EP2606278A2 - Continuous flow steam generator having an integrated reheater - Google Patents
Continuous flow steam generator having an integrated reheaterInfo
- Publication number
- EP2606278A2 EP2606278A2 EP11766953.1A EP11766953A EP2606278A2 EP 2606278 A2 EP2606278 A2 EP 2606278A2 EP 11766953 A EP11766953 A EP 11766953A EP 2606278 A2 EP2606278 A2 EP 2606278A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- steam generator
- heat transfer
- transfer medium
- tubes
- superheater
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03G—SPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
- F03G6/00—Devices for producing mechanical power from solar energy
- F03G6/003—Devices for producing mechanical power from solar energy having a Rankine cycle
- F03G6/005—Binary cycle plants where the fluid from the solar collector heats the working fluid via a heat exchanger
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K7/00—Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
- F01K7/16—Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type
- F01K7/22—Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type the turbines having inter-stage steam heating
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03G—SPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
- F03G6/00—Devices for producing mechanical power from solar energy
- F03G6/06—Devices for producing mechanical power from solar energy with solar energy concentrating means
- F03G6/065—Devices for producing mechanical power from solar energy with solar energy concentrating means having a Rankine cycle
- F03G6/067—Binary cycle plants where the fluid from the solar collector heats the working fluid via a heat exchanger
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F22—STEAM GENERATION
- F22B—METHODS OF STEAM GENERATION; STEAM BOILERS
- F22B1/00—Methods of steam generation characterised by form of heating method
- F22B1/006—Methods of steam generation characterised by form of heating method using solar heat
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F22—STEAM GENERATION
- F22B—METHODS OF STEAM GENERATION; STEAM BOILERS
- F22B1/00—Methods of steam generation characterised by form of heating method
- F22B1/02—Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
- F22B1/06—Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being molten; Use of molten metal, e.g. zinc, as heat transfer medium
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F22—STEAM GENERATION
- F22B—METHODS OF STEAM GENERATION; STEAM BOILERS
- F22B29/00—Steam boilers of forced-flow type
- F22B29/06—Steam boilers of forced-flow type of once-through type, i.e. built-up from tubes receiving water at one end and delivering superheated steam at the other end of the tubes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F22—STEAM GENERATION
- F22B—METHODS OF STEAM GENERATION; STEAM BOILERS
- F22B29/00—Steam boilers of forced-flow type
- F22B29/06—Steam boilers of forced-flow type of once-through type, i.e. built-up from tubes receiving water at one end and delivering superheated steam at the other end of the tubes
- F22B29/061—Construction of tube walls
- F22B29/062—Construction of tube walls involving vertically-disposed water tubes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F22—STEAM GENERATION
- F22G—SUPERHEATING OF STEAM
- F22G7/00—Steam superheaters characterised by location, arrangement, or disposition
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/40—Solar thermal energy, e.g. solar towers
- Y02E10/46—Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines
Definitions
- the invention relates to a once-through steam generator, in particular for solar thermal power plants, with tegriertem in ⁇ reheater.
- Solar thermal power plants represent an alternative to the forth ⁇ conventional power generation.
- solar thermal power plants with a tower collectors and indirect evaporation in which a heat transfer medium is heated by solar radiation and its energy in a downstream heat exchanger (steam generator) to the working medium of a water-steam -Kreislaufes, wherein the generated steam is fed to a steam turbine.
- Al ⁇ ternatives for solar tower concept are power plants with parabolic channel- or Fresnel collectors, where the solar energy is not concentrated in a tower, but a sauceträ ⁇ germedium in tubes which are concentric to a focal line is heated.
- the steam generator mentioned above is currently designed so that it consists of four components (preheater, evaporator, superheater and reheater).
- the disadvantage of this is that this type of construction high costs for the Dampfmaschineerkompo- components themselves and additionally for the necessary piping ⁇ system conditions.
- the object of the invention is to propose a cost steam generator. Further, it is an object of the invention to provide a cost-steam generating device and a solar thermal power plant vorzu at reduced costs beat ⁇ .
- the container of the steam generator is a pressure vessel.
- the pressure vessel is designed such that a heat transfer medium flows through the pressure vessel from top to bottom.
- the heat transfer medium is a salt melt as salts are non-toxic, inexpensive, and in marmolze ⁇ NEN depressurized state stored.
- the superheater reheater tubes are in the direction of flow of heat carrier medium alternately side by side in the container angeord net.
- the superheater and reheater pipes are arranged alternately one behind the other in the container.
- the steam generating device advantageously comprises, in addition to the inventive continuous steam generator, a water separation system, wherein the first part of the steam generator pipes is connected downstream of the water separation system on the flow medium side.
- the second part of the steam generator tubes is expediently connected upstream of the water separation system on the flow medium side.
- the steam generating device with the steam generator is integrated according to a particularly advantageous embodiment in a solar tower power plant with indirect evaporation.
- the steam generating device is integrated with the steam generator in a solar thermal power plant with parabolic trough collectors.
- the steamer generating device is integrated with the steam generator in a solarthermi cal power plant with Fresnel panels.
- Figure 1 is a solar tower power plant with indirect evaporation and 2 shows a steam generating device with a forced continuous steam generator with integrated intermediate overheating according to the invention and a water separator.
- a solar tower power plant 1 shows schematically and by way of example a solar tower power plant 1. It comprises a solar tower 2, at the vertically upper end of which an absorber 3 is arranged. A heliostat field 4 with a number of heliostats 5 is placed on the ground around the solar tower 2. The heliostat 4 with the heliostat 5 is designed for focusing the direct solar radiation 6. The individual heliostats 5 are arranged and aligned so that the direct Solarstrah ⁇ lung 6 lung from the sun in the form of concentrated Solarstrah- is focused on the absorber 3. 7 In the solar tower power plant 1, the solar radiation is thus concentrated by a field individually tracked mirror, the heliostat 5, on the top of the solar tower 2. The absorber 3 converts the radiation into heat and delivers it to a heat transfer medium, for example molten salt or thermal oil, which supplies the heat to a conventional power plant process 8 with a steam turbine 9.
- a heat transfer medium for example molten salt or thermal oil
- Steam turbine 9 is connected with one or more pressure stages 10, 11, 12 in a water-steam circuit 13, the coming of the condenser 14 feed water is passed through various heat exchangers 15, 16, 17. These heat exchangers 15, 16, 17 have the function of preheater 15, evaporator 16 and superheater 17.
- steam which is relaxed in the high pressure ⁇ part 10 of the steam turbine 9 and slightly cooled, before entering the medium-pressure part 11 in a further heat exchanger 18 reheat between.
- Heat Transf ⁇ supply the heat transfer medium to the working medium typically thus be four components needed.
- This type of construction requires high costs for the steam generator components itself and additionally for the necessary piping system. This problem is not limited to that shown in Figure 1 type of solar thermal power plant, but be ⁇ affects other solar power plant types with indirect evaporation, such collectors as power plants with parabolic trough or Fresnel.
- FIG. 2 shows an embodiment of the inventive steam generator 19, in which all the steam generator components mentioned, ie preheaters, evaporators, superheaters and reheaters, are combined in one component.
- the run ⁇ steam generator 19 comprises a pressure vessel 20 having a heat transfer medium inlet 21 and a heat transfer medium outlet 22, between which a heat transfer medium passage is formed 23rd In the heat transfer medium channel 23 steam generator tubes 24 are arranged, wherein a first part 25 of the
- Steam generator tubes 24 is formed as a system of superheater 26 and reheater tubes 27 and a second part 28 of the steam generator tubes 24 is formed as a system of preheater 29 and evaporator tubes 30.
- a hot heat transfer medium such as a molten salt, conducted at the heat transfer medium inlet 21 into the pressure tank 20 of the steam generator 19 and flowing through the heat ⁇ carrier medium channel 23 to the steam generator tubes 24 by 22 for the heat transfer medium output
- Cold feed water is supplied through a feed water inlet 31 into the Vormérmrohre 29 pumped and continues to flow through the evaporator tubes 30.
- the steam generated in this case is supplied via a first steam outlet 32 to a Wasserabscheidesystem 33 for separating unevaporated water. Steam generator 19 and Wasserabscheidesystem 33 thereby form a steam generator 34.
- the remaining steam is supplied via a first steam inlet 35 back to the steam generator 19 for overheating in the superheater tubes 26 and leaves it again via a second steam outlet 36 in the direction of the steam turbine 9.
- the in the high-pressure part 10th The steam turbine 9 partially relaxed and cooled from ⁇ cooled steam is used for reheating over a two- Steam inlet 37 again supplied to the steam generator 19 and leaves this after flowing through the reheater pipes 27 again at the third steam outlet 38 in the direction of the central pressure part 11 of the steam turbine.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Sustainable Energy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
- Photovoltaic Devices (AREA)
Abstract
The invention relates to a continuous flow steam generator (19) having a tank (20) comprising a heat transfer medium inlet (21) and a heat transfer medium outlet (22), wherein a heat transfer medium channel (23) is formed between the heat transfer medium inlet (21) and the heat transfer medium outlet (22), and a heat transfer medium flows in said channel, having steam generator tubes (24) disposed in the heat transfer medium channel (23), wherein a first portion (25) of the steam generator tubes (24) are designed as a system of superheater (26) and reheater (27) tubes, and a second portion (28) of the steam generator tubes (24) is designed as a system of preheating (29) and boiler tubes (30), and the first portion (25) is disposed upstream of the second portion (28) in the flow direction of the heat transfer medium. The invention further relates to a steam generator device (34) having a continuous flow steam generator (19) and a water separation system (33). The invention further relates to a solar thermal power plant.
Description
Beschreibung description
Durchlaufdampferzeuger mit integriertem Zwischenüberhitzer Continuous steam generator with integrated reheater
Die Erfindung betrifft einen Zwangdurchlauf-Dampferzeuger, insbesondere für solarthermische Kraftwerksanlagen, mit in¬ tegriertem Zwischenüberhitzer. The invention relates to a once-through steam generator, in particular for solar thermal power plants, with tegriertem in ¬ reheater.
Solarthermische Kraftwerke stellen eine Alternative zur her¬ kömmlichen Stromerzeugung dar. Zurzeit werden solarthermische Kraftwerke beispielsweise mit Turmkollektoren und indirekter Verdampfung ausgeführt, bei der ein Wärmeträgermedium durch solare Strahlung aufgeheizt wird und seine Energie in einem nachgeschalteten Wärmetauscher (Dampferzeuger) an das Arbeitsmedium eines Wasser-Dampf-Kreislaufes abgibt, wobei der dabei erzeugte Dampf einer Dampfturbine zugeführt wird. Al¬ ternativen zum Solarturm-Konzept sind Kraftwerke mit Parabol- rinnen- bzw. Fresnelkollektoren, bei denen die Sonnenenergie nicht auf einen Turm konzentriert wird, sondern ein Wärmeträ¬ germedium in Rohren, die konzentrisch zu einer Brennlinie verlaufen, erwärmt wird. Solar thermal power plants represent an alternative to the forth ¬ conventional power generation. At present, for example, be carried out solar thermal power plants with a tower collectors and indirect evaporation in which a heat transfer medium is heated by solar radiation and its energy in a downstream heat exchanger (steam generator) to the working medium of a water-steam -Kreislaufes, wherein the generated steam is fed to a steam turbine. Al ¬ ternatives for solar tower concept are power plants with parabolic channel- or Fresnel collectors, where the solar energy is not concentrated in a tower, but a Wärmeträ ¬ germedium in tubes which are concentric to a focal line is heated.
Der o.g. Dampferzeuger wird derzeit so ausgeführt, dass er z.B. aus vier Komponenten (Vorwärmer, Verdampfer, Überhitzer und Zwischenüberhitzer) besteht. Nachteilig hieran ist, dass diese Art der Bauform hohe Kosten für die Dampferzeugerkompo- nenten selbst und zusätzlich für das notwendige Rohrleitungs¬ system bedingt. The steam generator mentioned above is currently designed so that it consists of four components (preheater, evaporator, superheater and reheater). The disadvantage of this is that this type of construction high costs for the Dampfzeugerkompo- components themselves and additionally for the necessary piping ¬ system conditions.
Aufgabe der Erfindung ist es, einen kostengünstigen Dampferzeuger vorzuschlagen. Ferner ist es eine Aufgabe der Erfindung, eine kostengünstige Dampferzeugungseinrichtung und eine solarthermische Kraftwerksanlage zu reduzierten Kosten vorzu¬ schlagen . The object of the invention is to propose a cost steam generator. Further, it is an object of the invention to provide a cost-steam generating device and a solar thermal power plant vorzu at reduced costs beat ¬.
Erfindungsgemäß wird diese Aufgabe gelöst durch die Vorrich¬ tung gemäß Anspruch 1, sowie die Vorrichtungen der Ansprüche 8 und 11 bis 13. Vorteilhafte Weiterbildungen der Erfindung
sind in den jeweiligen abhängigen Ansprüchen definiert. In einem Durchlaufdampferzeuger mit einem Behälter, der einen Wärmeträgermediumeingang und einen Wärmeträgermediumausgang aufweist, wobei zwischen Wärmeträgermediumeingang und Wärmeträgermediumausgang ein Wärmeträgermediumkanal gebildet ist, in dem ein Wärmeträgermedium strömt, mit im Wärmeträgermediumkanal angeordneten Dampferzeugerrohren, wobei ein erster Teil der Dampferzeugerrohre als ein System von Überhitzerund Zwischenüberhitzerrohren ausgebildet ist, und ein zweiter Teil der Dampferzeugerrohre als ein System von Vorwärm- und Verdampferrohren ausgebildet ist, und in Strömungsrichtung des Wärmeträgermediums der erste Teil vor dem zweiten Teil angeordnet ist, findet die gesamte Dampferzeugung (inklusive Zwischenüberhitzung) in einer Komponente statt, was die Kosten wesentlich reduziert. Bei den bisher bekannten Ausführungsformen des Dampferzeugers waren mindestens zwei Druckbe¬ hälter (Vorwärmer + Verdampfer + Überhitzer und separater Zwischenüberhitzer) , meistens sogar vier Druckbehälter erforderlich . According to the invention, this object is achieved by the Vorrich ¬ device according to claim 1, and the devices of claims 8 and 11 to 13. Advantageous developments of the invention are defined in the respective dependent claims. In a continuous steam generator with a container having a heat transfer medium input and a heat transfer medium, wherein between heat transfer medium and heat transfer medium output a heat transfer medium channel is formed, in which a heat transfer medium flows, arranged in the heat transfer medium channel steam generator tubes, wherein a first part of the steam generator tubes formed as a system of superheater and reheater pipes is and a second part of the steam generator tubes is formed as a system of preheating and evaporator tubes, and in the flow direction of the heat transfer medium, the first part is arranged in front of the second part, the entire steam generation takes place (including reheating) in a component, which costs significantly reduced. In the hitherto known embodiments of the steam generator were at least two Druckbe ¬ container (preheater + evaporator + superheater and separate reheater), usually even four pressure vessels required.
Vorteilhafter Weise sind Überhitzerrohre und Zwischenüberhit¬ zerrohre auf einer Wärmeträgermediumsseite zu einer Heizflä¬ che verschaltet. Damit wird eine äußerst kompakte Bauform des Durchlaufdampferzeugers erzielt. Advantageously, superheater tubes and Zwischenüberhit ¬ zerrohre on a heat carrier medium side to a Heizflä ¬ che connected. This achieves an extremely compact design of the continuous steam generator.
Zweckmäßigerweise ist der Behälter des Dampferzeugers ein Druckbehälter . Conveniently, the container of the steam generator is a pressure vessel.
Weiterhin ist es zweckmäßig, wenn der Druckbehälter derart ausgelegt ist, dass ein Wärmeträgermedium den Druckbehälter von oben nach unten durchströmt. Furthermore, it is expedient if the pressure vessel is designed such that a heat transfer medium flows through the pressure vessel from top to bottom.
Vorteilhafter Weise ist das Wärmeträgermedium eine Salzschmelze, da Salze ungiftig, kostengünstig und im geschmolze¬ nen Zustand drucklos speicherbar sind. einer vorteilhaften Aus führungs form sind die Überhitzer- Zwischenüberhitzerrohre in Strömungsrichtung eines Wärme
trägermediums alternierend nebeneinander im Behälter angeord net . Advantageously, the heat transfer medium is a salt melt as salts are non-toxic, inexpensive, and in geschmolze ¬ NEN depressurized state stored. In an advantageous embodiment, the superheater reheater tubes are in the direction of flow of heat carrier medium alternately side by side in the container angeord net.
In einer alternativen Aus führungs form sind die Überhitzerund Zwischenüberhitzerrohre alternierend hintereinander im Behälter angeordnet. In an alternative disclosed embodiment, the superheater and reheater pipes are arranged alternately one behind the other in the container.
Die Dampferzeugungseinrichtung nach der Erfindung umfasst in vorteilhafter Weise neben dem erfinderischen Durchlaufdampf- erzeuger ferner ein Wasserabscheidesystem, wobei der erste Teil der Dampferzeugerrohre dem Wasserabscheidesystem strö- mungsmediumsseitig nachgeschaltet ist. The steam generating device according to the invention advantageously comprises, in addition to the inventive continuous steam generator, a water separation system, wherein the first part of the steam generator pipes is connected downstream of the water separation system on the flow medium side.
Dabei ist der zweite Teil der Dampferzeugerrohre dem Wasser¬ abscheidesystem strömungsmediumsseitig zweckmäßigerweise vor geschaltet . In this case, the second part of the steam generator tubes is expediently connected upstream of the water separation system on the flow medium side.
Weiterhin ist es zweckmäßig, wenn an Verdampferrohre paralle angrenzende Überhitzerrohre dem Wasserabscheidesystem strö- mungsseitig unmittelbar nachgeschaltet sind. It is furthermore expedient if superheater tubes adjoining evaporator tubes are directly downstream of the water separation system on the flow side.
Die Dampferzeugungseinrichtung mit dem Dampferzeuger ist dabei nach besonders vorteilhafter Ausgestaltung in ein Solarturm-Kraftwerk mit indirekter Verdampfung integriert. The steam generating device with the steam generator is integrated according to a particularly advantageous embodiment in a solar tower power plant with indirect evaporation.
In einer alternativen Ausgestaltung ist die Dampferzeugungseinrichtung mit dem Dampferzeuger in ein solarthermisches Kraftwerk mit Parabolrinnenkollektoren integriert. In an alternative embodiment, the steam generating device is integrated with the steam generator in a solar thermal power plant with parabolic trough collectors.
In einer weiteren alternativen Ausgestaltung ist die Dampfer zeugungseinrichtung mit dem Dampferzeuger in ein solarthermi sches Kraftwerk mit Fresnelkollektoren integriert. In a further alternative embodiment, the steamer generating device is integrated with the steam generator in a solarthermi cal power plant with Fresnel panels.
Die Erfindung wird beispielhaft anhand der Zeichnungen näher erläutert. Es zeigen schematisch und nicht maßstäblich: The invention will be explained in more detail by way of example with reference to the drawings. Shown schematically and not to scale:
Figur 1 ein Solarturm-Kraftwerk mit indirekter Verdampfung und
Figur 2 eine Dampferzeugungseinrichtung mit einem Zwangdurchlauf-Dampferzeuger mit integrierter Zwischen- überhitzung nach der Erfindung und einem Wasserabscheider . Figure 1 is a solar tower power plant with indirect evaporation and 2 shows a steam generating device with a forced continuous steam generator with integrated intermediate overheating according to the invention and a water separator.
Die Figur 1 zeigt schematisch und beispielhaft ein Solarturm- Kraftwerk 1. Es umfasst einen Solarturm 2, an dessen vertikal oberem Ende ein Absorber 3 angeordnet ist. Ein Heliostatenfeld 4 mit einer Anzahl von Heliostaten 5 ist am Boden um den Solarturm 2 herum platziert. Das Heliostatenfeld 4 mit den Heliostaten 5 ist für eine Fokussierung der direkten Solarstrahlung 6 ausgelegt. Dabei sind die einzelnen Heliostaten 5 so angeordnet und ausgerichtet, dass die direkte Solarstrah¬ lung 6 von der Sonne in Form von konzentrierter Solarstrah- lung 7 auf den Absorber 3 fokussiert wird. Bei dem Solarturm- Kraftwerk 1 wird somit die Sonnenstrahlung durch ein Feld einzeln nachgeführter Spiegel, die Heliostaten 5, auf die Spitze des Solarturmes 2 konzentriert. Der Absorber 3 wandelt die Strahlung in Wärme um und gibt sie an ein Wärmeträgerme- dium, beispielsweise Salzschmelze oder Thermoöl, ab, das die Wärme einem konventionellen Kraftwerksprozess 8 mit einer Dampfturbine 9 zuführt. 1 shows schematically and by way of example a solar tower power plant 1. It comprises a solar tower 2, at the vertically upper end of which an absorber 3 is arranged. A heliostat field 4 with a number of heliostats 5 is placed on the ground around the solar tower 2. The heliostat 4 with the heliostat 5 is designed for focusing the direct solar radiation 6. The individual heliostats 5 are arranged and aligned so that the direct Solarstrah ¬ lung 6 lung from the sun in the form of concentrated Solarstrah- is focused on the absorber 3. 7 In the solar tower power plant 1, the solar radiation is thus concentrated by a field individually tracked mirror, the heliostat 5, on the top of the solar tower 2. The absorber 3 converts the radiation into heat and delivers it to a heat transfer medium, for example molten salt or thermal oil, which supplies the heat to a conventional power plant process 8 with a steam turbine 9.
Zur Übertragung der Wärme auf das Arbeitsmittel des konventi- onellen Kraftwerksprozesses 8, bei dem üblicherweise eineFor the transfer of heat to the working fluid of the conventional power plant process 8, in which usually a
Dampfturbine 9 mit einer oder mehreren Druckstufen 10, 11, 12 in einen Wasser-Dampf-Kreislauf 13 geschaltet ist, wird das vom Kondensator 14 kommende Speisewasser durch verschiedene Wärmetauscher 15, 16, 17 geleitet. Diese Wärmetauscher 15, 16, 17 haben die Funktion von Vorwärmer 15, Verdampfer 16 und Überhitzer 17. Außerdem wird zur Erhöhung des Gesamtwirkungsgrads des Kraftwerks üblicherweise Dampf, der im Hochdruck¬ teil 10 der Dampfturbine 9 entspannt und leicht abgekühlt ist, vor dem Eintritt in den Mitteldruckteil 11 in einem wei- teren Wärmetauscher 18 zwischenüberhitzt. Zur Wärmeübertra¬ gung vom Wärmeträgermedium auf das Arbeitsmedium werden somit typischer Weise vier Komponenten benötigt. Diese Art der Bauform bedingt hohe Kosten für die Dampferzeugerkomponenten
selbst und zusätzlich für das notwendige Rohrleitungssystem. Diese Problematik ist nicht nur auf den in Figur 1 gezeigten Typ eines solarthermischen Kraftwerks beschränkt, sondern be¬ trifft auch andere solare Kraftwerkstypen mit indirekter Verdampfung, wie z.B. Kraftwerke mit Parabolrinnen oder Fresnel- kollektoren . Steam turbine 9 is connected with one or more pressure stages 10, 11, 12 in a water-steam circuit 13, the coming of the condenser 14 feed water is passed through various heat exchangers 15, 16, 17. These heat exchangers 15, 16, 17 have the function of preheater 15, evaporator 16 and superheater 17. In addition, to increase the overall efficiency of the power plant usually steam, which is relaxed in the high pressure ¬ part 10 of the steam turbine 9 and slightly cooled, before entering the medium-pressure part 11 in a further heat exchanger 18 reheat between. For Heat Transf ¬ supply the heat transfer medium to the working medium typically thus be four components needed. This type of construction requires high costs for the steam generator components itself and additionally for the necessary piping system. This problem is not limited to that shown in Figure 1 type of solar thermal power plant, but be ¬ affects other solar power plant types with indirect evaporation, such collectors as power plants with parabolic trough or Fresnel.
Figur 2 zeigt eine Aus führungs form des erfinderischen Dampferzeugers 19, in dem alle genannten Dampferzeugerkomponenten, d.h. Vorwärmer, Verdampfer, Überhitzer und Zwischenüberhitzer, in einer Komponente zusammengefasst sind. Der Durchlauf¬ dampferzeuger 19 umfasst einen Druckbehälter 20, der einen Wärmeträgermediumeingang 21 und einen Wärmeträgermediumausgang 22 aufweist, zwischen denen ein Wärmeträgermediumkanal 23 gebildet ist. Im Wärmeträgermediumkanal 23 sind Dampfer- zeugerrohre 24 angeordnet, wobei ein erster Teil 25 der FIG. 2 shows an embodiment of the inventive steam generator 19, in which all the steam generator components mentioned, ie preheaters, evaporators, superheaters and reheaters, are combined in one component. The run ¬ steam generator 19 comprises a pressure vessel 20 having a heat transfer medium inlet 21 and a heat transfer medium outlet 22, between which a heat transfer medium passage is formed 23rd In the heat transfer medium channel 23 steam generator tubes 24 are arranged, wherein a first part 25 of the
Dampferzeugerrohre 24 als ein System von Überhitzer- 26 und Zwischenüberhitzerrohren 27 ausgebildet ist und ein zweiter Teil 28 der Dampferzeugerrohre 24 als ein System von Vorwärm- 29 und Verdampferrohren 30 ausgebildet ist. Steam generator tubes 24 is formed as a system of superheater 26 and reheater tubes 27 and a second part 28 of the steam generator tubes 24 is formed as a system of preheater 29 and evaporator tubes 30.
Im Betrieb wird ein heißes Wärmeträgermedium, z.B. eine Salzschmelze, am Wärmeträgermediumeingang 21 in den Druckbehälter 20 des Dampferzeugers 19 geleitet und strömt durch den Wärme¬ trägermediumkanal 23 an den Dampferzeugerrohren 24 vorbei zum Wärmeträgermediumausgang 22. Kaltes Speisewasser wird über einen Speisewassereinlass 31 in die Vorwärmrohre 29 gepumpt und strömt weiter durch die Verdampferrohre 30. Der hierbei erzeugte Dampf wird über einen ersten Dampfauslass 32 einem Wasserabscheidesystem 33 zur Abtrennung nicht verdampften Wassers zugeführt. Dampferzeuger 19 und Wasserabscheidesystem 33 bilden dabei eine Dampferzeugungseinrichtung 34. Der verbleibende Dampf wird über einen ersten Dampfeinlass 35 wieder dem Dampferzeuger 19 zur Überhitzung in den Überhitzerrohren 26 zugeführt und verlässt diesen wieder über einen zweiten Dampfauslass 36 in Richtung der Dampfturbine 9. Der im Hochdruckteil 10 der Dampfturbine 9 teilentspannte und ab¬ gekühlte Dampf wird zur Zwischenüberhitzung über einen zwei-
ten Dampfeinlass 37 wieder dem Dampferzeuger 19 zugeführt und verlässt diesen nach Durchströmen der Zwischenüberhitzerrohre 27 wieder am dritten Dampfauslass 38 in Richtung des Mitteldruckteils 11 der Dampfturbine 9.
In operation, a hot heat transfer medium, such as a molten salt, conducted at the heat transfer medium inlet 21 into the pressure tank 20 of the steam generator 19 and flowing through the heat ¬ carrier medium channel 23 to the steam generator tubes 24 by 22 for the heat transfer medium output Cold feed water is supplied through a feed water inlet 31 into the Vorwärmrohre 29 pumped and continues to flow through the evaporator tubes 30. The steam generated in this case is supplied via a first steam outlet 32 to a Wasserabscheidesystem 33 for separating unevaporated water. Steam generator 19 and Wasserabscheidesystem 33 thereby form a steam generator 34. The remaining steam is supplied via a first steam inlet 35 back to the steam generator 19 for overheating in the superheater tubes 26 and leaves it again via a second steam outlet 36 in the direction of the steam turbine 9. The in the high-pressure part 10th The steam turbine 9 partially relaxed and cooled from ¬ cooled steam is used for reheating over a two- Steam inlet 37 again supplied to the steam generator 19 and leaves this after flowing through the reheater pipes 27 again at the third steam outlet 38 in the direction of the central pressure part 11 of the steam turbine. 9
Claims
1. Durchlaufdampferzeuger (19) mit einem Behälter (20), der einen Wärmeträgermediumeingang (21) und einen Wärmeträ- germediumausgang (22) aufweist, wobei zwischen Wärmeträgermediumeingang (21) und Wärmeträgermediumausgang (22) ein Wärmeträgermediumkanal (23) gebildet ist, in dem ein Wärmeträgermedium strömt, mit im Wärmeträgermediumkanal (23) angeordneten Dampferzeugerrohren (24), wobei ein erster Teil (25) der Dampferzeugerrohre (24) als ein Sys¬ tem von Überhitzer- (26) und Zwischenüberhitzerrohren (27) ausgebildet ist, und ein zweiter Teil (28) der 1. Continuous steam generator (19) with a container (20) having a heat transfer medium inlet (21) and a heat transfer medium output (22), wherein between heat transfer medium inlet (21) and heat transfer medium outlet (22) a heat transfer medium channel (23) is formed in the a heat transfer medium flows, with in the heat transfer medium channel (23) arranged steam generator tubes (24), wherein a first part (25) of the steam generator tubes (24) as a sys ¬ tem of superheater (26) and reheater tubes (27) is formed, and a second Part (28) of the
Dampferzeugerrohre (24) als ein System von Vorwärm- (29) und Verdampferrohren (30) ausgebildet ist, und in Strö- mungsrichtung des Wärmeträgermediums der erste Teil (25) vor dem zweiten Teil (28) angeordnet ist. Steam generator tubes (24) as a system of preheating (29) and evaporator tubes (30) is formed, and in the direction of flow of the heat transfer medium, the first part (25) in front of the second part (28) is arranged.
2. Durchlaufdampferzeuger (19) nach Anspruch 1, wobei Überhitzerrohre (26) und Zwischenüberhitzerrohre (27) auf ei- ner Wärmeträgermediumsseite zu einer Heizfläche verschal¬ tet sind. Second continuous steam generator (19) according to claim 1, wherein superheater pipes (26) and reheater pipes (27) on a heat carrier medium side are verschal ¬ tet to a heating surface.
3. Durchlaufdampferzeuger (19) nach einem der Ansprüche 1 oder 2, wobei der Behälter (20) ein Druckbehälter (20) ist. 3. continuous steam generator (19) according to any one of claims 1 or 2, wherein the container (20) is a pressure vessel (20).
4. Durchlaufdampferzeuger (19) nach Anspruch 3, bei dem der Druckbehälter (20) derart ausgelegt ist, dass ein Wärme¬ trägermedium den Druckbehälter (20) von oben nach unten durchströmt. 4. Continuous steam generator (19) according to claim 3, wherein the pressure vessel (20) is designed such that a heat ¬ carrier medium flows through the pressure vessel (20) from top to bottom.
5. Durchlaufdampferzeuger (19) nach Anspruch 4, wobei das Wärmeträgermedium eine Salzschmelze ist. 5. continuous steam generator (19) according to claim 4, wherein the heat transfer medium is a molten salt.
6. Durchlaufdampferzeuger (19) nach einem der vorhergehenden Ansprüche, wobei die Überhitzer- (26) und Zwischenüberhitzerrohre (27) in Strömungsrichtung des Wärmeträgerme- diums alternierend nebeneinander im Behälter (20) angeordnet sind. 6. continuous steam generator (19) according to any one of the preceding claims, wherein the superheater (26) and reheater pipes (27) in the flow direction of the heat carrier Diums are arranged side by side alternately in the container (20).
7. Durchlaufdampferzeuger (19) nach einem der Ansprüche 1 bis 5, wobei die Überhitzer- (26) und Zwischenüberhit¬ zerrohre (27) in Strömungsrichtung des Wärmeträgermediums alternierend hintereinander im Behälter (20) angeordnet sind . 7. Continuous steam generator (19) according to one of claims 1 to 5, wherein the superheater (26) and Zwischenüberhit ¬ zerrohre (27) in the flow direction of the heat transfer medium are arranged alternately one behind the other in the container (20).
8. Dampferzeugungseinrichtung (34) mit einem Durchlaufdampf- erzeuger (19) nach einem der vorhergehenden Ansprüche, weiter umfassend ein Wasserabscheidesystem (33), wobei der erste Teil (25) der Dampferzeugerrohre (24) dem Was¬ serabscheidesystem (33) strömungsmediumsseitig nachge- schaltet ist. 8. Steam generating device (34) with a continuous steam generator (19) according to one of the preceding claims, further comprising a Wasserabscheidesystem (33), wherein the first part (25) of the steam generator tubes (24) nachge the water ¬ serabscheidesystem (33) flow medium side is switched.
9. Dampferzeugungseinrichtung (34) nach Anspruch 8, wobei der zweite Teil (28) der Dampferzeugerrohre (24) dem Was¬ serabscheidesystem (33) strömungsmediumsseitig vorge- schaltet ist. 9. steam generating device (34) according to claim 8, wherein the second part (28) of the steam generator tubes (24) the water ¬ serabscheidesystem (33) is connected upstream of the flow medium side.
10. Dampferzeugungseinrichtung (34) nach einem der Ansprüche 8 oder 9, wobei an Verdampferrohre (29) parallel angren¬ zende Überhitzerrohre (26) dem Wasserabscheidesystem (33) strömungsseitig unmittelbar nachgeschaltet sind. 10. steam generating device (34) according to any one of claims 8 or 9, wherein at evaporator tubes (29) parallel angren ¬ zende superheater tubes (26) the water separation system (33) are downstream immediately downstream.
11. Solarthermische Kraftwerksanlage mit einer Dampferzeu¬ gungseinrichtung (34) nach einem der Ansprüche 8 bis 10, weiter umfassend einen Solarturm (2) . 11. Solar thermal power plant with a Dampferzeu ¬ supply device (34) according to any one of claims 8 to 10, further comprising a solar tower (2).
12. Solarthermische Kraftwerksanlage mit einer Dampferzeu¬ gungseinrichtung (34) nach einem der Ansprüche 8 bis 10, weiter umfassend Parabolrinnenkollektoren . 12. Solar thermal power plant with a Dampferzeu ¬ supply device (34) according to any one of claims 8 to 10, further comprising parabolic trough collectors.
13. Solarthermische Kraftwerksanlage mit einer Dampferzeu¬ gungseinrichtung (34) nach einem der Ansprüche 8 bis 10, weiter umfassend Fresnelkollektoren . 13. Solar thermal power plant with a Dampferzeu ¬ supply device (34) according to one of claims 8 to 10, further comprising Fresnel collectors.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102010041903.6A DE102010041903B4 (en) | 2010-10-04 | 2010-10-04 | Continuous steam generator with integrated reheater |
PCT/EP2011/066966 WO2012045650A2 (en) | 2010-10-04 | 2011-09-29 | Continuous flow steam generator having an integrated reheater |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2606278A2 true EP2606278A2 (en) | 2013-06-26 |
Family
ID=44764126
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP11766953.1A Withdrawn EP2606278A2 (en) | 2010-10-04 | 2011-09-29 | Continuous flow steam generator having an integrated reheater |
Country Status (7)
Country | Link |
---|---|
US (1) | US20130186089A1 (en) |
EP (1) | EP2606278A2 (en) |
CN (1) | CN103189603B (en) |
AU (1) | AU2011311739B2 (en) |
DE (1) | DE102010041903B4 (en) |
MX (1) | MX2013003744A (en) |
WO (1) | WO2012045650A2 (en) |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2182278A1 (en) * | 2008-09-09 | 2010-05-05 | Siemens Aktiengesellschaft | Continuous-flow steam generator |
WO2012145262A1 (en) * | 2011-04-19 | 2012-10-26 | Modine Manufacturing Company | Heat exchanger |
US9429044B2 (en) * | 2012-01-13 | 2016-08-30 | Alstom Technology Ltd | Supercritical heat recovery steam generator reheater and supercritical evaporator arrangement |
EP2781832A1 (en) * | 2013-03-18 | 2014-09-24 | Siemens Aktiengesellschaft | Method for starting a solar thermal power plant |
JP6239739B2 (en) | 2013-09-19 | 2017-11-29 | シーメンス アクティエンゲゼルシャフト | Combined cycle gas turbine plant with exhaust heat steam generator |
US9194377B2 (en) * | 2013-11-08 | 2015-11-24 | Alstom Technology Ltd | Auxiliary steam supply system in solar power plants |
EP2910781B1 (en) * | 2014-02-24 | 2021-05-05 | General Electric Technology GmbH | Solar thermal power system |
EP3086032B1 (en) * | 2015-04-21 | 2020-11-11 | General Electric Technology GmbH | Molten salt once-through steam generator |
JP6596303B2 (en) * | 2015-10-28 | 2019-10-23 | 千代田化工建設株式会社 | Solar thermal power generation apparatus and control method thereof |
CN106968903B (en) * | 2017-04-27 | 2023-03-10 | 天津大学 | Hybrid solar thermal power generation system and method thereof |
US20190203614A1 (en) | 2017-12-28 | 2019-07-04 | Ge-Hitachi Nuclear Energy Americas Llc | Systems and methods for steam reheat in power plants |
EP3861269B1 (en) | 2018-10-01 | 2024-05-15 | Header-coil Company A/S | Heat exchanger, such as for a solar power plant |
CN110425509B (en) * | 2019-08-27 | 2023-10-27 | 东方电气集团东方锅炉股份有限公司 | Groove type heat conduction oil steam generation system and control method thereof |
CN115968432A (en) * | 2020-08-25 | 2023-04-14 | 凯洛格·布朗及鲁特有限公司 | Integrated steam generator and superheater with process gas in ammonia synthesis loop |
US11592009B2 (en) | 2021-04-02 | 2023-02-28 | Ice Thermal Harvesting, Llc | Systems and methods for generation of electrical power at a drilling rig |
US11359576B1 (en) | 2021-04-02 | 2022-06-14 | Ice Thermal Harvesting, Llc | Systems and methods utilizing gas temperature as a power source |
US11255315B1 (en) | 2021-04-02 | 2022-02-22 | Ice Thermal Harvesting, Llc | Controller for controlling generation of geothermal power in an organic Rankine cycle operation during hydrocarbon production |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19545308A1 (en) * | 1995-12-05 | 1997-06-12 | Asea Brown Boveri | Convective counterflow heat transmitter |
WO2010025960A2 (en) * | 2008-09-08 | 2010-03-11 | Balcke-Dürr GmbH | Heat exchanger in modular design |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3110288A (en) * | 1958-06-26 | 1963-11-12 | Babcock & Wilcox Ltd | Heat exchanger construction |
GB1037995A (en) * | 1962-06-15 | 1966-08-03 | Babcock & Wilcox Ltd | Improvements in or relating to tubulous vapour generators of the forced flow, once through type |
US3557760A (en) * | 1968-08-16 | 1971-01-26 | Combustion Eng | Vapor generator organization utilizing liquid metal or molten salts |
DE3003962C2 (en) * | 1980-02-04 | 1984-04-26 | Interatom Internationale Atomreaktorbau Gmbh, 5060 Bergisch Gladbach | Solar energy system with heat storage |
DE4342002A1 (en) * | 1993-12-09 | 1995-06-14 | Abb Patent Gmbh | Starting a waste heat boiler with at least two separate pressure systems |
DE19619470C1 (en) * | 1996-05-14 | 1997-09-25 | Siemens Ag | Combined gas-and-steam turbine installation |
DE19645322B4 (en) * | 1996-11-04 | 2010-05-06 | Alstom | Combined power plant with a forced once-through steam generator as a gas turbine cooling air cooler |
DE19721854A1 (en) * | 1997-05-26 | 1998-12-03 | Asea Brown Boveri | Improvement in the degree of separation of steam contaminants in a steam-water separator |
CN1145754C (en) * | 1997-06-30 | 2004-04-14 | 西门子公司 | Wast heat steam generator |
DE19736888A1 (en) * | 1997-08-25 | 1998-10-01 | Siemens Ag | Once-through steam generator start-up method e.g. for gas-and-steam turbine plant |
DE19907451A1 (en) * | 1999-02-22 | 2000-08-24 | Abb Alstom Power Ch Ag | Method for starting a once-through waste heat boiler and device for carrying out the method |
US6914955B2 (en) * | 2002-10-31 | 2005-07-05 | Babcock & Wilcox Canada Ltd. | Heat exchanger tube support structure |
CN100376468C (en) * | 2005-03-07 | 2008-03-26 | 中国科学院工程热物理研究所 | Method and device for transforming solar energy into fuel chemical energy |
ES2267382B1 (en) * | 2005-04-27 | 2008-03-01 | Sol3G, S.L. | SUBMODLE FOR PHOTOVOLTAIC CONCENTRATION MODULES, PHOTOVOLTAIC CONCENTRATION MODULE, SOLAR ENERGY INSTALLATION, PACKAGING METHOD AND POSITION CALIBRATION PROCEDURE FOR PHOTOVOLTAIC CONCENTRATION MODULES. |
CN101173760A (en) * | 2006-06-15 | 2008-05-07 | 戴克发 | Tower type arrangement system for steam generation device SG of gas-steam association circulating power station |
US20090056703A1 (en) * | 2007-08-27 | 2009-03-05 | Ausra, Inc. | Linear fresnel solar arrays and components therefor |
EP2289151A2 (en) * | 2008-04-16 | 2011-03-02 | Alstom Technology Ltd | Continuous moving bed solar steam generation system |
US20100205963A1 (en) * | 2008-08-26 | 2010-08-19 | Ammar Danny F | Concentrated solar power generation system with distributed generation |
EP2187051A1 (en) * | 2008-11-12 | 2010-05-19 | Siemens Aktiengesellschaft | Method and device for intermediate heating in a solar thermal power plant with indirect steam |
US7987844B2 (en) * | 2009-01-13 | 2011-08-02 | Hamilton Sundstrand Corporation | Catalyzed hot gas heating system for concentrated solar power generation systems |
US8039984B2 (en) * | 2009-05-21 | 2011-10-18 | Advanced Solar Power Israel Ltd. | System for converting solar radiation into electricity |
US8327641B2 (en) * | 2009-12-01 | 2012-12-11 | General Electric Company | System for generation of power using solar energy |
-
2010
- 2010-10-04 DE DE102010041903.6A patent/DE102010041903B4/en not_active Expired - Fee Related
-
2011
- 2011-09-29 CN CN201180048263.4A patent/CN103189603B/en not_active Expired - Fee Related
- 2011-09-29 MX MX2013003744A patent/MX2013003744A/en unknown
- 2011-09-29 WO PCT/EP2011/066966 patent/WO2012045650A2/en active Application Filing
- 2011-09-29 EP EP11766953.1A patent/EP2606278A2/en not_active Withdrawn
- 2011-09-29 AU AU2011311739A patent/AU2011311739B2/en not_active Ceased
- 2011-09-29 US US13/877,525 patent/US20130186089A1/en not_active Abandoned
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19545308A1 (en) * | 1995-12-05 | 1997-06-12 | Asea Brown Boveri | Convective counterflow heat transmitter |
WO2010025960A2 (en) * | 2008-09-08 | 2010-03-11 | Balcke-Dürr GmbH | Heat exchanger in modular design |
Also Published As
Publication number | Publication date |
---|---|
DE102010041903A1 (en) | 2012-04-05 |
CN103189603B (en) | 2016-03-30 |
DE102010041903B4 (en) | 2017-03-09 |
AU2011311739A1 (en) | 2013-05-02 |
MX2013003744A (en) | 2013-08-29 |
WO2012045650A2 (en) | 2012-04-12 |
CN103189603A (en) | 2013-07-03 |
AU2011311739B2 (en) | 2014-10-30 |
WO2012045650A3 (en) | 2013-05-16 |
US20130186089A1 (en) | 2013-07-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE102010041903B4 (en) | Continuous steam generator with integrated reheater | |
EP2419634B1 (en) | Steam power plant having solar collectors | |
EP2521861B1 (en) | Solar thermal power plant using indirect evaporation and method for operating such a solar thermal power plant | |
EP0526816B1 (en) | Power plant with gas and steam turbines with solar steam generator | |
DE19723543C2 (en) | Power generation plant | |
WO2008113798A2 (en) | Method and device for intermediate superheating in solar direct evaporation in a solar-thermal power plant | |
WO2011138215A2 (en) | Solar power plant part of a solar thermal power plant and solar thermal power plant provided with solar collector surfaces for a heat transfer medium and working medium | |
EP2467601B1 (en) | Solar thermal power plant having a heat exchanger in the feedwater preheating section and method for operating the power plant | |
DE202008002599U1 (en) | Solar thermal hybrid power plant | |
WO2010054911A1 (en) | Method and device for resuperheating in a solar thermal power station with indirect evaporation | |
WO1997043523A1 (en) | Gas and steam turbine plant and method of operating the same | |
DE3017699A1 (en) | SOLAR POWER PLANT WITH A SOLAR HEATER ARRANGED ON A TOWER | |
EP0410111B1 (en) | Heat recovery boiler for a gas and steam turbine plant | |
DE102010040208B4 (en) | Solar thermal continuous evaporator heating surface with local cross-sectional constriction at its inlet | |
WO2015003898A1 (en) | Pre-heating system and method with such a pre-heating system | |
WO2012028512A2 (en) | Solar-thermal once-through steam generator for direct evaporation, in particular in a solar-tower power plant | |
WO2011138213A2 (en) | Solar thermal forced-flow steam generator with internally-ribbed tubes | |
DE102010040204A1 (en) | Solar thermal continuous evaporator | |
DE102010040200A1 (en) | Solar thermal absorber for direct evaporation, in particular a solar tower power plant | |
WO2012156350A2 (en) | Steam generator, in particular for a solar thermal power plant | |
WO2011091882A2 (en) | Suppression of dynamic instabilities in forced flow steam generators in solar thermal stations by using pressure compensation lines | |
WO2012025284A1 (en) | Method for operating a steam turbine of a solar thermal power station, and boiler system for carrying out the method | |
WO2012028502A2 (en) | Solar-thermal continuous flow steam generator comprising a steam separator and star distributor which is connected downstream for solar tower power stations with direct evaporation | |
WO2012028510A1 (en) | Piping of an evaporator heating surface for a continuous flow steam generator in solar tower power stations with direct evaporation and natural circulation characteristics | |
DE102011075932A1 (en) | Steam generator for solar-thermal power plant, has heating surface pipe arranged in meander form, where free cross section of heating surface pipe is increased in flow direction of medium to be evaporated |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20130321 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20160307 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20160719 |