EP2619461A1 - Vorrichtung und verfahren zum sicheren betreiben eines verdichters an der pumpgrenze - Google Patents

Vorrichtung und verfahren zum sicheren betreiben eines verdichters an der pumpgrenze

Info

Publication number
EP2619461A1
EP2619461A1 EP11813656.3A EP11813656A EP2619461A1 EP 2619461 A1 EP2619461 A1 EP 2619461A1 EP 11813656 A EP11813656 A EP 11813656A EP 2619461 A1 EP2619461 A1 EP 2619461A1
Authority
EP
European Patent Office
Prior art keywords
compressor
impeller
blades
state
blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP11813656.3A
Other languages
English (en)
French (fr)
Other versions
EP2619461B1 (de
Inventor
Malte Köller
Olaf Magnor
Daniel Reitebuch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IAV GmbH Ingenieurgesellschaft Auto und Verkehr
Original Assignee
IAV GmbH Ingenieurgesellschaft Auto und Verkehr
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IAV GmbH Ingenieurgesellschaft Auto und Verkehr filed Critical IAV GmbH Ingenieurgesellschaft Auto und Verkehr
Publication of EP2619461A1 publication Critical patent/EP2619461A1/de
Application granted granted Critical
Publication of EP2619461B1 publication Critical patent/EP2619461B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/001Testing thereof; Determination or simulation of flow characteristics; Stall or surge detection, e.g. condition monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/02Surge control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/01Purpose of the control system
    • F05D2270/10Purpose of the control system to cope with, or avoid, compressor flow instabilities
    • F05D2270/101Compressor surge or stall
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/70Type of control algorithm
    • F05D2270/708Type of control algorithm with comparison tables

Definitions

  • the present invention relates to an apparatus and method for safely operating a compressor at the surge line.
  • Compressors are thermal turbomachines and are used for compressing gases, in particular air. Compressors find in engine construction for continuously or periodically operating internal combustion engines far-reaching application and are used for example in reciprocating engines to increase performance, in gas turbines for generating electrical energy or in jet engines for propulsion of aircraft to compress the necessary air for combustion. The drive of the compressor takes place for example by the utilization of the energy contained in the exhaust gas, but can also be done mechanically or electrically.
  • the compressor can be designed according to its application, for example, in a jet engine as axial compressor to achieve high mass flows.
  • Mass flow is to be understood as an air mass, which is conveyed through the compressor for a certain time.
  • geometric can also be used
  • Conditions or environmental terms such as throughput or volumetric flow, may be used to characterize the operation of the compressor.
  • the air to be compressed flows axially to the compressor from the environment and is transported by the compressor in the jet engine and thereby compressed.
  • the compressor is generally composed of an impeller mounted on a shaft
  • Compressor blades constructed, which rotates in a housing with corresponding guide vanes and thus forms a compressor stage.
  • the provided with a blade root compressor blades are mounted playfully on the impeller, so that the compressor blade center itself at a sufficiently fast rotation of the impeller due to the resulting outward centrifugal force and sit firmly in the impeller.
  • the blades are firmly connected to the impeller.
  • the Guide vanes are fixed to the housing.
  • several compressor stages can be arranged one behind the other in the compressor for jet engines, so as to form a multi-stage compressor.
  • the compressor can be preceded by a blower and a second compressor.
  • the impeller is driven by the shaft, which is driven by a turbine at the end of the shaft
  • Jet engine is driven.
  • the compressor capacity is set by the impeller speed and by the mass flow in the compressor. For example, the impeller speed and by the mass flow in the compressor.
  • Drive power of the shaft can be changed by the turbine to adjust the speed of the impeller.
  • the mass flow in the compressor can be adjusted via
  • the pressure ratio of a compressor stage is limited by the fact that the compressed air in the compressor stage can not follow the compressor blade contour arbitrarily, but separates starting from the trailing edge of the compressor blade.
  • the maximum step pressure ratio increases with increasing mass flow and represents the outermost limit of the stable operating range as a pumping limit.
  • the maximum mass flow of the compressor stage is limited by a plug limit as soon as there is a flow cross section, usually at the compressor inlet
  • the operating range of the compressor is thus limited on the one hand by the surge limit and on the other hand by the stuffing limit.
  • the pumping limit is an unfavorable for the compressor, unstable operating condition in which it destroys the Compressor can come. This unstable operating condition must be avoided, especially when using the compressor in jet engines, in order to ensure operational safety.
  • Pumping limit for example, occur only on some compressor blades, with only individual compressor blades have a stall and this effect continues counter to the direction of rotation of the compressor wheel. Due to the cyclical change of the flow cyclically changing loads of individual compressor blades occur. Due to the increasing stall and the associated alternating load, the compressor blade begins to vibrate, whereby the compressor blades can bend and break due to this alternating load. However, if an unstable operating condition above the surge limit occurs, however, a complete stall occurs and considerable pressure surges in the compressor. In the overall engine, this condition poses a significant risk of extinguishing flames, burning fuel in the compressor, overheating,
  • the course of the surge limit of the operating range is subject to operational and aging-related changes.
  • the surge limit is due to the changes in ambient conditions during flight operations, flow conditions of
  • Intrusion of foreign objects Changes in the top clearance of the compressor blades towards the housing, changes in the bearing clearance due to aging and wear, deformations and deposits of the blade geometries and on the housing have an influence on the surge limit.
  • the reduction of the surge limit resulting from the influences to lower pressure ratios should be taken into account.
  • the most critical operating condition is achieved in the acceleration of the compressor, in which the surge margin is temporarily reduced.
  • the surge margin for new engines is designed to be about 25% of the pressure ratio, so that it has been reduced to 5% by the age-related lowering of the surge limit by the end of the life of the compressor.
  • Compressors known with which the compressor to be protected against this dangerous operating condition with optimal compressor impeller For example, bleed valves are used to lower the pressure ratio across a compressor stage.
  • an adjustment rotatably mounted vanes is provided with which the pressure ratio or the mass flow can be varied, thus ensuring a safe, stable operating condition.
  • an active change of the top clearance of the compressor blade by heating or cooling of the compressor housing is known. As a prerequisite, however, a reliable detection of the operating state of the compressor and accordingly the distance of the current operating point of the compressor to the surge limit is necessary.
  • the deflection of the compressor blade tip can be calculated from the time difference of the compressor blade tip
  • the published patent application DE 10 2008 036 305 A1 describes a method in which a power consumption of the compressor is determined from the passage times of the individual compressor blades. For this, the real transit times are compared with the ideal model transit times and their difference evaluated as a result of the deflection of the compressor blades. From the deflection of the compressor blades can be calculated a compressor torque and, accordingly, with the compressor speed, a compressor power. In stable operating conditions, a balance between the drive power and the compressor power sets. A disturbance of this power balance is considered to be incipient instability and the approach to the surge line is indicated.
  • the object of the invention is to provide a method and a device with which a reliable detection of the operating state of
  • Compressor is enabled.
  • the detection should be independent of influences from a changed state or a changed position of the compressor blades.
  • the state of each individual compressor blade defines a deviation from an ideal state and has an influence on the real measured transit time.
  • the transit time is understood as the point in time at which the compressor blade tip is located at least partially in a sensor region of a sensor on the housing of the compressor. In this case, for example, the entry into the sensor area, the passage through the sensor area or the exit from the sensor area can be used to define the transit time.
  • each compressor blade on the impeller may change each time it is started. Since the compressor blades are mounted playfully in the impeller and only at startup of the compressor at a minimum speed due to centrifugal self-align and anchor in the leadership, these deviations come from operational use to operational use to conditions. Even with compressors with fixedly attached to the impeller compressor blades, a change in position, for example by assembly work done.
  • the ideal passage time is understood to mean the point in time which is at an ideal time Impeller with equidistant compressor blade assembly and infinitely stiff compressor blades would result without deviations from state and location.
  • the passage time is the time at which the
  • Compressor blade tip located at least partially in the sensor area of the sensor on the housing of the compressor.
  • the entry into the compressor is
  • Sensor area the passage through the sensor area or the exit from the sensor area are defined to define the passage time.
  • the invention provides a method with which a secure detection of the
  • Minimum speed for aligning the compressor blades determined. Based on this compressor blade specific deviation can be a correction of the
  • the invention further provides a device with which the deviations are determined and a correction of the passage times takes place.
  • the device includes at least one sensor for indicating the passage of a
  • Compressor bucket henceforth called compressor blade sensor
  • at least one sensor for indicating the rotation of the impeller henceforth called impeller sensor.
  • the compressor blade sensor outputs a trigger signal as a compressor blade passes. To improve the trigger signal can be at the
  • Compressor blade tip a mark or the like may be provided. From the signal, the transit time is determined.
  • the impeller sensor outputs a trigger signal corresponding to the rotation of the impeller. This can, for example, the
  • Markings be provided. In order to increase the accuracy of the speed detection, several markings may be provided to during a
  • the trigger signals of the sensors are related to each other by means of a central time base, so that an accurate assignment of the trigger signals of impeller and
  • Compressor blades can be done. Accordingly, on the reference of
  • Compressor bucket sensor and impeller sensor made a comparison between the measured and ideal transit time for each individual compressor blade.
  • Compressor model is used, which maps the impeller with the compressor blades as an ideal impeller with aquidistanter compressor blade assembly with infinitely stiff ideal compressor blades without deviations from condition and position.
  • the compressor nominal model may be depicted as a memory array in which
  • Memory cells equal to the number of compressor blade are present. It will be there each individual compressor blade associated with an individual memory cell.
  • Compressor nominal model of the measured speed of the impeller adapted in phase, so that a direct comparison between the real impeller and the ideal impeller, as represented by the compressor nominal model, is possible. As a result, a memory cell rotation equal to the rotation of the real impeller is achieved. Alternatively, a synchronized with the rotation of the impeller counter can be used, with which the individual memory cell of the memory array can be addressed.
  • the compressor nominal model now provides for each on the compressor blade sensor
  • Transit time is equal to zero for the ideal case and is composed in the real case of a conditional and positional deviation and the actual useful signal, ie the flow-mechanical deviation together.
  • the flow-mechanical component of the deviation can be regarded as negligible, so that the state and
  • Positional deviation predominates.
  • This conditional and positional deviation is assigned compressor blade individually to a compressor adaptation model, wherein the compressor adaptation model analogously to the compressor nominal model correspondingly has the same number of memory cells.
  • the compressor adaptation model in addition to the compressor nominal model, the compressor adaptation model with a
  • Switching unit integrated, which is used to switch between working mode and learning or adaptation mode. If the adaptation mode is enabled, for example by speed thresholds of the impeller, the adaptation can take place. In working mode after startup and operation of the
  • Jet engine the compressor shovel individual state
  • Compressor bucket is calculated.
  • the state and location-related deviations stored in the compressor adaptation model can be stored as a distance or as a factor in the form of a time, a path or an angle and so on. To correct the state and location deviations of each individual
  • the measured transit time or the calculated relative transit time can be used. Furthermore, the impeller speed or the tangential speed of
  • Compressor blade tips used to calculate an absolute deviation as the path or angle from the ideal state. Furthermore, geometric parameters of the compressor and its components can be included in the evaluation.
  • the compressor nominal model with the ideal state can be included in the evaluation.
  • the compressor power calculated from the deflection is ambiguous. This problem is solved by observing the change in deflection during operating point changes. In principle, the operating point change can be effected by the forced modulation of the fuel mass flow. However, this is not necessary, since the fuel mass flow both by thrust lever adjustments by the
  • Compressor blade deflection and its history together with the knowledge of compressor speed, total engine pressure difference can be based on the current operating point of the compressor and thus the current distance of the compressor
  • a sensor configuration can be used, which consists of at least two compressor blade sensors and an impeller sensor. In the presence of only one sensor can
  • Blade vibrations with the same or multiple frequency of the impeller frequency not be recognized.
  • Sensors with different functions can be used. A combination of throughput sensitivity and
  • the calculation of the angle of attack from the available information offers.
  • the calculated angle of incidence is continuously entered into a writable map and thus determined and recorded during the operating time of the engine whose operating map. It is also known from experiments on the test bench, at which angle of attack it comes to the flow separation and thus to the compressor pumping, so that the surge limit is firmly stored in the map. Non-volatile memory behavior keeps this information even after the engine has been shut down, so that there is a fixed safety threshold for the stable operation of the jet engine.
  • the method according to the invention can be applied to a compressor stage or to several or selected compressor stages, which are particularly affected by the risk of pumping.
  • the method of the present invention is capable of not only detecting compressor instabilities by compressor blade viewing, but also distinguishing between rotating separations and compressor blade flutter as rotating separations circulate unlike compressor blade flutter.
  • the compressor can thus be operated with optimum efficiency, without having to be driven into the unstable operating state. As a result, the specific consumption is lowered.
  • the compressor can be designed, for example, lighter and smaller.
  • the method according to the invention does not require the approach to the surge line in order to be able to determine its position. As a result, safety is increased.
  • the method according to the invention continuously adapts the operating map, so that the operation of the compressor is continuously adapted to its aging state. As a result, the specific consumption decreases. For example, should it become a
  • Compressor instability come, which can be detected by the method, this behavior is corrected in the operating map by adjusting the surge limit.
  • the method according to the invention predicts the failure behavior of the compressor so that unplanned maintenance is avoided and the available service life is known. As a result, operating costs, maintenance costs,
  • the method according to the invention is also compatible with methods of active gap control, in which the gap between the compressor blade tips and the housing is controlled or regulated. Furthermore, the use of variable vanes and the bleed air take-off can be optimized.
  • Fig. 1 a schematic representation of the device for safe operation of a compressor at the surge line.
  • the exemplified device consists of a
  • Compressor blade sensor (1) which according to the passage of a
  • Compressor bucket outputs a trigger signal and an impeller sensor (2), which outputs a trigger signal corresponding to one revolution of the impeller of the compressor.
  • the two trigger signals are provided with a time stamp.
  • the device is with a
  • the controller (6) performs an intervention according to the control deviation.
  • the compressor nominal model (4) as well as the compressor adaptation model (5) consists of a plurality of memory cells (4a, 5a), the number of memory cells of each model corresponding to the number of compressor blades. The memory cells become in accordance with the speed of the impeller by the controller (6) in phase addressed.
  • the compressor nominal model (4) gives an ideal
  • Transit time corresponding to the current compressor blade which is compared in a differentiator (7) with the measured passage time and outputs a relative passage time. Thereafter, adapted in a learning mode state and position deviations of the respective compressor blade from the compressor adaptation model (5) are offset with the relative transit time. So that the compressor adaptation model (5) can be adapted, a switch (8) is provided, which switches over into an adaptation mode when a condition (9) is met. If condition (9) is not fulfilled, the device is operated in working mode. The device outputs at least one operating point information which consists of the corrected relative transit time and further variables in one
  • Compressor nominal model (4) are replaced by a function that outputs the ideal transit time in relation to the impeller speed, since this is the same for all compressor blades and the model assumption of the ideal impeller.
  • Compressor adaptation model (5) are replaced by a map whose
  • Map points can be addressed discretely and spend the deviation of the respective compressor blade.
  • the map points can be done for example by means of a synchronized with the impeller counter.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Control Of Positive-Displacement Air Blowers (AREA)

Abstract

Die Erfindung stellt ein Verfahren bereit, mit dem eine sichere Erkennung des Betriebszustandes unabhängig vom Zustand und Lage der Verdichterschaufeln und dadurch ein optimaler Verdichterbetrieb ermöglicht wird. In erfindungsgemäß vorteilhafter Weise werden die Abweichungen vom Idealzustand jeder einzelnen Verdichterschaufel beim Hochfahren des Verdichters nach dem Erreichen der Mindestdrehzahl zum Ausrichten der Verdichterschaufeln ermittelt. Basierend auf dieser verdichterschaufelindividuell bestimmten Abweichung kann eine Korrektur der im Betrieb gemessenen Durchgangszeitpunkte jeder Verdichterschaufel erfolgen. Diese Korrektur ermöglicht eine genaue Bestimmung des Betriebszustands sowie einen wirkungsgradoptimalen Betrieb des Verdichters unterhalb der Pumpgrenze. Bei jedem Start des Verdichters werden die Abweichungen der Verdichterschaufeln gegenüber dem Idealzustand neu ermittelt, adaptiert und in die Auswertung einbezogen. Die so korrigierten gemessenen Durchgangszeitpunkte werden zur Ermittlung der Auslenkung infolge der Durchbiegung der Verdichterschaufel herangezogen, wobei erfindungsgemäß vorteilhaft nur die Durchbiegung infolge der Strömungsmechanik ermittelt wird. Eine vom Zustand und der Lage der Verdichterschaufeln unabhängige Betriebspunktermittlung wird erreicht.

Description

Vorrichtung und Verfahren zum sicheren Betreiben eines Verdichters an der Pumpgrenze
Technisches Gebiet
Die vorliegende Erfindung betrifft eine Vorrichtung und ein Verfahren zum sicheren Betreiben eines Verdichters an der Pumpgrenze.
Stand der Technik
Verdichter sind thermische Strömungsmaschinen und werden zum Verdichten von Gasen, insbesondere Luft verwendet. Verdichter finden im Motorenbau für kontinuierlich oder periodisch arbeitende Brennkraftmaschinen weitreichende Anwendung und werden beispielsweise in Hubkolbenmotoren zur Leistungssteigerung, in Gasturbinen zur Erzeugung elektrischer Energie oder auch in Strahltriebwerken zum Antrieb von Flugzeugen eingesetzt, um die für die Verbrennung notwendige Luft zu verdichten. Der Antrieb des Verdichters erfolgt beispielsweise durch die Ausnutzung der im Abgas enthaltenen Energie, kann aber auch mechanisch oder elektrisch erfolgen.
Der Verdichter kann nach seinem Einsatzgebiet beispielsweise in einem Strahltriebwerk als Axialverdichter ausgeführt sein, um hohe Masseströme zu erreichen. Als
Massestrom ist eine Luftmasse zu verstehen, welche während einer bestimmten Zeit durch den Verdichter gefördert wird. Alternativ können auch auf geometrische
Bedingungen oder auf Umgebungsbedingungen bezogene Größen, wie Durchsatz oder Volumenstrom verwendet werden, um den Betrieb des Verdichters zu charakterisieren. Die zu verdichtende Luft strömt den Verdichter aus der Umgebung axial an und wird durch den Verdichter im Strahltriebwerk befördert und dabei verdichtet. Dazu ist der Verdichter im Allgemeinen aus einem auf einer Welle gelagerten Laufrad mit
Verdichterschaufeln aufgebaut, welches sich in einem Gehäuse mit entsprechenden Leitschaufeln dreht und somit eine Verdichterstufe bildet. Die mit je einem Schaufelfuß versehenen Verdichterschaufeln sind am Laufrad spielend eingehangen, so dass sich die Verdichterschaufel bei einer ausreichend schnellen Drehung des Laufrades auf Grund der entstehenden nach außen gerichteten Fliehkraft selbst zentrieren und fest im Laufrad sitzen. Alternativ sind die Schaufeln fest mit dem Laufrad verbunden. Die Leitschaufeln sind fest am Gehäuse angeordnet. Zur Erhöhung der Verdichtung können in dem Verdichter für Strahltriebwerke mehrere Verdichterstufen hintereinander angeordnet sein, um so einen mehrstufigen Verdichter zu bilden. Weiterhin kann dem Verdichter ein Gebläse sowie ein zweiter Verdichter vorgeschaltet sein. Der Antrieb des Laufrades erfolgt über die Welle, welche durch eine Turbine am Ende des
Strahltriebwerks angetrieben wird.
Beim Betrieb des Verdichters wird die Verdichterleistung durch die Laufraddrehzahl und durch den Massestrom im Verdichter eingestellt. Dafür kann beispielsweise die
Antriebsleistung der Welle durch die Turbine verändert werden, um die Drehzahl des Laufrades einzustellen. Der Massestrom im Verdichter kann über verstellbare
Leitschaufeln, Abblasventile oder Schaufelspitzenspaltänderung variiert werden.
Dadurch lässt sich ein Betriebspunkt des Verdichters einstellen, welcher sich
beispielsweise durch ein Druckverhältnis und einen Massestrom, durch
Verdichterleistung und Drehzahl oder andere Alternativen definiert.
Das Druckverhältnis einer Verdichterstufe wird dadurch nach oben begrenzt, dass die in der Verdichterstufe verdichtete Luft nicht beliebig der Verdichterschaufelkontur folgen kann, sondern sich beginnend von der Hinterkante der Verdichterschaufel ablöst. Das maximale Stufendruckverhältnis steigt mit zunehmendem Massestrom an und stellt die äußerste Grenze des stabilen Betriebsbereiches als Pumpgrenze dar. Der maximale Massestrom der Verdichterstufe wird durch eine Stopfgrenze begrenzt, sobald sich in einem Strömungsquerschnitt, üblicherweise am Verdichtereintritt eine
Strömungsgeschwindigkeit in Höhe der Schallgeschwindigkeit ausbildet und dadurch den durchgesetzten Massestrom begrenzt.
In Abhängigkeit vom Anströmwinkel oder der Anströmgeschwindigkeit der Luft an die Verdichterschaufel stellt man zwischen Ober- und Unterseite einen Druckunterschied fest. Da es sich bei einer Verdichterschaufel um ein elastisches Bauteil handelt, wird sie dem Druckunterschied zwischen Ober- und Unterseite nachgeben und sich
durchbiegen. Mit zunehmender Belastung steigen die Durchbiegung und damit die Auslenkung der Verdichterschaufeln.
Der Betriebsbereich des Verdichters wird somit einerseits durch die Pumpgrenze und andererseits durch die Stopfgrenze begrenzt. Dabei ist die Pumpgrenze ein für den Verdichter ungünstiger, instabiler Betriebszustand, bei dem es zur Zerstörung des Verdichters kommen kann. Dieser instabile Betriebszustand ist vor allem beim Einsatz des Verdichters in Strahltriebwerken unbedingt zu vermeiden, um die Betriebssicherheit zu gewährleisten.
Pumpen tritt auf, wenn der für ein Druckverhältnis über eine Verdichterstufe
erforderliche Massestrom zu gering ist, beziehungsweise das Druckverhältnis für einen bestimmten Massestrom zu groß ist und es dadurch zu einer Rückströmung und somit zu einem Strömungsabriss kommt. Dadurch werden das Druckverhältnis und der Massestrom kurzzeitig verändert, wodurch sich der Betriebspunkt kurzzeitig im stabilen Bereich befindet und sich danach wiederum der instabile Betriebspunkt einstellt. Dieser zyklische Wechsel zwischen stabilem und instabilem Betriebszustand nahe der
Pumpgrenze kann beispielsweise nur an einigen Verdichterschaufeln eintreten, wobei nur einzelne Verdichterschaufeln einen Strömungsabriss aufweisen und sich dieser Effekt entgegen der Drehrichtung des Verdichterrades fortsetzt. Durch den zyklischen Wechsel der Strömung kommt es zu zyklisch wechselnden Belastungen einzelner Verdichterschaufeln. Durch den zunehmenden Strömungsabriss und die damit verbundene Wechselbelastung beginnt die Verdichterschaufel zu schwingen, wobei sich die Verdichterschaufeln durch diese Wechselbelastung durchbiegen und brechen können. Stellt sich jedoch ein instabiler Betriebszustand über der Pumpgrenze ein, kommt es jedoch zu einem kompletten Strömungsabriss und erheblichen Druckstößen im Verdichter. Im Gesamttriebwerk stellt dieser Zustand eine erhebliche Gefahr durch verlöschende Flammen, brennenden Kraftstoff im Verdichter, Überhitzungen,
Deformierungen und so weiter dar, wobei der Verdichter und somit das Strahltriebwerk komplett zerstört werden können.
Der Verlauf der Pumpgrenze des Betriebsbereiches unterliegt betriebsbedingten und alterungsbedingten Änderungen. So wird die Pumpgrenze durch die Veränderungen der Umgebungsbedingungen während des Flugbetriebs, Anströmbedingungen des
Verdichters, durch die thermische Trägheit der Komponenten sowie durch das
Eindringen von Fremdobjekten beeinflusst. Auch Veränderungen im Spitzenspalt der Verdichterschaufeln zum Gehäuse hin, Veränderungen im Lagerspiel durch Alterung und Abnutzung, Verformungen und Ablagerungen der Schaufelgeometrien und am Gehäuse haben Einfluss auf die Pumpgrenze. Durch einen ausreichend großen Druckverhältnisabstand der zulässigen Betriebszustände des Verdichters zur Pumpgrenze soll die durch die Einflüsse resultierende Absenkung der Pumpgrenze zu niedrigeren Druckverhältnissen berücksichtigt werden. Der kritischste Betriebszustand wird bei der Beschleunigung des Verdichters erreicht, bei dem der Pumpgrenzenabstand vorübergehend verringert wird. In der Praxis wird der Pumpgrenzenabstand für Neutriebwerke auf etwa 25% des Druckverhältnisses ausgelegt, so dass er sich bis zum Ende der Lebensdauer des Verdichters durch die alterungsbedingte Absenkung der Pumpgrenze auf 5% verringert hat.
Das Wirkungsgradoptimum eines Verdichters liegt im Allgemeinen nahe der
Pumpgrenze im stabilen Betriebsbereich, wodurch ein Verbrauchsnachteil auf Grund der sicherheitsrelevanten Auslegung des Pumpgrenzenabstands entsteht. Deshalb sind aus dem Stand der Technik Vorrichtungen und Verfahren zum Betreiben von
Verdichtern bekannt, mit denen die Verdichter vor diesem gefährlichen Betriebszustand bei optimalem Verdichterwirkungsrad geschützt werden sollen. Beispielsweise werden Abblasventile verwendet, um das Druckverhältnis über eine Verdichterstufe zu senken. In vielen Fällen ist eine Verstellung drehbar gelagerter Leitschaufeln vorgesehen, mit denen das Druckverhältnis beziehungsweise der Massestrom variiert werden kann, um somit einen sicheren, stabilen Betriebszustand zu gewährleisten. Weiterhin ist eine aktive Änderung des Spitzenspalts der Verdichterschaufel durch Erwärmung oder Abkühlung des Verdichtergehäuses bekannt. Als Voraussetzung dafür ist jedoch eine sichere Erkennung des Betriebszustandes des Verdichters und dementsprechend der Abstand des aktuellen Betriebspunktes des Verdichters zur Pumpgrenze notwenig.
Die Auslenkung der Verdichterschaufelspitze kann aus der Zeitdifferenz des
gemessenen Durchgangszeitpunktes der Verdichterschaufelspitze an einem Sensor am Gehäuse und einem idealen Durchgangszeitpunkt, der sich bei einer ideal steifen Verdichterschaufel ergeben würde, und der bekannten Tangentialgeschwindigkeit der Verdichterschaufelspitze berechnet werden. Als Durchgangszeitpunkt wird der
Zeitpunkt verstanden, zu dem sich die Verdichterschaufelspitze wenigstens teilweise im Sensorbereich des Sensors am Gehäuse des Verdichters befindet. Dabei kann beispielsweise der Eintritt in den Sensorbereich, der Durchgang durch den
Sensorbereich oder der Austritt aus dem Sensorbereich definiert werden, um den Durchgangszeitpunkt zu definieren. Die Patentschrift US 6,474,935 B1 beschreibt die Erkennung rotierender Ablösungen basierend auf der Messung der Auslenkung der Verdichterschaufelspitzen infolge von Druckschwankungen, die durch die umlaufende Ablösezelle entstehen.
Das Verfahren beruht demnach auf der Identifikation von Voranzeichen eines instabilen Verdichterzustandes. Bekannt ist, dass sich diese Voranzeichen wenige Millisekunden vor Einsetzen der Verdichterinstabilität zeigen, so dass zur Durchführung von
Gegenmaßnahmen, zum Beispiel Verringerung der Brennstoffmasse, Öffnen der Abblasventile oder Verstellen der Leitschaufeln, nicht mehr ausreichend Zeit verbleibt.
Die Offenlegungsschrift DE 10 2008 036 305 A1 beschreibt ein Verfahren, bei dem aus den Durchgangszeiten der einzelnen Verdichterschaufeln eine Leistungsaufnahme des Verdichters ermittelt wird. Dafür werden die realen Durchgangszeiten mit den idealen Modelldurchgangszeiten verglichen und deren Differenz als Folge der Durchbiegung der Verdichterschaufeln ausgewertet. Aus der Durchbiegung der Verdichterschaufeln lässt sich ein Verdichtermoment und dementsprechend mit der Verdichterdrehzahl eine Verdichterleistung berechnen. Im stabilen Betriebszustand stellt sich ein Gleichgewicht zwischen der Antriebsleistung und der Verdichterleistung ein. Eine Störung dieses Leistungsgleichgewichtes wird als beginnende Instabilität gewertet und das Annähern an die Pumpgrenze angezeigt.
Der Zustand, wie Verschleiß, Verschmutzung, Erosion und Deformationen an den Verdichterschaufeln, sowie die Veränderung der Lage der Verdichterschaufeln, die sich bei jedem Triebwerksstart durch das Schaufelfußspiel neu ausrichten, haben Einfluss auf den gemessenen Durchgangszeitpunkt im Bezug auf den nominalen
Durchgangszeitpunkt, auf deren Basis die Durchbiegung beziehungsweise die
Auslenkung der Verdichterschaufeln ermittelt und auf den Betriebspunkt und dessen Abstand zur Pumpgrenze geschlossen wird. Die im Stand der Technik bekannten Verfahren können diesen Einfluss nicht erkennen und eliminieren, so dass es zu Fehlerkennungen kommen kann. Eine sichere Ermittlung des Betriebspunktes des Verdichters und damit des Pumpgrenzenabstands des Betriebspunktes ist nicht möglich. Aufgabe der Erfindung
Die Aufgabe der Erfindung besteht darin, ein Verfahren sowie eine Vorrichtung bereitzustellen, mit denen eine sichere Erkennung des Betriebszustandes des
Verdichters ermöglicht wird. Die Erkennung soll unabhängig von Einflüssen aus einem veränderten Zustand oder einer veränderten Lage der Verdichterschaufeln erfolgen.
Lösung der Aufgabe
Die Aufgabe wird durch das Verfahren nach den Merkmalen des Patentanspruches 1 und der Vorrichtung nach Patentanspruch 6 gelöst. Vorteilhafte Weiterbildungen des Verfahrens und der Vorrichtung ergeben sich aus den jeweiligen Unteransprüchen.
Beschreibung der Erfindung
Der Zustand jeder einzelnen Verdichterschaufel, wie Verschleiß, Verschmutzung, Erosion und Deformationen definiert eine Abweichung von einem Idealzustand und hat Einfluss auf den realen, gemessenen Durchgangszeitpunkt. Als Durchgangszeitpunkt wird der Zeitpunkt verstanden, zu dem sich die Verdichterschaufelspitze wenigstens teilweise in einem Sensorbereich eines Sensors am Gehäuse des Verdichters befindet. Dabei kann beispielsweise der Eintritt in den Sensorbereich, der Durchgang durch den Sensorbereich oder der Austritt aus dem Sensorbereich verwendet werden, um den Durchgangszeitpunkt zu definieren.
Die Lage jeder einzelnen Verdichterschaufel am Laufrad kann sich bei jedem Start verändern. Da die Verdichterschaufeln im Laufrad spielend gelagert sind und erst beim Hochfahren des Verdichters bei einer Mindestdrehzahl aufgrund der Fliehkraft sich in der Führung selbstständig ausrichten und verankern, kommen diese Abweichungen von Betriebseinsatz zu Betriebseinsatz zu Stande. Auch bei Verdichtern mit fest am Laufrad angebrachten Verdichterschaufeln kann eine Lageveränderung beispielsweise durch Montagearbeiten erfolgen.
Alle Abweichungen beeinflussen den Durchgangszeitpunkt und bedingen somit eine Differenz zwischen gemessenem und idealem Durchgangszeitpunkt. Als idealer Durchgangszeitpunkt wird jener Zeitpunkt verstanden, welcher sich bei einem idealen Laufrad mit äquidistanter Verdichterschaufelanordnung und unendlich steifen Verdichterschaufeln ohne Abweichungen aus Zustand und Lage ergeben würde.
Als Durchgangszeitpunkt wird der Zeitpunkt verstanden, zu dem sich die
Verdichterschaufelspitze wenigstens teilweise im Sensorbereich des Sensors am Gehäuse des Verdichters befindet. Dabei kann beispielsweise der Eintritt in den
Sensorbereich, der Durchgang durch den Sensorbereich oder der Austritt aus dem Sensorbereich definiert werden, um den Durchgangszeitpunkt zu definieren.
Die Abweichungen vom idealen Durchgangszeitpunkt der Verdichterschaufeln aus Zustand und Lage wird während eines Betriebseinsatzes des Verdichters als
unveränderlich angenommen. Als Betriebseinsatz soll der Betrieb des Verdichters zwischen dem Anfahren und dem Abstellen, also dem Starten und Stoppen, verstanden werden.
Hat der Verdichter beim Hochfahren die Mindestdrehzahl für das selbstständige
Ausrichten der Verdichterschaufeln erreicht, richten sich die Verdichterschaufeln aus. Die Abweichungen der Verdichterschaufel vom Idealzustand hinsichtlich Zustand und Lage bleiben für diesen Betriebseinsatz konstant und können kompensiert werden. Erst beim Herunterfahren des Verdichters unter einer bestimmten Mindestdrehzahl lockern sich die Verdichterschaufeln entsprechend dem Fußspiel und die Abweichungen sind wieder unbestimmt.
Die Erfindung stellt ein Verfahren bereit, mit dem eine sichere Erkennung des
Betriebszustandes unabhängig vom Zustand und Lage der Verdichterschaufeln und dadurch ein optimaler Verdichterbetrieb ermöglicht wird. In erfindungsgemäß
vorteilhafter Weise werden die Abweichungen vom Idealzustand jeder einzelnen
Verdichterschaufel beim Hochfahren des Verdichters nach dem Erreichen der
Mindestdrehzahl zum Ausrichten der Verdichterschaufeln ermittelt. Basierend auf dieser verdichterschaufelindividuell bestimmten Abweichung kann eine Korrektur der im
Betrieb gemessenen Durchgangszeitpunkte jeder Verdichterschaufel erfolgen. Diese Korrektur ermöglicht eine genaue Bestimmung des Betriebszustands sowie einen wirkungsgradoptimalen Betrieb des Verdichters unterhalb der Pumpgrenze. Bei jedem Start des Verdichters werden die Abweichungen der Verdichterschaufeln gegenüber dem Idealzustand neu ermittelt, adaptiert und in die Auswertung einbezogen. Die so korrigierten gemessenen Durchgangszeitpunkte werden zur Ermittlung der Auslenkung infolge der Durchbiegung der Verdichterschaufel herangezogen, wobei
erfindungsgemäß vorteilhaft nur die Durchbiegung infolge der Strömungsmechanik ermittelt wird. Eine vom Zustand und der Lage der Verdichterschaufeln unabhängige Betriebpunktermittlung wird erreicht.
Die Erfindung stellt weiterhin eine Vorrichtung bereit, mit welcher die Abweichungen ermittelt werden und eine Korrektur der Durchgangszeitpunkte erfolgt. Die Vorrichtung beinhaltet wenigstens einen Sensor zur Anzeige des Durchgangs einer
Verdichterschaufel, fortan Verdichterschaufelsensor genannt, und wenigstens einen Sensor zur Anzeige der Drehung des Laufrades, fortan Laufradsensor genannt. Der Verdichterschaufelsensor gibt ein Triggersignal aus, wenn sich eine Verdichterschaufel vorbeibewegt. Zur Verbesserung des Triggersignals kann an der
Verdichterschaufelspitze eine Markierung oder ähnliches vorgesehen sein. Aus dem Signal wird der Durchgangszeitpunkt ermittelt. Der Laufradsensor gibt ein Triggersignal entsprechend der Drehung des Laufrades aus. Daraus kann beispielsweise die
Drehzahl des Laufrades berechnet werden. Auch hier können entsprechende
Markierungen vorgesehen sein. Um die Genauigkeit der Drehzahlerfassung zu erhöhen, können mehrere Markierungen vorgesehen sein, um während einer
Umdrehung des Laufrades mehrere Triggersignale zu erfassen, um mögliche
Drehzahlschwankungen genauer abzubilden. Jedoch wird im Allgemeinen eine
Markierung ausreichen, da die Drehzahl äußerst geringen Drehzahlschwankungen aufgrund der Trägheit des Laufrades unterliegt.
Die Triggersignale der Sensoren sind mittels einer zentralen Zeitbasis zueinander bezogen, so dass eine genaue Zuordnung der Triggersignale von Laufrad und
Verdichterschaufeln erfolgen kann. Demnach kann über den Bezug von
Verdichterschaufelsensor und Laufradsensor ein Vergleich zwischen gemessenem und idealem Durchgangszeitpunkt für jede einzelne Verdichterschaufel erfolgen.
Parallel zum realen Laufrad wird in erfindungsgemäß vorteilhafter Weise ein
Verdichternominalmodell verwendet, welches das Laufrad mit den Verdichterschaufeln als ideales Laufrad mit aquidistanter Verdichterschaufelanordnung mit unendlich steifen idealen Verdichterschaufeln ohne Abweichungen aus Zustand und Lage abbildet. Das Verdichternominalmodell kann als ein Speicherfeld abgebildet werden, in dem
Speicherzellen gleich der Anzahl der Verdichterschaufel vorhanden sind. Es wird dabei jeder individuellen Verdichterschaufel eine individuelle Speicherzelle zugeordnet. Mittels eines beliebigen Reglers, vorzugsweise eines PID-Reglers, wird das
Verdichternominalmodell der gemessenen Drehzahl des Laufrades phasengleich angepasst, so dass ein direkter Vergleich zwischen realem Laufrad und dem idealen Laufrad, dargestellt durch das Verdichternominalmodell, möglich ist. Dadurch wird eine Speicherzellenrotation gleich der Rotation des realen Laufrades erreicht. Alternativ kann ein mit der Rotation des Laufrades synchronisierter Zähler verwendet werden, mit dem die individuelle Speicherzelle des Speicherfeldes angesprochen werden kann. Das Verdichternominalmodell liefert nun für jede am Verdichterschaufelsensor
durchgehende individuelle Verdichterschaufel den individuellen idealen
Durchgangszeitpunkt, also die Zeit, die eine geometrisch ideale und unendlich steife Verdichterschaufel am Sensor erzeugen würde. Die Differenz aus idealem
Durchgangszeitpunkt und dem real am Verdichter gemessenen Durchgangszeitpunkt der jeweiligen Verdichterschaufel ergibt die Abweichung, also den relativen
Durchgangszeitpunkt. Dafür ist in der erfindungsgemäßen Vorrichtung ein Differenzierer vorgesehen, um die entsprechende Operation durchzuführen. Der relative
Durchgangszeitpunkt ist für den Idealfall gleich null und setzt sich im Realfall aus einer zustande- und lagebedingten Abweichung und dem eigentlichen Nutzsignal, also der strömungsmechanisch bedingten Abweichung, zusammen.
Bei sehr geringer Verdichterdrehzahl, beispielsweise im Leerlaufzustand oder beim Starten der Triebwerke kann der strömungsmechanisch bedingte Anteil der Abweichung als vernachlässigbar gering angesehen werden, so dass die zustande- und
lagebedingte Abweichung überwiegt. Diese zustande- und lagebedingte Abweichung wird verdichterschaufelindividuell einem Verdichteradaptionsmodell zugeordnet, wobei das Verdichteradaptionsmodell analog zum Verdichternominalmodell entsprechend gleich viele Speicherzellen aufweist. Dazu ist in der Vorrichtung erfindungsgemäß neben dem Verdichternominalmodell das Verdichteradaptionsmodell mit einer
Umschalteinheit integriert, mit welcher zwischen Arbeitsmodus und Lern- beziehungsweise Adaptionsmodus umgeschaltet wird. Wenn der Adaptionsmodus freigegeben ist, beispielsweise durch Drehzahlschwellen des Laufrades, kann die Adaption erfolgen. Im Arbeitsmodus nach dem Hochlaufen und dem Betrieb des
Strahltriebwerks werden die verdichterschaufelindividuellen zustands- und
lagebedingten Abweichungen aus dem Verdichteradaptionsmodell verwendet, um den relativen Durchgangszeitpunkt der jeweiligen Verdichterschaufel zu einem korrigierten relativen Durchgangszeitpunkt zu korrigieren, so dass nur noch der
strömungsmechanisch bedingte Anteil zur Berechnung der Auslenkung der
Verdichterschaufel berechnet wird. Die im Verdichteradaptionsmodell abgelegten zustands- und lagebedingten Abweichungen können als Abstand oder als Faktor in Form einer Zeit, eines Weges oder eines Winkels und so weiter hinterlegt sein. Zur Korrektur der zustands- und lagebedingten Abweichungen jeder individuellen
Verdichterschaufel kann der gemessene Durchgangszeitpunkt oder der daraus berechnete relative Durchgangszeitpunkt herangezogen werden. Weiterhin wird die Laufraddrehzahl beziehungsweise die Tangentialgeschwindigkeit der
Verdichterschaufelspitzen verwendet, um eine absolute Abweichung als Weg oder Winkel gegenüber dem Idealzustand zu berechnen. Weiterhin können geometrische Parameter des Verdichters und dessen Bestandteile in die Auswertung einbezogen werden. In vorteilhafter Weise kann das Verdichternominalmodell mit dem
Verdichteradaptionsmodell zusammengefasst werden.
Da die Auslenkung der Verdichterschaufel in Abhängigkeit vom Massestrom nicht monoton ist, sondern ein Maximum unterhalb der Pumpgrenze aufweist, ist die aus der Auslenkung berechnete Verdichterleistung zweideutig. Dieses Problem wird dadurch gelöst, dass die Änderung der Auslenkung während Betriebspunktänderungen beobachtet wird. Prinzipiell kann die Betriebspunktänderung durch die zwangsweise Modulation des Brennstoffmassenstroms erfolgen. Dies ist jedoch nicht erforderlich, da der Brenn stoff massenstrom sowohl durch Schubhebelverstellungen durch den
Luftfahrzeugführer, als auch durch Ausregelaktivitäten des Autopiloten ohnehin fortwährend variiert wird.
Aus diesen Informationen zum korrigierten relativen Durchgangszeitpunkt,
Verdichterschaufelauslenkung und deren Verlauf zusammen mit der Kenntnis über Verdichterdrehzahl, Gesamttriebwerksdruckdifferenz kann auf den momentanen Betriebspunkt des Verdichters und damit auf den momentanen Abstand des
Betriebspunktes von der Pumpgrenze geschlossen werden.
Zur Verbesserung des erfindungsgemäßen Verfahrens kann eine Sensorkonfiguration verwendet werden, welche aus wenigstens zwei Verdichterschaufelsensoren und einem Laufradsensor besteht. Bei Vorhandensein nur eines Sensors können
Blattschwingungen mit gleicher oder vielfacher Frequenz der Laufradfrequenz nicht erkannt werden. Durch die Erhöhung der Anzahl der Verdichterschaufelsensoren und deren unregelmäßige Verteilung über dem Verdichterumfang können auch diese Frequenzen erfasst werden. Es können Sensoren mit verschiedenen Funktionsweisen verwendet werden. Eine Kombination aus Durchgangssensitivität und
Abstandssensitivität würde jedoch den Vorteil mit sich bringen, eine Spaltregelung für die Verdichterschaufeln zu ermöglichen.
Als Erweiterung des erfindungsgemäßen Verfahrens bietet sich die Berechnung des Anströmwinkels aus den vorliegenden Informationen an. Der berechnete Anströmwinkel wird kontinuierlich in ein beschreibbares Kennfeld eingetragen und so im Laufe der Betriebszeit des Triebwerkes dessen Betriebskennfeld ermittelt und festgehalten. Es ist zudem aus Experimenten am Prüfstand bekannt, bei welchem Anströmwinkel es zur Strömungsablösung und somit zum Verdichterpumpen kommt, so dass die Pumpgrenze fest im Kennfeld hinterlegt wird. Durch nichtflüchtiges Speicherverhalten bleiben diese Informationen auch nach Herunterfahren des Triebwerks erhalten, so dass eine feste Sicherheitsschwelle für den stabilen Betrieb des Strahltriebwerks vorliegt.
Das erfindungsgemäße Verfahren kann auf eine Verdichterstufe oder auf mehrere beziehungsweise ausgewählte Verdichterstufen angewendet werden, die besonders von der Gefahr des Pumpens betroffen sind.
Das erfindungsgemäße Verfahren ist geeignet, nicht nur Verdichterinstabilitäten durch verdichterschaufelweise Betrachtung zu erkennen, sondern auch zwischen rotierenden Ablösungen und Verdichterschaufelflattern zu unterscheiden, da rotierende Ablösungen im Gegensatz zu Verdichterschaufelflattern umlaufen. Das erfindungsgemäße
Verfahren erlaubt eine optimale Einstellung der Aktuatoren eines Verdichters, da der tatsächliche Betriebszustand des Verdichters und die Lage der Pumpgrenze bekannt sind. Der Verdichter kann somit wirkungsgradoptimal betrieben werden, ohne dass in den instabilen Betriebszustand hineingefahren werden muss. Als Folge davon wird der spezifische Verbrauch gesenkt. Der Verdichter kann beispielsweise leichter und auch kleiner ausgelegt werden.
Das erfindungsgemäße Verfahren bedarf nicht des Anfahrens an die Pumpgrenze, um deren Lage bestimmen zu können. Als Folge davon wird die Sicherheit erhöht. Das erfindungsgemäße Verfahren adaptiert laufend das Betriebskennfeld, so dass der Betrieb des Verdichters fortlaufend an seinen Alterungszustand angepasst wird. Als Folge davon sinkt der spezifische Verbrauch. Sollte es beispielsweise zu einer
Verdichterinstabilität kommen, welche durch das Verfahren erkannt werden kann, wird dieses Verhalten im Betriebskennfeld durch Anpassen der Pumpgrenze korrigiert.
Das erfindungsgemäße Verfahren prädiziert das Ausfallverhalten des Kompressors, so dass unplanmäßige Wartungen vermieden werden und die verfügbare Lebensdauer bekannt ist. Als Folge davon werden Betriebskosten, Wartungskosten,
Konventionalkosten und Lagerhaltungskosten gesenkt und die Verfügbarkeit erhöht.
Das erfindungsgemäße Verfahren ist zudem kompatibel zu Verfahren der aktiven Spaltkontrolle, bei denen der Spalt zwischen den Verdichterschaufelspitzen und dem Gehäuse kontrolliert beziehungsweise geregelt wird. Weiterhin kann der Einsatz variabler Leitschaufeln und die Zapfluftabnahme optimiert werden.
Ausführungsbeispiel
Beispielhaft wird hier eine Ausführung der erfindungsgemäßen Vorrichtung dargestellt. In der dazugehörigen Figur zeigt:
Fig. 1: eine schematische Darstellung der Vorrichtung zum sicheren Betreiben eines Verdichters an der Pumpgrenze.
Die beispielhaft ausgestaltete Vorrichtung besteht aus einem
Verdichterschaufelsensor (1 ), welcher entsprechend des Durchgangs einer
Verdichterschaufel ein Triggersignal ausgibt und einem Laufradsensor (2), welcher entsprechend einer Umdrehung des Laufrades des Verdichters ein Triggersignal ausgibt. Mittels einer zentralen Zeitbasis (3) werden die beiden Triggersignale mit einem Zeitstempel versehen. Des weiteren ist die Vorrichtung mit einem
Verdichternominalmodell (4) und einem Verdichteradaptionsmodell (5) ausgestattet, welche mittels eines Reglers (6) zur Drehzahl des Laufrades phasengleich durchlaufen. Der Regler (6) nimmt einen Eingriff entsprechend der Regelabweichung vor. Das Verdichternominalmodell (4) als auch das Verdichteradaptionsmodell (5) besteht dazu aus mehreren Speicherzellen (4a, 5a), wobei die Anzahl der Speicherzellen jedes Modells der Anzahl der Verdichterschaufeln entspricht. Die Speicherzellen werden entsprechend der Drehzahl des Laufrades durch den Regler (6) phasengleich angesprochen. Das Verdichternominalmodell (4) gibt einen idealen
Durchgangszeitpunkt entsprechend der aktuellen Verdichterschaufel aus, welches in einem Differenzierer (7) mit dem gemessenen Durchgangszeitpunkt verglichen wird und einen relativen Durchgangzeitpunkt ausgibt. Danach werden die in einem Lernmodus adaptierten Zustande- und Lageabweichungen der jeweiligen Verdichterschaufel aus dem Verdichteradaptionsmodell (5) mit dem relativen Durchgangszeitpunkt verrechnet. Damit das Verdichteradaptionsmodell (5) adaptiert werden kann, ist ein Schalter (8) vorgesehen, welcher bei einer erfüllten Bedingung (9) in einen Adaptionsmodus umschaltet. Ist die Bedingung (9) nicht erfüllt, wird die Vorrichtung im Arbeitsmodus betrieben. Die Vorrichtung gibt wenigstens eine Betriebspunktinformation aus, die aus dem korrigierten relativen Durchgangszeitpunkt und weiteren Größen in einer
Auswerteeinheit (10) berechnet wurde.
In einer alternativen Ausgestaltung der Vorrichtung kann das
Verdichternominalmodell (4) durch eine Funktion ersetzt werden, die den idealen Durchgangszeitpunkt in Abhängigkeit der Laufraddrehzahl ausgibt, da diese für alle Verdichterschaufeln und der Modellannahme des idealen Laufrades gleich ist.
In einer alternativen Ausgestaltung der Vorrichtung kann das
Verdichteradaptionsmodell (5) durch ein Kennfeld ersetzt werden, dessen
Kennfeldpunkte diskret angesprochen werden können und die Abweichung der jeweiligen Verdichterschaufel ausgeben. Die Kennfeldpunkte können beispielsweise mittels eines mit dem Laufrad synchronisierten Zählers erfolgen.
Aufstellung der verwendeten Bezugszeichen
1 Verdichterschaufelsensor
2 Laufradsensor
3 Zeitbasis
4 Verdichternominalmodel]
4a Speicherzelle
5 Verdichteradaptionsmodell
5a Speicherzelle
6 Regler
7 Differenzierer
8 Schalter
9 Bedingung
10 Auswerteeinheit

Claims

Patentansprüche
1. Verfahren zum Ermitteln des Betriebspunktes eines Verdichters mit wenigstens einem Laufrad, mit am Laufrad befestigten Verdichterschaufeln, einem Gehäuse und wenigstens zwei Sensoren, wobei eine Berechnung der Auslenkung der Verdichterschaufeln erfolgt, auf deren Basis der Betriebspunkt und dessen Abstand zur Pumpgrenze ermittelt werden, indem Durchgangszeitpunkte der Verdichterschaufeln an einem Sensor gemessen werden und ein
drehzahlrepräsentatives Signal des Verdichterlaufrades ermittelt wird, dadurch gekennzeichnet, dass während eines Lern- oder Adaptionsmodus
verdichterschaufelindividuelle, zustands- und lagebedingte Abweichungen von einem Idealzustand ermittelt werden, indem verdichterschaufelindividuelle Durchgangszeitpunkte gemessen und mit idealen Durchgangszeitpunkten verglichen werden, und dass während eines Arbeitsmodus
verdichterschaufelindividuelle Durchgangszeitpunkte gemessen werden und mit den ermittelten zustands- und lagebedingten Abweichungen korrigiert werden.
2. Verfahren zum sicheren Betreiben eines Verdichters an der Pumpgrenze nach Patentanspruch 1 , dadurch gekennzeichnet, dass die
verdichterschaufelindividuellen, zustands- und lagebedingten Abweichungen der Verdichterschaufeln beim Hochfahren des Verdichters nach dem Ausrichten der Verdichterschaufeln ermittelt werden.
3. Verfahren zum sicheren Betreiben eines Verdichters an der Pumpgrenze nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die
Ermittlung der erdichterschaufelindividuellen, zustands- und lagebedingten Abweichungen nach dem Erreichen der Mindestdrehzahl des Laufrades erfolgt.
4. Verfahren zum sicheren Betreiben eines Verdichters an der Pumpgrenze nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die verdichterschaufelindividuellen, zustands- und lagebedingten Abweichungen als Abstand oder als Faktor, in Form einer Zeit, eines Weges oder eines Winkels gespeichert werden.
5. Verfahren zum sicheren Betreiben eines Verdichters an der Pumpgrenze nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die verdichterschaufeiindividuellen, zustands- und lagebedingten Abweichungen während eines Adaptionsmodus in einem Verdichteradaptionsmodell gespeichert werden und in einem Arbeitsmodus ausgelesen werden.
6. Vorrichtung zum Ermitteln des Betriebspunktes eines Verdichters, mit
wenigstens einem Verdichterschaufelsensor, wenigstens einem Laufradsensor, einer Einrichtung zur Vorgabe der Systemzeit, dadurch gekennzeichnet, dass wenigstens ein Speicherfeld mit einer Anzahl an Speicherzellen gleich der Anzahl zu überwachender Verdichterschaufeln integriert ist.
7. Vorrichtung zum Ermitteln des Betriebspunktes eines Verdichters nach
Patentanspruch 6, dadurch gekennzeichnet, dass eine Einrichtung zur
Synchronisierung des Speicherfelds mit der Laufraddrehung vorgesehen ist, so dass die gemessenen Durchgangszeitpunkte mit idealen Durchgangszeitpunkten vergleichbar und mit den verdichterschaufelindividuellen zustands- und lagebedingten Abweichungen korrigierbar sind.
8. Vorrichtung zum Ermitteln des Betriebspunktes eines Verdichters nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass eine
Auswerteeinheit vorgesehen ist, mit welcher der Betriebspunkt des Verdichters und dementsprechend der Abstand zu einer Pumpgrenze bestimmbar ist, wobei die Auswerteeinheit wenigstens einen Eingang besitzt, über welchen korrigierte Durchgangszeitpunkte zugeführt werden.
9. Vorrichtung zum Ermitteln des Betriebspunktes eines Verdichters nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass ein Schalter vorgesehen ist, der bei der Erfüllung einer Bedingung schaltbar ist, um zwischen einem Lern- und Arbeitsmodus und einem Adaptionsmodus umzuschalten.
EP11813656.3A 2010-09-24 2011-09-19 Vorrichtung und verfahren zum sicheren betreiben eines verdichters an der pumpgrenze Not-in-force EP2619461B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010046490A DE102010046490A1 (de) 2010-09-24 2010-09-24 Verfahren zur Regelung des Betriebszustandes von Strömungsarbeitsmaschinen
PCT/DE2011/001739 WO2012095062A1 (de) 2010-09-24 2011-09-19 Vorrichtung und verfahren zum sicheren betreiben eines verdichters an der pumpgrenze

Publications (2)

Publication Number Publication Date
EP2619461A1 true EP2619461A1 (de) 2013-07-31
EP2619461B1 EP2619461B1 (de) 2016-06-08

Family

ID=45540683

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11813656.3A Not-in-force EP2619461B1 (de) 2010-09-24 2011-09-19 Vorrichtung und verfahren zum sicheren betreiben eines verdichters an der pumpgrenze

Country Status (4)

Country Link
US (1) US9835162B2 (de)
EP (1) EP2619461B1 (de)
DE (1) DE102010046490A1 (de)
WO (1) WO2012095062A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103217280B (zh) * 2013-03-18 2015-10-28 西安交通大学 航空发动机转子剩余寿命的多变量支持向量机预测方法
CN111524439B (zh) * 2020-04-02 2023-02-03 青岛海尔空调电子有限公司 压缩机模拟工装的控制方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4518917A (en) 1982-08-31 1985-05-21 Westinghouse Electric Corp. Plural sensor apparatus for monitoring turbine blading with undesired component elimination
US4573358A (en) * 1984-10-22 1986-03-04 Westinghouse Electric Corp. Turbine blade vibration detection apparatus
US4955269A (en) 1988-02-04 1990-09-11 Westinghouse Electric Corp. Turbine blade fatigue monitor
US6010303A (en) 1998-08-05 2000-01-04 United Technologies Corporation Apparatus and method of predicting aerodynamic and aeromechanical instabilities in turbofan engines
NO313926B1 (no) 2000-11-08 2002-12-23 Abb Research Ltd Kompressorstyring
US6532433B2 (en) 2001-04-17 2003-03-11 General Electric Company Method and apparatus for continuous prediction, monitoring and control of compressor health via detection of precursors to rotating stall and surge
US6474935B1 (en) 2001-05-14 2002-11-05 General Electric Company Optical stall precursor sensor apparatus and method for application on axial flow compressors
US20120210694A1 (en) * 2007-04-11 2012-08-23 Holmquist Eric B Turbo machine spool parameter detection
US7775114B2 (en) * 2007-09-26 2010-08-17 Siemens Energy, Inc. Method of on-line turbine blade slope and sensor position verification
DE102008036305B4 (de) 2008-07-31 2016-11-03 Iav Gmbh Ingenieurgesellschaft Auto Und Verkehr Verfahren zum Betreiben eines Verdichters

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2012095062A1 *

Also Published As

Publication number Publication date
EP2619461B1 (de) 2016-06-08
WO2012095062A1 (de) 2012-07-19
US9835162B2 (en) 2017-12-05
DE102010046490A1 (de) 2012-03-29
US20130223981A1 (en) 2013-08-29

Similar Documents

Publication Publication Date Title
EP1454058B2 (de) Verfahren zur überwachung eines sensors
US6449565B1 (en) Method and apparatus for determining in real-time the fatigue life of a structure
DE112008003526T5 (de) Instabilitätschutzsystem unter Verwendung von Rotorplasmaaktuatoren
EP1055052A1 (de) Verfahren zum erkennen eines wellenbruches in einer strömungskraftmaschine
DE112008003531T5 (de) Verdichter und Gasturbinenmaschine mit einem Plasmaaktuator
DE112008003484T5 (de) Instabilitätsschutzsystem unter Verwendung von Statorplasmaaktuatoren
DE112008003400T5 (de) Bläserströmungsabrissmeldesystem
DE102007035927A1 (de) Regelung für eine Gasturbine mit aktiv stabilisiertem Verdichter
EP2805058B1 (de) VERFAHREN ZUR VERMEIDUNG VON PUMPSTÖßEN IN EINEM VERDICHTER
DE112016004296T5 (de) Gasturbinensteuerungsvorrichtung und -verfahren, gasturbinensteuerprogramm und gasturbine
EP3183432A1 (de) Turbinenregelungseinheit mit einem temperaturbeanspruchungsregler als führungsregler
EP2956630B1 (de) Gasturbine und verfahren zum betreiben der gasturbine
EP2619461B1 (de) Vorrichtung und verfahren zum sicheren betreiben eines verdichters an der pumpgrenze
EP3617481A1 (de) Überwachung von servoventil-filterelementen
DE69203063T2 (de) Schutzsystem gegen die Löschung einer Turbomaschine bei Eindrigen von Wasser oder Hagel.
EP3754258A1 (de) Verfahren zur fehlerdetektion in einer fluidführungsvorrichtung
DE102008036305B4 (de) Verfahren zum Betreiben eines Verdichters
DE69623098T2 (de) Vermeidung des pumpens eines verdichters
WO2015139949A1 (de) Variable grenzleistungsregelung für gasturbinen
WO2019057446A1 (de) Erkennung einer verdichterinstabilität mittels der axialen position der verdichterwelle und einer temperatur
EP2268925A1 (de) Gasturbinenverdichter
DE3314143A1 (de) Stroemungsabrisserkennungsvorrichtung und -verfahren
EP3910182A1 (de) Verfahren zur regelung und begrenzung einer drehzahl eines turboladers
WO2006029816A1 (de) Verfahren und vorrichtung zum ermitteln eines fehlerzustandes eines rotierendn verdichters
WO2018054546A1 (de) Verfahren zum betreiben eines turboverdichters, turboverdichter mit pumpgrenzregler und luftzerlegungsanlage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130308

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20151204

INTG Intention to grant announced

Effective date: 20160122

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 805465

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160715

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011009947

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160608

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160608

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160908

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160608

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160608

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160608

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160608

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160608

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160608

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160608

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160608

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160608

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161008

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160608

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160608

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160608

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160930

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160608

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161010

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160608

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011009947

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160608

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20170309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160608

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160608

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160930

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160930

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160919

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160919

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 805465

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160919

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20160930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160919

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160608

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110919

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160608

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160608

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160608

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160608

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160608

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20200923

Year of fee payment: 10

Ref country code: FR

Payment date: 20200922

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20210915

Year of fee payment: 11

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210919

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210919

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210930

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502011009947

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230401