EP2610458B1 - Work device - Google Patents

Work device Download PDF

Info

Publication number
EP2610458B1
EP2610458B1 EP12008124.5A EP12008124A EP2610458B1 EP 2610458 B1 EP2610458 B1 EP 2610458B1 EP 12008124 A EP12008124 A EP 12008124A EP 2610458 B1 EP2610458 B1 EP 2610458B1
Authority
EP
European Patent Office
Prior art keywords
cooling
air
working implement
zone
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12008124.5A
Other languages
German (de)
French (fr)
Other versions
EP2610458A1 (en
Inventor
Thorsten Schäffer
Wolfgang Layher
Christopher Tost
Arno Kinnen
Igor Klaric
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Andreas Stihl AG and Co KG
Original Assignee
Andreas Stihl AG and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Andreas Stihl AG and Co KG filed Critical Andreas Stihl AG and Co KG
Publication of EP2610458A1 publication Critical patent/EP2610458A1/en
Application granted granted Critical
Publication of EP2610458B1 publication Critical patent/EP2610458B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P5/00Pumping cooling-air or liquid coolants
    • F01P5/02Pumping cooling-air; Arrangements of cooling-air pumps, e.g. fans or blowers
    • F01P5/04Pump-driving arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P1/00Air cooling
    • F01P1/06Arrangements for cooling other engine or machine parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P1/00Air cooling
    • F01P1/02Arrangements for cooling cylinders or cylinder heads, e.g. ducting cooling-air from its pressure source to cylinders or along cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P1/00Air cooling
    • F01P1/06Arrangements for cooling other engine or machine parts
    • F01P1/10Arrangements for cooling other engine or machine parts for cooling fuel injectors or sparking-plugs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • F01P11/12Filtering, cooling, or silencing cooling-air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P5/00Pumping cooling-air or liquid coolants
    • F01P5/02Pumping cooling-air; Arrangements of cooling-air pumps, e.g. fans or blowers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P5/00Pumping cooling-air or liquid coolants
    • F01P5/02Pumping cooling-air; Arrangements of cooling-air pumps, e.g. fans or blowers
    • F01P5/06Guiding or ducting air to, or from, ducted fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B63/00Adaptations of engines for driving pumps, hand-held tools or electric generators; Portable combinations of engines with engine-driven devices
    • F02B63/02Adaptations of engines for driving pumps, hand-held tools or electric generators; Portable combinations of engines with engine-driven devices for hand-held tools

Definitions

  • the invention relates to a working device of the type specified in the preamble of claim 1.
  • a working device namely a grass trimmer known, which has a fuel pump, an injection valve and an internal combustion engine.
  • the fuel pump is arranged.
  • the injection valve is arranged above a fan and cooled by the cooling air conveyed by the fan.
  • a similar work tool is used in the WO 97/39228 shown.
  • the invention has for its object to provide a working device of the generic type, in which an improved cooling of the fuel pump is achieved.
  • the implement has several cooling zones.
  • a first cooling zone the cylinder of the internal combustion engine is arranged, which is the hottest component of the working device during operation.
  • the fuel pump is arranged in a second cooling zone.
  • a buffer zone is formed, which is separated from both the first cooling zone and the second cooling zone via at least one partition wall.
  • the buffer zone causes a good thermal separation of the first and the second cooling zone. This can prevent excessive heating of the fuel pump during operation. Excessive heating of the fuel pump can form gas bubbles in the fuel pump, which prevent further fuel to the engine can be promoted. Excessive heating of the fuel pump must therefore be avoided.
  • a buffer zone is arranged between the first and the second cooling zone. This results in a spatial separation of the fuel pump from the cylinder, which also prevents excessive heating of the fuel pump.
  • the buffer zone Due to the buffer zone, an excessive heating of the fuel pump is reduced even when the internal combustion engine is switched off during reheating of the internal combustion engine.
  • the reheating of the internal combustion engine refers to the period of time after the engine is switched off, during which the heat is distributed in the components. In this case, the cylinder of the internal combustion engine cools down and gives off its heat to other components, in particular to adjacent components such as the crankcase, which heat up as a result. Since cooling air is no longer conveyed during reheating, higher temperatures can occur at individual components during reheating than during operation.
  • the buffer zone reduces heat transfer to the fuel pump during reheating.
  • the partitions do not necessarily separate the cooling zones from the buffer zone, but at least partially. In particular, the partitions provide a substantial separation which ensures that the air streams in the cooling zones and the buffer zone flow substantially separately from each other. At suitable locations, a substantially dense separation through the at least one partition may be advantageous.
  • the second cooling zone lies in the flow path of the combustion air sucked by the internal combustion engine.
  • the implement has a fan wheel which serves to convey cooling air.
  • the combustion air sucked in by the internal combustion engine was not already compressed, and thus heated, like the air conveyed by the fan wheel.
  • the combustion air sucked in by the internal combustion engine is thereby somewhat cooler than the cooling air conveyed by the fan wheel.
  • the implement has an intake opening, via which the cooling air is sucked into the second cooling zone.
  • the fuel pump is advantageously arranged in the flow path of the cooling air flowing through the intake opening.
  • the fuel pump is in particular immediately adjacent to the intake opening in the second cooling zone arranged.
  • the cooling of the fuel pump combustion air is thus not yet heated by other components, so that there is a very good cooling of the fuel pump.
  • the combustion air is advantageously sucked directly from the environment into the second cooling zone.
  • the intake opening is arranged in particular in a region which has the largest possible distance to the outlet of the cooling air flowing through the first cooling zone from the working device, ie to the outlet of the cooling air, which cools the cylinder.
  • the buffer zone is arranged.
  • the cooling air is conveyed into the buffer zone by the fan.
  • the buffer zone can be arranged on the suction side of the fan wheel, ie upstream of the fan wheel, or on the pressure side of the fan wheel, ie downstream of the fan wheel.
  • a simple arrangement results in an arrangement of the buffer zone downstream of the fan, so when the fan presses the cooling air in the buffer zone.
  • the fan wheel sucks the cooling air through the buffer zone, that is, the buffer zone is upstream of the fan.
  • the cooling air is sucked in this case from a lying in the usual parking position of the implement below area and passes through an opening in the fan housing in the fan housing.
  • the sucked by the fan cooling air was not yet compressed by the fan and is therefore cooler than the cooling air flowing from the fan, so that the arrangement of the buffer zone in the sucked by the fan cooling air flow effective cooling of the buffer zone results.
  • the injection valve is arranged in the buffer zone. Because the injection valve is not arranged in the first cooling zone but in a buffer zone which is at least partially separated from the first cooling zone by a dividing wall, improved cooling of the injection valve can be achieved.
  • a pressure damper is arranged in the buffer zone adjacent to the injection valve. The pressure damper must also be cooled as well as possible during operation in order to prevent gas bubble formation in the pressure damper. At the same time it is advantageous, the pressure damper as close as possible to the injection valve to arrange. This can be accomplished by placing the pressure damper adjacent to the injector in the buffer zone.
  • the injection valve is arranged in a region which is connected via a connecting channel with the interior of the fan wheel housing.
  • the cooling air can be directed to the area in which the injection valve is arranged.
  • the channel is designed to be as short as possible in order to keep the flow resistance low and to achieve the most direct possible cooling of the region in which the injection valve is arranged.
  • the cooling of the injection valve can be improved if the injection valve is arranged in an antechamber of the buffer zone, from which the cooling air flows into a main chamber of the buffer zone.
  • the subdivision of the buffer zone into an antechamber and a main chamber allows for improved, direct cooling of the injection valve and possibly the pressure damper.
  • the air entering the buffer zone goes directly to the injector and the pressure damper before being heated by other components.
  • the pre-chamber is advantageously made small, so that the cooling air is purposefully guided to the injection valve or a component surrounding the injection valve.
  • a simple construction results when the prechamber is separated from an air guiding component by the main chamber.
  • the air guide component is advantageously held on a crankcase of the internal combustion engine.
  • the cooling air flows advantageous between the air guide member and the crankcase in the main chamber.
  • the connection opening between the prechamber and the main chamber of the buffer zone is formed in a simple manner in that the air guiding component is not sealed with respect to the crankcase of the internal combustion engine, but has a small distance to it.
  • the air guide component advantageously encloses the components arranged in the pre-chamber as closely as possible, so that it is ensured that the components are flowed around by the cooling air and are well cooled.
  • the first partition is at least partially formed by a portion of an engine cover.
  • the engine cover is advantageously disposed within the outer housing of the implement and covered by a hood of the implement. This makes it possible to avoid contact between the operator and the engine cover which heats up during operation.
  • the engine cover covers the cylinder of the internal combustion engine. Under the engine cover, the fan promotes cooling air. Particularly advantageously, the cooling air is pressed under the engine cover. However, it may also be provided to arrange the fan so that the cooling air is sucked under the engine cover, so the first cooling zone is located on the suction side of the fan. It may be advantageous that the first partition is at least partially bounded by the air guide component.
  • At least one partition wall section of the second partition is integrally formed on the tank housing of the implement.
  • the buffer zone is advantageously located between an air filter of the working device and the internal combustion engine.
  • the internal combustion engine has an intake passage which connects the internal combustion engine with the air filter and which is guided through the buffer zone due to the arrangement of the buffer zone between the air filter and the internal combustion engine. It is envisaged that the intake passage of the internal combustion engine protrudes through the second partition wall.
  • a simple construction results if at least one partition wall section of the second partition wall is formed on a separate component fixed to the tank housing.
  • the two partition wall sections advantageously limit the passage opening for the intake passage, so that the intake passage can be placed on the tank housing and the separate component can be placed on the tank housing and fixed thereto. As a result, a simple structure and a simple assembly is achieved.
  • a discharge channel for liquid removal from the second cooling zone leads into the buffer zone through the second partition wall.
  • the discharge channel is advantageous as a depression in a wall bounding the second cooling zone of the tank housing educated. This results in a simple structure. For the discharge channel no additional components are needed.
  • the discharge channel falls in the parking position of the working device from the second cooling zone to the buffer zone. This ensures that liquid from the second cooling zone can flow into the buffer zone.
  • the liquid flows from the buffer zone into the environment.
  • the air pressure in the buffer zone may be higher than the air pressure in the second cooling zone, in particular, when the cooling air is conveyed into the buffer zone by the fan of the implement.
  • the discharge channel is connected to the second cooling zone downstream of the fuel pump in relation to the flow direction in the second cooling zone. Air that flows from the buffer zone into the second cooling zone can not thereby flow to the fuel pump, but is sucked to the engine.
  • the handles are usually vibration-decoupled from the internal combustion engine via anti-vibration elements.
  • a vibrating gap is usually formed between the engine and the handles.
  • the oscillation gap extends between the tank housing and the internal combustion engine.
  • the oscillation gap advantageously extends through the buffer zone.
  • the fuel pump is advantageously fixed to the tank housing and separated by the extending through the buffer zone oscillation gap of the arranged in the first cooling zone cylinder. This results in a large distance between the fuel pump and the cylinder, which ensures that the fuel pump is not heated inadmissible.
  • the volume of the buffer zone changes during operation in the case of relative movements of the tank housing and the internal combustion engine.
  • the arrangement of a solid insulating body, which fills the buffer zone is not possible because this insulator would hinder the relative movement between the tank housing and the engine.
  • Fig. 1 shows as an exemplary embodiment of a working device, in particular a hand-held implement, a power grinder 1.
  • the implement is advantageously portable.
  • the implement may instead of a cutting machine 1 also another working device such as a brushcutter, a chainsaw, a hedge trimmer or the like. Be.
  • the power cutter 1 has a housing 2, the structure of which will be explained in more detail below.
  • a boom 3 is fixed, which projects forward and at the free end of a cutting disc 4 is rotatably mounted, which is at least partially covered by a protective cover 5.
  • a protective cover 5 For guiding the cutting grinder 1 is an upper handle 6, which is formed on a hood 8 of the housing 2, and a handle tube 7, which engages over the housing 2 on the side facing the blade 4.
  • an air filter cover 9 is fixed.
  • To stop the cutting grinder 1 serve on the housing 2 and the handle tube 7 fixed feet 13. If the power grinder 1 is placed on a flat surface, it is located in the in Fig. 1 shown parking position 69.
  • an internal combustion engine 12 is arranged, which serves for the rotary drive of the cutting disc 4.
  • the internal combustion engine 12 is a two-stroke engine in the embodiment. However, the engine 12 may also be a compound lubricated or a separately lubricated four-stroke engine.
  • the internal combustion engine 12 is advantageously a single-cylinder engine.
  • To operate the internal combustion engine 12 is a pivotally mounted on the upper handle 6 throttle lever 10. The throttle lever 10 can only be pressed when a likewise mounted on the upper handle 6 throttle lever lock 11 is actuated.
  • a fuel pump 23 is arranged in the housing 2.
  • the fuel pump 23 is adjacent to the air filter cover 9, ie arranged on the blade 4 remote from the rear side of the housing 2.
  • the hood 8 has an intake opening 65, which is formed by a plurality of cooling air slots 66.
  • the cooling air slots 66 are formed immediately adjacent to the fuel pump 23 in the hood 8 of the housing 2.
  • an engine cover 27 is provided which partially covers the engine 12. The engine cover 27 is covered by the hood 8.
  • Fig. 2 shows a plan view of the grinder 1, wherein the boom 3 is not shown. In addition, the hood 8 and the air filter cover 9 are removed. Other components are not shown to better illustrate the structural design.
  • a first cooling zone A is formed, in which a cylinder 17 of the internal combustion engine 12 is arranged.
  • the first cooling zone A promotes a driven by the internal combustion engine 12 fan 28 cooling air.
  • the cooling air will flow along in Fig. 2 schematically drawn arrows 61 conveyed over the cylinder 17 and passes forward, ie in the direction of the cutting wheel 4, from the housing 2.
  • the fan 28 sucks the cooling air through a in Fig. 2 schematically shown Lüfterraddeckel 70 directly from the environment.
  • the fuel pump 23 is arranged in a second cooling zone C, directly adjacent to the suction opening 65 (FIG. Fig. 1 ).
  • the ambient air flows from the environment directly through the fuel pump 23.
  • the suction port 65 is a separate suction port for cooling air, which is separated from the suction port of the intake air from the fan 28 cooling air.
  • the air sucked into the second cooling zone C is combustion air for the internal combustion engine 12, which is in the direction of an arrow 63 in FIG Fig. 2 not shown air inlet openings of an air cleaning unit 71 flows.
  • the air purification unit 71 is partially formed on a tank housing 25 of the cutter 1.
  • Fig. 2 Also shows, in the tank housing 25, a fuel tank 32 is formed, from which the fuel pump 23 sucks the fuel.
  • the fuel pump 23 is for this purpose with the in Fig. 8 shown connecting piece 51, which in the in Fig. 2 shown mounting opening 41 of the tank housing 25 is fixed.
  • a buffer zone B is formed between the first cooling zone A and the second cooling zone C.
  • the buffer zone B is separated from the first cooling zone A by a partition formed by the engine cover 27.
  • the separation between the first cooling zone A and the buffer zone B runs in the in Fig. 2
  • the buffer zone B is separated from the second cooling zone C by a partition wall which is partially separated from the one shown in FIG Fig. 2 shown upper partition wall portion 35 is formed.
  • the upper partition wall section 35 is formed on an assembly aid 36, which is placed on the tank housing 25.
  • the mounting aid 36 has two arms 37 which hold a receptacle 38.
  • the receptacle 38 receives the throttle lever 10 facing the end of a Bowden cable.
  • the Bowden cable which runs through the Bowden cable sheath, serves to transmit the adjusting movement of the throttle lever 10 to a throttle element, which is still shown below, in an intake passage of the internal combustion engine 12.
  • the tank housing 25 is separated from a motor unit 24 of the cutting grinder 1 via a vibration gap 60.
  • the vibration gap 60 is bridged by a plurality of anti-vibration elements, of which in Fig. 2 an anti-vibration element 40 is shown.
  • the engine unit 24 comprises the internal combustion engine 12, a mounting flange 72 for the boom 3, and a fan wheel housing 44 arranged on the opposite side of the internal combustion engine 12, in which the fan wheel 28 is arranged.
  • the tank housing 25 and motor unit 24 move relative to each other. As a result, the volume of the buffer zone B changes permanently during operation.
  • the combustion air sucked into the second cooling zone C flows into air inlet openings 73 of the air cleaning unit 71 on the longitudinal side of the cutting grinder 1, which faces away from the mounting flange 72 and on which the fan impeller 28 is arranged.
  • the air inlet openings 73 open into cyclones 33, which in Fig. 4 are shown.
  • the air inlet openings 73 are arranged adjacent to the outer circumference of the Lüfterradgephinuses 44. From the cyclones 33, the combustion air flows into an air filter, not shown, and from there into an intake passage of the internal combustion engine 12.
  • the combustion air is sucked into the second cooling zone C from the environment.
  • it could also be provided to convey air from an overpressure region of the fan wheel housing 44 into the second cooling zone C and from there as combustion air to the air inlet openings 73.
  • the combustion engine 12 combustion air is supplied, which is under pressure.
  • the Lüfterradgephase 44 forms a fan coil and is integrally formed on a crankcase 14 of the engine 12.
  • the Lüfterradgephase 44 defines a fan coil 78.
  • a connection opening 46 is formed in an overpressure region of the fan coil 78, in which a connection sleeve 75 is arranged.
  • the connecting sleeve 75 which may be a rubber grommet, for example, connects the overpressure region of the ventilator wheel housing 44 to a connecting channel 47 which opens into an antechamber 67 formed in the buffer zone B.
  • a holder 42 for an injection valve of the internal combustion engine 12 is arranged in the antechamber 67.
  • a pressure damper 45 is also integrated for the funded by the fuel pump 23 fuel.
  • the pre-chamber 67 and the connecting channel 47 are formed in a hood-shaped air guide member 43.
  • the air guide member 43 is held on the crankcase 14.
  • the air guide member 43 encloses the holder 42 closely, so that only a narrow flow path for the cooling air is formed between the air guide member 43 and holder 42. This ensures that the holder 42 and arranged in the holder 42 injection valve are well cooled.
  • the air guide member 43 does not seal with the crankcase 14 so that the cooling air forced into the air guide member 43 along the arrow 62 can escape into a main chamber 68 of the buffer zone B through gaps formed between the air guide member 43 and the crankcase 14. From the main chamber 68 the cooling air flows out of the housing 2 in the direction of the arrow 49 adjacent to the mounting flange 72.
  • FIGS. 3 and 4 show, on the internal combustion engine 12, an exhaust muffler 19 is fixed, which is arranged on the cutting disc 4 facing the front of the housing 2.
  • a crankshaft not shown in the figures is rotatably mounted about an axis of rotation 15.
  • the axis of rotation 15 of the crankshaft is below the cutting plane and is shown only schematically.
  • an overflow channel 18 leads, which opens into a cylinder 17 formed in the combustion chamber.
  • the cylinder 17 has a cylinder longitudinal axis 29, which in the in Fig. 1 shown usual parking position 69 against the in Fig. 1 shown vertical 79 is slightly inclined rearwardly toward the upper handle 6.
  • a throttle element in the embodiment, a throttle valve 22, is pivotally mounted.
  • an intake passage 30 is guided, the combustion air into the crankcase interior 16 supplies.
  • the throttle housing 21 is connected via an intake 20 with a fixed to the air filter bottom of the air filter channel section 53.
  • the intake manifold 20 is made of an elastic material and is therefore elastic. Due to its elasticity, the intake manifold can compensate for relative movements between the motor unit 24, on which the throttle housing 21 is fixed, and the tank housing 25 with the channel section 53.
  • the arranged in the buffer zone B intake 20 bridges the vibration gap 60.
  • a further anti-vibration element 64 which bridges the oscillation gap 60, is shown between a web 59 of the tank housing 25 projecting in the direction of the separating disk 4 and the motor unit 24.
  • a plurality of anti-vibration elements 64 are arranged between the web 59 and the motor unit 24, which are arranged next to the web 59 and which are not shown in the figures.
  • the combustion air is sucked through the second cooling zone C from the environment via the fuel pump 23 into the air inlet openings 73 of the air cleaning unit 71.
  • the fan 28 conveys cooling air into the first cooling zone A, which is formed in the space between the engine cover 27 and the cylinder 17, in the direction of the arrow 61 (FIG. Fig. 4 ). Cooling air is forced into the buffer zone from an overpressure region of the fan wheel spiral 78 into the prechamber 67 arranged below the venting guide component 43. The air escapes into the environment via the main chamber 68 of the buffer zone B.
  • the combustion air is purified in the air cleaning unit 71 and supplied via the channel section 53, the intake manifold 20 and the throttle body 21 in the crankcase interior 16.
  • the fuel / air mixture from the crankcase interior 16 flows via the overflow channel 18, which opens with at least one overflow opening, not shown, into a combustion chamber formed in the cylinder 17, into the combustion chamber.
  • the overflow openings are also controlled by the piston. After combustion, the exhaust gases escape from the combustion chamber via a likewise slot-controlled outlet in the exhaust muffler 19th
  • a discharge channel 39 is formed.
  • the discharge channel 39 is formed as a depression in the wall of the tank housing 25.
  • the discharge channel 39 is connected downstream of the fuel pump 23 to the second cooling zone C.
  • the discharge channel 39 extends under a lower partition wall section 34 formed on the tank housing 25.
  • the lower partition wall section 34 is part of the dividing wall which separates the second cooling zone C from the buffer zone B.
  • the discharge channel 39 extends through the dividing wall.
  • the discharge channel 39 extends in the usual Abstellposition 69 from the second cooling zone C in the buffer zone B sloping. There are no depressions formed where liquid could accumulate.
  • In Abstellposition 69 in the second cooling zone C accumulated liquid via the discharge channel 39 under the partition wall section 34 through into the buffer zone B and from there into the environment. This ensures that, despite the separation of the buffer zone B from the second cooling zone C, no liquid can accumulate in the second cooling zone C.
  • the liquid may, for example, be water which is used during operation of the cutting-off grinder 1 for cooling the separating disk 4.
  • Fig. 5 shows a view of the cyclone 33 and in the fuel tank 32.
  • the tank housing 25 is in the in Fig. 5 formed plane shown divided.
  • the cyclones 33 separate coarse dirt particles from the intake combustion air. These dirt particles are fed to a discharge channel 50 formed on the tank housing 25, which open into a negative pressure region in the fan wheel housing 44. As a result, dirt particles are sucked into the Lüfterradgephase 44 and discharged from there.
  • the channel portion 53 in which a portion of the suction passage 30 is guided passes through the partition wall formed between the second cooling zone C and the buffer zone B.
  • the lower, integrally formed on the tank housing 25 partition wall portion 34 has an approximately semicircular opening for receiving the channel portion 53.
  • a corresponding semicircular receptacle for the channel portion 53 also has the upper partition wall portion 35th
  • the upper partition wall portion 35 is formed on a separately formed mounting aid 36.
  • the two arms 37 of the mounting aid 36 project up to the hood 8 upwards.
  • the receptacle 38 is adjacent to the hood 8, in the vicinity of the pivot point of the throttle lever 10 is arranged.
  • a control unit 80 is arranged, which serves to control the internal combustion engine 12 and possibly other electrical components of the cutting grinder 1.
  • the control unit 80 delimits the cooling zone C and the buffer zone B.
  • the control unit 80 has a housing 81, on which a rib 82 projecting downwards in the parking position 69 is formed, which forms a partition wall section of the dividing wall between the second cooling zone C and the buffer zone B. forms.
  • the rib 82 is located on a wall 83 of the mounting aid 36 (see also Fig. 6 ) and extends to a bottom 84 of the mounting aid 36.
  • the bottom 84 extends transversely to the wall 83 and the rib 82 and extends in the parking position 69 is approximately horizontal.
  • the rib 82 which rests against the wall 83 and the bottom 84, there is a substantial dense separation of buffer zone B and second cooling zone C in this area.
  • the rib 82, the wall 83 and the bottom 84 act in the manner of a labyrinth seal.
  • Fig. 8 shows the design of the tank housing 25 with the web 59, the integrally formed discharge channel 39 and the integrally formed on the tank housing 25 lower partition wall portion 34th Fig. 8 also shows the tank opening 52, in which a closure for the tank lid is fixed.
  • the port 51 has two ports 54, wherein one of the terminals 54 for connection to the fuel pump 23 and the other of the terminals 54 is used for connection to a coming from the injection valve return line for fuel.
  • Fig. 9 shows a perspective view of the engine unit 24, wherein the arranged under the engine cover 27 cylinder 17 is not shown, so that a Zylinderan gleichflansch 55 of the crankcase 14 is visible.
  • a mounting opening 48 is arranged, which opens into the crankcase interior 16 and in which one or more sensors, such as a combined pressure-temperature sensor, can be arranged.
  • Fig. 9 also schematically shows the holder 42 arranged in the injection valve 26, which supplies the fuel directly into the crankcase interior 16. As Fig.
  • a partition wall portion 85 is formed on the air guide member 43, which abuts against the engine cover 27 and forms with this the partition wall between the first cooling zone A and buffer zone B. Adjacent to the Lüfterradgekoruse 44, a guide portion 86 is arranged. The guide portion 86 is also formed on the air guide member 43 and serves to guide in Fig. 9 not shown electrical cables. In addition, two ribs 87 are integrally formed on the air guide component 43, between which a cable, not shown, is guided and clamped.
  • Fig. 10 schematically shows the course of the cooling air flow in the buffer zone B.
  • the cooling air flows from the overpressure zone in the fan housing 44 along the arrow 62 through the connecting channel 47 in the formed under the cover antechamber 67.
  • the cooling air flows around the holder 42 and thus cools both the injection valve 26 and the pressure damper 45.
  • the holder 42 is advantageously made of plastic, so that it acts as an insulator and little heat is transferred from the crankcase 14 to the injection valve 26.
  • the cooling air flows through the in Fig. 11 shown gap 77, which extends advantageously over the entire edge of the air guide member 43, in the main chamber 68. In the main chamber 68, the cooling air flows along the in Fig.
  • a clutch which is advantageously designed as a centrifugal clutch, and a drive wheel for a V-belt for driving the cutting disc 4.
  • a starting device for the internal combustion engine 12 may be arranged on the mounting flange 72.
  • a flow guide rib 76 is formed on the air guide component 43, which divides the inflowing cooling air, as shown by the arrows 62. A portion of the cooling air flows to the pressure damper 45 and another part of the cooling air flows around the holder 42 in the region of the injection valve 26. As a result, the pressure damper 45 and the injection valve 26 are well cooled.
  • Fig. 12 shows a view under the engine cover 27, wherein the cylinder 17 is not shown. As a result, the throttle valve 22 in the intake passage 30 and the Zylinderan gleichflansch 55 are visible.
  • the Lüfterradgepuruse 44 has an opening 31 in the upper, the cylinder 17 adjacent region of the Lüfterradgephaseuses 44 through which the cooling air is conveyed along the arrow 61 from a pressure range of the Lüfterradgephinuses 44 under the engine cover 27 and the cylinder 17 is cooled.
  • the motor unit 24 engages over the web 59 of the tank housing 25th
  • Fig. 12 also shows the parting plane 56 of the crankcase 14. The parting plane 56 is parallel to the in Fig. 12 schematically drawn cylinder longitudinal axis 29 and towards the in Fig. 12 also schematically drawn axis of rotation 15 of the crankshaft laterally offset to the cylinder longitudinal axis 29th
  • the cooling air is conveyed into the first cooling zone A and into the buffer zone B by the fan wheel 28.
  • the buffer zone B is flowed through by the air sucked by the fan 28 cooling air.
  • the air sucked in by the fan is cooler than the air delivered by the fan 28, since the air heats up due to the compression work of the fan 28.
  • the cooling air is advantageously transported from a lower, in the parking position 69 (FIG. Fig. 1 ) is sucked to the floor facing the area of the cutting grinder 1 and passes through an opening, in particular the connecting opening 46, in the fan housing 44th

Description

Die Erfindung betrifft ein Arbeitsgerät der im Oberbegriff des Anspruchs 1 angegebenen Gattung.The invention relates to a working device of the type specified in the preamble of claim 1.

Aus der DE 196 54 290 A1 ist ein Arbeitsgerät, nämlich ein Rasentrimmer bekannt, der eine Kraftstoffpumpe, ein Einspritzventil und einen Verbrennungsmotor besitzt. Neben dem Kurbelgehäuse ist die Kraftstoffpumpe angeordnet. Das Einspritzventil ist oberhalb eines Ventilators angeordnet und von der vom Ventilator geförderten Kühlluft gekühlt. Ein änliches Arbeitsgerät wird in der WO 97/39228 gezeigt.From the DE 196 54 290 A1 is a working device, namely a grass trimmer known, which has a fuel pump, an injection valve and an internal combustion engine. In addition to the crankcase, the fuel pump is arranged. The injection valve is arranged above a fan and cooled by the cooling air conveyed by the fan. A similar work tool is used in the WO 97/39228 shown.

Der Erfindung liegt die Aufgabe zugrunde, ein Arbeitsgerät der gattungsgemäßen Art zu schaffen, bei dem eine verbesserte Kühlung der Kraftstoffpumpe erreicht wird.The invention has for its object to provide a working device of the generic type, in which an improved cooling of the fuel pump is achieved.

Diese Aufgabe wird durch ein Arbeitsgerät mit den Merkmalen des Anspruchs 1 gelöst.This object is achieved by a working device with the features of claim 1.

Das Arbeitsgerät besitzt mehrere Kühlzonen. In einer ersten Kühlzone ist der Zylinder des Verbrennungsmotors angeordnet, der im Betrieb das heißeste Bauteil des Arbeitsgeräts ist. In einer zweiten Kühlzone ist die Kraftstoffpumpe angeordnet. Zwischen der ersten und der zweiten Kühlzone ist eine Pufferzone ausgebildet, die sowohl von der ersten Kühlzone als auch von der zweiten Kühlzone über jeweils mindestens eine Trennwand getrennt ist. Die Pufferzone bewirkt eine gute thermische Trennung der ersten und der zweiten Kühlzone. Dadurch kann eine übermäßige Erwärmung der Kraftstoffpumpe im Betrieb vermieden werden. Bei übermäßiger Erwärmung der Kraftstoffpumpe können sich in der Kraftstoffpumpe Gasblasen bilden, die verhindern, dass weiter Kraftstoff zum Verbrennungsmotor gefördert werden kann. Eine übermäßige Erwärmung der Kraftstoffpumpe muss deshalb vermieden werden. Zwischen der ersten und der zweiten Kühlzone ist eine Pufferzone angeordnet. Dadurch ergibt sich eine räumliche Trennung der Kraftstoffpumpe vom Zylinder, die ebenfalls eine übermäßige Erwärmung der Kraftstoffpumpe verhindert.The implement has several cooling zones. In a first cooling zone, the cylinder of the internal combustion engine is arranged, which is the hottest component of the working device during operation. In a second cooling zone, the fuel pump is arranged. Between the first and the second cooling zone, a buffer zone is formed, which is separated from both the first cooling zone and the second cooling zone via at least one partition wall. The buffer zone causes a good thermal separation of the first and the second cooling zone. This can prevent excessive heating of the fuel pump during operation. Excessive heating of the fuel pump can form gas bubbles in the fuel pump, which prevent further fuel to the engine can be promoted. Excessive heating of the fuel pump must therefore be avoided. Between the first and the second cooling zone, a buffer zone is arranged. This results in a spatial separation of the fuel pump from the cylinder, which also prevents excessive heating of the fuel pump.

Durch die Pufferzone wird auch bei abgestelltem Verbrennungsmotor während des Nachheizens des Verbrennungsmotors ein übermäßiges Aufheizen der Kraftstoffpumpe verringert. Das Nachheizen des Verbrennungsmotors bezeichnet die Zeitspanne nach dem Abstellen des Verbrennungsmotors, während der sich die Wärme in den Bauteilen verteilt. Dabei kühlt der Zylinder des Verbrennungsmotors ab und gibt seine Wärme an andere Bauteile, insbesondere an benachbarte Bauteile wie das Kurbelgehäuse, ab, die sich dadurch erwärmen. Da während des Nachheizens keine Kühlluft mehr gefördert wird, können an einzelnen Bauteilen während des Nachheizens höhere Temperaturen entstehen als im Betrieb. Durch die Pufferzone wird die Wärmeübertragung auf die Kraftstoffpumpe während des Nachheizens verringert. Die Trennwände trennen die Kühlzonen von der Pufferzone dabei nicht zwingend dichtend, sondern mindestens teilweise. Die Trennwände stellen insbesondere eine weitgehende Trennung her, die sicherstellt, dass die Luftströme in den Kühlzonen und der Pufferzone im Wesentlichen getrennt voneinander strömen. An geeigneten Stellen kann eine im Wesentlichen dichte Trennung durch die mindestens eine Trennwand vorteilhaft sein.Due to the buffer zone, an excessive heating of the fuel pump is reduced even when the internal combustion engine is switched off during reheating of the internal combustion engine. The reheating of the internal combustion engine refers to the period of time after the engine is switched off, during which the heat is distributed in the components. In this case, the cylinder of the internal combustion engine cools down and gives off its heat to other components, in particular to adjacent components such as the crankcase, which heat up as a result. Since cooling air is no longer conveyed during reheating, higher temperatures can occur at individual components during reheating than during operation. The buffer zone reduces heat transfer to the fuel pump during reheating. The partitions do not necessarily separate the cooling zones from the buffer zone, but at least partially. In particular, the partitions provide a substantial separation which ensures that the air streams in the cooling zones and the buffer zone flow substantially separately from each other. At suitable locations, a substantially dense separation through the at least one partition may be advantageous.

Um eine gute Kühlung der Kraftstoffpumpe im Betrieb zu erreichen, ist vorgesehen, dass die zweite Kühlzone im Strömungsweg der vom Verbrennungsmotor angesaugten Verbrennungsluft liegt. Das Arbeitsgerät besitzt ein Lüfterrad, das zur Förderung von Kühlluft dient. Die vom Verbrennungsmotor angesaugte Verbrennungsluft wurde nicht wie die vom Lüfterrad geförderte Luft bereits verdichtet und dadurch erwärmt. Die vom Verbrennungsmotor angesaugte Verbrennungsluft ist dadurch etwas kühler als die vom Lüfterrad geförderte Kühlluft. Vorteilhaft besitzt das Arbeitsgerät eine Ansaugöffnung, über die die Kühlluft in die zweite Kühlzone angesaugt wird. Vorteilhaft ist die Kraftstoffpumpe im Strömungsweg der durch die Ansaugöffnung einströmenden Kühlluft angeordnet. Die Kraftstoffpumpe ist insbesondere unmittelbar benachbart zu der Ansaugöffnung in die zweite Kühlzone angeordnet. Die die Kraftstoffpumpe kühlende Verbrennungsluft ist dadurch noch nicht durch andere Bauteile erwärmt, so dass sich eine sehr gute Kühlung der Kraftstoffpumpe ergibt. Die Verbrennungsluft wird vorteilhaft direkt aus der Umgebung in die zweite Kühlzone angesaugt. Die Ansaugöffnung ist dabei insbesondere in einem Bereich angeordnet, der einen möglichst großen Abstand zum Austritt der durch die erste Kühlzone strömenden Kühlluft aus dem Arbeitsgerät, also zum Austritt der Kühlluft, die den Zylinder kühlt, besitzt.In order to achieve a good cooling of the fuel pump during operation, it is provided that the second cooling zone lies in the flow path of the combustion air sucked by the internal combustion engine. The implement has a fan wheel which serves to convey cooling air. The combustion air sucked in by the internal combustion engine was not already compressed, and thus heated, like the air conveyed by the fan wheel. The combustion air sucked in by the internal combustion engine is thereby somewhat cooler than the cooling air conveyed by the fan wheel. Advantageously, the implement has an intake opening, via which the cooling air is sucked into the second cooling zone. The fuel pump is advantageously arranged in the flow path of the cooling air flowing through the intake opening. The fuel pump is in particular immediately adjacent to the intake opening in the second cooling zone arranged. The cooling of the fuel pump combustion air is thus not yet heated by other components, so that there is a very good cooling of the fuel pump. The combustion air is advantageously sucked directly from the environment into the second cooling zone. The intake opening is arranged in particular in a region which has the largest possible distance to the outlet of the cooling air flowing through the first cooling zone from the working device, ie to the outlet of the cooling air, which cools the cylinder.

Zwischen der ersten und der zweiten Kühlzone ist die Pufferzone angeordnet. Vorteilhaft wird die Kühlluft in die Pufferzone vom Lüfterrad gefördert. Dadurch ergibt sich eine gute Kühlung der Pufferzone, und die Wärmeübertragung von der ersten Kühlzone auf die zweite Kühlzone wird minimiert. Die Pufferzone kann dabei auf der Saugseite des Lüfterrads, also stromauf des Lüfterrads, oder auf der Druckseite des Lüfterrads, also stromab des Lüfterrads, angeordnet sein. Eine einfache Anordnung ergibt sich bei einer Anordnung der Pufferzone stromab des Lüfterrads, also wenn das Lüfterrad die Kühlluft in die Pufferzone drückt. Es kann jedoch auch vorteilhaft sein, dass das Lüfterrad die Kühlluft durch die Pufferzone saugt, die Pufferzone also stromauf des Lüfterrads liegt. Insbesondere wird die Kühlluft in diesem Fall von einem in üblicher Abstellposition des Arbeitsgeräts unten liegenden Bereich angesaugt und gelangt über eine Öffnung im Lüfterradgehäuse in das Lüfterradgehäuse. Die vom Lüfterrad angesaugte Kühlluft wurde vom Lüfterrad noch nicht verdichtet und ist deshalb kühler als die vom Lüfterrad abströmende Kühlluft, so dass sich durch die Anordnung der Pufferzone in dem vom Lüfterrad angesaugten Kühlluftstrom eine effektive Kühlung der Pufferzone ergibt.Between the first and the second cooling zone, the buffer zone is arranged. Advantageously, the cooling air is conveyed into the buffer zone by the fan. This results in a good cooling of the buffer zone, and the heat transfer from the first cooling zone to the second cooling zone is minimized. The buffer zone can be arranged on the suction side of the fan wheel, ie upstream of the fan wheel, or on the pressure side of the fan wheel, ie downstream of the fan wheel. A simple arrangement results in an arrangement of the buffer zone downstream of the fan, so when the fan presses the cooling air in the buffer zone. However, it may also be advantageous that the fan wheel sucks the cooling air through the buffer zone, that is, the buffer zone is upstream of the fan. In particular, the cooling air is sucked in this case from a lying in the usual parking position of the implement below area and passes through an opening in the fan housing in the fan housing. The sucked by the fan cooling air was not yet compressed by the fan and is therefore cooler than the cooling air flowing from the fan, so that the arrangement of the buffer zone in the sucked by the fan cooling air flow effective cooling of the buffer zone results.

Vorteilhaft ist das Einspritzventil in der Pufferzone angeordnet. Dadurch, dass das Einspritzventil nicht in der ersten Kühlzone, sondern in einer von der ersten Kühlzone durch eine Trennwand mindestens teilweise getrennten Pufferzone angeordnet ist, kann eine verbesserte Kühlung des Einspritzventils erreicht werden. Vorteilhaft ist benachbart zum Einspritzventil ein Druckdämpfer in der Pufferzone angeordnet. Auch der Druckdämpfer muss im Betrieb möglichst gut gekühlt werden, um eine Gasblasenbildung im Druckdämpfer zu verhindern. Gleichzeitig ist es vorteilhaft, den Druckdämpfer so nah wie möglich am Einspritzventil anzuordnen. Dies kann dadurch erreicht werden, dass der Druckdämpfer benachbart zum Einspritzventil in der Pufferzone angeordnet wird.Advantageously, the injection valve is arranged in the buffer zone. Because the injection valve is not arranged in the first cooling zone but in a buffer zone which is at least partially separated from the first cooling zone by a dividing wall, improved cooling of the injection valve can be achieved. Advantageously, a pressure damper is arranged in the buffer zone adjacent to the injection valve. The pressure damper must also be cooled as well as possible during operation in order to prevent gas bubble formation in the pressure damper. At the same time it is advantageous, the pressure damper as close as possible to the injection valve to arrange. This can be accomplished by placing the pressure damper adjacent to the injector in the buffer zone.

Um eine möglichst gute Kühlung von Einspritzventil und Druckdämpfer zu erreichen, ist vorgesehen, dass das Einspritzventil in einem Bereich angeordnet ist, der über einen Verbindungskanal mit dem Innenraum des Lüfterradgehäuses verbunden ist. Dadurch kann die Kühlluft zielgerichtet in den Bereich geleitet werden, in dem das Einspritzventil angeordnet ist. Der Kanal ist dabei möglichst kurz ausgebildet, um den Strömungswiderstand gering zu halten und eine möglichst unmittelbare Kühlung des Bereichs, in dem das Einspritzventil angeordnet ist, zu erreichen. Die Kühlung des Einspritzventils kann verbessert werden, wenn das Einspritzventil in einer Vorkammer der Pufferzone angeordnet wird, aus der die Kühlluft in eine Hauptkammer der Pufferzone strömt. Die Unterteilung der Pufferzone in eine Vorkammer und eine Hauptkammer ermöglicht eine verbesserte, unmittelbare Kühlung des Einspritzventils und ggf. des Druckdämpfers. Die in die Pufferzone einströmende Luft gelangt direkt zum Einspritzventil und zum Druckdämpfer, bevor sie durch andere Bauteile erwärmt wurde. Die Vorkammer ist dabei vorteilhaft klein ausgebildet, so dass die Kühlluft zielgerichtet zum Einspritzventil bzw. einem das Einspritzventil umgebenden Bauteil geführt wird.In order to achieve the best possible cooling of injection valve and pressure damper, it is provided that the injection valve is arranged in a region which is connected via a connecting channel with the interior of the fan wheel housing. As a result, the cooling air can be directed to the area in which the injection valve is arranged. The channel is designed to be as short as possible in order to keep the flow resistance low and to achieve the most direct possible cooling of the region in which the injection valve is arranged. The cooling of the injection valve can be improved if the injection valve is arranged in an antechamber of the buffer zone, from which the cooling air flows into a main chamber of the buffer zone. The subdivision of the buffer zone into an antechamber and a main chamber allows for improved, direct cooling of the injection valve and possibly the pressure damper. The air entering the buffer zone goes directly to the injector and the pressure damper before being heated by other components. The pre-chamber is advantageously made small, so that the cooling air is purposefully guided to the injection valve or a component surrounding the injection valve.

Ein einfacher Aufbau ergibt sich, wenn die Vorkammer von einem Luftführungsbauteil von der Hauptkammer getrennt ist. Das Luftführungsbauteil ist vorteilhaft an einem Kurbelgehäuse des Verbrennungsmotors gehalten. Die Kühlluft strömt dabei vorteilhaft zwischen dem Luftführungsbauteil und dem Kurbelgehäuse in die Hauptkammer. Die Verbindungsöffnung zwischen Vorkammer und Hauptkammer der Pufferzone wird auf einfache Weise dadurch gebildet, dass das Luftführungsbauteil gegenüber dem Kurbelgehäuse des Verbrennungsmotors nicht abgedichtet ist, sondern zu diesem einen geringen Abstand besitzt. Dadurch wird auch die direkte Aufheizung des Luftführungsbauteils, die durch den Kontakt mit dem Kurbelgehäuse hervorgerufen wird, verringert. Das Luftführungsbauteil umschließt die in der Vorkammer angeordneten Komponenten vorteilhaft möglichst eng, so dass sichergestellt ist, dass die Komponenten von der Kühlluft umströmt und gut gekühlt werden.A simple construction results when the prechamber is separated from an air guiding component by the main chamber. The air guide component is advantageously held on a crankcase of the internal combustion engine. The cooling air flows advantageous between the air guide member and the crankcase in the main chamber. The connection opening between the prechamber and the main chamber of the buffer zone is formed in a simple manner in that the air guiding component is not sealed with respect to the crankcase of the internal combustion engine, but has a small distance to it. As a result, the direct heating of the air guide component, which is caused by the contact with the crankcase, is reduced. The air guide component advantageously encloses the components arranged in the pre-chamber as closely as possible, so that it is ensured that the components are flowed around by the cooling air and are well cooled.

Vorteilhaft ist die erste Trennwand mindestens teilweise von einem Abschnitt einer Motorabdeckung gebildet. Die Motorabdeckung ist vorteilhaft innerhalb des Außengehäuses des Arbeitsgeräts angeordnet und von einer Haube des Arbeitsgeräts abgedeckt. Dadurch kann ein Kontakt des Bedieners mit der sich im Betrieb erwärmenden Motorabdeckung vermieden werden. Die Motorabdeckung deckt den Zylinder des Verbrennungsmotors ab. Unter die Motorabdeckung fördert das Lüfterrad Kühlluft. Besonders vorteilhaft wird die Kühlluft unter die Motorabdeckung gedrückt. Es kann jedoch auch vorgesehen sein, das Lüfterrad so anzuordnen, dass die Kühlluft unter die Motorabdeckung angesaugt wird, die erste Kühlzone also auf der Saugseite des Lüfterrads liegt. Es kann vorteilhaft sein, dass die erste Trennwand mindestens teilweise von dem Luftführungsbauteil begrenzt ist.Advantageously, the first partition is at least partially formed by a portion of an engine cover. The engine cover is advantageously disposed within the outer housing of the implement and covered by a hood of the implement. This makes it possible to avoid contact between the operator and the engine cover which heats up during operation. The engine cover covers the cylinder of the internal combustion engine. Under the engine cover, the fan promotes cooling air. Particularly advantageously, the cooling air is pressed under the engine cover. However, it may also be provided to arrange the fan so that the cooling air is sucked under the engine cover, so the first cooling zone is located on the suction side of the fan. It may be advantageous that the first partition is at least partially bounded by the air guide component.

Vorteilhaft ist mindestens ein Trennwandabschnitt der zweiten Trennwand an dem Tankgehäuse des Arbeitsgeräts angeformt. Die Pufferzone liegt vorteilhaft zwischen einem Luftfilter des Arbeitsgeräts und dem Verbrennungsmotor. Der Verbrennungsmotor besitzt einen Ansaugkanal, der den Verbrennungsmotor mit dem Luftfilter verbindet und der aufgrund der Anordnung der Pufferzone zwischen Luftfilter und Verbrennungsmotor durch die Pufferzone geführt ist. Es ist vorgesehen, dass der Ansaugkanal des Verbrennungsmotors durch die zweite Trennwand ragt. Ein einfacher Aufbau ergibt sich, wenn mindestens ein Trennwandabschnitt der zweiten Trennwand an einem separaten, an dem Tankgehäuse fixierten Bauteil ausgebildet ist. Die beiden Trennwandabschnitte begrenzen vorteilhaft die Durchtrittsöffnung für den Ansaugkanal, so dass der Ansaugkanal auf das Tankgehäuse aufgelegt und das separate Bauteil auf dem Tankgehäuse aufgesetzt und an diesem fixiert werden kann. Dadurch wird ein einfacher Aufbau und eine einfache Montage erreicht.Advantageously, at least one partition wall section of the second partition is integrally formed on the tank housing of the implement. The buffer zone is advantageously located between an air filter of the working device and the internal combustion engine. The internal combustion engine has an intake passage which connects the internal combustion engine with the air filter and which is guided through the buffer zone due to the arrangement of the buffer zone between the air filter and the internal combustion engine. It is envisaged that the intake passage of the internal combustion engine protrudes through the second partition wall. A simple construction results if at least one partition wall section of the second partition wall is formed on a separate component fixed to the tank housing. The two partition wall sections advantageously limit the passage opening for the intake passage, so that the intake passage can be placed on the tank housing and the separate component can be placed on the tank housing and fixed thereto. As a result, a simple structure and a simple assembly is achieved.

Arbeitsgeräte wie beispielsweise Trennschleifer oder dgl. arbeiten im Betrieb mit Wasser. Um eine Abfuhr von im Betrieb angesammelter Flüssigkeit im Gehäuse des Arbeitsgeräts zu ermöglichen, ist vorgesehen, dass durch die zweite Trennwand ein Ableitkanal zur Flüssigkeitsabfuhr aus der zweiten Kühlzone in die Pufferzone führt. Der Ableitkanal ist vorteilhaft als Vertiefung in einer die zweite Kühlzone begrenzenden Wand des Tankgehäuses ausgebildet. Dadurch ergibt sich ein einfacher Aufbau. Für den Ableitkanal werden keine zusätzlichen Bauteile benötigt. Vorteilhaft fällt der Ableitkanal in Abstellposition des Arbeitsgeräts von der zweiten Kühlzone zur Pufferzone ab. Dadurch wird gewährleistet, dass Flüssigkeit aus der zweiten Kühlzone in die Pufferzone strömen kann. Vorteilhaft fließt die Flüssigkeit aus der Pufferzone in die Umgebung ab. Im Betrieb kann der Luftdruck in der Pufferzone höher sein als der Luftdruck in der zweiten Kühlzone, insbesondere, wenn die Kühlluft in die Pufferzone vom Lüfterrad des Arbeitsgeräts gefördert wird. Um zu verhindern, dass aus der Pufferzone warme Luft auf die in der zweiten Kühlzone angeordnete Kraftstoffpumpe strömt, ist vorgesehen, dass der Ableitkanal bezogen auf die Strömungsrichtung in der zweiten Kühlzone stromab der Kraftstoffpumpe mit der zweiten Kühlzone verbunden ist. Luft, die aus der Pufferzone in die zweite Kühlzone strömt, kann dadurch nicht zur Kraftstoffpumpe strömen, sondern wird zum Verbrennungsmotor angesaugt.Work tools such as cutters or the like. Work in operation with water. In order to enable a removal of liquid accumulated during operation in the housing of the working device, it is provided that a discharge channel for liquid removal from the second cooling zone leads into the buffer zone through the second partition wall. The discharge channel is advantageous as a depression in a wall bounding the second cooling zone of the tank housing educated. This results in a simple structure. For the discharge channel no additional components are needed. Advantageously, the discharge channel falls in the parking position of the working device from the second cooling zone to the buffer zone. This ensures that liquid from the second cooling zone can flow into the buffer zone. Advantageously, the liquid flows from the buffer zone into the environment. In operation, the air pressure in the buffer zone may be higher than the air pressure in the second cooling zone, in particular, when the cooling air is conveyed into the buffer zone by the fan of the implement. In order to prevent warm air from flowing out of the buffer zone onto the fuel pump arranged in the second cooling zone, it is provided that the discharge channel is connected to the second cooling zone downstream of the fuel pump in relation to the flow direction in the second cooling zone. Air that flows from the buffer zone into the second cooling zone can not thereby flow to the fuel pump, but is sucked to the engine.

Im Betrieb des Verbrennungsmotors entstehen starke Vibrationen. Damit der Bediener das Arbeitsgerät an Handgriffen des Arbeitsgeräts gut führen kann, sind die Handgriffe üblicherweise vom Verbrennungsmotor über Antivibrationselemente schwingungsentkoppelt. Um eine Relativbewegung der Griffe zum Verbrennungsmotor zu erlauben, ist zwischen dem Verbrennungsmotor und den Handgriffen üblicherweise ein Schwingspalt ausgebildet. Vorteilhaft verläuft der Schwingspalt zwischen dem Tankgehäuse und dem Verbrennungsmotor. Der Schwingspalt verläuft dabei vorteilhaft durch die Pufferzone. Die Kraftstoffpumpe ist vorteilhaft am Tankgehäuse festgelegt und über den durch die Pufferzone verlaufenden Schwingspalt von dem in der ersten Kühlzone angeordneten Zylinder getrennt. Dadurch ergibt sich ein großer Abstand zwischen Kraftstoffpumpe und Zylinder, der sicherstellt, dass die Kraftstoffpumpe nicht unzulässig erwärmt wird. Aufgrund des durch die Pufferzone verlaufenden Schwingspalts ändert sich im Betrieb bei Relativbewegungen von Tankgehäuse und Verbrennungsmotor das Volumen der Pufferzone. Die Anordnung eines festen Isolierkörpers, der die Pufferzone ausfüllt, ist nicht möglich, da dieser Isolierkörper die Relativbewegung zwischen Tankgehäuse und Verbrennungsmotor behindern würde. Durch die Anordnung der Pufferzone zwischen den beiden Kühlzonen kann dennoch eine gute thermische Trennung der Kraftstoffpumpe vom Verbrennungsmotor erreicht werden.During operation of the internal combustion engine, strong vibrations occur. In order for the operator to be able to easily guide the implement by means of handles of the implement, the handles are usually vibration-decoupled from the internal combustion engine via anti-vibration elements. In order to allow a relative movement of the handles to the engine, a vibrating gap is usually formed between the engine and the handles. Advantageously, the oscillation gap extends between the tank housing and the internal combustion engine. The oscillation gap advantageously extends through the buffer zone. The fuel pump is advantageously fixed to the tank housing and separated by the extending through the buffer zone oscillation gap of the arranged in the first cooling zone cylinder. This results in a large distance between the fuel pump and the cylinder, which ensures that the fuel pump is not heated inadmissible. Due to the oscillation gap running through the buffer zone, the volume of the buffer zone changes during operation in the case of relative movements of the tank housing and the internal combustion engine. The arrangement of a solid insulating body, which fills the buffer zone is not possible because this insulator would hinder the relative movement between the tank housing and the engine. By arranging the buffer zone between the two cooling zones Nevertheless, a good thermal separation of the fuel pump can be achieved by the internal combustion engine.

Ein Ausführungsbeispiel der Erfindung wird im Folgenden anhand der Zeichnung erläutert. Es zeigen:

Fig. 1
eine schematische Seitenansicht eines Trennschleifers,
Fig. 2
eine Ansicht auf Motoreinheit und Tankgehäuse des Trennschleifers aus Fig. 1 in Richtung des Pfeils II in Fig. 1,
Fig. 3
einen Schnitt durch Motoreinheit und Tankgehäuse oberhalb der Drehachse der Kurbelwelle,
Fig. 4
eine teilgeschnittene Seitenansicht von Tankgehäuse und Motoreinheit in Richtung des Pfeils IV in Fig. 2,
Fig. 5
eine Seitenansicht in Richtung des Pfeils V in Fig. 4,
Fig. 6
eine perspektivische Darstellung der Montagehilfe,
Fig. 7
eine ausschnittsweise teilgeschnittene Seitenansicht von Tankgehäuse und Motoreinheit in Richtung des Pfeils IV in Fig. 2,
Fig. 8
eine perspektivische Darstellung des Tankgehäuses,
Fig. 9
eine perspektivische Ansicht der Motoreinheit,
Fig. 10
eine Seitenansicht auf die Motoreinheit in Richtung des Pfeils X in Fig. 4,
Fig. 11
eine perspektivische Schnittdarstellung der Motoreinheit auf der Höhe des Kraftstoffventils,
Fig. 12
eine Seitenansicht der Motoreinheit in Richtung des Pfeils XII in Fig. 4 ohne Zylinder und Abgasschalldämpfer.
An embodiment of the invention will be explained below with reference to the drawing. Show it:
Fig. 1
a schematic side view of a cutting grinder,
Fig. 2
a view of the motor unit and tank housing of the cutting off Fig. 1 in the direction of arrow II in Fig. 1 .
Fig. 3
a section through the engine unit and tank housing above the axis of rotation of the crankshaft,
Fig. 4
a partially sectioned side view of the tank housing and motor unit in the direction of arrow IV in Fig. 2 .
Fig. 5
a side view in the direction of arrow V in Fig. 4 .
Fig. 6
a perspective view of the mounting aid,
Fig. 7
a partially sectioned side view of tank housing and motor unit in the direction of arrow IV in Fig. 2 .
Fig. 8
a perspective view of the tank housing,
Fig. 9
a perspective view of the motor unit,
Fig. 10
a side view of the motor unit in the direction of arrow X in Fig. 4 .
Fig. 11
a perspective sectional view of the engine unit at the height of the fuel valve,
Fig. 12
a side view of the motor unit in the direction of arrow XII in Fig. 4 without cylinder and exhaust silencer.

Fig. 1 zeigt als Ausführungsbeispiel für ein Arbeitsgerät, insbesondere ein handgeführtes Arbeitsgerät, einen Trennschleifer 1. Das Arbeitsgerät ist vorteilhaft tragbar. Das Arbeitsgerät kann anstatt eines Trennschleifers 1 auch ein anderes Arbeitsgerät wie beispielsweise ein Freischneider, eine Motorsäge, eine Heckenschere oder dgl. sein. Fig. 1 shows as an exemplary embodiment of a working device, in particular a hand-held implement, a power grinder 1. The implement is advantageously portable. The implement may instead of a cutting machine 1 also another working device such as a brushcutter, a chainsaw, a hedge trimmer or the like. Be.

Der Trennschleifer 1 besitzt ein Gehäuse 2, dessen Aufbau im Folgenden noch näher erläutert wird. An dem Gehäuse 2 ist ein Ausleger 3 festgelegt, der nach vorne ragt und an dessen freiem Ende eine Trennscheibe 4 drehbar gelagert ist, die mindestens teilweise von einer Schutzhaube 5 abgedeckt ist. Zum Führen des Trennschleifers 1 dient ein oberer Handgriff 6, der an einer Haube 8 des Gehäuses 2 ausgebildet ist, sowie ein Griffrohr 7, das das Gehäuse 2 an der der Trennscheibe 4 zugewandten Seite übergreift. An der der Trennscheibe 4 abgewandten Seite des Gehäuses 2 ist ein Luftfilterdeckel 9 festgelegt. Zum Abstellen des Trennschleifers 1 dienen am Gehäuse 2 und am Griffrohr 7 festgelegte Standfüße 13. Wird der Trennschleifer 1 auf einer ebenen Unterlage abgestellt, so befindet er sich in der in Fig. 1 gezeigten Abstellposition 69.The power cutter 1 has a housing 2, the structure of which will be explained in more detail below. On the housing 2, a boom 3 is fixed, which projects forward and at the free end of a cutting disc 4 is rotatably mounted, which is at least partially covered by a protective cover 5. For guiding the cutting grinder 1 is an upper handle 6, which is formed on a hood 8 of the housing 2, and a handle tube 7, which engages over the housing 2 on the side facing the blade 4. At the side facing away from the blade 4 of the housing 2, an air filter cover 9 is fixed. To stop the cutting grinder 1 serve on the housing 2 and the handle tube 7 fixed feet 13. If the power grinder 1 is placed on a flat surface, it is located in the in Fig. 1 shown parking position 69.

Im Gehäuse 2 ist ein Verbrennungsmotor 12 angeordnet, der zum rotierenden Antrieb der Trennscheibe 4 dient. Der Verbrennungsmotor 12 ist im Ausführungsbeispiel ein Zweitaktmotor. Der Verbrennungsmotor 12 kann jedoch auch ein gemischgeschmierter oder ein getrenntgeschmierter Viertaktmotor sein. Der Verbrennungsmotor 12 ist vorteilhaft ein Einzylindermotor. Zur Bedienung des Verbrennungsmotors 12 dient ein am oberen Handgriff 6 schwenkbar gelagerter Gashebel 10. Der Gashebel 10 kann nur gedrückt werden, wenn eine ebenfalls am oberen Handgriff 6 gelagerte Gashebelsperre 11 betätigt ist. Um den Verbrennungsmotor 12 mit Kraftstoff zu versorgen, ist eine Kraftstoffpumpe 23 im Gehäuse 2 angeordnet. Die Kraftstoffpumpe 23 ist benachbart zum Luftfilterdeckel 9, also an der der Trennscheibe 4 abgewandten Rückseite des Gehäuses 2 angeordnet. Dadurch lässt sich ein vergleichsweise großer Abstand zwischen dem Verbrennungsmotor 12 und der Kraftstoffpumpe 23 erreichen, wodurch die Wärmeübertragung vom Verbrennungsmotor 12 auf die Kraftstoffpumpe 23 verringert wird. Die Kraftstoffpumpe 23 ist so angeordnet, dass sich ein möglichst großer Abstand zu einem Zylinder 17 (Fig. 2) des Verbrennungsmotors 12 ergibt. Zur Ansaugung von Verbrennungsluft besitzt die Haube 8 eine Ansaugöffnung 65, die durch eine Vielzahl von Kühlluftschlitzen 66 gebildet ist. Die Kühlluftschlitze 66 sind unmittelbar benachbart zur Kraftstoffpumpe 23 in der Haube 8 des Gehäuses 2 ausgebildet. Wie Fig. 1 auch zeigt, ist eine Motorabdeckung 27 vorgesehen, die den Verbrennungsmotor 12 teilweise abdeckt. Die Motorabdeckung 27 ist von der Haube 8 abgedeckt.In the housing 2, an internal combustion engine 12 is arranged, which serves for the rotary drive of the cutting disc 4. The internal combustion engine 12 is a two-stroke engine in the embodiment. However, the engine 12 may also be a compound lubricated or a separately lubricated four-stroke engine. The internal combustion engine 12 is advantageously a single-cylinder engine. To operate the internal combustion engine 12 is a pivotally mounted on the upper handle 6 throttle lever 10. The throttle lever 10 can only be pressed when a likewise mounted on the upper handle 6 throttle lever lock 11 is actuated. In order to supply the internal combustion engine 12 with fuel, a fuel pump 23 is arranged in the housing 2. The fuel pump 23 is adjacent to the air filter cover 9, ie arranged on the blade 4 remote from the rear side of the housing 2. As a result, a comparatively large distance between the internal combustion engine 12 and the fuel pump 23 can be achieved, whereby the heat transfer from the internal combustion engine 12 to the fuel pump 23 is reduced. The fuel pump 23 is arranged so that the greatest possible distance to a cylinder 17 (FIG. Fig. 2 ) of the internal combustion engine 12 results. For the intake of combustion air, the hood 8 has an intake opening 65, which is formed by a plurality of cooling air slots 66. The cooling air slots 66 are formed immediately adjacent to the fuel pump 23 in the hood 8 of the housing 2. As Fig. 1 Also, an engine cover 27 is provided which partially covers the engine 12. The engine cover 27 is covered by the hood 8.

Fig. 2 zeigt eine Draufsicht auf den Trennschleifer 1, wobei der Ausleger 3 nicht gezeigt ist. Außerdem sind die Haube 8 und der Luftfilterdeckel 9 abgenommen. Auch weitere Komponenten sind zur besseren Verdeutlichung des konstruktiven Aufbaus nicht gezeigt. Fig. 2 shows a plan view of the grinder 1, wherein the boom 3 is not shown. In addition, the hood 8 and the air filter cover 9 are removed. Other components are not shown to better illustrate the structural design.

Unter der Motorabdeckung 27 ist eine erste Kühlzone A ausgebildet, in der ein Zylinder 17 des Verbrennungsmotors 12 angeordnet ist. In die erste Kühlzone A fördert ein vom Verbrennungsmotor 12 angetriebenes Lüfterrad 28 Kühlluft. Die Kühlluft wird entlang der in Fig. 2 schematisch angezeichneten Pfeile 61 über den Zylinder 17 gefördert und tritt nach vorne, also in Richtung zur Trennscheibe 4, aus dem Gehäuse 2 aus. Im Ausführungsbeispiel saugt das Lüfterrad 28 die Kühlluft durch einen in Fig. 2 schematisch gezeigten Lüfterraddeckel 70 direkt aus der Umgebung an.Under the engine cover 27, a first cooling zone A is formed, in which a cylinder 17 of the internal combustion engine 12 is arranged. In the first cooling zone A promotes a driven by the internal combustion engine 12 fan 28 cooling air. The cooling air will flow along in Fig. 2 schematically drawn arrows 61 conveyed over the cylinder 17 and passes forward, ie in the direction of the cutting wheel 4, from the housing 2. In the embodiment, the fan 28 sucks the cooling air through a in Fig. 2 schematically shown Lüfterraddeckel 70 directly from the environment.

Die Kraftstoffpumpe 23 ist in einer zweiten Kühlzone C angeordnet, und zwar unmittelbar benachbart zur Ansaugöffnung 65 (Fig. 1). Die Umgebungsluft strömt aus der Umgebung unmittelbar über die Kraftstoffpumpe 23. Die Ansaugöffnung 65 stellt eine separate Ansaugöffnung für Kühlluft dar, die von der Ansaugöffnung der vom Lüfterrad 28 angesaugten Kühlluft getrennt ist. Die in die zweite Kühlzone C angesaugte Luft ist Verbrennungsluft für den Verbrennungsmotor 12, die in Richtung eines Pfeils 63 zu in Fig. 2 nicht gezeigten Lufteinstrittsöffnungen einer Luftreinigungseinheit 71 strömt. Die Luftreinigungseinheit 71 ist teilweise an einem Tankgehäuse 25 des Trennschleifers 1 angeformt. Wie Fig. 2 auch zeigt, ist im Tankgehäuse 25 ein Kraftstofftank 32 ausgebildet, aus dem die Kraftstoffpumpe 23 den Kraftstoff ansaugt. Die Kraftstoffpumpe 23 ist hierzu mit dem in Fig. 8 gezeigten Anschlussstutzen 51 verbunden, der in der in Fig. 2 gezeigten Montageöffnung 41 des Tankgehäuses 25 festgelegt ist.The fuel pump 23 is arranged in a second cooling zone C, directly adjacent to the suction opening 65 (FIG. Fig. 1 ). The ambient air flows from the environment directly through the fuel pump 23. The suction port 65 is a separate suction port for cooling air, which is separated from the suction port of the intake air from the fan 28 cooling air. The air sucked into the second cooling zone C is combustion air for the internal combustion engine 12, which is in the direction of an arrow 63 in FIG Fig. 2 not shown air inlet openings of an air cleaning unit 71 flows. The air purification unit 71 is partially formed on a tank housing 25 of the cutter 1. As Fig. 2 Also shows, in the tank housing 25, a fuel tank 32 is formed, from which the fuel pump 23 sucks the fuel. The fuel pump 23 is for this purpose with the in Fig. 8 shown connecting piece 51, which in the in Fig. 2 shown mounting opening 41 of the tank housing 25 is fixed.

Zwischen der ersten Kühlzone A und der zweiten Kühlzone C ist eine Pufferzone B ausgebildet. Die Pufferzone B ist von der ersten Kühlzone A durch eine Trennwand getrennt, die von der Motorabdeckung 27 gebildet ist. Die Trennung zwischen der ersten Kühlzone A und der Pufferzone B verläuft in der in Fig. 2 gezeigten Ansicht etwa entlang der Linie 57. Die Pufferzone B ist von der zweiten Kühlzone C durch eine Trennwand getrennt, die teilweise von dem in Fig. 2 gezeigten oberen Trennwandabschnitt 35 gebildet ist. Der obere Trennwandabschnitt 35 ist an einer Montagehilfe 36 angeformt, die auf das Tankgehäuse 25 aufgesetzt ist. Die Montagehilfe 36 besitzt zwei Arme 37, die eine Aufnahme 38 halten. Die Aufnahme 38 nimmt das dem Gashebel 10 zugewandte Ende einer Bowdenzughülle auf. Der Bowdenzug, der durch die Bowdenzughülle verläuft, dient zur Übertragung der Stellbewegung des Gashebels 10 auf ein im Folgenden noch gezeigtes Drosselelement in einem Ansaugkanal des Verbrennungsmotors 12.Between the first cooling zone A and the second cooling zone C, a buffer zone B is formed. The buffer zone B is separated from the first cooling zone A by a partition formed by the engine cover 27. The separation between the first cooling zone A and the buffer zone B runs in the in Fig. 2 The buffer zone B is separated from the second cooling zone C by a partition wall which is partially separated from the one shown in FIG Fig. 2 shown upper partition wall portion 35 is formed. The upper partition wall section 35 is formed on an assembly aid 36, which is placed on the tank housing 25. The mounting aid 36 has two arms 37 which hold a receptacle 38. The receptacle 38 receives the throttle lever 10 facing the end of a Bowden cable. The Bowden cable, which runs through the Bowden cable sheath, serves to transmit the adjusting movement of the throttle lever 10 to a throttle element, which is still shown below, in an intake passage of the internal combustion engine 12.

Das Tankgehäuse 25 ist von einer Motoreinheit 24 des Trennschleifers 1 über einen Schwingspalt 60 getrennt. Der Schwingspalt 60 ist von mehreren Antivibrationselementen überbrückt, von denen in Fig. 2 ein Antivibrationselement 40 gezeigt ist. Die Motoreinheit 24 umfasst den Verbrennungsmotor 12, einen Montageflansch 72 für den Ausleger 3 sowie ein auf der gegenüberliegenden Seite des Verbrennungsmotors 12 angeordnetes Lüfterradgehäuse 44, in dem das Lüfterrad 28 angeordnet ist. Im Betrieb bewegen sich Tankgehäuse 25 und Motoreinheit 24 relativ zueinander. Dadurch ändert sich das Volumen der Pufferzone B im Betrieb permanent.The tank housing 25 is separated from a motor unit 24 of the cutting grinder 1 via a vibration gap 60. The vibration gap 60 is bridged by a plurality of anti-vibration elements, of which in Fig. 2 an anti-vibration element 40 is shown. The engine unit 24 comprises the internal combustion engine 12, a mounting flange 72 for the boom 3, and a fan wheel housing 44 arranged on the opposite side of the internal combustion engine 12, in which the fan wheel 28 is arranged. In operation, the tank housing 25 and motor unit 24 move relative to each other. As a result, the volume of the buffer zone B changes permanently during operation.

Wie Fig. 3 zeigt, strömt die in die zweite Kühlzone C angesaugte Verbrennungsluft an der Längsseite des Trennschleifers 1, die dem Montageflansch 72 abgewandt liegt und an der das Lüfterrad 28 angeordnet ist, in Lufteintrittsöffnungen 73 der Luftreinigungseinheit 71.As Fig. 3 2, the combustion air sucked into the second cooling zone C flows into air inlet openings 73 of the air cleaning unit 71 on the longitudinal side of the cutting grinder 1, which faces away from the mounting flange 72 and on which the fan impeller 28 is arranged.

Die Lufteintrittsöffnungen 73 münden in Zyklone 33, die in Fig. 4 gezeigt sind. Die Lufteintrittsöffnungen 73 sind benachbart zum Außenumfang des Lüfterradgehäuses 44 angeordnet. Aus den Zyklonen 33 strömt die Verbrennungsluft in einen nicht gezeigten Luftfilter und von dort in einen Ansaugkanal des Verbrennungsmotors 12.The air inlet openings 73 open into cyclones 33, which in Fig. 4 are shown. The air inlet openings 73 are arranged adjacent to the outer circumference of the Lüfterradgehäuses 44. From the cyclones 33, the combustion air flows into an air filter, not shown, and from there into an intake passage of the internal combustion engine 12.

Im Ausführungsbeispiel wird die Verbrennungsluft in die zweite Kühlzone C aus der Umgebung angesaugt. Alternativ könnte jedoch auch vorgesehen sein, Luft aus einem Überdruckbereich des Lüfterradgehäuses 44 in die zweite Kühlzone C und von dort als Verbrennungsluft zu den Lufteintrittsöffnungen 73 zu fördern. Dadurch wird dem Verbrennungsmotor 12 Verbrennungsluft zugeführt, die unter Überdruck steht.In the exemplary embodiment, the combustion air is sucked into the second cooling zone C from the environment. Alternatively, however, it could also be provided to convey air from an overpressure region of the fan wheel housing 44 into the second cooling zone C and from there as combustion air to the air inlet openings 73. As a result, the combustion engine 12 combustion air is supplied, which is under pressure.

Das Lüfterradgehäuse 44 bildet eine Lüfterspirale und ist an einem Kurbelgehäuse 14 des Verbrennungsmotors 12 angeformt. Das Lüfterradgehäuse 44 begrenzt eine Lüfterspirale 78. An der dem Kurbelgehäuse 14 zugewandten Rückwand 74 des Lüfterradgehäuses 44 ist in einem Überdruckbereich der Lüfterspirale 78 eine Verbindungsöffnung 46 ausgebildet, in der eine Anschlusstülle 75 angeordnet ist. Die Anschlusstülle 75, die beispielsweise eine Gummitülle sein kann, verbindet den Überdruckbereich des Lüfterradgehäuses 44 mit einem Verbindungskanal 47, der in eine in der Pufferzone B ausgebildete Vorkammer 67 mündet. In der Vorkammer 67 ist ein Halter 42 für ein Einspritzventil des Verbrennungsmotors 12 angeordnet. In den Halter 42 ist außerdem ein Druckdämpfer 45 für den von der Kraftstoffpumpe 23 geförderten Kraftstoff integriert. Die Vorkammer 67 und der Verbindungskanal 47 sind in einem haubenförmigen Luftführungsbauteil 43 ausgebildet. Das Luftführungsbauteil 43 ist am Kurbelgehäuse 14 gehalten. Das Luftführungsbauteil 43 umschließt den Halter 42 eng, so dass zwischen Luftführungsbauteil 43 und Halter 42 nur ein schmaler Strömungspfad für die Kühlluft gebildet ist. Dadurch wird sichergestellt, dass der Halter 42 und das im Halter 42 angeordnete Einspritzventil gut gekühlt werden. Das Luftführungsbauteil 43 schließt nicht dichtend mit dem Kurbelgehäuse 14 ab, so dass die in das Luftführungsbauteil 43 entlang des Pfeils 62 gedrückte Kühlluft durch zwischen dem Luftführungsbauteil 43 und dem Kurbelgehäuse 14 gebildete Spalte in eine Hauptkammer 68 der Pufferzone B entweichen kann. Aus der Hauptkammer 68 strömt die Kühlluft in Richtung des Pfeils 49 benachbart zum Montageflansch 72 aus dem Gehäuse 2 aus.The Lüfterradgehäuse 44 forms a fan coil and is integrally formed on a crankcase 14 of the engine 12. The Lüfterradgehäuse 44 defines a fan coil 78. On the crankcase 14 facing the rear wall 74 of the Lüfterradgehäuses 44, a connection opening 46 is formed in an overpressure region of the fan coil 78, in which a connection sleeve 75 is arranged. The connecting sleeve 75, which may be a rubber grommet, for example, connects the overpressure region of the ventilator wheel housing 44 to a connecting channel 47 which opens into an antechamber 67 formed in the buffer zone B. In the antechamber 67, a holder 42 for an injection valve of the internal combustion engine 12 is arranged. In the holder 42, a pressure damper 45 is also integrated for the funded by the fuel pump 23 fuel. The pre-chamber 67 and the connecting channel 47 are formed in a hood-shaped air guide member 43. The air guide member 43 is held on the crankcase 14. The air guide member 43 encloses the holder 42 closely, so that only a narrow flow path for the cooling air is formed between the air guide member 43 and holder 42. This ensures that the holder 42 and arranged in the holder 42 injection valve are well cooled. The air guide member 43 does not seal with the crankcase 14 so that the cooling air forced into the air guide member 43 along the arrow 62 can escape into a main chamber 68 of the buffer zone B through gaps formed between the air guide member 43 and the crankcase 14. From the main chamber 68 the cooling air flows out of the housing 2 in the direction of the arrow 49 adjacent to the mounting flange 72.

Wie die Figuren 3 und 4 zeigen, ist am Verbrennungsmotor 12 ein Abgasschalldämpfer 19 festgelegt, der an der der Trennscheibe 4 zugewandten Vorderseite des Gehäuses 2 angeordnet ist. Im Kurbelgehäuse 14 ist eine in den Figuren nicht gezeigte Kurbelwelle um eine Drehachse 15 drehbar gelagert. In Fig. 3 liegt die Drehachse 15 der Kurbelwelle unterhalb der Schnittebene und ist nur schematisch gezeigt. Aus dem Kurbelgehäuseinnenraum 16 führt ein Überströmkanal 18, der in einen im Zylinder 17 ausgebildeten Brennraum mündet. Der Zylinder 17 besitzt eine Zylinderlängsachse 29, die in der in Fig. 1 gezeigten üblichen Abstellposition 69 gegenüber der in Fig. 1 gezeigten Vertikalen 79 geringfügig nach hinten in Richtung auf den oberen Handgriff 6 geneigt ist.As the FIGS. 3 and 4 show, on the internal combustion engine 12, an exhaust muffler 19 is fixed, which is arranged on the cutting disc 4 facing the front of the housing 2. In the crankcase 14, a crankshaft not shown in the figures is rotatably mounted about an axis of rotation 15. In Fig. 3 the axis of rotation 15 of the crankshaft is below the cutting plane and is shown only schematically. From the crankcase interior 16, an overflow channel 18 leads, which opens into a cylinder 17 formed in the combustion chamber. The cylinder 17 has a cylinder longitudinal axis 29, which in the in Fig. 1 shown usual parking position 69 against the in Fig. 1 shown vertical 79 is slightly inclined rearwardly toward the upper handle 6.

Am Zylinder 17 ist ein in Fig. 4 schematisch gezeigtes Drosselgehäuse 21 festgelegt, in dem ein Drosselelement, im Ausführungsbeispiel eine Drosselklappe 22, schwenkbar gelagert ist. Auf die Drosselklappe 22 wirkt der Gashebel 10. Im Drosselgehäuse 21 ist ein Ansaugkanal 30 geführt, der Verbrennungsluft in den Kurbelgehäuseinnenraum 16 zuführt. Das Drosselgehäuse 21 ist über einen Ansaugstutzen 20 mit einem am Luftfilterboden des Luftfilters festgelegten Kanalabschnitt 53 verbunden. Der Ansaugstutzen 20 besteht aus einem elastischen Material und ist dadurch elastisch. Der Ansaugstutzen kann aufgrund seiner Elastizität Relativbewegungen zwischen der Motoreinheit 24, an der das Drosselgehäuse 21 fixiert ist, und dem Tankgehäuse 25 mit dem Kanalabschnitt 53 ausgleichen. Der in der Pufferzone B angeordnete Ansaugstutzen 20 überbrückt den Schwingspalt 60. In Fig. 4 ist zur Verdeutlichung zwischen einem in Richtung auf die Trennscheibe 4 ragenden Steg 59 des Tankgehäuses 25 und der Motoreinheit 24 ein weiteres Antivibrationselement 64 eingezeichnet, das den Schwingspalt 60 überbrückt. In der tatsächlichen Ausführung sind mehrere Antivibrationselemente 64 zwischen dem Steg 59 und der Motoreinheit 24 angeordnet, die neben dem Steg 59 angeordnet sind und die in den Figuren nicht gezeigt sind.On the cylinder 17 is an in Fig. 4 schematically shown throttle body 21 defined in which a throttle element, in the embodiment, a throttle valve 22, is pivotally mounted. In the throttle housing 21, an intake passage 30 is guided, the combustion air into the crankcase interior 16 supplies. The throttle housing 21 is connected via an intake 20 with a fixed to the air filter bottom of the air filter channel section 53. The intake manifold 20 is made of an elastic material and is therefore elastic. Due to its elasticity, the intake manifold can compensate for relative movements between the motor unit 24, on which the throttle housing 21 is fixed, and the tank housing 25 with the channel section 53. The arranged in the buffer zone B intake 20 bridges the vibration gap 60. In Fig. 4 For illustration, a further anti-vibration element 64, which bridges the oscillation gap 60, is shown between a web 59 of the tank housing 25 projecting in the direction of the separating disk 4 and the motor unit 24. In the actual embodiment, a plurality of anti-vibration elements 64 are arranged between the web 59 and the motor unit 24, which are arranged next to the web 59 and which are not shown in the figures.

Im Betrieb wird die Verbrennungsluft durch die zweite Kühlzone C aus der Umgebung über die Kraftstoffpumpe 23 in die Lufteintrittsöffnungen 73 der Luftreinigungseinheit 71 angesaugt. Das Lüfterrad 28 fördert Kühlluft in die erste Kühlzone A, die im Zwischenraum zwischen der Motorabdeckung 27 und dem Zylinder 17 gebildet ist, in Richtung des Pfeils 61 (Fig. 4). In die Pufferzone wird aus einem Überdruckbereich der Lüfterradspirale 78 Kühlluft in die unter dem Lüftführungsbauteil 43 angeordnete Vorkammer 67 gedrückt. Die Luft entweicht über die Hauptkammer 68 der Pufferzone B in die Umgebung. Die Verbrennungsluft wird in der Luftreinigungseinheit 71 gereinigt und über den Kanalabschnitt 53, den Ansaugstutzen 20 und das Drosselgehäuse 21 in den Kurbelgehäuseinnenraum 16 zugeführt. Hierzu dient eine nicht gezeigte Eintrittsöffnung im Zylinder 17, die von einem im Zylinder 17 in Richtung der Zylinderlängsachse 29 hin- und hergehend gelagerten Kolben gesteuert ist. Im Kurbelgehäuseinnenraum 16 wird der Verbrennungsluft Kraftstoff über das in den Figuren 3 und 4 nicht gezeigte Einspritzventil zugeführt. Das Kraftstoff/Luft-Gemisch aus dem Kurbelgehäuseinnenraum 16 strömt über den Überströmkanal 18, der mit mindestens einer nicht gezeigten Überströmöffnung in einen im Zylinder 17 ausgebildeten Brennraum mündet, in den Brennraum über. Die Überströmöffnungen sind ebenfalls vom Kolben gesteuert. Nach der Verbrennung entweichen die Abgase aus dem Brennraum über einen ebenfalls vom Kolben schlitzgesteuerten Auslass in den Abgasschalldämpfer 19.In operation, the combustion air is sucked through the second cooling zone C from the environment via the fuel pump 23 into the air inlet openings 73 of the air cleaning unit 71. The fan 28 conveys cooling air into the first cooling zone A, which is formed in the space between the engine cover 27 and the cylinder 17, in the direction of the arrow 61 (FIG. Fig. 4 ). Cooling air is forced into the buffer zone from an overpressure region of the fan wheel spiral 78 into the prechamber 67 arranged below the venting guide component 43. The air escapes into the environment via the main chamber 68 of the buffer zone B. The combustion air is purified in the air cleaning unit 71 and supplied via the channel section 53, the intake manifold 20 and the throttle body 21 in the crankcase interior 16. For this purpose, an inlet opening, not shown, in the cylinder 17, which is controlled by a cylinder 17 in the direction of the cylinder longitudinal axis 29 reciprocally mounted piston. In the crankcase interior 16 of the combustion air fuel via the in the FIGS. 3 and 4 supplied injection valve, not shown. The fuel / air mixture from the crankcase interior 16 flows via the overflow channel 18, which opens with at least one overflow opening, not shown, into a combustion chamber formed in the cylinder 17, into the combustion chamber. The overflow openings are also controlled by the piston. After combustion, the exhaust gases escape from the combustion chamber via a likewise slot-controlled outlet in the exhaust muffler 19th

An der die zweite Kühlzone C und die Pufferzone B begrenzenden, in Abstellposition 69 oben liegenden Wand des Tankgehäuses 25 ist ein Ableitkanal 39 ausgebildet. Der Ableitkanal 39 ist als Vertiefung in der Wand des Tankgehäuses 25 ausgebildet. Wie Fig. 3 zeigt, ist der Ableitkanal 39 stromab der Kraftstoffpumpe 23 mit der zweiten Kühlzone C verbunden. Der Ableitkanal 39 verläuft unter einem am Tankgehäuse 25 angeformten unteren Trennwandabschnitt 34. Der untere Trennwandabschnitt 34 ist Teil der Trennwand, die die zweite Kühlzone C von der Pufferzone B trennt. Der Ableitkanal 39 verläuft durch die Trennwand. Wie Fig. 4 zeigt, verläuft der Ableitkanal 39 in üblicher Abstellposition 69 von der zweiten Kühlzone C in die Pufferzone B abfallend. Es sind keine Senken gebildet, in denen sich Flüssigkeit ansammeln könnte. In Abstellposition 69 kann in der zweiten Kühlzone C angesammelte Flüssigkeit über den Ableitkanal 39 unter dem Trennwandabschnitt 34 hindurch in die Pufferzone B und von dort in die Umgebung fließen. Dadurch wird sichergestellt, dass sich trotz der Trennung der Pufferzone B von der zweiten Kühlzone C keine Flüssigkeit in der zweiten Kühlzone C ansammeln kann. Die Flüssigkeit kann beispielsweise Wasser sein, das beim Betrieb des Trennschleifers 1 zur Kühlung der Trennscheibe 4 verwendet wird.At the second cooling zone C and the buffer zone B limiting, in Abstellposition 69 top wall of the tank housing 25, a discharge channel 39 is formed. The discharge channel 39 is formed as a depression in the wall of the tank housing 25. As Fig. 3 shows, the discharge channel 39 is connected downstream of the fuel pump 23 to the second cooling zone C. The discharge channel 39 extends under a lower partition wall section 34 formed on the tank housing 25. The lower partition wall section 34 is part of the dividing wall which separates the second cooling zone C from the buffer zone B. The discharge channel 39 extends through the dividing wall. As Fig. 4 shows, the discharge channel 39 extends in the usual Abstellposition 69 from the second cooling zone C in the buffer zone B sloping. There are no depressions formed where liquid could accumulate. In Abstellposition 69 in the second cooling zone C accumulated liquid via the discharge channel 39 under the partition wall section 34 through into the buffer zone B and from there into the environment. This ensures that, despite the separation of the buffer zone B from the second cooling zone C, no liquid can accumulate in the second cooling zone C. The liquid may, for example, be water which is used during operation of the cutting-off grinder 1 for cooling the separating disk 4.

Fig. 5 zeigt eine Ansicht auf die Zyklone 33 und in den Kraftstofftank 32. Das Tankgehäuse 25 ist in der in Fig. 5 gezeigten Ebene geteilt ausgebildet. Die Zyklone 33 trennen grobe Schmutzpartikel aus der angesaugten Verbrennungsluft ab. Diese Schmutzpartikel werden einem an Tankgehäuse 25 ausgebildeten Abführkanal 50 zugeführt, die in einen Unterdruckbereich im Lüfterradgehäuse 44 münden. Dadurch werden Schmutzpartikel in das Lüfterradgehäuse 44 angesaugt und von dort abgeführt. Fig. 5 shows a view of the cyclone 33 and in the fuel tank 32. The tank housing 25 is in the in Fig. 5 formed plane shown divided. The cyclones 33 separate coarse dirt particles from the intake combustion air. These dirt particles are fed to a discharge channel 50 formed on the tank housing 25, which open into a negative pressure region in the fan wheel housing 44. As a result, dirt particles are sucked into the Lüfterradgehäuse 44 and discharged from there.

Wie Fig. 5 auch zeigt, durchragt der Kanalabschnitt 53, in dem ein Abschnitt des Ansaugkanals 30 geführt ist, die zwischen der zweiten Kühlzone C und der Pufferzone B gebildete Trennwand. Der untere, am Tankgehäuse 25 angeformte Trennwandabschnitt 34 besitzt eine etwa halbkreisförmige Öffnung zur Aufnahme des Kanalabschnitts 53. Eine entsprechend halbkreisförmige Aufnahme für den Kanalabschnitt 53 besitzt auch der obere Trennwandabschnitt 35.As Fig. 5 Also, the channel portion 53 in which a portion of the suction passage 30 is guided passes through the partition wall formed between the second cooling zone C and the buffer zone B. The lower, integrally formed on the tank housing 25 partition wall portion 34 has an approximately semicircular opening for receiving the channel portion 53. A corresponding semicircular receptacle for the channel portion 53 also has the upper partition wall portion 35th

Wie auch Fig. 6 zeigt, ist der obere Trennwandabschnitt 35 an einer separat ausgebildeten Montagehilfe 36 ausgebildet. Die beiden Arme 37 der Montagehilfe 36 ragen bis zur Haube 8 nach oben. Die Aufnahme 38 ist benachbart zur Haube 8, und zwar in der Nähe des Drehpunkts des Gashebels 10 angeordnet.As well as Fig. 6 shows, the upper partition wall portion 35 is formed on a separately formed mounting aid 36. The two arms 37 of the mounting aid 36 project up to the hood 8 upwards. The receptacle 38 is adjacent to the hood 8, in the vicinity of the pivot point of the throttle lever 10 is arranged.

Wie Fig. 7 zeigt, ist in üblicher Abstellposition 69 (Fig. 1) oberhalb des Kanalabschnitts 53 ein Steuergerät 80 angeordnet, das zur Steuerung des Verbrennungsmotors 12 und eventuell weiterer elektrischer Komponenten des Trennschleifers 1 dient. Das Steuergerät 80 begrenzt die Kühlzone C und die Pufferzone B. Das Steuergerät 80 besitzt ein Gehäuse 81, an dem eine in Abstellposition 69 nach unten ragende Rippe 82 angeformt ist, die einen Trennwandabschnitt der Trennwand zwischen zweiter Kühlzone C und Pufferzone B bildet. Wie Fig. 7 auch zeigt, liegt die Rippe 82 an einer Wand 83 der Montagehilfe 36 (siehe auch Fig. 6) an und erstreckt sich bis zu einem Boden 84 der Montagehilfe 36. Der Boden 84 erstreckt sich quer zur Wand 83 und zur Rippe 82 und verläuft in Abstellposition 69 etwa horizontal. Durch die Rippe 82, die an der Wand 83 und dem Boden 84 anliegt, ergibt sich eine weitgehende dichte Trennung von Pufferzone B und zweiter Kühlzone C in diesem Bereich. Die Rippe 82, die Wand 83 und der Boden 84 wirken nach Art einer Labyrinthdichtung.As Fig. 7 shows is in the usual parking position 69 ( Fig. 1 ) above the channel portion 53, a control unit 80 is arranged, which serves to control the internal combustion engine 12 and possibly other electrical components of the cutting grinder 1. The control unit 80 delimits the cooling zone C and the buffer zone B. The control unit 80 has a housing 81, on which a rib 82 projecting downwards in the parking position 69 is formed, which forms a partition wall section of the dividing wall between the second cooling zone C and the buffer zone B. forms. As Fig. 7 also shows, the rib 82 is located on a wall 83 of the mounting aid 36 (see also Fig. 6 ) and extends to a bottom 84 of the mounting aid 36. The bottom 84 extends transversely to the wall 83 and the rib 82 and extends in the parking position 69 is approximately horizontal. By the rib 82, which rests against the wall 83 and the bottom 84, there is a substantial dense separation of buffer zone B and second cooling zone C in this area. The rib 82, the wall 83 and the bottom 84 act in the manner of a labyrinth seal.

Fig. 8 zeigt die Gestaltung des Tankgehäuses 25 mit dem Steg 59, dem integral ausgebildeten Ableitkanal 39 sowie dem am Tankgehäuse 25 angeformten unteren Trennwandabschnitt 34. Fig. 8 zeigt auch die Tanköffnung 52, in der ein Verschlussstutzen für den Tankdeckel fixiert ist. Wie Fig. 8 auch zeigt, besitzt der Anschlussstutzen 51 zwei Anschlüsse 54, wobei einer der Anschlüsse 54 zur Verbindung mit der Kraftstoffpumpe 23 und der andere der Anschlüsse 54 zur Verbindung mit einer vom Einspritzventil kommenden Rückleitung für Kraftstoff dient. Fig. 8 shows the design of the tank housing 25 with the web 59, the integrally formed discharge channel 39 and the integrally formed on the tank housing 25 lower partition wall portion 34th Fig. 8 also shows the tank opening 52, in which a closure for the tank lid is fixed. As Fig. 8 also shows, the port 51 has two ports 54, wherein one of the terminals 54 for connection to the fuel pump 23 and the other of the terminals 54 is used for connection to a coming from the injection valve return line for fuel.

Fig. 9 zeigt eine perspektivische Darstellung der Motoreinheit 24, wobei der unter der Motorabdeckung 27 angeordnete Zylinder 17 nicht dargestellt ist, so dass ein Zylinderanschlussflansch 55 des Kurbelgehäuses 14 sichtbar ist. An der dem Zylinder 17 abgewandt liegenden Seite des Luftführungsbauteils 43 und des Halters 42 ist eine Montageöffnung 48 angeordnet, die in den Kurbelgehäuseinnenraum 16 mündet und in der ein oder mehrere Sensoren, beispielsweise ein kombinierter Druck-Temperatur-Sensor, angeordnet werden kann. Fig. 9 zeigt auch schematisch das im Halter 42 angeordnete Einspritzventil 26, das den Kraftstoff direkt in den Kurbelgehäuseinnenraum 16 zuführt. Wie Fig. 9 auch zeigt, ist am Luftführungsbauteil 43 ein Trennwandabschnitt 85 angeformt, der an der Motorabdeckung 27 anliegt und mit dieser die Trennwand zwischen erster Kühlzone A und Pufferzone B bildet. Benachbart zum Lüfterradgehäuse 44 ist ein Führungsabschnitt 86 angeordnet. Der Führungsabschnitt 86 ist ebenfalls am Luftführungsbauteil 43 angeformt und dient zur Führung von in Fig. 9 nicht gezeigten elektrischen Kabeln. Am Luftführungsbauteil 43 sind außerdem zwei Rippen 87 angeformt, zwischen denen ein nicht gezeigtes Kabel geführt und geklemmt gehalten ist. Fig. 9 shows a perspective view of the engine unit 24, wherein the arranged under the engine cover 27 cylinder 17 is not shown, so that a Zylinderanschlussflansch 55 of the crankcase 14 is visible. On the side facing away from the cylinder 17 of the air guide member 43 and the holder 42, a mounting opening 48 is arranged, which opens into the crankcase interior 16 and in which one or more sensors, such as a combined pressure-temperature sensor, can be arranged. Fig. 9 also schematically shows the holder 42 arranged in the injection valve 26, which supplies the fuel directly into the crankcase interior 16. As Fig. 9 Also shows, a partition wall portion 85 is formed on the air guide member 43, which abuts against the engine cover 27 and forms with this the partition wall between the first cooling zone A and buffer zone B. Adjacent to the Lüfterradgehäuse 44, a guide portion 86 is arranged. The guide portion 86 is also formed on the air guide member 43 and serves to guide in Fig. 9 not shown electrical cables. In addition, two ribs 87 are integrally formed on the air guide component 43, between which a cable, not shown, is guided and clamped.

Fig. 10 zeigt schematisch den Verlauf der Kühlluftströmung in der Pufferzone B. Die Kühlluft strömt aus der Überdruckzone im Lüfterradgehäuse 44 entlang des Pfeils 62 durch den Verbindungskanal 47 in die unter der Abdeckung ausgebildete Vorkammer 67. Dabei umströmt die Kühlluft den Halter 42 und kühlt so sowohl das Einspritzventil 26 als auch den Druckdämpfer 45. Der Halter 42 ist vorteilhaft aus Kunststoff ausgebildet, so dass er als Isolator wirkt und wenig Wärme vom Kurbelgehäuse 14 auf das Einspritzventil 26 übertragen wird. Aus der Vorkammer 67 strömt die Kühlluft durch den in Fig. 11 gezeigten Spalt 77, der sich vorteilhaft über den gesamten Rand des Luftführungsbauteils 43 erstreckt, in die Hauptkammer 68. In der Hauptkammer 68 strömt die Kühlluft entlang des in Fig. 10 gezeigten Pfeils 49 zum Montageflansch 72. Am Montageflansch 72 sind vorteilhaft eine Kupplung, die vorteilhaft als Fliehkraftkupplung ausgebildet ist, sowie ein Antriebsrad für einen Keilriemen zum Antrieb der Trennscheibe 4 angeordnet. Außerdem kann am Montageflansch 72 eine Starteinrichtung für den Verbrennungsmotor 12 angeordnet sein. Fig. 10 schematically shows the course of the cooling air flow in the buffer zone B. The cooling air flows from the overpressure zone in the fan housing 44 along the arrow 62 through the connecting channel 47 in the formed under the cover antechamber 67. The cooling air flows around the holder 42 and thus cools both the injection valve 26 and the pressure damper 45. The holder 42 is advantageously made of plastic, so that it acts as an insulator and little heat is transferred from the crankcase 14 to the injection valve 26. From the antechamber 67, the cooling air flows through the in Fig. 11 shown gap 77, which extends advantageously over the entire edge of the air guide member 43, in the main chamber 68. In the main chamber 68, the cooling air flows along the in Fig. 10 Arranged on the mounting flange 72 are advantageously a clutch, which is advantageously designed as a centrifugal clutch, and a drive wheel for a V-belt for driving the cutting disc 4. In addition, a starting device for the internal combustion engine 12 may be arranged on the mounting flange 72.

Wie Fig. 11 zeigt, ist am Luftführungsbauteil 43 eine Strömungsleitrippe 76 angeformt, die die einströmende Kühlluft aufteilt, wie durch die Pfeile 62 gezeigt. Ein Teil der Kühlluft strömt zum Druckdämpfer 45 und ein weiterer Teil der Kühlluft umströmt den Halter 42 im Bereich des Einspritzventils 26. Dadurch werden der Druckdämpfer 45 und das Einspritzventil 26 gut gekühlt.As Fig. 11 1, a flow guide rib 76 is formed on the air guide component 43, which divides the inflowing cooling air, as shown by the arrows 62. A portion of the cooling air flows to the pressure damper 45 and another part of the cooling air flows around the holder 42 in the region of the injection valve 26. As a result, the pressure damper 45 and the injection valve 26 are well cooled.

Fig. 12 zeigt einen Blick unter die Motorabdeckung 27, wobei der Zylinder 17 nicht gezeigt ist. Dadurch sind die Drosselklappe 22 im Ansaugkanal 30 und der Zylinderanschlussflansch 55 sichtbar. Wie Fig. 12 zeigt, besitzt das Lüfterradgehäuse 44 eine Öffnung 31 im oberen, dem Zylinder 17 benachbarten Bereich des Lüfterradgehäuses 44, durch die die Kühlluft entlang des Pfeils 61 aus einem Überdruckbereich des Lüfterradgehäuses 44 unter die Motorabdeckung 27 gefördert wird und so der Zylinder 17 gekühlt wird. Wie Fig. 12 auch zeigt, übergreift die Motoreinheit 24 den Steg 59 des Tankgehäuses 25. Fig. 12 zeigt auch die Trennebene 56 des Kurbelgehäuses 14. Die Trennebene 56 verläuft parallel zu der in Fig. 12 schematisch eingezeichneten Zylinderlängsachse 29 und in Richtung der in Fig. 12 ebenfalls schematisch eingezeichneten Drehachse 15 der Kurbelwelle seitlich versetzt zur Zylinderlängsachse 29. Fig. 12 shows a view under the engine cover 27, wherein the cylinder 17 is not shown. As a result, the throttle valve 22 in the intake passage 30 and the Zylinderanschlussflansch 55 are visible. As Fig. 12 shows, the Lüfterradgehäuse 44 has an opening 31 in the upper, the cylinder 17 adjacent region of the Lüfterradgehäuses 44 through which the cooling air is conveyed along the arrow 61 from a pressure range of the Lüfterradgehäuses 44 under the engine cover 27 and the cylinder 17 is cooled. As Fig. 12 Also shows, the motor unit 24 engages over the web 59 of the tank housing 25th Fig. 12 also shows the parting plane 56 of the crankcase 14. The parting plane 56 is parallel to the in Fig. 12 schematically drawn cylinder longitudinal axis 29 and towards the in Fig. 12 also schematically drawn axis of rotation 15 of the crankshaft laterally offset to the cylinder longitudinal axis 29th

Im gezeigten Ausführungsbeispiel wird die Kühlluft in die erste Kühlzone A und in die Pufferzone B vom Lüfterrad 28 gefördert. Alternativ kann vorgesehen sein, dass die Pufferzone B von der vom Lüfterrad 28 angesaugten Kühlluft durchströmt ist. Die vom Lüfterrad angesaugte Luft ist kühler als die vom Lüfterrad 28 geförderte Luft, da sich die Luft aufgrund der Verdichtungsarbeit des Lüfterrads 28 erwärmt. Wird die Pufferzone B von der vom Lüfterrad 28 angesaugten Luft durchströmt, so wird die Kühlluft vorteilhaft von einem unteren, in Abstellposition 69 (Fig. 1) dem Boden zugewandten Bereich des Trennschleifers 1 angesaugt und gelangt über eine Öffnung, insbesondere die Verbindungsöffnung 46, ins Lüfterradgehäuse 44.In the exemplary embodiment shown, the cooling air is conveyed into the first cooling zone A and into the buffer zone B by the fan wheel 28. Alternatively it can be provided that the buffer zone B is flowed through by the air sucked by the fan 28 cooling air. The air sucked in by the fan is cooler than the air delivered by the fan 28, since the air heats up due to the compression work of the fan 28. If the buffer zone B flows through the air drawn in by the fan wheel 28, then the cooling air is advantageously transported from a lower, in the parking position 69 (FIG. Fig. 1 ) is sucked to the floor facing the area of the cutting grinder 1 and passes through an opening, in particular the connecting opening 46, in the fan housing 44th

Claims (15)

  1. Working implement with an internal combustion engine (12) which is supplied with fuel via an injector (26), wherein the fuel is delivered by a fuel pump (23) from a fuel tank (32) to the injector (26), wherein the working implement comprises a fan impeller (28) driven by the internal combustion engine (12), wherein the internal combustion engine (12) has a cylinder (17) located in a first cooling zone (A) of the working implement, wherein the fan impeller (28) conveys cooling air through the first cooling zone (A), and wherein the fuel pump (23) is located in a second cooling zone (C) of the working implement,
    characterised in that a buffer zone (B) separated from the first cooling zone (A) by at least one first partition and from the second cooling zone (C) by at least one second partition is formed between the first cooling zone (A) and the second cooling zone (C).
  2. Working implement according to claim 1,
    characterised in that the second cooling zone (C) lies in the flow path of the combustion air drawn in by the internal combustion engine (12).
  3. Working implement according to claim 2,
    characterised in that the cooling air flows into the second cooling zone (C) through an intake opening (65), and in that the fuel pump (23) lies in the flow path of the cooling air flowing through the intake opening (65).
  4. Working implement according to claim 3,
    characterised in that the fuel pump (23) is located immediately adjacent to the intake opening (65).
  5. Working implement according to any of claims 2 to 4,
    characterised in that the combustion air is drawn into the second cooling zone (C) directly from the environment.
  6. Working implement according to any of claims 1 to 5,
    characterised in that cooling air is delivered into the buffer zone (B) by the fan impeller (28).
  7. Working implement according to any of claims 1 to 6,
    characterised in that the injector (26) is located in the buffer zone (B).
  8. Working implement according to claim 7,
    characterised in that a pressure damper (45) is located adjacent to the injector (26) in the buffer zone (B).
  9. Working implement according to claim 7 or 8,
    characterised in that the fan impeller (28) is located in an impeller housing (44), and in that the injector (26) is located in a region which is connected to the interior of the impeller housing (44) via a connecting passage (47).
  10. Working implement according to any of claims 7 to 9,
    characterised in that the injector (26) is located in a prechamber (67) of the buffer zone (B), from which cooling air flows into a main chamber (68) of the buffer zone (B), wherein the prechamber (67) is in particular separated from the main chamber (68) by an air ducting component (43), wherein the air ducting component (43) is advantageously held on a crankcase (14) of the internal combustion engine (12), and wherein the cooling air advantageously flows into the main chamber (68) between the air ducting component (43) and the crankcase (14).
  11. Working implement according to any of claims 1 to 10,
    characterised in that the first partition is at least partially represented by a section of an engine cover (27), wherein the engine cover (27) covers the cylinder (17) of the internal combustion engine (12), and wherein cooling air is delivered by the fan impeller (28) under the engine cover (27).
  12. Working implement according to any of claims 1 to 11,
    characterised in that the fuel tank (32) is formed in a tank housing (25), wherein in particular at least one partition section (34) of the second partition is formed integral with the tank housing (25) of the working implement.
  13. Working implement according to claim 12,
    characterised in that a component bounding the intake port (30) of the internal combustion engine (12) projects through the second partition, and in that at least one partition section (35) of the second partition is formed on a separate component secured to the tank housing (25).
  14. Working implement according to claim 12 or 13,
    characterised in that a discharge passage (39) for the discharge of fluid from the second cooling zone (C) leads into the buffer zone (B) through the second partition, wherein the discharge passage (39) is advantageously connected to the second cooling zone (C) downstream of the fuel pump (23) in respect to the direction of flow of the air flowing through the second cooling zone (C).
  15. Working implement according to any of claims 12 to 14,
    characterised in that the tank housing (25) is separated from the internal combustion engine (12) by swinging gap (60) extending through the buffer zone (B).
EP12008124.5A 2011-12-07 2012-12-05 Work device Active EP2610458B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102011120471A DE102011120471A1 (en) 2011-12-07 2011-12-07 implement

Publications (2)

Publication Number Publication Date
EP2610458A1 EP2610458A1 (en) 2013-07-03
EP2610458B1 true EP2610458B1 (en) 2014-09-17

Family

ID=47602704

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12008124.5A Active EP2610458B1 (en) 2011-12-07 2012-12-05 Work device

Country Status (4)

Country Link
US (1) US9175594B2 (en)
EP (1) EP2610458B1 (en)
CN (1) CN103174501B (en)
DE (1) DE102011120471A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013012746A1 (en) * 2013-07-31 2015-02-05 Andreas Stihl Ag & Co. Kg Hand-held implement
DE102015013784A1 (en) * 2015-10-20 2017-04-20 Andreas Stihl Ag & Co. Kg Hand-held implement
SE1850338A1 (en) * 2018-03-27 2019-09-28 Husqvarna Ab A cooling and air intake arrangement for a combustion engine

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB885152A (en) * 1958-10-02 1961-12-20 Linde Eismasch Ag Improvements in or relating to internal combustion engines
JPS5037806B1 (en) 1971-03-10 1975-12-05
US4205637A (en) 1976-12-13 1980-06-03 Toyota Jidosha Kogyo Kabushiki Kaisha Electronic fuel injection system for an internal combustion engine having electromagnetic valves and a fuel damper upstream thereof
IT1115980B (en) 1978-05-12 1986-02-10 Univ Belfast IMPROVEMENT IN TWO STROKE INTERNAL COMBUSTION ENGINES
JPS56110509A (en) 1980-02-05 1981-09-01 Yanmar Diesel Engine Co Ltd Air-cooled type internal combustion engine
DE3435248A1 (en) 1984-09-26 1986-04-03 Audi AG, 8070 Ingolstadt DAMPING ELEMENT FOR DAMPING PRESSURE VIBRATIONS IN FUEL LINES
EP0280923A3 (en) 1987-03-06 1989-02-22 WALBRO CORPORATION (Corporation of Delaware) Engine manifold pulse dampener
SE500639C2 (en) 1989-09-12 1994-08-01 Electrolux Ab Controls, for example gas controls for chainsaws
JP2691461B2 (en) 1990-01-29 1997-12-17 ヤンマーディーゼル株式会社 Air-cooled internal combustion engine
DE4223756C2 (en) 1992-07-18 1997-01-09 Stihl Maschf Andreas Fuel pump for a two-stroke engine
US5488933A (en) 1994-02-14 1996-02-06 Pham; Roger N. C. Fuel supply system for miniature engines
JPH09151739A (en) 1995-11-30 1997-06-10 Kioritz Corp 2-cycle internal combustion engine
JPH09242552A (en) 1996-03-01 1997-09-16 Kioritz Corp Two-cycle internal combustion engine
US5664532A (en) 1996-03-22 1997-09-09 August; Rex David Universal fuel priming system
JP2001507632A (en) 1996-04-12 2001-06-12 ドルマール・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Hand tool with internal combustion engine with electronic direct injection
JP3530694B2 (en) 1996-12-06 2004-05-24 株式会社共立 Two-stroke internal combustion engine
DE19654290A1 (en) 1996-12-27 1998-07-02 Dolmar Gmbh Driving device for a lawn trimmer
JP3630897B2 (en) 1997-02-10 2005-03-23 株式会社共立 2-cycle internal combustion engine
DE19732741A1 (en) 1997-07-30 1999-02-04 Bosch Gmbh Robert Starting procedure for two stroke engine
BR0117017A (en) 2001-05-11 2004-04-20 Electrolux Ab Clean sump internal combustion engine
US6701900B1 (en) 2002-12-31 2004-03-09 Caterpillar Inc. Quick priming fuel system and common passageway housing for same
WO2004081386A1 (en) 2003-03-13 2004-09-23 Yanmar Co., Ltd. Cover structure for engine
DE10341600A1 (en) 2003-09-10 2005-04-14 Andreas Stihl Ag & Co. Kg Carburetor arrangement of a hand-held implement
SE0302439D0 (en) 2003-09-12 2003-09-12 Electrolux Ab Throttle control device for a hand held tool
KR101131883B1 (en) 2004-07-22 2012-04-03 얀마 가부시키가이샤 Engine
DE102005002273B4 (en) 2005-01-18 2017-08-10 Andreas Stihl Ag & Co. Kg Method for operating a single-cylinder two-stroke engine
DE602006004810D1 (en) 2005-10-07 2009-03-05 Black & Decker saw
TWI341773B (en) * 2005-11-16 2011-05-11 Illinois Tool Works Fuel supply and combustion chamber systems for fastener-driving tools
US7552714B2 (en) 2006-08-16 2009-06-30 Andreas Stihl Ag & Co. Kg Ignition device for an internal combustion engine and method for its operation
JP2008045489A (en) 2006-08-16 2008-02-28 Honda Motor Co Ltd General purpose internal combustion engine
US7527043B2 (en) 2007-07-05 2009-05-05 Caterpillar Inc. Liquid fuel system with anti-drainback valve and engine using same
JP4488069B2 (en) 2007-12-27 2010-06-23 株式会社デンソー Fuel supply device
DE102009057731B4 (en) 2009-12-10 2022-02-03 Andreas Stihl Ag & Co. Kg Method for operating an implement with a diagnostic device

Also Published As

Publication number Publication date
DE102011120471A1 (en) 2013-06-13
US9175594B2 (en) 2015-11-03
EP2610458A1 (en) 2013-07-03
CN103174501B (en) 2017-03-01
CN103174501A (en) 2013-06-26
US20130340693A1 (en) 2013-12-26

Similar Documents

Publication Publication Date Title
DE69925345T2 (en) BY THE USER BORN 4-STROKE ENGINE THAT CAN BE USED IN DIFFERENT LOCATIONS
EP2602470B1 (en) Internal combustion engine with a fuel system
DE102013012513A1 (en) "Hand-guided implement"
DE102012007617B4 (en) Implement with a fuel pump
EP3181856B1 (en) Manually operated working device having a control device
DE102006024078A1 (en) Combustion engine, comprises suction channel for supplying fuel and combustion air, where suction channel is connected by inlet opening with cleaning area of air filter
EP2610458B1 (en) Work device
DE10322640B4 (en) Hand-held implement
DE4345098B4 (en) Hand-operated implement, in particular motor chainsaw
EP3009665B1 (en) Work device
DE102004058136A1 (en) implement
DE102010023822A1 (en) Device for removing oil from a positive crankcase ventilation system
DE2911497C2 (en)
DE102006013602A1 (en) Air filter assembly for an internal combustion engine
DE112017000577T5 (en) Engine and engine working machine
DE102006001570B4 (en) implement
EP0891474B1 (en) Hand-guided appliance with an internal combustion engine with direct electronic injection
DE10211404A1 (en) Portable, hand-held implement
EP2458190B1 (en) Motorised work device with improved carburettor pre-heating
EP3236038B1 (en) Hedge trimmer
EP3489481B1 (en) Manually operated work device
EP2458189B1 (en) Motorised work device with switchable summer-winter operating function
DE102022126966A1 (en) Hand-held tool and impact pot for its combustion engine
DE10222346B4 (en) Hard connection channel
DE10362363B3 (en) Hand-held tool

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20131127

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIN1 Information on inventor provided before grant (corrected)

Inventor name: TOST, CHRISTOPHER

Inventor name: SCHAEFFER, THORSTEN

Inventor name: KLARIC, IGOR

Inventor name: KINNEN, ARNO

Inventor name: LAYHER, WOLFGANG

INTG Intention to grant announced

Effective date: 20140506

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 687827

Country of ref document: AT

Kind code of ref document: T

Effective date: 20141015

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012001248

Country of ref document: DE

Effective date: 20141030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140917

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141218

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140917

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141217

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140917

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20140917

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140917

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140917

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140917

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140917

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140917

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140917

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150119

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150117

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140917

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140917

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140917

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140917

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140917

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502012001248

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141231

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140917

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141205

26N No opposition filed

Effective date: 20150618

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140917

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140917

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140917

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140917

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140917

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140917

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20121205

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151231

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151231

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140917

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140917

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140917

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 687827

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171205

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20221227

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231219

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231226

Year of fee payment: 12