsqu'elle est déroulée. Ceci permet de maintenir cette fibre optique relativement tendue entre le flotteur et l'engin sous-marin et, ainsi, d'éviter qu'elle traîne sur le plancher océanique où elle risquerait d'être endommagée, ou qu'une trop grande longueur de fibre soit génératrice de boucles en pleine eau, susceptibles de s'accrocher.  In some embodiments, the first winding and unwinding device is a constant voltage winch for maintaining the first optical fiber under a certain tension when unwound. This makes it possible to keep this optical fiber relatively stretched between the float and the underwater vehicle and, thus, to prevent it from dragging on the ocean floor where it could be damaged, or that too much length of fiber is generating loops in open water, likely to hang on.
Comme indiqué précédemment, le deuxième dispositif d'enroulement et de déroulement du premier lien souple est prévu sur le flotteur et/ou le plongeur.  As indicated above, the second winding and unwinding device of the first flexible link is provided on the float and / or the plunger.
Dans certains modes de réalisation, le deuxième dispositif d'enroulement est prévu sur le plongeur.  In some embodiments, the second winding device is provided on the plunger.
Dans certains modes de réalisation, le système comprend un premier dispositif de fixation adapté pour fixer ensemble, de manière détachable, le flotteur et l'engin sous-marin. Ceci permet de créer un sous-ensemble unitaire réunissant le flotteur et l'engin sous-marin. Ce sous-ensemble peut être déplacé facilement dans l'eau et, en particulier, peut être rapproché et/ou écarté du plongeur. Dans ce cas, généralement, le sous-ensemble se déplace à l'aide du système de propulsion de l'engin sous-marin et est téléguidé depuis la base.  In some embodiments, the system includes a first attachment device adapted to detachably attach the float and the underwater vehicle together. This makes it possible to create a unitary subassembly uniting the float and the underwater vehicle. This subassembly can be easily moved in the water and, in particular, can be moved closer and / or away from the diver. In this case, generally, the subset moves using the propulsion system of the underwater vehicle and is remotely controlled from the base.
Dans certains modes de réalisation, le système comprend un deuxième dispositif de fixation adapté pour fixer, de manière détachable, le plongeur à l'engin sous-marin et/ou au flotteur. Ainsi, il est possible de créer un ensemble unitaire réunissant le plongeur, le flotteur et l'engin sous-marin. Cet ensemble peut être déplacé facilement dans l'eau et, en particulier, peut être tiré par le bateau depuis une première zone de travail vers une deuxième zone de travail. De plus, un tel ensemble unitaire peut être plus facilement mis à l'eau et sorti de l'eau. In some embodiments, the system includes a second fastener adapted to releasably secure the plunger to the underwater vehicle and / or the float. Thus, it is possible to create a unitary assembly bringing together the diver, the float and the underwater vehicle. This assembly can be moved easily in the water and, in particular, can be pulled by the boat from a first work area to a second work area. In addition, such a unitary assembly can be more easily launched and out of the water.
Dans certains modes de réalisation, le plongeur comprend une cage définissant un logement à l'intérieur duquel une partie au moins de l'engin sous-marin peut pénétrer. Ceci permet de créer un ensemble compact réunissant le plongeur, le flotteur et l'engin sous-marin. De plus, lorsque l'engin est logé au moins en partie dans la cage, il est protégé par celle-ci contre les chocs extérieurs. En particulier, il convient de protéger les parties fragiles de l'engin (e.g. ailerons éventuels, bras articulés éventuels, etc.). Avantageusement, pour protéger au maximum l'engin sous-marin, celui-ci est logé intégralement dans la cage.  In some embodiments, the plunger includes a cage defining a housing within which at least a portion of the underwater craft can penetrate. This makes it possible to create a compact assembly uniting the plunger, the float and the underwater vehicle. In addition, when the machine is housed at least partly in the cage, it is protected by it against external shocks. In particular, it is necessary to protect the fragile parts of the machine (e.g. possible fins, possible articulated arms, etc.). Advantageously, to protect the underwater vehicle as much as possible, it is housed entirely in the cage.
Dans certains modes de réalisation, le flotteur comprend un système de localisation permettant, à un moment précis, de déterminer la position du flotteur sous l'eau, et un système de propulsion télécommandé depuis la base. Ainsi, il est possible de surveiller et de modifier la position du flotteur pour que celui-ci reste à une distance suffisante du plongeur. On limite ainsi les risques d'endommagement du flotteur et d'emmêlement du premier lien souple. La position du plongeur peut, quand à elle, soit être estimée à partir de la position de la base, soit être déterminée à l'aide d'un autre système de localisation fixé sur le plongeur.  In some embodiments, the float includes a locating system for determining, at a given moment, the position of the float underwater, and a remotely controlled propulsion system from the base. Thus, it is possible to monitor and change the position of the float so that it remains at a sufficient distance from the plunger. This limits the risk of damage to the float and entanglement of the first flexible link. The position of the plunger may, when it is, be estimated from the position of the base, or be determined by means of another locating system attached to the plunger.
La première fibre optique doit être suffisamment résistante pour supporter les efforts de traction entre le plongeur et l'engin, notamment lors de l'enroulement de la fibre. Toutefois, la résistance à la rupture de la fibre est liée au diamètre de la fibre et une résistance à la rupture élevée s'accompagne d'un diamètre élevé. Or, comme expliqué précédemment, le diamètre de la fibre doit rester faible pour limiter les inconvénients liés au poids, à la traînée et à l'encombrement de la fibre lorsqu'elle est enroulée. Une résistance à la rupture est donc un inconvénient. Pour ces motifs, dans certains modes de réalisation, la première fibre optique présente une résistance à la rupture comprise entre 500 et 1500 N, ce qui constitue un bon compromis entre la résistance mécanique et le poids/volume de la fibre optique. The first optical fiber must be strong enough to withstand the tensile forces between the plunger and the machine, especially during the winding of the fiber. However, the breaking strength of the fiber is related to the diameter of the fiber and a high tensile strength is accompanied by a large diameter. However, as explained above, the diameter of the fiber must remain small in order to limit the drawbacks associated with the weight, drag and bulk of the fiber when it is wound up. A breaking strength is therefore a disadvantage. For these reasons, in some embodiments, the first optical fiber has a breaking strength of between 500 and 1500 N, which constitutes a good compromise between the mechanical strength and the weight / volume of the optical fiber.
De la même manière, dans certains modes de réalisation, le premier lien souple présente une résistance à la rupture comprise entre 3000 et 10000 N. Il s'agit, là encore, d'un bon compromis entre la résistance mécanique et le poids/volume du lien souple.  In the same way, in some embodiments, the first flexible link has a breaking strength of between 3,000 and 10,000 N. This is, again, a good compromise between the mechanical strength and the weight / volume. flexible link.
Dans certains modes de réalisation, au moins une deuxième fibre optique est connectée à la première et est associée au premier lien souple. La deuxième fibre optique peut être intégrée à l'intérieur du premier lien souple de manière à être protégée.  In some embodiments, at least one second optical fiber is connected to the first and is associated with the first soft link. The second optical fiber can be integrated inside the first flexible link so as to be protected.
Dans certains modes de réalisation, au moins un premier câble électrique est associé au premier lien souple, ce premier câble électrique étant adapté pour alimenter en énergie les équipements éventuels du flotteur comme, par exemple, les moyens de propulsion de celui-ci. Le premier câble électrique peut être intégré à l'intérieur du premier lien souple de manière à être protégée.  In some embodiments, at least one first electrical cable is associated with the first flexible link, this first electrical cable being adapted to supply power to the potential equipment of the float, such as, for example, the propulsion means thereof. The first electrical cable can be integrated inside the first flexible link so as to be protected.
Dans certains modes de réalisation, le plongeur est lié filairement à la base par un deuxième lien souple. Ce deuxième lien souple est une solution pour maintenir le plongeur à distance de la base tout en contrôlant l'altitude du plongeur par rapport au plancher océanographique. Dans ce cas, un dispositif d'enroulement et de déroulement du deuxième lien souple est prévu sur la base.  In some embodiments, the plunger is wire bonded to the base by a second flexible link. This second flexible link is a solution to keep the diver away from the base while controlling the diver's altitude relative to the ocean floor. In this case, a device for winding and unwinding the second flexible link is provided on the base.
Ce deuxième lien souple doit être suffisamment résistant pour supporter les efforts de traction entre le plongeur et la base. La résistance à la rupture de deuxième lien souple dépend donc, en particulier, du poids/volume du plongeur.  This second flexible link must be strong enough to withstand the pulling forces between the plunger and the base. The breaking strength of the second flexible link therefore depends in particular on the weight / volume of the plunger.
Dans certains modes de réalisation, au moins une troisième fibre optique est associée au deuxième lien souple, cette troisième fibre optique étant connectée à la deuxième fibre optique. La troisième fibre optique peut être intégrée à l'intérieur du deuxième lien souple de manière à être protégée. Les première(s), deuxième(s) et troisième(s) fibres optiques assurent une connexion optique entre la base et l'engin sous marin, cette connexion optique permettant le transfert des signaux de commande de la base vers l'engin et pouvant permettre, dans l'autre sens, le transfert de données de l'engin vers la base. Dans certains modes de réalisation, au moins un deuxième câble électrique est associé au deuxième lien souple, ce deuxième câble électrique étant adapté pour alimenter en énergie les équipements éventuels du plongeur et/ou du flotteur. Le deuxième câble électrique peut être intégré à l'intérieur du deuxième lien souple de manière à être protégé. In some embodiments, at least one third optical fiber is associated with the second flexible link, this third optical fiber being connected to the second optical fiber. The third optical fiber can be integrated inside the second flexible link so as to be protected. The first, second and third optical fibers provide an optical connection between the base and the underwater vehicle, this optical connection allowing the transfer of the control signals from the base to the machine and being able to allow, in the other direction, the transfer of data from the machine to the base. In some embodiments, at least a second electrical cable is associated with the second flexible link, the second electrical cable being adapted to supply power to the potential equipment of the plunger and / or the float. The second electric cable can be integrated inside the second flexible link so as to be protected.
Dans le présent exposé, il est fait souvent référence, par souci de clarté, à la première, la deuxième et la troisième fibre optique. Il convient toutefois de rappeler que le système proposé comprend au moins une première, au moins une deuxième et au moins une troisième fibre optique et que, par conséquent, plusieurs premières, plusieurs deuxièmes et plusieurs troisièmes fibres optiques peuvent être prévues. Ceci vaut également pour le premier et le deuxième câble électrique.  In this presentation, reference is often made, for the sake of clarity, to the first, second and third optical fibers. However, it should be remembered that the proposed system comprises at least a first, at least a second and at least a third optical fiber and that, therefore, several first, several second and several third optical fibers can be provided. This also applies to the first and second electric cables.
Plusieurs modes ou exemples de réalisation sont décrits dans le présent exposé. Toutefois, sauf précision contraire, les caractéristiques décrites en relation avec un mode ou un exemple de réalisation quelconque peuvent être appliquées à un autre mode ou exemple de réalisation.  Several modes or examples of embodiments are described in this presentation. However, unless otherwise specified, the features described in connection with any one embodiment or embodiment may be applied to another embodiment or embodiment.
BREVE DESCRIPTION DES DESSINS  BRIEF DESCRIPTION OF THE DRAWINGS
Les dessins annexés sont schématiques et ne sont pas à l'échelle, ils visent avant tout à illustrer les principes de l'invention.  The accompanying drawings are diagrammatic and are not to scale, they are primarily intended to illustrate the principles of the invention.
Sur ces dessins, d'une figure (FIG) à l'autre, des éléments (ou parties d'élément) identiques sont repérés par les mêmes signes de référence.  In these drawings, from one figure (FIG) to the other, identical elements (or element parts) are identified by the same reference signs.
La FIG 1 représente, un exemple de système selon le présent exposé, comprenant un engin sous-marin, une base située en surface, un plongeur et un flotteur.  FIG. 1 represents an exemplary system according to the present disclosure, comprising an underwater vehicle, a surface-based base, a plunger and a float.
La FIG 2 est une vue de détail de la FIG 1 représentant le flotteur, la première fibre optique et le dispositif d'enroulement/déroulement de cette première fibre optique.  FIG 2 is a detail view of FIG 1 showing the float, the first optical fiber and the winding device / unwinding of this first optical fiber.
La FIG 3 est une vue de détail d'un autre exemple de flotteur.  FIG 3 is a detail view of another example of a float.
Les FIG 4 à 7 illustrent les étapes successives du déploiement du système de la FIG 1 dans l'eau.  FIGS. 4 to 7 illustrate the successive steps of deploying the system of FIG. 1 in the water.
DESCRIPTION DETAILLEE D'EXEMPLES DE REALISATION DETAILED DESCRIPTION OF EXEMPLARY EMBODIMENTS
Des exemples de réalisation sont décrits en détail ci-après, en référence aux dessins annexés. Ces exemples illustrent les caractéristiques et les avantages de l'invention. Il est toutefois rappelé que l'invention ne se limite pas à ces exemples. La FIG 1 représente un système comprenant un engin sous-marin 10 et une base 40 située en surface. L'engin sous-marin 10 est télécommandé depuis la base 40 par l'intermédiaire d'une ou plusieurs (dans l'exemple une seule) première fibre optique 15. Exemplary embodiments are described in detail below, with reference to the accompanying drawings. These examples illustrate the features and advantages of the invention. However, it is recalled that the invention is not limited to these examples. FIG 1 shows a system comprising an underwater vehicle 10 and a base 40 located on the surface. The underwater vehicle 10 is remotely controlled from the base 40 via one or more (in the example only one) first optical fiber 15.
Ce système comprend;  This system includes;
- un élément de flottabilité positive, dit flotteur 20, lié filairement (i.e. par un lien filaire) à l'engin sous-marin 10;  - A positive buoyancy element, said float 20, linked by wire (i.e. by a wire link) to the underwater vehicle 10;
- un élément de flottabilité négative, dit plongeur 30, lié filairement à la base 40 et au flotteur;  a negative buoyancy element, called plunger 30, connected by wire to the base 40 and the float;
- une (ou plusieurs) première(s) fibre(s) optique(s) 15 constituant la seule liaison filaire entre l'engin sous-marin 10 et le flotteur 20;  one (or more) first optical fiber (s) 15 constituting the only wired connection between the underwater vehicle 10 and the float 20;
- un (ou plusieurs) premier(s) lien(s) souple(s) 25 formant une liaison filaire entre le plongeur 30 et le flotteur 20; et  one (or more) first flexible link (s) 25 forming a wire connection between the plunger 30 and the float 20; and
- un (ou plusieurs) deuxième(s) lien(s) souple(s) 35 formant une liaison filaire entre le plongeur 30 et la base 40.  one (or more) second flexible link (s) 35 forming a wire connection between the plunger 30 and the base 40.
Ce système comprend également:  This system also includes:
- un premier dispositif 12 d'enroulement/déroulement de la première fibre optique 15, prévu sur l'engin sous-marin 10 (voir FIG 2),  a first device 12 for winding / unfolding the first optical fiber 15, provided on the underwater vehicle 10 (see FIG. 2),
- un deuxième dispositif 32 d'enroulement/déroulement du premier lien souple 25, prévu sur le plongeur 30, et  a second device 32 for winding / unfolding the first flexible link 25, provided on the plunger 30, and
- un troisième dispositif 45 d'enroulement/déroulement du deuxième lien souple 35, prévu sur la base 40.  - A third device 45 for winding / unwinding the second flexible link 35, provided on the base 40.
Dans cet exemple, la base 40 est un bateau.  In this example, the base 40 is a boat.
L'engin sous-marin 10 est sans équipage et comprend une batterie électrique 14 embarquée constituant une réserve d'énergie au sens du présent exposé. L'engin sous-marin 10 est autopropulsé, son système de propulsion 16 embarqué étant alimenté par la batterie 14 embarquée. Ce système de propulsion 16 est télécommandé depuis la base 40, via la première fibre optique 15, le lien 25 et le lien 35. Dans exemple, l'engin sous- marin 10 est un HROV. La batterie 14 alimente également en énergie électrique le premier dispositif d'enroulement/déroulement 12.  The underwater vehicle 10 is unmanned and includes an electric battery 14 on board constituting a reserve of energy within the meaning of this presentation. The underwater vehicle 10 is self-propelled, its embedded propulsion system 16 being powered by the battery 14 on board. This propulsion system 16 is remotely controlled from the base 40, via the first optical fiber 15, the link 25 and the link 35. In example, the underwater vehicle 10 is a HROV. The battery 14 also supplies the first winding / unwinding device 12 with electrical energy.
Le premier dispositif d'enroulement/déroulement 12 est un treuil à tension constante et il permet de maintenir la première fibre optique 15 sous une certaine tension lorsqu'elle est déroulée. Par exemple, les caractéristiques techniques principales d'un tel treuil peuvent être les suivantes : enroulement de 200 à 500 m de fibre optique ; effort de retenue de 10 à 50 N. The first winding / unwinding device 12 is a winch with constant tension and it makes it possible to keep the first optical fiber 15 under a certain tension when it is unwound. For example, the main technical characteristics of such a winch may be the following: winding of 200 to 500 m of optical fiber; holding force from 10 to 50 N.
Dans cet exemple, le plongeur 30 comprend une cage 33 (e.g. une cage métallique) définissant un logement 31 ouvert latéralement via une ouverture 31a, La forme et les dimensions du logement 31 sont telles que l'engin sous-marin 10 et le plongeur 20 peuvent y pénétrer (voir FIG 4). Le deuxième dispositif 32 d'enroulement/déroulement du premier lien souple 25 est, dans l'exemple, un treuil. Ce treuil est monté sur la cage 33. Par exemple, les caractéristiques techniques principales d'un tel treuil peuvent être, les suivantes : enroulement de 50 à 100 m de lien ; effort d'enroulement de l'ordre de 5000 N. Dans l'exemple, le treuil est disposé au dessus du logement et des poulies 34 fixées sur la cage 33 permettent de dévier le trajet du premier lien souple 25. Une des poulies 34 est située du côté opposé à l'ouverture latérale 31a, de sorte que lien 25 traverse le logement 31.  In this example, the plunger 30 comprises a cage 33 (eg a metal cage) defining a housing 31 open laterally via an opening 31a. The shape and dimensions of the housing 31 are such that the underwater vehicle 10 and the plunger 20 can enter it (see FIG 4). The second device 32 for winding / unfolding the first flexible link 25 is, in the example, a winch. This winch is mounted on the cage 33. For example, the main technical characteristics of such a winch can be, the following: winding 50 to 100 m of link; winding force of the order of 5000 N. In the example, the winch is disposed above the housing and pulleys 34 fixed on the cage 33 can deflect the path of the first flexible link 25. One of the pulleys 34 is located on the opposite side to the lateral opening 31a, so that link 25 passes through the housing 31.
Le système comprend un premier dispositif de fixation adapté pour fixer ensemble, de manière détachable, le flotteur 20 et l'engin sous-marin 10. Dans l'exemple, ce premier dispositif de fixation comprend un crochet (non représenté) solidaire de l'engin sous-marin 10, pouvant être enclenché et déclenché de façon automatique ou pilotée. Ce crochet bloque le flotteur dès que le flotteur est en contact avec le fond de son logement dans l'engin sous-marin. Le système comprend également un deuxième dispositif de fixation adapté pour fixer, de manière détachable, le plongeur 30 à l'engin sous-marin 10 et/ou au flotteur 20. Dans l'exemple, ce deuxième dispositif de fixation comprend un crochet solidaire de la structure du plongeur 30, pouvant être enclenché ou déclenché de façon automatique ou pilotée. Ce crochet bloque le flotteur 20 et l'engin sous-marin dès qu'ils sont en contact avec le fond du logement 31 de la cage 33. Un exemple particulier de flotteur 120 est représenté sur la FIG 3. Comme pour le flotteur 20, la première et la deuxième fibre optique 15, 25 sont liées au corps du flotteur 120. En outre, ce flotteur 120 comprend un système de propulsion 127 et un système de localisation 126 permettant, à un moment précis, de déterminer la position du flotteur 120 sous l'eau. Le système de propulsion 127 peut être télécommandé depuis la base 40 via les deuxième et troisième fibres optiques 25, 35. Ainsi, il est possible de surveiller et de modifier la position du flotteur 120 pour que celui-ci reste à une distance suffisante du plongeur 30. La position du plongeur 30 est connue à l'aide d'un autre système de localisation 36 fixé sur la cage 33 (voir FIG 1). On limite ainsi les risques de chocs entre le flotteur 120 et le plongeur 30, et les risques d'emmêlement du premier lien souple 25 avec la cage 33 ou le deuxième lien souple 35. Enfin, le flotteur 20 comprend un élément de fixation 128 pour sa fixation sur le plongeur 30 et un élément de fixation 129 pour sa fixation sur l'engin 10. Ces deux éléments de fixation 128, 129, présentent à leur extrémité libre une collerette configurée pour coopérer, respectivement, avec les crochets du plongeur 30 et de la cage 33. The system comprises a first attachment device adapted to detachably attach together the float 20 and the underwater vehicle 10. In the example, this first fixing device comprises a hook (not shown) integral with the underwater vehicle 10, which can be switched on and off automatically or piloted. This hook blocks the float as soon as the float is in contact with the bottom of its housing in the underwater vehicle. The system also comprises a second fixing device adapted to detachably attach the plunger 30 to the underwater vehicle 10 and / or to the float 20. In the example, this second fixing device comprises a hook integral with the structure of the plunger 30, which can be switched on or off automatically or controlled. This hook blocks the float 20 and the underwater vehicle as soon as they come into contact with the bottom of the housing 31 of the cage 33. A particular example of a float 120 is shown in FIG. 3. As for the float 20, the first and second optical fibers 15, 25 are connected to the body of the float 120. In addition, this float 120 comprises a propulsion system 127 and a locating system 126 allowing, at a precise moment, to determine the position of the float 120 under water. The propulsion system 127 can be remotely controlled from the base 40 via the second and third optical fibers 25, 35. Thus, it is possible to monitor and modify the position of the float 120 so that it remains at a sufficient distance from the plunger 30. The position of the plunger 30 is known by means of another locating system 36 fixed on the cage 33 (see FIG 1). This limits the risk of shocks between the float 120 and the plunger 30, and the risks of entanglement of the first flexible link 25 with the cage 33 or the second flexible link 35. Finally, the float 20 comprises a fastening element 128 for its fixing on the plunger 30 and a fixing element 129 for its attachment to the machine 10. These two fastening elements 128, 129 have at their free end a flange configured to cooperate, respectively, with the hooks of the plunger 30 and of the cage 33.
Dans l'exemple, la première fibre optique 15 présente une résistance à la rupture comprise entre 500 et 1500 N, un diamètre typiquement compris entre 5 et 8 mm et une masse linéique typiquement comprise entre 0,4 et 0,8 N/m dans l'eau. Cette fibre optique 15 est, par exemple, renforcée par une enveloppe en fibre aramide. Cette fibre optique 15 est suffisamment résistante pour supporter les efforts de traction entre le flotteur 20 et l'engin 10, en particulier lors de la phase d'enroulement de la fibre 15, tout en générant un poids, une traînée et un encombrement limités. On notera que la taille du logement prévu dans l'engin 10 pour loger la fibre 15, lorsque celle-ci est enroulée autour du treuil 12, dépend de la longueur et du diamètre de la fibre 15.  In the example, the first optical fiber 15 has a tensile strength of between 500 and 1500 N, a diameter typically between 5 and 8 mm and a linear density typically between 0.4 and 0.8 N / m in the water. This optical fiber 15 is, for example, reinforced by an aramid fiber envelope. This optical fiber 15 is sufficiently strong to withstand the tensile forces between the float 20 and the machine 10, particularly during the winding phase of the fiber 15, while generating a limited weight, drag and space. Note that the size of the housing provided in the machine 10 for housing the fiber 15, when it is wound around the winch 12, depends on the length and the diameter of the fiber 15.
Dans l'exemple, le premier lien souple 25 présente une résistance à la rupture comprise entre 3000 et 10000 N, un diamètre typiquement compris entre 10 et 20 mm et une masse linéique dans l'eau faible le rendant pratiquement neutre dans l'eau. Ce premier lien souple 25 est, par exemple, un câble ayant une structure coaxiale multicouche avec une couche de protection extérieure en Kevlar.  In the example, the first flexible link 25 has a breaking strength of between 3000 and 10000 N, a diameter typically between 10 and 20 mm and a linear density in the low water making it practically neutral in water. This first flexible link 25 is, for example, a cable having a multilayer coaxial structure with an outer Kevlar protection layer.
Ce premier lien souple 25 intègre une (ou plusieurs) deuxième(s) fibre(s) optique(s), cette deuxième fibre optique étant proche de l'âme du lien et, ainsi, protégée par la couche de protection extérieure.  This first flexible link 25 integrates one (or more) second (s) optical fiber (s), this second optical fiber being close to the core of the link and thus protected by the outer protective layer.
Le premier lien souple 25 peut également intégrer un (ou plusieurs) premier(s) câble(s) électrique(s). Ce câble permet d'alimenter en énergie les équipements du flotteur, c'est-à-dire le système de propulsion 127 et le système de localisation 126 dans l'exemple du flotteur 120. De la même manière, le deuxième lien souple 35 intègre une (ou plusieurs) troisième(s) fibre(s) optique(s) et un (ou plusieurs) deuxième(s) câble(s) électrique(s). The first flexible link 25 may also include one (or more) first (s) electric cable (s). This cable makes it possible to supply energy to the equipment of the float, that is to say the propulsion system 127 and the locating system 126 in the example of the float 120. In the same way, the second flexible link 35 integrates one (or more) third (s) optical fiber (s) and one (or more) second (s) electric cable (s).
La troisième fibre optique est connectée à la deuxième fibre optique qui, elle-même, est connectée à la première fibre optique 15. Ainsi, les première, deuxième et troisième fibres optiques assurent une connexion optique entre la base 40 et l'engin sous marin 10, cette connexion optique permet le transfert des signaux de commande de la base 40 vers l'engin 10.  The third optical fiber is connected to the second optical fiber which, itself, is connected to the first optical fiber 15. Thus, the first, second and third optical fibers provide an optical connection between the base 40 and the underwater vehicle. 10, this optical connection allows the transfer of the control signals from the base 40 to the machine 10.
Le deuxième câble électrique permet d'alimenter en énergie les équipements du plongeur, c'est-à-dire, dans l'exemple, le treuil 32 et le système de localisation 36.  The second electric cable makes it possible to supply power to the equipment of the plunger, that is to say, in the example, the winch 32 and the locating system 36.
En référence aux FIGS 1, 4-7, le système de la FIG 1 peut être déployé de la manière suivante.  With reference to FIGS. 1, 4-7, the system of FIG. 1 can be deployed in the following manner.
D'abord, la base 40 est déplacée sensiblement au dessus de la zone de travail. A ce stade, l'engin 10, le flotteur 20 et le plongeur 30 sont à bord de la base 40 et sont réunis en un ensemble unitaire. Concrètement, le flotteur est fixé et verrouillé sur l'engin 10, et l'engin 10 est verrouillé en position d'attente à l'intérieur de la cage 33. Le pilote de l'engin 10 est à bord de la base 40.  First, the base 40 is moved substantially over the work area. At this point, the machine 10, the float 20 and the plunger 30 are aboard the base 40 and are united in a unitary assembly. Specifically, the float is fixed and locked on the machine 10, and the machine 10 is locked in the waiting position inside the cage 33. The driver of the machine 10 is aboard the base 40.
La cage 33 est ensuite mise à l'eau et descendue vers le fond en déroulant le deuxième lien souple 35. La cage 33 est stabilisée, par exemple, à environ 50 mètres du fond. La FIG 4 représente la cage dans cette dernière position. L'altitude de la cage 33 est contrôlée à l'aide du système de localisation 36.  The cage 33 is then launched and lowered to the bottom by unwinding the second flexible link 35. The cage 33 is stabilized, for example, about 50 meters from the bottom. FIG 4 represents the cage in this last position. The altitude of the cage 33 is controlled using the location system 36.
Comme représenté sur la FIG 5, l'engin 10 est ensuite déverrouillé vis- à-vis de la cage sur commande du pilote. Le pilote téléguide l'engin 10 (et le flotteur 20 toujours fixé et verrouillé sur l'engin 10) hors de la cage 33, l'engin 10 se déplaçant au moyen de son système de propulsion 16. Lors de cette étape, le treuil 32 de la cage 33 est actionné, sur commande du pilote, pour dérouler le premier lien souple 25. Le premier lien souple 25 est déroulé, par exemple, sur 50 mètres. A ce stade, les mouvements de la base 40 se retransmettent à la cage 33 mais quasiment pas à l'engin 10, en raison du découplage permis par le premier lien souple 25.  As shown in FIG 5, the machine 10 is then unlocked vis-à-vis the cage on command of the pilot. The pilot remotely controls the craft 10 (and the float 20 still fixed and locked on the craft 10) out of the cage 33, the craft 10 moving by means of its propulsion system 16. During this step, the winch 32 of the cage 33 is actuated, on command of the pilot, to unwind the first flexible link 25. The first flexible link 25 is unwound, for example, over 50 meters. At this stage, the movements of the base 40 are retransmitted to the cage 33 but almost not to the machine 10, due to the decoupling allowed by the first flexible link 25.
Comme représenté sur les FIGS 6 et 7, le flotteur 20 est ensuite déverrouillé vis-à-vis de l'engin 10, sur commande du pilote. Le déroulement (i.e. le débobinage) de la première fibre optique 15 se fait alors de façon automatique par l'intermédiaire du treuil 12, en fonction des déplacements de l'engin 10 (l'engin 10 appliquant une légère traction sur la fibre 15 en s'éloignant du flotteur 20). L'engin 10 est téléguidé par le pilote pour rejoindre la zone de travail. A ce stade, l'engin 10 est complètement découplé des mouvements de la base 40 et de la cage 33. Lorsque le flotteur est du type de celui de la FIG 3, la position du flotteur peut être vérifiée et modifiée par le pilote pour contrôler la configuration adoptée par le premier lien souple 25 et la fibre 15. As shown in FIGS 6 and 7, the float 20 is then unlocked vis-à-vis the machine 10, on the pilot's command. The course (ie unwinding) of the first optical fiber 15 is then done automatically through the winch 12, depending on the movements of the machine 10 (the machine 10 applying a slight traction on the fiber 15 in s' away from the float 20). The machine 10 is remotely controlled by the pilot to reach the work area. At this stage, the machine 10 is completely decoupled from the movements of the base 40 and the cage 33. When the float is of the type of FIG 3, the position of the float can be checked and modified by the pilot to control the configuration adopted by the first flexible link 25 and the fiber 15.
Une fois le travail effectué, le système peut être rétracté de la manière suivante.  Once the work is done, the system can be retracted as follows.
D'abord, l'engin 10 est remonté sur commande du pilote à la même altitude que la cage 33, de manière à bien se dégager du fond. L'engin est ensuite déplacé en direction de la cage 33, de préférence en marche arrière, de manière à faciliter l'enroulement (i.e. le rembobinage) automatique de la fibre 15 autour du treuil 12. A la fin de l'enroulement, le flotteur 20 se verrouille automatiquement sur l'engin 10. L'engin 10 et le flotteur forment alors un sous-ensemble unitaire. Le pilote commande alors l'enroulement du treuil 32 de la cage 33, ce qui a pour effet de ramener l'engin 10 (et le flotteur 20) vers la cage. De préférence, le pilote téléguide l'engin 10 à l'approche de la cage 33 pour assurer un bon alignement de l'engin avec l'ouverture 31a du logement 31 de cette cage 33 et limiter ainsi les risques de chocs. L'engin 10 est ensuite tiré à l'intérieur du logement 31 par le treuil 32, via le premier lien souple 25. Une fois l'engin rentré à l'intérieur de la cage 33, il est verrouillé dans cette position sur commande du pilote pour l'empêcher de ressortir de la cage 33. Le plongeur 30, le flotteur 20 et l'engin 10 forment alors un ensemble unitaire. Cet ensemble peut soit rester dans l'eau et être tiré par la base 40 vers une autre zone de travail, soit être remonté à la surface en enroulant le deuxième lien souple 35 et être récupéré à bord de la base 40.  First, the machine 10 is reassembled at the pilot's command at the same altitude as the cage 33, so as to clear the bottom. The machine is then moved towards the cage 33, preferably in reverse, so as to facilitate the automatic winding (ie rewinding) of the fiber 15 around the winch 12. At the end of the winding, the float 20 is automatically locked on the machine 10. The machine 10 and the float then form a unit subset. The pilot then controls the winding of the winch 32 of the cage 33, which has the effect of bringing the machine 10 (and the float 20) to the cage. Preferably, the pilot remotely navigates the machine 10 to the approach of the cage 33 to ensure proper alignment of the machine with the opening 31a of the housing 31 of the cage 33 and thus limit the risk of shocks. The machine 10 is then pulled inside the housing 31 by the winch 32, via the first flexible link 25. Once the machine retracted inside the cage 33, it is locked in this position on command of the pilot to prevent it from coming out of the cage 33. The plunger 30, the float 20 and the craft 10 then form a unitary unit. This assembly can either remain in the water and be pulled by the base 40 to another work area, or be raised to the surface by winding the second flexible link 35 and be recovered on board the base 40.

Claims

REVENDICATIONS
1. Système comprenant un engin sous-marin (10) et une base (40) située en surface, dans lequel l'engin sous-marin (10) est télécommandé depuis la base par l'intermédiaire d'au moins une première fibre optique (15) et comprend une réserve d'énergie embarquée, le système comprenant: A system comprising a subsea craft (10) and a surface base (40) in which the underwater craft (10) is remotely controlled from the base via at least a first optical fiber (15) and comprises an onboard energy reserve, the system comprising:
un élément de flottabilité positive, dit flotteur (20), lié filairement à l'engin sous-marin (10), uniquement par l'intermédiaire de la première fibre optique (15); et  a positive buoyancy element, said float (20), connected by wire to the underwater vehicle (10), only via the first optical fiber (15); and
un élément de flottabilité négative, dit plongeur (30), lié à la base a negative buoyancy element, said diver (30), linked to the base
(40), (40)
dans lequel le flotteur (20) et le plongeur (30) sont reliés filairement par l'intermédiaire d'un premier lien souple (25),  wherein the float (20) and the plunger (30) are connected by wire through a first flexible link (25),
le système étant caractérisé en ce qu'il comprend, en outre:  the system being characterized in that it further comprises:
un premier dispositif (12) d'enroulement et de déroulement de la première fibre optique (15), prévu sur le flotteur (20) et/ou l'engin sous- marin (10), et  a first device (12) for winding and unwinding the first optical fiber (15), provided on the float (20) and / or the underwater vehicle (10), and
un deuxième dispositif (32) d'enroulement et de déroulement du premier lien souple (25), prévu sur le flotteur (20) et/ou le plongeur (30).  a second device (32) for winding and unwinding the first flexible link (25) provided on the float (20) and / or the plunger (30).
2. Système selon la revendication 1, dans lequel l'engin sous-marin (10) comprend un système de propulsion (16) télécommandé depuis la base (40), via la première fibre optique (15), la réserve d'énergie embarquée étant adaptée pour alimenter ce système de propulsion (16). 2. System according to claim 1, wherein the underwater vehicle (10) comprises a propulsion system (16) remotely controlled from the base (40), via the first optical fiber (15), the onboard energy reserve. being adapted to power this propulsion system (16).
3. Système selon la revendication 1 ou 2, dans lequel le premier dispositif (12) d'enroulement et de déroulement est prévu sur l'engin sous- marin (10), la réserve d'énergie embarquée étant adaptée pour alimenter ce premier dispositif (12). 3. System according to claim 1 or 2, wherein the first device (12) for winding and unwinding is provided on the underwater vehicle (10), the onboard energy reserve being adapted to feed this first device (12).
4. Système selon la revendication 3 dans lequel le premier dispositif (12) d'enroulement et de déroulement est un treuil à tension constante permettant de maintenir la première fibre optique (15) sous une certaine tension lorsqu'elle est déroulée. 4. System according to claim 3 wherein the first device (12) winding and unwinding is a constant voltage winch for maintaining the first optical fiber (15) under a certain tension when unrolled.
5. Système selon l'une quelconque des revendications 1 à 4, comprenant un premier dispositif de fixation adapté pour fixer ensemble, de manière détachable, le flotteur (20) et l'engin sous-marin (10). 5. System according to any one of claims 1 to 4, comprising a first fastening device adapted to fix together, detachably, the float (20) and the underwater vehicle (10).
6. Système selon l'une quelconque des revendications 1 à 5, comprenant un deuxième dispositif de fixation adapté pour fixer, de manière détachable, le plongeur (30) à l'engin sous-marin (10) et/ou au flotteur (20). 6. System according to any one of claims 1 to 5, comprising a second fastening device adapted to detachably attach the plunger (30) to the underwater vehicle (10) and / or the float (20). ).
7. Système selon l'une quelconque des revendications 1 à 4, dans lequel le plongeur (30) comprend une cage (33) définissant un logement (31) à l'intérieur duquel une partie au moins de l'engin sous-marin (10) peut pénétrer. 7. System according to any one of claims 1 to 4, wherein the plunger (30) comprises a cage (33) defining a housing (31) within which at least part of the underwater vehicle ( 10) can penetrate.
8. Système selon l'une quelconque des revendications 1 à 5, dans lequel le flotteur (120) comprend un système de localisation (126) permettant, à un moment précis, de déterminer la position du flotteur sous l'eau, et un système de propulsion (127) télécommandé depuis la base (40). 8. System according to any one of claims 1 to 5, wherein the float (120) comprises a locating system (126) allowing, at a given moment, to determine the position of the float under water, and a system propulsion system (127) remotely controlled from the base (40).
9. Système selon la revendication 1, dans lequel la première fibre optique (15) présente une résistance à la rupture comprise entre 500 et 1500 N. 9. System according to claim 1, wherein the first optical fiber (15) has a breaking strength of between 500 and 1500 N.
10. Système selon la revendication 1, dans lequel le premier lien souple (25) présente une résistance à la rupture comprise entre 3000 et 10000 N. 10. System according to claim 1, wherein the first flexible link (25) has a breaking strength of between 3000 and 10000 N.
EP11779759.7A 2010-10-01 2011-09-29 System comprising an underwater vehicle and a base situated at the surface Active EP2621796B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1057984A FR2965543B1 (en) 2010-10-01 2010-10-01 SYSTEM COMPRISING A SUBMARINE ENGINE AND A BASE LOCATED ON A SURFACE
PCT/FR2011/052274 WO2012042177A1 (en) 2010-10-01 2011-09-29 System comprising an underwater vehicle and a base situated at the surface

Publications (2)

Publication Number Publication Date
EP2621796A1 true EP2621796A1 (en) 2013-08-07
EP2621796B1 EP2621796B1 (en) 2015-02-25

Family

ID=43743447

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11779759.7A Active EP2621796B1 (en) 2010-10-01 2011-09-29 System comprising an underwater vehicle and a base situated at the surface

Country Status (4)

Country Link
EP (1) EP2621796B1 (en)
BR (1) BR112013007806B1 (en)
FR (1) FR2965543B1 (en)
WO (1) WO2012042177A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019193340A1 (en) 2018-04-05 2019-10-10 Subsea 7 Limited Communication with unmanned underwater vehicles

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106564573B (en) * 2016-10-28 2018-01-12 浙江大学 Profiling observation and underwater docking system based on photovoltaic generation
CN106956757B (en) * 2017-03-31 2018-11-13 中国船舶科学研究中心(中国船舶重工集团公司第七0二研究所) Actively capture the lasso trick device of the latent device of autonomous

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2325557A2 (en) * 1974-05-08 1977-04-22 Eca Sea bed exploration paravane towed by surface vessel - has secondary paravane guiding the first at equal depth
FR2270141B1 (en) * 1974-05-08 1978-11-17 Eca
US3987741A (en) * 1976-01-12 1976-10-26 The United States Of America As Represented By The Secretary Of The Navy Remote unmanned work system (ruws) mating latch
FR2668446B1 (en) 1990-10-30 1995-08-18 Mediterranee Const Ind IMPROVEMENTS RELATING TO FILO-GUIDED SUBMARINE VEHICLES.
FR2668643B1 (en) 1990-10-30 1995-03-17 Mediterranee Const Ind HIGH FILLING RATE CONDUCTOR.
WO2008130682A1 (en) * 2007-04-17 2008-10-30 Woods Hole Oceanographic Institution Systems and methods for tethering underwater vehicles

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2012042177A1 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019193340A1 (en) 2018-04-05 2019-10-10 Subsea 7 Limited Communication with unmanned underwater vehicles

Also Published As

Publication number Publication date
FR2965543A1 (en) 2012-04-06
BR112013007806A2 (en) 2018-06-19
FR2965543B1 (en) 2014-03-28
EP2621796B1 (en) 2015-02-25
WO2012042177A1 (en) 2012-04-05
BR112013007806B1 (en) 2021-06-22

Similar Documents

Publication Publication Date Title
EP0694100B1 (en) Method and device for continuously laying and burying a flexible submarine cable
EP2285663B1 (en) System for automatically launching and retrieving an underwater drone
EP2043911B1 (en) Installation and method for recovering an underwater or marine vehicle
EP2648970B1 (en) System for releasing and retrieving a submersible device
EP2043913A1 (en) Apparatus for recovering an underwater or marine vehicle
EP2855252B1 (en) System for launching and retrieving submarine vehicles, in particular towed submarine vehicles
FR2917708A1 (en) SUBMARINE EQUIPPED WITH A DEVICE FOR LARGING AND RECOVERING A SECOND SUBMARINE DEVICE
EP3209546B1 (en) System for launching and recovering marine and submarine devices assisted by tiltable protective components
WO2014026817A1 (en) Device for launching and recovering a towed sonar
FR2990770A1 (en) METHOD AND SYSTEM FOR RECOVERING MARINE GEOPHYSIC SEARCH SENSOR MARINE FLUTES
EP3261920B1 (en) Fish with variable hydrodynamic lift and tow line comprising the fish
EP2621796B1 (en) System comprising an underwater vehicle and a base situated at the surface
CA2960706A1 (en) Marine or submarine craft and associated mooring method
EP2420440B1 (en) Device for recovering a naval or submarine vehicle
EP0504049B1 (en) Method and apparatus for deploying a transmission wire for a submarine device from a launching platform
FR3087748A1 (en) DEPLOYMENT AND LIFTING OF LOADS USING AN UNDERWATER VEHICLE
WO2021069640A1 (en) Towed underwater device and system for handling the underwater device
WO2018042140A1 (en) System for communication and transfer between an object on the surface and a submerged object, assembly comprising an object on the surface, a submerged object and method for setting up communication and transfer between the object on the surface and the submerged object
WO2023222327A1 (en) Towed submarine device
EP4101806A1 (en) Underwater device for tensioning anchoring lines of an offshore structure and method for installing such a device
FR3132076A1 (en) Method of underwater exploration and device for mooring an underwater exploration drone

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130328

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140917

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602011014115

Country of ref document: DE

Effective date: 20150409

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 711710

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150415

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20150225

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 711710

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150225

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150225

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150225

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150225

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150225

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150525

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150225

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150225

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150625

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150225

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150526

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150225

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150225

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150225

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150225

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150225

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602011014115

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150225

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20151126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150225

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150929

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150929

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150930

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150225

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110929

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150930

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150225

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150225

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150225

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150225

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230908

Year of fee payment: 13

Ref country code: GB

Payment date: 20230920

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230922

Year of fee payment: 13

Ref country code: FR

Payment date: 20230920

Year of fee payment: 13

Ref country code: DE

Payment date: 20230911

Year of fee payment: 13