EP2615691A1 - Antenne à micro-ondes à très hautes performances et ensemble source d'alimentation associé - Google Patents

Antenne à micro-ondes à très hautes performances et ensemble source d'alimentation associé Download PDF

Info

Publication number
EP2615691A1
EP2615691A1 EP10856888.2A EP10856888A EP2615691A1 EP 2615691 A1 EP2615691 A1 EP 2615691A1 EP 10856888 A EP10856888 A EP 10856888A EP 2615691 A1 EP2615691 A1 EP 2615691A1
Authority
EP
European Patent Office
Prior art keywords
waveguide
ultra
dielectric
high performance
feed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP10856888.2A
Other languages
German (de)
English (en)
Other versions
EP2615691B1 (fr
EP2615691A4 (fr
Inventor
Zhihang Wu
Daolin Fu
Rudan Jiang
Suqin Liu
Qingnan Xie
Yong Wang
Yan Wang
Rong TANG
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Comba Network Systems Co Ltd
Original Assignee
Comba Telecom Systems China Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Comba Telecom Systems China Ltd filed Critical Comba Telecom Systems China Ltd
Publication of EP2615691A1 publication Critical patent/EP2615691A1/fr
Publication of EP2615691A4 publication Critical patent/EP2615691A4/fr
Application granted granted Critical
Publication of EP2615691B1 publication Critical patent/EP2615691B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/18Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/12Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces wherein the surfaces are concave
    • H01Q19/13Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces wherein the surfaces are concave the primary radiating source being a single radiating element, e.g. a dipole, a slot, a waveguide termination
    • H01Q19/134Rear-feeds; Splash plate feeds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/18Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces
    • H01Q19/19Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces comprising one main concave reflecting surface associated with an auxiliary reflecting surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/18Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces
    • H01Q19/19Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces comprising one main concave reflecting surface associated with an auxiliary reflecting surface
    • H01Q19/193Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces comprising one main concave reflecting surface associated with an auxiliary reflecting surface with feed supported subreflector

Definitions

  • the present invention relates to a microwave antenna and more particularly, relates to a microwave antenna with ultra-high performance and feed component thereof.
  • the microwave antenna is a necessary device for receiving and transmitting electromagnetic signals.
  • Microwave antenna operating in frequency bands range of 5GHz to 60GHz generally includes 4 components: a feed, a reflective assembly providing a reflector, a radome and an auxiliary mount assembly.
  • the mount assembly works to fix the antenna onto a holding pole or an iron tower.
  • the antenna radome functions to protect the antenna from influences of natural environment such as rain, snow and frost. It is noted that the radome should have as little influence as possible to the electrical performance of the antenna.
  • the reflector and feed determine the electrical performance of the antenna.
  • microwave communications When operating as a receiving antenna, electromagnetic waves transmitted from distant place are reflected against the reflector, converged, and then received by the feed and finally transferred to a receiver through closed transmission line such as waveguide. While when operating as a transmitting antenna, the electromagnetic waves originated from a signal source is transferred to feed source through closed transmission line such as waveguide, radiated by the feed and casted onto the reflector based on certain amplitude and phase distribution requirement, and finally reflected by the reflector and radiated to space.
  • closed transmission line such as waveguide
  • the antenna should not only meet restrict electrical specifications and mechanical specifications such as size, weight and wind load, but also meet low cost requirement such as manufacture cost, transportation cost and installation cost.
  • Electrical performance specification of the microwave antenna may include the gain, return loss, radiation patterns of Co- polarization and cross polarization.
  • Regulatory standards such as Europe Standard ETSI EN 302 217 and US Standard US FCC Part101 have been formed by some international and regional organizations based on the gain and radiation pattern envelope (PRE) to classify among electrical performance levels so as to select suitable antenna for a specific application.
  • PRE gain and radiation pattern envelope
  • some terms such as standard performance, high performance and ultra-high performance are often used to indicate different performance classes of the antenna.
  • the microwave antenna Electrical performance of the microwave antenna, in particular PRE performance, is determined mainly by the feed and profile height of the reflector.
  • a traditional solution is provided.
  • a barrel-shaped metal shroud 4 with a certain height is provided on the edge of the reflector 1.
  • wave absorbing material 5 is attached inside the inner surface of the shroud 4 to improve RPE performance of the antenna and especially improve radiation performance in the range of 50 to 180°biasing from the main lobe direction.
  • the traditional solution has the feature that the main reflector 1 is generally a "shallow dish" with a large ratio of focus to diameter (F/D, for example this value normally is larger than 0.3).
  • the radiation angle of the feed 3 is very small (for example smaller than 180°).
  • the feed 3 may take the form of front-fed feed of opened waveguide type, or a self-supported rear-fed feed.
  • a front-fed feed is often equipped with supporting construction of J-hook shape.
  • This J-hook construction increases the complexity of the construction and cost of the product.
  • it also results in blocking of the radiation, scattering and structural asymmetry, and thereby deteriorates the radiation performance of the antenna.
  • the radial dimension of the sub-reflector thereof is often large thus resulting in significant radiation blocking, and deteriorating aperture efficiency and return loss of the antenna.
  • the metal shroud and wave absorbing material also result in increase of the size, weight and wind load of the antenna.
  • a traditional antenna solution with ultra-high performance suffers from some drawbacks such as high structural profile, large weight, great wind load and high manufacture cost.
  • Another microwave antenna with ultra-high performance uses a deep reflector 1 with small F/D ratio (generally less than 0.2) and a feed 3 with large subtended angle (normally greater than 180°).
  • this solution can obtain RPE of ultra-high performance without using of the metal shroud and wave absorbing materials and as a result, brings advantages such as low profile in entirety, low weight, small wind load and low cost. It is hard for a front-fed feed of opened waveguide type to realize such large subtended angle and accordingly, this type of feed is not adapted to the antenna with so low profile and ultra-high performance. Comparatively, as the self-supported rear-fed feed can readily realize subtended angle of larger than 180°and phase fluctuation in the range of subtended angle, this type of feed is suitable for the antenna with so low profile and ultra-high performance.
  • a self-supported rear-fed feed is crucial important to design of a microwave antenna with low profile and ultra-high performance. It will dominantly determine electrical performance, structure and cost of the entire antenna.
  • a self-supported rear-fed feed is normally composed of in construction three components. They are a sub-reflector, a dielectric head and an opened waveguide from top to bottom.
  • the working principle under the emitting state is described as follows. Electromagnetic signals generated by a transmitter are transmitted via the waveguide and radiated from the waveguide outlet. These primarily radiated electromagnetic signals are reflected by a sub-reflector to a main reflector and finally, these signals are radiated to free space through the main reflector.
  • the working principle under receiving state is just opposite to that in emitting state and is described as follows.
  • the electromagnetic signals from a distant place are at first focused and reflected to the sub-reflector via the main reflector, then are focused at the waveguide outlet via the sub-reflector and finally, are received by the waveguide and inputted into a receiver.
  • the waveguide functions as a primary radiation source.
  • the sub-reflector works to reflect the primarily radiated electromagnetic signals. Size and shape of the sub-reflector will have effect on spatial distribution of both amplitude and phase of the electromagnetic waves.
  • the dielectric head operates structurally to support and connect the sub-reflector and waveguide, and it will also have influence on electrical performance such as return loss, amplitude and phase pattern of the co polarization and cross polarization of the feed.
  • An ideal self-supported rear-fed feed technical solution should achieve the following objects: 1) having good impedance match performance in a wide range of frequency band, having low cross polarization component, the amplitude and phase of the co polarization component being able to be shaped with flexibility so as to meet various requirements; 2) having small size, possessing good mechanical strength so as to meet various environmental experiment requirements; and 3) having inexpensive material cost and being able to be produced with ease.
  • FIG. 3a shows a "hat feed” of US Patent Nos. 4963878 and 6137449 .
  • This feed features a sub-reflector 4 constructed of a group of circular metal grooves which define together a surface of high impedance, thus forming equivalent E-plane and H-plane feed patterns.
  • the surface impedance of the sub-reflector is relevant to the electric size of the metal grooves depth, that is, the sub-reflector is frequency-depended; the frequency bandwidth of the "hat feed” is often restricted.
  • Figure 3b demonstrates some feed disclosed in US Patent No. 6995727 B2 . It mainly features truncated conic shape of the dielectric head portion 3 exposed outside of the waveguide 2. This kind of feeds can obtain good impedance match performance within wide frequency bandwidth. However, the external surface of the dielectric head of this kind of feed sources is smooth surface and resultantly, lacks of flexibility in shaping design. For example, it is difficult to obtain required unequal E-plane and H-plane feed pattern to get Class 3B and Class 3C type of RPE performance as set forth in ETSI EN 302 217.
  • Figure 3c shows a feed source of US Patent No. 6919855 B2 . It features a truncated conic dielectric head portion 3 exposed outside of the waveguide 2.
  • a plurality of corrugated or grooved perturbation constructions is provided on its conical surface so as to achieve flexible shaping design.
  • the external surface of the dielectric head of this kind of feed is a truncated surface, and these perturbation constructions are not parallel with each other in general or perpendicular to the longitudinal axis of the dielectric head, this kind of feed is difficult to manufacture or directly be molded, thus resulting in high manufacture cost.
  • One object of the present invention is to overcome drawbacks of above self-supported rear-fed feed which is suitable for microwave antenna with low profile and ultra-high performance and therefore, provide a feed component for a microwave antenna with low cost and ultra-high performance, the feed having good electrical performance, easy to perform shaping design, easy to manufacture or mold.
  • another object of the present invention is to provide a microwave antenna with ultra-high performance.
  • the present invention provides the following technical solution.
  • a feed component for a microwave antenna with ultra-high performance according to the invention is rotatablely symmetrical about itself and includes
  • a feed component for a microwave antenna with ultra-high performance includes a sub-reflector, a dielectric head, a waveguide and a base.
  • the feed component is rotatablely symmetrical, one end of the waveguide being inserted into the base, while the other end thereof being capable of receiving a first end of the dielectric head, the sub-reflector being provided on a second end of the dielectric head based on the shape of the second end.
  • the portion inserted into the waveguide, of the dielectric head includes at least one cylinder; a side portion of the dielectric head exposed outside of the waveguide includes several cylindrical surfaces of different diameter; and an inclined cone surface is provided centrally on an end surface of the second end of the dielectric head and is recessed towards the first end of the dielectric head; a circular plane is defined on the periphery of the inclined cone surface; and at least one perturbation construction is provided on the inclined cone surface.
  • the microwave antenna with ultra-high performance and feed component thereof has good electrical performance, simple and compact physical structure and low manufacture cost.
  • the perturbation construction is upwardly raised or downwardly recessed.
  • the several cylindrical surfaces on the side potion of the dielectric head exposed outside of the waveguide are arranged such that the diameters thereof become decreased gradually from the second end to the first end.
  • At least one cylindrical surface close to the first end of the dielectric head has a diameter larger than that of another cylindrical surface close to the second end of the dielectric head.
  • At least one cylindrical surface is provided with a dielectric tooth regularly distributed on its periphery; and the tooth is connected with another cylindrical surface immediately next to the cylindrical surface provided with the tooth.
  • At least one cylindrical surface is surrounded by a metal ring.
  • the metal ring is a metal coating layer or metal molding member.
  • the sub-reflector is formed by the metal coating layer or metal molding member coved on the second end of the dielectric head.
  • the base is hollow for receiving the waveguide therein; and the base includes circular steps surrounding the waveguide for reducing influence of a main reflector on the impedance match of the feed source component.
  • a microwave antenna with ultra-high performance has a reflective assembly providing a main reflector, a radome and a feed component described above.
  • the present invention has the following advantages.
  • the feed component of the invention can bring good impedance match performance in a wider frequency band range.
  • the devices such as cylindrical surfaces at first end of the dielectric, perturbation construction raised or recessed at the second end of the head and circular steps formed on the base may also function to adjust the impedance match.
  • the structure and size of the head may be flexible designed in order to obtain feed amplitude pattern and phase pattern with specific shaping, thus meeting RPE requirements as required by various microwave antennae with ultra-high performance.
  • the contour of the dielectric head of the invention is mainly parallel with or perpendicular to the rotatable symmetrical axis and accordingly, it is easy to perform mechanical machining or plastic molding process, thus leading to low manufacture cost.
  • Figure 1a shows a schematic view of a conventional microwave antenna with ultra-high performance employing a front-fed feed of opened waveguide type
  • Figure 1b shows a schematic view of a conventional microwave antenna with ultra-high performance employing a self-supported rear-fed feed and with large F/D ratio;
  • Figure 2 shows a schematic view of a conventional microwave antenna with ultra-high performance and low profile employing a self-supported rear-fed feed and with small F/D ratio;
  • Figure 3a shows a "hat" feed source used in one of self-supported rear-fed feed technical solutions with low profile and ultra-high performance as described in US Patent Nos. 4963878 and 6137449 ;
  • Figure 3b shows another self-supported rear-fed feed technical solution with low profile and ultra-high performance as described in US Patent No. 6995727 B2 ;
  • Figure 3c shows yet another self-supported rear-fed feed technical solution with low profile and ultra-high performance as described in US Patent No. 6919855 B2 ;
  • Figure 4 shows a schematic view of a microwave antenna with ultra-high performance according to the present invention
  • Figure 5 shows a typical construction of a feed of the microwave antenna with ultra-high performance according to the present invention
  • Figure 6 is a view to illustrate working principle of realizing shaping of the feed radiation pattern by using a dielectric head which is loaded with a tubular dielectric tooth or loaded with metal ring according to the present invention
  • Figure 7a shows a schematic view of a feed component according to one embodiment of the invention.
  • Figure 7b shows a typical return loss curve when the feed component of figure 7a operates at frequency of 15GHz
  • Figure 7c shows a typical feed amplitude pattern when the feed component of figure 7a operates at frequency of 14.8GHz;
  • Figure 7d shows a typical feed phase pattern when the feed component of figure 7a operates at frequency of 14.8GHz
  • Figure 7e shows a typical entire E-plane radiation pattern and RPE performance when the feed component of figure 7a is applied to an antenna of 0.6m in diameter and operates at frequency of 14.8GHz;
  • Figure 7f shows a typical entire H-plane radiation pattern and RPE performance when the feed component of figure 7a is applied to an antenna of 0.6m in diameter and operates at frequency of 14.8GHz;
  • Figure 8a shows a schematic view of a feed component according to another embodiment of the invention.
  • Figure 8b shows a typical feed amplitude pattern when the feed component of figure 8a operates at frequency of 38.5GHz;
  • Figure 8c shows a typical feed phase pattern when the feed component of figure 8a operates at frequency of 38.5GHz;
  • Figure 8d shows a typical entire E-plane radiation pattern and RPE performance when the feed component of figure 8a is applied to an antenna of 0.3m in diameter and operates at frequency of 38.5GHz;
  • Figure 8e shows a typical entire H-plane radiation pattern and RPE performance when the feed component of figure 8a is applied to an antenna of 0.3m in diameter and operates at frequency of 38.5GHz;
  • Figure 9a shows a schematic view of a feed component according to yet another embodiment of the invention.
  • Figure 9b shows a typical feed amplitude pattern when the feed component of figure 9a operates at frequency of 38.5GHz;
  • Figure 10a shows a schematic view of a feed component according to a further embodiment of the invention.
  • Figure 10b shows a typical feed amplitude pattern when the feed component of figure 10a operates at frequency of 38.5GHz;
  • Figure 10c shows a typical feed phase pattern when the feed component of figure 10a operates at frequency of 38.5GHz;
  • Figure 10d shows a typical entire E-plane radiation pattern and RPE performance when the feed component of figure 10a is applied to an antenna of 0.3m in diameter and operates at frequency of 38.5GHz;
  • Figure 10e shows a typical entire H-plane radiation pattern and RPE performance when the feed component of figure 10a is applied to an antenna of 0.3m in diameter and operates at frequency of 38.5GHz.
  • a microwave antenna with ultra-high performance includes a reflective assembly providing a reflector 1, a radome and a feed component.
  • the microwave antenna itself is rotatablely symmetrical about an axis OO' thereof and therefore, each components of the microwave antenna is a rotatablely symmetrical component.
  • the feed component includes a sub-reflector 4, a dielectric head 3, a circular waveguide 2 and a base 5 all of which are connected from top to bottom in turn and share a concentric longitudinal symmetrical axis OO'.
  • An end surface at the top of the dielectric head 3 is pressed against a bottom surface of a providing element of the sub-reflector 4.
  • a bottom end 31 of the dielectric head 3 is inserted into a cavity of the circular waveguide 2.
  • the bottom end of the circular waveguide 2 is inserted into the base 5.
  • the providing element of the sub-reflector 4 is pressed against the end surface at the top of the dielectric head 3, the shape of the providing element is consistent with the end surface of the dielectric head 3. This can be realized by coating a metal layer or metal molding member onto the end surface.
  • the dielectric head 3 is made of solid dielectric material with stable dielectric constant, low loss and good mechanical characteristics.
  • the dielectric head 3 is rotatablely symmetrical about the central axis OO'.
  • the portion of the dielectric head 3 inserted into the circular waveguide 2 is constructed of several solid cylinders 31 with different diameter, these cylinders 31 providing various cylindrical surfaces of different size.
  • the side portion 32 of the dielectric head 3 exposed outside of the waveguide 2 is similarly constructed of various solid cylinders with different diameter, these solid cylinders providing several cylindrical surfaces of different size.
  • a plurality of dielectric teeth 33 is longitudinally mounted on the side portion 32, and these dielectric teeth 33 are sleeved on a periphery of a cylindrical surface with regular distance.
  • the portion of the dielectric head 3 inserted into the waveguide 2 is composed of several cylindrical surfaces provided by several cylinders. As shown in figure 5 , the cylindrical surface provided by the uppermost cylinder 311 is tightly pressed against an inner wall of the metal circular waveguide 2.
  • the rest cylinder 312 has a diameter smaller than the inner diameter of the waveguide 2.
  • the cylinders 311 and 312 function to match impedance and, the diameter and length thereof may be determined based on full wave analysis and optimization design.
  • the side portion 32 of the dielectric head 2 exposed outside of the waveguide 2 is composed of cylindrical surfaces provided by multiple cylinders.
  • the number, diameter and height of these cylinders may be determined and designed flexibly based on feed radiation amplitude and phase pattern.
  • the diameter of the lowermost cylinder 321 is larger than the inner diameter of the waveguide 2 so as to locate and secure the dielectric head 3 and waveguide 2.
  • the diameter of the uppermost cylinder 322 is larger than the diameter of the cylinder located immediately below the uppermost cylinder 322 such that the periphery of the end surface at the top of the dielectric head 3 takes on a circular plane.
  • a plurality of circular dielectric teeth 33 is mounted longitudinally on the side portion 32 of the dielectric head 3. These dielectric teeth 33 extend downwardly from a high level of cylinder which provides cylindrical surface, thereby forming a fenced protection construction for a low level of cylinder which provides cylindrical surface. Reference is made to figures 5 and 6 . Though these circular dielectric teeth 33 are symmetrical in structure, but they have different boundary conditions for E-plane and H-plane electromagnetic wave. In other words, they are polarization selective.
  • the direction of electric field is perpendicular to the dielectric teeth 33.
  • the direction of electric field is parallel with the dielectric teeth 33.
  • structural parameters of the dielectric teeth 33 such as the location, number, diameter, longitudinal length and width may be optimally designed so as to realize specific shaping of the radiation pattern of the feed.
  • These dielectric teeth 33 may be formed integrally with the dielectric head 33. As the dielectric teeth 33 are parallel with the symmetrical axis OO' of the dielectric head 3, they can be easily manufactured mechanically or formed directly by molding process.
  • At least one cylindrical surface of the side portion 32 of the dielectric head 3 may be surrounded by a metal ring 35 for obtaining similar shaping of the feed source radiation pattern.
  • the underlying principle is similar to that of the medium teeth 33. That is, the metal ring 35 has different influence on radiation pattern of E-plane and H-plane of the feed source.
  • the structural parameters such as location, number, diameter and width of the metal ring 35 may be optimized to realize specific shaping of the radiation pattern of the feed source.
  • the metal ring 35 may be formed by coating a layer of metal onto the side portion 32 of the dielectric head 3 or may be produced by a separate metal member.
  • the end surface at the top of the dielectric head 3 is pressed against the bottom surface of the providing element which provides a sub-reflector 4 and as a result, the shape of the top end surface of the head 3 is matched with that of the bottom surface of the sub-reflector 4.
  • the top surface of the sub-reflector 4 has a shape matched with that of the top end surface 34 of the dielectric head 3. Accordingly, the shape of the dielectric head 3 has significant effect on the electrical performance of the feed.
  • the top end surface 34 of the dielectric head 3 has a central portion 341 which is an inclined cone plane recessed downwardly towards the bottom of the head 3. The cone angle ⁇ thereof will mainly have influence on the radiation angle of the feed.
  • An edge portion 342 is next to and surrounds the inclined cone plane.
  • the edge portion 342 is an upper surface of the uppermost cylinder 322 of the side portion 32 of the dielectric head 3, and is a circular plane.
  • the width and diameter of the circular plane will have influence on subtended angle of the feed and amplitude level of the feed radiation pattern at the edge of the subtended angle, thus further having influence on RPE performance of the entire antenna.
  • At least one perturbation construction 343 is provided inside the central portion 341 of the top end surface 34 of the dielectric head 3.
  • the perturbation construction 343 may be recessed into or raised from the inclined cone plane.
  • the recessed or raised perturbation construction is parallel with the symmetrical axis OO'.
  • the location, width and height or depth of the recessed or raised perturbation construction 343 will mostly have influence on impedance match property of the feed.
  • the structure and size of the top end surface 34 of the head 3 may be primarily designed in consideration of the above influence on electrical property and finally be determined using full wave analysis and optimization design.
  • the sub-reflector 4 may be formed by a metal coating layer provided on the top end surface 34 of the dielectric head 3 or a separable metal molding member which can be tightly pressed against the top end surface 34 of the head 3. By this way, the metal coated layer or metal molded member is the providing element of the sub-reflector 4.
  • the waveguide 2 is a circular waveguide which works in TE11 mode.
  • the top end of the waveguide 2 is connected with the bottom end 31 of the dielectric head 3, while the bottom end of the waveguide 2 is connected with the base 5.
  • the waveguide 2 operates to transmit electromagnetic waves. At the same time, it also supports structurally the dielectric head 3.
  • the diameter of the waveguide 2 is 0.6-0.8 times as long as the wavelength in free space to ensure that the waveguide 2 will operate under TE11 mode and obtain substantially equal feed source pattern of E-plane and H-plane.
  • the length of the waveguide 2 is determined based on the focal length of the main reflector 1 of the microwave antenna (See figure 4 ). The length of the waveguide 2 is adjusted to ensure that the phase center of the feed source overlaps the focus point of the main reflector 1.
  • the construction of the metal base 5 is also symmetrical about the central axis OO'.
  • a cylindrical hole is defined inside the base 5.
  • the diameter of the cylindrical hole corresponds to the outer diameter of the waveguide 2.
  • the base 5 includes three parts, i.e., an upper portion 51, a central portion 52 and a lower portion 53.
  • the upper portion 51 is a circular step. After the feed is installed on the main reflector 1, the upper portion 51 of the base 5 is slightly higher than the generating line of the main reflector 1.
  • the circular step of the upper portion 51 works to reduce influence of the main reflector 1 on the impedance match property of the feed.
  • the dimension of the circular step needs to be determined by performing full wave analysis and optimization to the feed together with the main reflector 1.
  • the central portion 52 of the base 5 functions to install the feed onto the main reflector 1.
  • the height of the central portion 52 is flush with the generating line of the main reflector 1.
  • the lower portion 53 of the base 5 serves as an interface of the entire antenna after the feed is installed on the main reflector 1.
  • the interface may be designed to be adapted to connect with a circular waveguide or rectangular-to-circular waveguide transformer or the like.
  • the base 5 may be formed integrally or formed by molding process, thus leading to low manufacture cost and possession of multiple functions.
  • Figure 7a shows a first simplified construction of the present invention
  • figures 7b-7f show typical electrical performance diagrams of the feed component of the invention.
  • the significant feature of the simplified construction lies in that the diameter of the group of cylinders which form the side portion 32 of the dielectric head 3 is gradually decreased from top to bottom. As such, respective cylindrical surfaces are arranged in a stepped form from top to bottom due to gradual decrease of their diameter.
  • the dielectric head 3 thus formed is easy to manufacture mechanically or formed by plastic molding process.
  • substantially equal feed amplitude pattern and phase pattern of E-plane and H-plane may be obtained by optimization of the diameter and height of these cylinders.
  • Figure 7b demonstrates actually measured return loss of the above simplified construction at frequency of 15 GHz.
  • Figures 7c and 7d show respectively the amplitude pattern and phase pattern of E-plane and H-plane of the above simplified construction at 14.8 GHz.
  • the E-plane and H-plane have substantially the equal amplitude pattern in the range of 0°-120°.
  • Figures 7e-7f show typical radiation pattern at frequency of 14.8GH of an antenna with a diameter of 0.6m employing the above simplified construction. It can be seen that RPE performance of the antenna meets ETSI 302 217 Class 3 standard.
  • Figure 8a shows a second simplified construction of the invention.
  • Figures 8b-8e show some typical electrical performance of the feed component of the above construction.
  • This construction is different from the afore-mentioned construction in that several tubular medium teeth 33 are mounted longitudinally on the side portion 32 of the dielectric head 3.
  • By optimization of the diameter, width and length of these medium teeth 33 unequal and specifically shaped feed patterns can be obtained for the E-plane and H-plane, thus meeting different entire radiation patterns for the E-plane and H-plane.
  • Figures 8b and 8c illustrate typical amplitude pattern and phase pattern of E-plane and H-plane of the present construction at 38.5GHz. It is clear that the amplitude pattern of the E-plane has great difference with H-plane.
  • radiation level value of the H-plane is about 7dB lower than E-plane at radiation angle of 110°.
  • Figures 8d-8e show typical radiation pattern of an antenna having a diameter of 0.3m and employing the present construction at 38.5GHz. It is seen that RPE performance of the antenna meets ETSI 302 217 Class 3B standard and US FCC Part 101A standard.
  • Figures 9a-9b show a third simplified construction of the feed component of the present invention and typical electrical performance diagrams corresponding thereto.
  • the present construction has the same design purpose with the second simplified construction, i.e., with the purposes of obtaining unequal and specifically shaped feed pattern for the E-plane and H-plane, thus further obtaining antenna RPE performance meeting ETSI 302 217 Class 3B standard.
  • the diameters of various cylinders forming together the side portion 32 of the dielectric head 3 are not limited to be gradually decreased from top to bottom. Rather, location, diameter and width of each cylinder may be determined based on full wave analysis and according to specific feed shaping.
  • the diameter of a cylindrical surface of at least one cylinder close to the bottom end of the dielectric head 3 may be larger than that of another cylindrical surface of another cylinder close to the top end of the head 3.
  • Figure 9b shows typical amplitude pattern of E-plane and H-plane of the present simplified construction at 38.5GHz. Clearly, desired unequal E-plane and H-plane feed amplitude pattern is obtained.
  • Figure 10a shows a fourth simplified construction of the invention
  • figures 10b-10e show typical electrical performance diagrams of the construction.
  • This simplified construction realizes shaping by coating several metal layers 35 (or metal rings 35) on vertical surfaces of the side portion 32 of the head 3. The location and width of each metal layer may be determined according to specific feed shaping requirement.
  • Figures 10b and 10c show typical amplitude pattern and phase pattern of E-plane and H-plane of the simplified construction at 38.5GHz.
  • Figures 10d-10e show typical radiation pattern of an antenna with a diameter of 0.3m and employing the present construction at 38.5GHz. It is evident that RPE performance of the antenna meets ETSI 302 217 Class 3C standard and US FCC Part 101A standard.
  • the microwave antenna with ultra-high performance and feed component thereof as provided by the invention has good electrical performance, simple and compact physical structure and low manufacture cost.
EP10856888.2A 2010-09-07 2010-11-11 Ensemble d'alimentation d'antenne à micro-ondes Not-in-force EP2615691B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010273991.2A CN101976766B (zh) 2010-09-07 2010-09-07 超高性能微波天线及其馈源组件
PCT/CN2010/078647 WO2012031426A1 (fr) 2010-09-07 2010-11-11 Antenne à micro-ondes à très hautes performances et ensemble source d'alimentation associé

Publications (3)

Publication Number Publication Date
EP2615691A1 true EP2615691A1 (fr) 2013-07-17
EP2615691A4 EP2615691A4 (fr) 2014-11-26
EP2615691B1 EP2615691B1 (fr) 2018-01-10

Family

ID=43576625

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10856888.2A Not-in-force EP2615691B1 (fr) 2010-09-07 2010-11-11 Ensemble d'alimentation d'antenne à micro-ondes

Country Status (4)

Country Link
EP (1) EP2615691B1 (fr)
CN (1) CN101976766B (fr)
BR (1) BR112013005522A2 (fr)
WO (1) WO2012031426A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015023431A1 (fr) * 2013-08-12 2015-02-19 Andrew Llc Ensemble de réflecteur secondaire à antenne diélectrique étendue
JP2015179977A (ja) * 2014-03-19 2015-10-08 三菱電機株式会社 アンテナ装置

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102751589A (zh) * 2011-04-20 2012-10-24 深圳光启高等理工研究院 一种超材料制成的微波天线
CN102770008B (zh) * 2011-04-30 2015-10-28 深圳光启高等理工研究院 一种吸波装置
FR2986376B1 (fr) 2012-01-31 2014-10-31 Alcatel Lucent Reflecteur secondaire d'antenne a double reflecteur
WO2013150996A1 (fr) 2012-04-02 2013-10-10 古野電気株式会社 Antenne
US9698490B2 (en) 2012-04-17 2017-07-04 Commscope Technologies Llc Injection moldable cone radiator sub-reflector assembly
CN103094714B (zh) * 2013-02-26 2015-05-13 四川省视频电子有限责任公司 一种高效率介质导抛物面天线
TWI506848B (zh) * 2013-11-15 2015-11-01 Metal Ind Res &Development Ct Method for manufacturing waveguide with high aspect ratio microchannel
WO2015100540A1 (fr) * 2013-12-30 2015-07-09 华为技术有限公司 Antenne hyperfréquence à double réflecteur
CN105932735A (zh) * 2016-05-20 2016-09-07 深圳天珑无线科技有限公司 一种充电方法和装置
CN106384874A (zh) * 2016-11-11 2017-02-08 广东盛路通信科技股份有限公司 扇形天线馈源装置
CN106961000B (zh) * 2017-04-06 2019-08-23 上海航天测控通信研究所 一种基于新型支撑副反的星载环焦天线
CN109244676A (zh) * 2017-07-11 2019-01-18 罗森伯格技术(昆山)有限公司 一种双频馈源组件及双频微波天线
CN108281751A (zh) * 2018-03-22 2018-07-13 陕西维萨特科技股份有限公司 一种高性能微波溅散板馈源天线
TWI766633B (zh) * 2020-11-18 2022-06-01 稜研科技股份有限公司 寬頻線極化天線結構
CN115128366A (zh) * 2022-05-18 2022-09-30 西北核技术研究所 一种高功率微波系统等效全向辐射功率测试系统及方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0439800A1 (fr) * 1990-02-01 1991-08-07 ANT Nachrichtentechnik GmbH Antenne à double réflecteur
US20090021442A1 (en) * 2007-07-17 2009-01-22 Andrew Corporation Self-Supporting Unitary Feed Assembly

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR9811241A (pt) * 1997-08-21 2000-08-15 Kildal Antenna Consulting Ab Antena refletora melhorada com alimentação auto-suportada
FR2856525B1 (fr) * 2003-06-17 2005-09-02 Cit Alcatel Alimentation pour une antenne a reflecteur.
CN101383451A (zh) * 2008-05-28 2009-03-11 广东盛路通信科技股份有限公司 超高性能天线的微波馈源
CN201805004U (zh) * 2010-09-07 2011-04-20 京信通信系统(中国)有限公司 超高性能微波天线及其馈源组件

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0439800A1 (fr) * 1990-02-01 1991-08-07 ANT Nachrichtentechnik GmbH Antenne à double réflecteur
US20090021442A1 (en) * 2007-07-17 2009-01-22 Andrew Corporation Self-Supporting Unitary Feed Assembly

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2012031426A1 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015023431A1 (fr) * 2013-08-12 2015-02-19 Andrew Llc Ensemble de réflecteur secondaire à antenne diélectrique étendue
US9831563B2 (en) 2013-08-12 2017-11-28 Commscope Technologies Llc Sub-reflector assembly with extended dielectric radiator
US10566700B2 (en) 2013-08-12 2020-02-18 Commscope Technologies Llc Sub-reflector assembly with extended dielectric radiator
JP2015179977A (ja) * 2014-03-19 2015-10-08 三菱電機株式会社 アンテナ装置

Also Published As

Publication number Publication date
WO2012031426A1 (fr) 2012-03-15
CN101976766B (zh) 2014-06-11
CN101976766A (zh) 2011-02-16
BR112013005522A2 (pt) 2016-05-03
EP2615691B1 (fr) 2018-01-10
EP2615691A4 (fr) 2014-11-26

Similar Documents

Publication Publication Date Title
EP2615691B1 (fr) Ensemble d'alimentation d'antenne à micro-ondes
EP2810339B1 (fr) Sous-réflecteur d'une antenne à double réflecteur
US10224638B2 (en) Lens antenna
KR101917254B1 (ko) 저측대파 반사경 안테나
KR101545672B1 (ko) 실드를 구비한 저측대파 반사경 안테나
US7075492B1 (en) High performance reflector antenna system and feed structure
US6020859A (en) Reflector antenna with a self-supported feed
US8102324B2 (en) Sub-reflector of a dual-reflector antenna
US9019164B2 (en) Low sidelobe reflector antenna with shield
US6137449A (en) Reflector antenna with a self-supported feed
US20140118220A1 (en) Reflector arrangement for attachment to a wireless communications terminal
US7187340B2 (en) Simultaneous multi-band ring focus reflector antenna-broadband feed
CN101615723A (zh) 超薄超高性能微波天线
AU2012331250B2 (en) Reflector antenna including dual band splashplate support
US10476166B2 (en) Dual-reflector microwave antenna
KR20180121372A (ko) 차량용 안테나 장치
US10992041B2 (en) Dual-frequency feed source assembly and dual-frequency microwave antenna
GB2155245A (en) Antenna systems
CN1922765B (zh) 无线电波透镜天线装置
Chia et al. Design of low profile cylindrical luneburg lens antenna
JP6216241B2 (ja) アンテナ装置
Zhao et al. A Parabolic Reflector Antenna Fed by Double-Ridged Horn for Millimeter Band
Otasowie Microwave Antenna Performance Metrics

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130404

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
A4 Supplementary search report drawn up and despatched

Effective date: 20141027

RIC1 Information provided on ipc code assigned before grant

Ipc: H01Q 19/19 20060101ALI20141021BHEP

Ipc: H01Q 19/18 20060101AFI20141021BHEP

Ipc: H01Q 19/13 20060101ALI20141021BHEP

17Q First examination report despatched

Effective date: 20161213

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170727

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 963384

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: COMBA TELECOM SYSTEM (CHINA) LTD.

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602010048051

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180110

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 963384

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180410

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180510

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180410

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602010048051

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

26N No opposition filed

Effective date: 20181011

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602010048051

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20181111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181111

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20181130

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190601

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181111

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180110

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20101111