EP2616178A1 - Dispositif de maintien par capillarite d'un element comportant au moins une face plane - Google Patents
Dispositif de maintien par capillarite d'un element comportant au moins une face planeInfo
- Publication number
- EP2616178A1 EP2616178A1 EP11754689.5A EP11754689A EP2616178A1 EP 2616178 A1 EP2616178 A1 EP 2616178A1 EP 11754689 A EP11754689 A EP 11754689A EP 2616178 A1 EP2616178 A1 EP 2616178A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- recess
- film
- liquid
- holding
- holding device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L9/00—Supporting devices; Holding devices
- B01L9/52—Supports specially adapted for flat sample carriers, e.g. for plates, slides, chips
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B21/00—Microscopes
- G02B21/34—Microscope slides, e.g. mounting specimens on microscope slides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/04—Closures and closing means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/08—Geometry, shape and general structure
- B01L2300/0809—Geometry, shape and general structure rectangular shaped
- B01L2300/0822—Slides
Definitions
- the present invention relates to a device for holding an element comprising at least one plane face, implementing capillary forces.
- this holding device can form a sample holder or be used for producing micro or nanofluidic cells.
- the sample When it is desired to carry out an observation of a sample by means of a microscope, the sample is placed on a generally thin glass slide, this slide is then fixed on a sample holder, which is placed under the microscope. objective of the microscope.
- the attachment of the glass slide to the sample holder can be achieved by various means. For example, using mechanical means such as a clamp, clamps, flanges .... There are systems for holding by depression, generating a vacuum or by means of suction cups. There are also magnetic holding means, in this case the blade has a magnetizable portion, or holding means by adhesive or glue.
- the blade is relatively fragile. Therefore, the means of maintenance must take into account this fragility. Thus, the handling of the holding means must be such that it does not cause the rupture of the blade. In the case of mechanical means, a significant risk of rupture exists. In addition, these means are bulky. In the case of means implementing a depression they can be very bulky and removal of the blade can be laborious. In the case of gluing, removal of the blade is also problematic. In the case of means of magnetic means, this requires the use of specific blades.
- the liquid is sucked by applying an electric field through the porous layer. Drops of liquid then project from the plate pierced by the holes of the pierced plate, come into contact with one side of the substrate and maintain it by capillarity.
- This device is complex, bulky, opaque, and requires a power supply. he is therefore difficult to apply in the context of a sample holder.
- a holding device comprising a recess for accommodating an element to be held and a liquid film in the bottom of the recess, the film holding the blade by the phenomenon of capillarity between the bottom of the recess and the film of liquid and between the film of liquid and the element.
- the maintained element is generally plate-shaped, ie it has a length and a width that is very large relative to its thickness.
- the length and the width define at least a first planar surface intended to be in contact with the film of liquid on which it exerts capillary forces.
- the element capable of being held may comprise a second surface substantially flat and parallel to the first surface, but this is in no way limiting, the second surface could be flat without being parallel to the first surface, or be substantially parallel to the first surface. the first surface while having a certain relief, or non-parallel and having a certain relief, without departing from the scope of the present invention.
- the invention therefore uses a film of liquid disposed on the bottom plane of a recess, which maintains the element by capillarity on the bottom of the recess. The recess limits the lateral displacements of the element to be maintained.
- This holding device may be a sample holder for a microscope. It can also be used to approach a plate of another plate while ensuring good alignment, for example to form micro and nanofluidic cells.
- This holding device is very compact, its handling is simple and fast and the risk of deterioration of the element are very small. It is therefore particularly suitable for maintaining the sample.
- the holding device according to the present invention is very robust.
- This holding device allows easy removal of the element since it suffices to exert a force on one edge of the element towards the bottom of one recess, causing a slight tilting of the element and the rupture of the film .
- This device also offers the advantage of being able to easily reposition the element several times, unlike an adhesive or an adhesive.
- the liquid used for fixing the element may form a protective film for the element, for example against oxidation in air, or form a biological medium to feed cells deposited on the element.
- the present invention also relates to a capillary holding device of a plate-shaped element having at least a first planar face whose surface is between 1 mm 2 and 1 m 2 , comprising:
- a recess formed in a surface of said body, the recess comprising a planar bottom, said recess having dimensions making it possible to receive the element, and
- a liquid film at least partially covering the bottom of the recess, said member being intended to come into contact with the film by its first planar face.
- the thickness of the film is greater than equal to a height h lim , h lim being strictly greater than R, where R is the cumulative RMS roughness of the planar bottom of the recess and of the element to be maintained.
- the thickness of the film is such that the contact angle between the liquid film and the face of the element to be maintained and the contact angle between the liquid film and the bottom of the recess are strictly less than 90 °.
- the capillary holding device comprises a body, a recess formed in a surface of said body, the recess having a planar bottom, said recess having dimensions for receiving the element, and a film of liquid at least partially covering the bottom of the recess.
- the thickness of the film is greater than equal to a height hi im , hi im being strictly greater than R, where R is the cumulative roughness RMS of the planar bottom of the recess and the element to maintain.
- the thickness of the film is such that the contact angle between the liquid film and the face of the element to be maintained and the contact angle between the liquid film and the bottom of the recess are strictly less than 90 °.
- the surface of the film is less than or equal to that of the element to be maintained.
- the body of the device is made of a transparent material, for example glass, quartz or transparent plastic material.
- the bottom of the recess is hydrophilic and the at least the first planar face of the element is hydrophilic with respect to the liquid film, or the recess is hydrophobic and the at least first planar face of the element is hydrophobic vis-à-vis the liquid film.
- the dimensions of the recess are advantageously equal to 110% of the dimensions of the element, advantageously equal to 101%.
- the recess may include a location for the passage of a gripping tool of said element.
- the holding device can form a sample holder for example for microscopic analysis, the blade member on which an analyte is deposited.
- the liquid forming the film for holding the element may also be intended to form a film for covering a second face of the element opposite to the first face.
- the liquid film can then have protection properties of the element, for example with respect to the external environment.
- the film can form a culture medium.
- the present invention also relates to a device for manufacturing nano or microfluidic cells comprising at least a first holding device according to the present invention, for superimposing and aligning a first element held by said device to a second element.
- the device for manufacturing nano or microfluidic cells according to the invention may comprise a second device for holding the second element, the first and the second holding device being articulated with respect to one another in three directions of space .
- the second holding device is for example a holding device according to the invention.
- FIG. 1A is a perspective view from above of an exemplary embodiment of a holding device according to the present invention
- FIG. 1B is a view identical to that of FIG. 1A, a blade being however maintained in the holding device
- FIG. 2 is a side view showing a step of manufacturing a microfluidic cell by means of the holding device according to the present invention
- FIGS. 3A to 3C are schematic representations of the liquid film according to the hydrophilic or hydrophobic properties of the surfaces.
- the holding device according to the present invention will be described in its sample holder application however the device according to the present invention can be used in any type of application.
- the element can directly form the sample to be observed, for example silicon.
- the sample holder D shown is intended to hold plates 1 of rectangular shape.
- a sample holder adapted to maintain plates of any shape is not outside the scope of the present invention, for example the plates may be disks.
- the sample holder comprises a body 2 of parallelepiped shape having on one of its faces of larger area a recess 6 of parallelepiped shape.
- the recess has a length 1, a width L and a depth p.
- the recess 6 has a bottom 7 and side edges 9.
- the length and width of the recess 6 are they allow to arrange the plate 1 in the recess 6, without there being interaction between the edges of the plate 1 and the edges 9 of the recess 6.
- the edges 9 of the recess 6 form stops for the plate 1 preventing it from sliding along the surface of the sample holder.
- the length and the width of the recess 6 are chosen so as to limit the excessive displacement of the blade in its plane.
- the dimensions of the recess 6 are such that the length is equal to 110% of the length of the plate, advantageously 101%, and the width is equal to 110% of the width of the plate, advantageously 101%.
- the depth of the recess depends on the application. In the case where it is desired that the surface of the blade protrudes from the sample holder, it can be chosen that the depth of the recess is equal to 90% of the thickness of the blade.
- a recess having a depth equal to or greater than the thickness of the blade is not beyond the scope of the present invention.
- the body of the sample holder may be made of any material compatible with the plate to be maintained.
- it can for example be made of a transparent material, such as glass, quartz, a transparent plastic such as Plexiglas®, which has the advantage of having a good visibility of the plate. This is particularly advantageous in the case where it is desired to superimpose two plates, and for which alignment is very important, for example to make nano and microfluidic cells. This application will be described in the following description.
- the sample holder further comprises a liquid film 8 covering the bottom of one recess 6.
- This liquid film 8 is integral with the bottom of one recess due to the capillary phenomenon.
- the liquid used to form the film can be of any type, and depends on the application.
- the liquid film also covers the plate.
- the plate is embedded in the liquid.
- the liquid can then be chosen to protect the sample.
- these samples formed by the plate directly are maintained by a film of non-oxidizing liquid.
- This case can be applied to silicon with a ethanol film. Ethanol thus isolates the silicon surface from the air.
- the liquid then fulfills a dual function of fixing means and means of protection
- the liquid is chosen according to the application of the sample holder.
- it in the case where it is a material which is analyzed, it will be possible to use, for example, deionized water or a non-hydrogenated solvent.
- deionized water for example, deionized water or a non-hydrogenated solvent.
- a cell culture medium such as DMEM (Dulbecco's Modified Eagle Medium) or PBS (Phosphate Buffer Solution), which will feed the cells carried by the plate.
- the liquid also serves a dual function of fixing means and forms a culture medium.
- the liquid is for example dispensed by means of a pipette 12 schematically in Figure 1A.
- the material forming the sample holder or at least the bottom of the recess, has the same hydrophilic or hydrophobic properties with respect to the liquid forming the film as the material of the plate 1. to ensure a good lateral immobilization of the plate 1.
- a material having a flat surface is said to be hydrophilic if the contact angle between the outer edge of a drop of fluid and the flat surface is less than 90 °.
- a material is hydrophobic when the contact angle between a drop of fluid and the flat surface is greater than 90 °.
- hydrophilicity is understood qualitatively, ie the two materials are hydrophilic or hydrophobic, it does not imply that the contact angles vis-à-vis the liquid are the same, but that the materials has the same character of hydrophilic compared to the liquid used.
- FIG. 3A a diagrammatic sectional view of the film between the bottom 7 of the recess 6 and the plate 1 can be seen when the recess 6 and the plate 1 have the same hydrophilic properties. .
- FIG. 3B a diagrammatic sectional view of the film between the bottom of the recess and the plate can be seen, when the bottom 7 of the recess and the plate 1 are hydrophobic.
- Figure 3C schematically shown a detail sectional view of the film between the bottom 7 of the recess and the plate 1, when the recess is hydrophobic and the plate is hydrophilic.
- the material of the blade may be any, it may be the same or different from that of the body of the sample holder.
- the blade and or the bottom of one recess can be provided to perform a treatment of the blade and or the bottom of one recess to obtain the desired hydrophilicity or hydrophobicity properties.
- only the bottom of the recess has the required property, as well as the blade.
- the bottom 7 of the recess 6 may have a certain roughness, preferably this is less than 1 mm RMS in order to limit the thickness of the necessary liquid film.
- the thickness of the film is greater than that of the relief of the surface so that the plate is not in contact with the relief.
- the plate may also have a certain roughness, preferably it is less than or equal to 1 mm RMS.
- the thickness of the liquid film 8 is determined so that it maintains the plate when the sample holder is turned over, i.e. when the plate is located under the sample holder.
- the capillary forces then compensate for the weight of the plate.
- V M 2 ⁇ g 2 ⁇ h lim / (4 ⁇ 3 ⁇ ⁇ 2 ).
- its roughness can be between RMS, of the order of 0.6 ⁇ and 125 RMS, of the order of 3.2 ⁇ , in the quality of the embodiment and the RMS roughness of a glass slide is of the order of 1.5 RMS, of the order of 0.02 nm.
- the maximum height of the film is determined so that the contact angle between the liquid film and the face of the element to be maintained and the contact angle between the liquid film and the bottom of the recess are strictly less than 90 °.
- This contact angle can be measured, for example by means of a camera or by a device designated Surftens Universel® of the company EOG.
- the volume of liquid is chosen greater than the volume Vi im .
- the surface of the film may be either less than or equal to that of the plate. This surface depends on the weight of the plate and the surface tension.
- the recess 6 can be made by any technique. It can be made directly by molding to the desired dimensions. It can be achieved by machining the body of the sample holder.
- the holding device according to the present invention is particularly suitable for holding plate-shaped elements whose surface is between 1 mm 2 and 1 m 2 .
- an observation blade for a microscope may have an area of between 10 cm 2 and 15 cm 2 and a thickness of between 150 ⁇ and 1.1 mm.
- the device is also suitable for holding microelectronic plates which have, for example, a diameter of 300 mm and a thickness of 760 ⁇ . the surface of the planar face intended to face the recess of the recess and the surface of the other face are not necessarily equal.
- sample holder shown in Figures 1A and 1B is made by machining.
- additional recesses 10 in the form of an ear are made at the angles of the recess, avoiding any problem of dimensioning.
- these additional recesses serve advantageously to grab the plate 1 by means of a clamp inserted into one of the additional recesses.
- an additional recess formed in the edge of the recess can advantageously be provided to enable the plate to be gripped.
- heating means are provided to suppress, on command, the maintenance by capillarity.
- These heating means are such that they are able to heat the liquid to a temperature above the boiling temperature of the liquid, thus causing its evaporation and thus the suppression of the maintenance by capillarity.
- these means may be integrated into the device in the form of electrical resistances, or they may be external to the device, such as a hot plate commonly used in research laboratories, the device then being disposed of on these heating means to evaporate the liquid and thus to remove the maintenance by capillarity.
- the liquid and the materials forming the device are chosen so that the boiling temperature, and therefore the required heating temperature are such that they are lower than the holding temperature of the materials forming the device.
- the liquid forming the holding film may be a solvent evaporating at atmospheric pressure and at ambient temperature, for example, such as ethanol, acetone or isopropanol.
- a solvent evaporating at atmospheric pressure and at ambient temperature for example, such as ethanol, acetone or isopropanol.
- Such a film provides a temporary support that disappears spontaneously over time and relatively quickly, which allows simple handling of the item to be transported and does not require additional means to remove the maintenance.
- Heating means may be associated to accelerate the evaporation of the film.
- the solvent is chosen according to the required holding time.
- the holding device D is similar to that of FIGS. 1A and 1B, a plate 1 is fixed in the recess by means of a film of liquid.
- a second plate 100 is disposed on a support preferably having a recess 106 similar to that 6 of plate 1.
- the plate 10 is also maintained by a film of liquid 108, but any other means maintenance is possible.
- the second plate 100 is therefore advantageously maintained by a holding device according to the present invention.
- the first plate 1 is brought closer to the second plate 100 according to the arrows F by virtue of a hinge system (not shown) making it possible to relatively move the two plates in all three directions. directions of the space and in rotation about the vertical axis, ensuring control of the relative orientation of the two plates 1, 100.
- a hinge system (not shown) making it possible to relatively move the two plates in all three directions. directions of the space and in rotation about the vertical axis, ensuring control of the relative orientation of the two plates 1, 100.
- transparent bodies it is then easy to precisely align the two plates 1 100.
- the two plates 1, 100 are brought into contact and sealed. For example, a bead of glue is previously applied to one of the plates.
- the device D When the device D is lifted, it carries the two plates 1, 100 sealed to each other.
- the assembly thus formed is then removed by simply pressing on one edge of the assembly to break the film.
- the plate 1 resting on a liquid film, it forms a "damping mattress" when the two plates come into contact. There is no hard point. On the one hand, it ensures the application of a uniform force on the entire surface of the plates, and secondly the risk of damage to the plates is reduced.
- the holding device according to the present invention is of very simple and very robust construction since there is no moving part, no electrical and / or electronic means.
- This holding device can also be applied to the maintenance of very large surface elements such as glass plates for the building.
Landscapes
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Clinical Laboratory Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Analytical Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Sampling And Sample Adjustment (AREA)
Abstract
Porte-échantillon (D) pour microscope maintenant un échantillon par capillarité, ledit échantillon comportant une plaque sur laquelle est déposée la substance à analyser, le porte-échantillon comportant : - un corps ( 2 ), - un évidement (6) formé dans une surface dudit corps, l' évidement (6) comportant un fond plan (7), ledit évidement (6) ayant des dimensions permettant de recevoir l'échantillon (1), et - un film de liquide (8) recouvrant au moins partiellement le fond (7) de l' évidement (6), la plaque de l'échantillon étant destinée à venir en contact avec le film (8).
Description
DISPOSITIF DE MAINTIEN PAR CAPILLARITE D'UN ELEMENT COMPORTANT AU MOINS UNE FACE PLANE
DESCRIPTION DOMAINE TECHNIQUE ET ART ANTÉRIEUR
La présente invention se rapporte à un dispositif de maintien d'un élément comportant au moins une face plane, mettant en œuvre des forces de capillarité. Par exemple, ce dispositif de maintien peut former un porte-échantillon ou servir à la réalisation de cellules micro ou nanofluidiques .
Lorsque l'on veut effectuer une observation d'un échantillon au moyen d'un microscope, on dispose l'échantillon sur une lame généralement en verre de faible épaisseur, cette lame est ensuite fixée sur un porte-échantillon, qui est disposé sous l'objectif du microscope .
La fixation de la lame de verre sur le porte-échantillon peut être obtenue par différents moyens. Par exemple, on utilise de moyens mécaniques tels qu'un clamp, des pinces, des brides.... Il existe des systèmes de maintien par dépression, en générant un vide ou au moyen de ventouses. Il existe également des moyens de maintien magnétiques, dans ce cas la lame présente une partie magnétisable, ou des moyens de maintien par adhésif ou par colle.
Or la lame est relativement fragile. Par conséquent, les moyens de maintien doivent tenir compte de cette fragilité. Ainsi la manipulation des moyens de maintien doit être telle qu'elle ne provoque pas la
rupture de la lame. Dans le cas de moyens mécaniques, un risque non négligeable de rupture existe. En outre ces moyens sont encombrants. Dans le cas de moyen mettant en œuvre une dépression ils peuvent se révéler très encombrants et le retrait de la lame peut être laborieux. Dans le cas du collage, le retrait de la lame est également problématique. Dans le cas de moyens de moyens magnétiques, cela impose d'utiliser des lames spécifiques .
En outre, se pose le problème de l'encombrement. En effet la place disponible sous l'objectif du microscope est relativement réduite.
Par ailleurs, il peut être souhaitable de pouvoir déplacer latéralement la lame sur un courte distance après sa fixation, or ceci n'est pas possible avec les moyens de maintien connus.
Le document Michael J. Vogel and Paul H. Steen, "Capillarity-based switchable adhésion", PNAS, February 23, 2010, vol 107, no.8, 3377-3381 décrit un dispositif d'adhésion commutable comportant un support recouvert par une couche de matériau poreux recouverte elle-même par une plaque percée de trous. Le support comporte un connecteur relié à un réservoir de liquide.
Le liquide est aspiré par application d'un champ électrique à travers la couche poreuse. Des gouttes de liquide font alors saillie de la plaque percée par les trous de la plaque percée, entrent en contact avec une face du substrat et le maintiennent par capillarité.
Ce dispositif est complexe, encombrant, opaque, et nécessite une alimentation électrique. Il
est donc difficilement applicable dans le cadre d'un porte-échantillon .
EXPOSÉ DE L ' INVENTION
C'est par conséquent un but de la présente invention d'offrir un dispositif de maintien d'éléments ayant au moins une surface plane, de manipulation simple, assurant un retrait aisé de l'élément et d'encombrement réduit.
Le but précédemment énoncé est atteint par un dispositif de maintien comportant un évidement pour loger un élément à maintenir et un film liquide dans le fond de l' évidement, le film maintenant la lame par le phénomène de capillarité entre le fond de 1 ' évidement et le film de liquide et entre le film de liquide et l'élément.
L'élément maintenu est généralement en forme de plaque, i.e. il comporte une longueur et une largeur très grande par rapport à son épaisseur. La longueur et la largeur définissent au moins une première surface plane destinée être en contact avec le film de liquide sur laquelle il exerce des forces de capillarité. L'élément apte à être maintenu peut comporter une deuxième surface sensiblement plane et parallèle à la première surface, mais ceci n'est en aucun cas limitatif, la deuxième surface pourrait être plane sans être parallèle à la première surface, ou être sensiblement parallèle à la première surface tout en présentant un certain relief, ou non parallèle et présentant un certain relief, sans sortir du cadre de la présente invention.
L'invention utilise donc un film de liquide disposé sur le fond plan d'un évidement, qui maintient par capillarité l'élément sur le fond de l' évidement. L' évidement limite les déplacements latéraux de l'élément à maintenir.
Ce dispositif de maintien peut être un porte-échantillon pour microscope. Il peut également être utilisé pour approcher une plaque d'une autre plaque tout en assurant un bon alignement, par exemple pour former des cellules micro et nanofluidiques .
Ce dispositif de maintien est très peu encombrant, sa manipulation est simple et rapide et les risques de détérioration de l'élément sont très réduits. Il est donc particulièrement adapté au maintien d'échantillon. En outre, le dispositif de maintien selon la présente invention est très robuste.
Ce dispositif de maintien permet un retrait aisé de l'élément puisqu'il suffit d'exercer un effort sur un bord de l'élément en direction du fond de 1' évidement, provoquant un léger basculement de l'élément et la rupture du film.
Ce dispositif offre également l'avantage de pouvoir repositionner aisément l'élément plusieurs fois, à l'inverse d'un adhésif ou d'une colle.
En outre, le liquide utilisé pour la fixation de l'élément peut former un film de protection pour l'élément, par exemple contre l'oxydation à l'air, ou former un milieu biologique pour nourrir des cellules déposées sur l'élément.
La présente invention a également pour objet un dispositif de maintien par capillarité d'un
élément en forme de plaque présentant au moins une première face plane dont la surface est comprise entre 1 mm2 et 1 m2, comportant :
- un corps,
- un évidement formé dans une surface dudit corps, 1 ' évidement comportant un fond plan, ledit évidement ayant des dimensions permettant de recevoir l'élément, et
- un film de liquide recouvrant au moins partiellement le fond de l' évidement, ledit élément étant destiné à venir en contact avec le film par sa première face plane.
De préférence, l'épaisseur du film est supérieure au égale à une hauteur hlim, hlim étant strictement supérieure à R, R étant la rugosité RMS cumulée du fond plan de 1 ' évidement et de l'élément à maintenir. De plus, l'épaisseur du film est telle que l'angle de contact entre le film de liquide et la face de l'élément à maintenir et l'angle de contact entre le film de liquide et le fond de 1 ' évidement sont strictement inférieurs à 90°.
En d'autres termes, le dispositif de maintien par capillarité comporte un corps, un évidement formé dans une surface dudit corps, 1 ' évidement comportant un fond plan, ledit évidement ayant des dimensions permettant de recevoir l'élément, et un film de liquide recouvrant au moins partiellement le fond de l' évidement. L'épaisseur du film est supérieure au égale à une hauteur hiim, hiim étant strictement supérieure à R, R étant la rugosité RMS cumulée du fond plan de 1 ' évidement et de l'élément à
maintenir. De plus, l'épaisseur du film est telle que l'angle de contact entre le film de liquide et la face de l'élément à maintenir et l'angle de contact entre le film de liquide et le fond de 1 ' évidement sont strictement inférieurs à 90°.
Par exemple, la surface du film est inférieure ou égale à celle de l'élément à maintenir.
De manière très avantageuse, le corps du dispositif est réalisé en un matériau transparent, par exemple en verre, en quartz ou en matériau plastique transparent .
De préférence, le fond de 1 ' évidement est hydrophile et la au moins la première face plane de l'élément est hydrophile vis-à-vis du film de liquide, ou 1 ' évidement est hydrophobe et la au moins première face plane de l'élément est hydrophobe vis-à-vis du film de liquide.
Les dimensions de 1 ' évidement sont avantageusement égales à 110% des dimensions de l'élément, avantageusement égales à 101%.
L' évidement peut comporter un emplacement pour le passage d'un outil de préhension dudit élément.
Le dispositif de maintien selon la présente invention peut former un porte-échantillon par exemple pour une analyse au microscope, l'élément formant une lame sur laquelle une substance à analyser est déposée.
Selon une caractéristique supplémentaire de l'invention, le liquide formant le film de maintien de l'élément peut également être destiné à former un film pour recouvrir une deuxième face de l'élément opposée à la première face. Le film de liquide peut alors avoir
des propriétés de protection de l'élément, par exemple par rapport à l'environnement extérieur. Dans le cas où l'élément porte des cellules vivantes, le film peut former un milieu de culture.
La présente invention a également pour objet un dispositif de fabrication de cellules nano ou microfluidiques comportant au moins un premier dispositif de maintien selon la présente invention, permettant de superposer et d'aligner un premier élément maintenu par ledit dispositif à un deuxième élément .
Le dispositif de fabrication de cellules nano ou microfluidiques selon l'invention peut comporter un deuxième dispositif de maintien du deuxième élément, le premier et le deuxième dispositif de maintien étant articulés l'un par rapport à l'autre dans trois directions de l'espace.
Le deuxième dispositif de maintien est par exemple un dispositif de maintien selon l'invention. BRÈVE DESCRIPTION DES DESSINS
La présente invention sera mieux comprise à l'aide de la description qui va suivre et des dessins en annexe, sur lesquels :
- la figure 1A est une vue en perspective de dessus d'un exemple de réalisation d'un dispositif de maintien selon la présente invention,
- la figure 1B est une vue identique à celle de la figure 1A, une lame étant cependant maintenue dans le dispositif de maintien,
- la figure 2 est un vue de côté représentant une étape de fabrication d'une cellule microfluidique au moyen du dispositif de maintien selon la présente invention,
- les figures 3A à 3C sont des représentations schématiques du film liquide suivant les propriétés hydrophiles ou hydrophobes des surfaces.
EXPOSÉ DÉTAILLÉ DE MODES DE RÉALISATION PARTICULIERS
Dans la description qui va suivre, le dispositif de maintien selon la présente invention sera décrit dans son application de porte-échantillon cependant le dispositif selon la présente invention peut être utilisé dans tout type d'application. Par exemple, l'élément peut former directement l'échantillon à observer, par exemple du silicium.
Sur les figures 1A et 1B, on peut voir un exemple de réalisation d'un porte-échantillon selon la présente invention.
Le porte-échantillon D représenté est destiné à maintenir des plaques 1 de forme rectangulaire. Cependant un porte-échantillon adapté à maintenir des plaques de forme quelconque ne sort pas du cadre de la présente invention, par exemple les plaques peuvent être des disques.
Le porte-échantillon comporte un corps 2 de forme parallélépipédique comportant sur une de ses faces de plus grande surface un évidement 6 de forme parallélépipédique .
L'évidement présente une longueur 1, une largeur L et une profondeur p. L'évidement 6 comporte un fond 7 et des bords latéraux 9.
La longueur et largeur de l'évidement 6 sont elles qu'elles permettent de disposer la plaque 1 dans l'évidement 6, sans qu'il y ait d'interaction entre les bords de la plaque 1 et les bords 9 de l'évidement 6. Les bords 9 de l'évidement 6 forment des butées pour la plaque 1 évitant que celle-ci ne glisse le long de la surface du porte-échantillon.
De préférence, la longueur et la largeur de l'évidement 6 sont choisies de sorte à limiter le déplacement excessif de la lame dans son plan.
Par exemple, les dimensions de l'évidement 6 sont telles que la longueur est égale à 110% de la longueur de la plaque, avantageusement 101%, et la largeur est égale à 110% de la largeur de la plaque, avantageusement 101%.
La profondeur de l'évidement dépend de l'application. Dans le cas où l'on souhaite que la surface de la lame fasse saillie du porte-échantillon, on peut choisir que la profondeur de l'évidement soit égale à 90% de l'épaisseur de la lame.
Un évidement présentant une profondeur égale, voire supérieure à l'épaisseur de la lame ne sort pas du cadre de la présente invention.
Par exemple, pour une lame présentant une longueur de 76 mm et une largeur de 26 mm, on choisit un eu dans la direction de la longueur et dans la direction de la largeur de l'ordre de 2mm.
Le corps du porte-échantillon peut être réalisé en tout matériau compatible avec la plaque à maintenir. De manière très avantageuse, il peut par exemple être réalisé en un matériau transparent, comme le verre, le quartz, un plastique transparent comme le Plexiglas®, ce qui offre l'avantage d'avoir une bonne visibilité de la plaque. Ceci est particulièrement avantageux dans le cas où l'on souhaite superposer deux plaques, et pour lesquelles l'alignement est très important par exemple pour réaliser des cellules nano et microfluidique . Cette application sera décrite dans la suite de la description.
Le porte-échantillon comporte en outre un film de liquide 8 recouvrant le fond de 1 ' évidement 6. Ce film de liquide 8 est solidaire du fond de 1 ' évidement du fait du phénomène de capillarité.
Lorsqu'une plaque est déposée sur le film 8, celle-ci est maintenue par le film 8 également grâce aux forces de capillarité. Le liquide utilisé pour former le film peut être de tout type, et dépend de 1 ' application .
Dans un mode de réalisation particulièrement intéressant, le film de liquide recouvre également la plaque. En d'autres termes, la plaque est noyée dans le liquide. Le liquide peut alors être choisi pour protéger l'échantillon. Par exemple, dans le cas d'analyses sous microscope d'échantillons oxydables, qui ne doivent pas être en contact avec l'air, ces échantillons formés par la plaque directement sont maintenus par un film de liquide non oxydant. Ce cas peut s'appliquer au silicium avec un
film d'éthanol. L'éthanol isole donc la surface du silicium de l'air. Le liquide remplit alors une double fonction de moyen de fixation et de moyen de protection
En outre, le liquide est choisi en fonction de l'application du porte-échantillon. Par exemple, dans le cas où c'est un matériau qui est analysé on pourra utiliser par exemple de l'eau désionisée ou un solvant non hydrogéné. Dans le domaine de la biologie, on pourra utiliser de l'eau, de l'eau salée, un milieu de culture cellulaire comme le DMEM (Dulbecco's Modified Eagle Médium) ou le PBS (Phosphate Buffer Solution) , qui va nourrir les cellules portées par la plaque. Le liquide remplit également une double fonction de moyen de fixation et forme un milieu de culture.
Le liquide est par exemple dispensé au moyen d'une pipette 12 schématisée sur la figure 1A.
Il est préférable que le matériau formant le porte-échantillon, ou au moins le fond de 1 ' évidement offre les mêmes propriétés d ' hydrophilie ou d ' hydrophobie vis-à-vis du liquide formant le film que le matériau de la plaque 1, afin d'assurer une bonne immobilisation latérale de la plaque 1.
Un matériau comportant une surface plane est dit hydrophile si l'angle de contact entre le bord extérieur d'une goutte de fluide et la surface plane est inférieur à 90°. Un matériau est dit hydrophobe lorsque l'angle de contact entre une goutte de fluide et la surface plane est supérieur à 90°.
L'expression « offrir les mêmes propriétés d ' hydrophilie » s'entend de manière qualitative, i.e.
les deux matériaux sont hydrophiles ou hydrophobes, elle n'implique pas que les angles de contact vis-à-vis du liquide soient les mêmes, mais que les matériaux présent le même caractère d' hydrophilie par rapport au liquide utilisé.
Sur la figure 3A, on peut voir, représentée schématiquement , une vue en coupe de détail du film entre le fond 7 de 1 ' évidement 6 et la plaque 1, lorsque 1 ' évidement 6 et la plaque 1 offre les mêmes propriétés d ' hydrophilie .
Sur la figure 3B, on peut voir, représentée schématiquement, une vue en coupe de détail du film entre le fond de 1 ' évidement et la plaque, lorsque le fond 7 de 1 ' évidement et la plaque 1 sont hydrophobes.
Sur la figure 3C, on peut voir, représentée schématiquement, une vue en coupe de détail du film entre le fond 7 de 1 ' évidement et la plaque 1, lorsque 1 ' évidement est hydrophobe et la plaque est hydrophile.
On constate que, dans le cas des figures 3A et 3B, le maintien transversal est meilleur que dans le cas dans la figure 3C.
Le matériau de la lame peut être quelconque, il peut être identique ou différent de celui du corps du porte-échantillon.
Par ailleurs, on peut prévoir d'effectuer un traitement de la lame et ou du fond de 1 ' évidement pour obtenir les propriétés d ' hydrophilie ou d ' hydrophobie souhaitées. Ainsi on peut envisager que seul le fond de 1 ' évidement présente la propriété requise, de même pour la lame.
Le fond 7 de 1 ' évidement 6 peut présenter une certaine rugosité, de préférence celle-ci est inférieure à 1 mm RMS afin de limiter l'épaisseur du film de liquide nécessaire. L'épaisseur du film est supérieure à celle du relief de la surface afin que la plaque ne soit pas en contact avec le relief.
La plaque peut également présenter une certaine rugosité, de préférence celle-ci est inférieure ou égale à 1 mm RMS.
L'épaisseur du film de liquide 8 est déterminée de sorte qu'il assure un maintien de la plaque lorsque le porte-échantillon est retourné, i.e. lorsque la plaque est située sous le porte-échantillon. Les forces de capillarité compensent alors le poids de la plaque.
Nous allons calculer l'épaisseur de ce film et son volume dans le cas d'une plaque en forme de disque .
Soit :
- M la masse de la plaque en kg,
- σ la tension de surface du liquide en N/m qui est propre au matériau et au liquide utilisés, par exemple dans le cas de l'eau σ = 43,8 mN/m à 20°C en contact avec du verre.
- R la rugosité RMS cumulée de la plaque et du porte échantillon,
- r le rayon de la plaque,
- g l'accélération de la pesanteur en m.s~2. La force de capillarité Fc d'une goutte de liquide de rayon r ayant une tension de surface σ est égale à :
Fc = π χ σ χ 2nr (on suppose que la surface du film de liquide est au plus égale à celle de la plaque )
D'après l'équation d'équilibre des forces, la masse de la goutte étant M, on peut écrire :
Mg = Fc
D'où Mg = n x σ x 2nr
Soit r = Mg/ (2π2σ)
Par ailleurs, le volume du film est égal à: V = n x r2 x hiim.
hum est la hauteur du film tenant compte de la rugosité R, hlim est strictement supérieure à R, par exemple hiim = R + 50 μπι.
Par conséquent, V = M2 χ g2 χ hlim/ (4π3χσ2) .
Par exemple, dans le cas d'un corps de porte-échantillon en aluminium, sa rugosité peut être comprise entre 25 RMS, de l'ordre de 0,6 μπι et 125 RMS, de l'ordre de 3,2 μπι, en fonction de la qualité de réalisation et la rugosité RMS d'une lame de verre est de l'ordre de 1,5 RMS, de l'ordre de 0,02 nm.
Dans le cas d'une plaque de surface S, le volume du film est égal à V = S χ h m.
La hauteur maximale du film est déterminée de telle sorte que l'angle de contact entre le film de liquide et la face de l'élément à maintenir et l'angle de contact entre le film de liquide et le fond de 1 ' évidement sont strictement inférieurs à 90°.
Cet angle de contact peut être mesuré, par exemple au moyen d'une caméra ou par un appareil désigné Surftens Universel® de la société EOG.
Dans le cas où on souhaite pouvoir retourner le dispositif de maintien, le volume de liquide est choisi supérieur au volume Viim .
La surface du film peut être soit inférieure, soit égale à celle de la plaque. Cette surface dépend de la masse de la plaque et de la tension de surface.
L'évidement 6 peut être réalisé par toute technique. Il peut être réalisé directement par moulage aux dimensions souhaitées. Il peut être réalisé par usinage du corps du porte-échantillon.
Le dispositif de maintien selon la présente invention est particulièrement adapté au maintien d'éléments en forme de plaque dont la surface est comprise entre 1 mm2 et 1 m2. Par exemple, une lame d'observation pour de microscope peut avoir une surface comprise entre 10 cm2 et 15 cm2 et une épaisseur comprise entre 150 μπι et 1,1 mm. Le dispositif est également adapté au maintien de plaques microélectroniques qui présentent par exemple un diamètre de 300 mm et une épaisseur de 760 μπι. la surface de la face plane destinée à être en regard du fon de l'évidement et la surface de l'autre face ne sont pas nécessairement égales.
Le porte-échantillon représenté sur la figures 1A et 1B est réalisé par usinage. Afin de s'assurer que la plaque pourra loger dans l'évidement, on réalise au niveau des angles de l'évidement des évidements additionnels 10 en forme d'oreille, évitant tout problème de dimensionnement . En outre ces évidements additionnels servent avantageusement à
saisir la plaque 1 au moyen d'une pince introduite dans l'un des évidements additionnels.
Dans le cas d'un évidement en forme de disque pour recevoir une plaque en forme de disque, on peut prévoir avantageusement un évidement additionnel formé dans le bord de 1 ' évidement pour permettre de saisir de la plaque.
De manière avantageuse, on prévoit des moyens de chauffage pour supprimer, sur commande, le maintien par capillarité.
Ces moyens de chauffage sont tels qu'ils sont aptes à chauffer le liquide à une température supérieur à la température d'ébullition du liquide, provoquant ainsi son évaporation et donc la suppression du maintien par capillarité.
Par exemple ces moyens peuvent être intégrés au dispositif sous forme de résistances électriques, ou ils peuvent être extérieurs au dispositif, type plaque chauffante couramment utilisée dans les laboratoires de recherche, le dispositif étant alors disposé sur ces moyens de chauffage pour faire évaporer le liquide et ainsi supprimer le maintien par capillarité .
Le liquide et les matériaux formant le dispositif sont choisis de sorte que la température d'ébullition, et donc la température de chauffage requise soient telles qu'elles soient inférieures à la température de tenue des matériaux formant le dispositif .
De manière très avantageuse, le liquide formant le film de maintien peut être un solvant
s ' évaporant à pression atmosphérique et à température ambiante par exemple tel que l'éthanol, l'acétone ou 1 ' isopropanol . Un tel film assure un maintien provisoire qui disparaît spontanément au cours du temps et relativement rapidement, ce qui permet une manipulation simple de l'élément à transporter et ne nécessite pas de moyens supplémentaires pour supprimer le maintien. Des moyens de chauffage peuvent être associées pour accélérer encoure 1 ' évaporation du film.
Le solvant est choisi en fonction de la durée de maintien requise.
Sur la figure 2, on peut voir une étape de superposition de deux plaques grâce au dispositif de maintien selon la présente invention, par exemple pour réaliser une cellule nano ou microfluidique .
Le dispositif de maintien D est similaire à celui des figures 1A et 1B, une plaque 1 est fixée dans 1 ' évidement au moyen d'un film de liquide.
Une deuxième plaque 100 est disposée sur un support présentant de préférence un évidement 106 similaire à celui 6 de plaque 1. Dans l'exemple représenté et de manière avantageuse, la plaque 10 est maintenue également par un film de liquide 108, mais tout autre moyen de maintien est envisageable. La deuxième plaque 100 est donc avantageusement maintenue par un dispositif de maintien selon la présente invention .
La première plaque 1 est rapprochée de la deuxième plaque 100 suivant les flèches F grâce à un système d'articulation (non représenté) permettant de déplacer relativement les deux plaques dans les trois
directions de l'espace ainsi qu'en rotation autour de l'axe vertical, assurant une maîtrise de l'orientation relative des deux plaques 1, 100. En prévoyant des corps transparents, il est alors aisé d'aligner précisément les deux plaques 1, 100. Les deux plaques 1, 100 sont mises en contact et scellées. Par exemple, un cordon de colle est préalablement appliqué sur l'une des plaques. Lorsque l'on soulève le dispositif D, il emporte les deux plaques 1, 100 scellées l'une à l'autre. L'ensemble ainsi formé est ensuite retiré par simple pression sur un bord de l'ensemble pour rompre le film.
Il est à noter que généralement l'alignement des deux plaques est effectué au moyen d'un microscope. Le faible encombrement des dispositifs de maintien est alors particulièrement intéressant.
En outre, la plaque 1 reposant sur un film de liquide, celui-ci forme un "matelas amortisseur" lorsque les deux plaques entre en contact. Il n'y a pas de point dur. D'une part, on assure l'application d'un effort uniforme sur toute la surface des plaques, et d'autre part les risques d ' endommagement des plaques est réduit.
Le dispositif de maintien selon la présente invention est de réalisation très simple et très robuste puisqu'il n'y a aucune pièce en mouvement, aucun moyen électrique et/ou électronique.
Par ailleurs, il permet d'assurer l'intégrité des éléments maintenus puisqu' aucun élément mécanique ne vient pincer ou serrer les éléments, et le retrait des éléments.
Ce dispositif de maintien peut également être appliqué au maintien d'éléments de très grande surface comme par exemple des plaques de verre pour le bâtiment .
Claims
1. Dispositif de maintien (D) mécanique par capillarité d'un élément (1) en forme de plaque présentant au moins une première face plane dont la surface est comprise entre 1 mm2 et 1 m2, comportant :
- un corps ( 2 ) ,
- un évidement (6) formé dans une surface dudit corps, 1 ' évidement (6) comportant un fond plan (7), ledit évidement (6) ayant des dimensions permettant de recevoir l'élément (1), et
- un film de liquide (8) recouvrant au moins partiellement le fond (7) de 1 ' évidement (6), ledit élément (1) étant destiné à venir en contact avec le film (8) par sa première face plane, dans lequel l'épaisseur du film est supérieure au égale à une hauteur hiim, hiim étant strictement supérieure à R, R étant la rugosité RMS cumulée du fond plan de 1 ' évidement et de l'élément à maintenir, et dans lequel l'épaisseur du film est tel que l'angle de contact entre le film de liquide et la face de l'élément à maintenir et l'angle de contact entre le film de liquide et le fond de 1 ' évidement sont strictement inférieurs à 90°.
2. Dispositif de maintien selon la revendication 1 dans lequel de préférence R est inférieure ou égale à 2 mm RMS.
3. Dispositif de maintien selon la revendication 1 ou 2, dans lequel hiim est supérieure ou égale à R + 50 μπι.
4. Dispositif de maintien selon la revendication 1, 2 ou 3, dans lequel le corps (2) du dispositif est réalisé en un matériau transparent, par exemple en verre, en quartz ou en matériau plastique transparent .
5. Dispositif de maintien selon l'une des revendications 1 à 4, dans lequel le fond (7) de 1 ' évidement (6) est hydrophile et la au moins la première face plane de l'élément (1) est hydrophile vis-à-vis du film de liquide (8), ou 1 ' évidement (6) est hydrophobe et la au moins première face plane de l'élément (1) est hydrophobe vis-à-vis du film de liquide .
6. Dispositif de maintien selon l'une des revendications 1 à 5, dans lequel les dimensions de 1 ' évidement (6) sont égales à 110% des dimensions de l'élément (1), avantageusement égales à 101%.
7. Dispositif de maintien selon l'une des revendications 1 à 6, dans 1 ' évidement (6) comporte un emplacement (10) pour le passage d'un outil de préhension dudit élément (1) .
8. Dispositif de maintien selon l'une des revendications l à 7, comportant des moyens de chauffage aptes à provoquer 1 ' évaporation du film de liquide.
9. Dispositif de maintien selon la revendication 8, dans lequel les moyens de chauffage sont intégrés au corps et sont, par exemple du type résistances électriques.
10. Dispositif de maintien selon l'une des revendications 1 à 9, dans lequel le liquide est un solvant s ' évaporant à la pression atmosphérique et à la température ambiante.
11. Dispositif de maintien selon l'une des revendications 1 à 10, formant porte-échantillon par exemple pour une analyse au microscope, l'élément (1) formant une lame sur laquelle une substance à analyser est déposée.
12. Dispositif de maintien selon l'une des revendications 1 à 11, dans lequel le liquide formant le film de maintien de l'élément est également destiné à former un film pour recouvrir une deuxième face de l'élément opposée à la première face.
13. Dispositif de maintien selon la revendication 12, dans lequel le film de liquide a des propriétés de protection de l'élément, par exemple par rapport à l'environnement extérieur.
14. Dispositif de maintien selon la revendication 12, dans lequel l'élément porte des cellules vivante et le film forme un milieu de culture.
15. Dispositif de fabrication de cellules nano ou microfluidiques comportant au moins un premier dispositif de maintien (D) selon l'une des revendications 1 à 10, permettant de superposer et d'aligner un premier élément (1) maintenu par ledit dispositif à un deuxième élément (100) .
16. Dispositif de fabrication de cellules nano ou microfluidiques selon la revendication 15, comportant un deuxième dispositif de maintien du deuxième élément, le premier et le deuxième dispositif de maintien étant articulés l'un par rapport à l'autre dans trois directions de l'espace.
17. Dispositif de fabrication de cellules nano ou microfluidiques selon la revendication 16, dans lequel le deuxième dispositif de maintien est un dispositif de maintien selon l'une des revendications 1 à 10.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1057264A FR2963741B1 (fr) | 2010-09-13 | 2010-09-13 | Dispositif de maintien par capillarite d'un element comportant au moins une face plane |
PCT/EP2011/065851 WO2012035013A1 (fr) | 2010-09-13 | 2011-09-13 | Dispositif de maintien par capillarite d'un element comportant au moins une face plane |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2616178A1 true EP2616178A1 (fr) | 2013-07-24 |
Family
ID=43769077
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP11754689.5A Withdrawn EP2616178A1 (fr) | 2010-09-13 | 2011-09-13 | Dispositif de maintien par capillarite d'un element comportant au moins une face plane |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP2616178A1 (fr) |
FR (1) | FR2963741B1 (fr) |
WO (1) | WO2012035013A1 (fr) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102016104808A1 (de) | 2016-03-15 | 2017-09-21 | Als Automated Lab Solutions Gmbh | Vorrichtung zum Einsetzen in ein bildgebendes System |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3447863A (en) * | 1966-07-11 | 1969-06-03 | Sodell Research & Dev Co | Method for preparing a slide for viewing |
US5039487A (en) * | 1987-12-22 | 1991-08-13 | Board Of Regents, The University Of Texas System | Methods for quantifying components in liquid samples |
US5349436A (en) * | 1992-12-02 | 1994-09-20 | Harry Fisch | Biological assembly |
JP3643863B2 (ja) * | 1995-08-09 | 2005-04-27 | アークレイ株式会社 | 液体保持具とその製造方法 |
US5948686A (en) * | 1998-03-07 | 1999-09-07 | Robert A. Leuine | Method for performing blood cell counts |
-
2010
- 2010-09-13 FR FR1057264A patent/FR2963741B1/fr not_active Expired - Fee Related
-
2011
- 2011-09-13 WO PCT/EP2011/065851 patent/WO2012035013A1/fr active Application Filing
- 2011-09-13 EP EP11754689.5A patent/EP2616178A1/fr not_active Withdrawn
Non-Patent Citations (1)
Title |
---|
See references of WO2012035013A1 * |
Also Published As
Publication number | Publication date |
---|---|
FR2963741A1 (fr) | 2012-02-17 |
WO2012035013A1 (fr) | 2012-03-22 |
FR2963741B1 (fr) | 2012-09-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2893555B1 (fr) | Dispositif de séparation de deux substrats | |
EP2694214B1 (fr) | Dispositif de connexion d'une carte microfluidique | |
EP2893554B1 (fr) | Procédé de séparation d'au moins deux substrats selon une interface choisie | |
FR2796491A1 (fr) | Procede de decollement de deux elements et dispositif pour sa mise en oeuvre | |
EP3059300A1 (fr) | Dispositif de manipulation de cellules biologiques au moyen d'un support vibrant | |
EP2616178A1 (fr) | Dispositif de maintien par capillarite d'un element comportant au moins une face plane | |
FR3065956A1 (fr) | Dispositif mems ou nems a empilement de butee | |
EP1520669A1 (fr) | Procédé de séparation de plaques collées entre elles pour constituer une structure empilée | |
WO1996005497A1 (fr) | Dispositif de polissage avec porte-echantillons | |
EP3074749B1 (fr) | Porte échantillon et dispositif de perméation associé | |
EP2280254B1 (fr) | Support pour élément mince, microbalance à quartz comportant un tel support et porte-échantillon comportant un tel support | |
WO2023062139A1 (fr) | Procédé de report d'un dispositif optoélectronique | |
FR2995445A1 (fr) | Procede de fabrication d'une structure en vue d'une separation ulterieure | |
JP6437102B2 (ja) | 液体試料乾燥装置、及びその製造方法 | |
EP2210271B1 (fr) | Dispositif et procédé d'alignement de plaquettes sur un support plan | |
EP3593132B1 (fr) | Support pour un échantillon d'espèces biologiques | |
WO2015189513A1 (fr) | Procédé de collage direct | |
EP2934339B1 (fr) | Dispositif de conservation d'un echantillon biologique | |
EP4098606B1 (fr) | Microsystème électromécanique | |
EP4098605A1 (fr) | Microsystème électromécanique | |
FR3073317B1 (fr) | Dispositif de maintien d'une feuille autocollante contre une paroi | |
FR3044164A1 (fr) | Support perfectionne de cellule photovoltaique, pour tester ladite cellule | |
WO2024165363A1 (fr) | Structure integree comprenant une couche ferroelectrique a polarisation selective reportee sur un substrat et procede de fabrication | |
EP4118440A1 (fr) | Dispositif de détection pour microscope à sonde locale | |
WO2008015321A1 (fr) | Systeme de depot de cellules |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20130314 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20150401 |