EP2604710A1 - Method for hardening of a metallic workpiece - Google Patents

Method for hardening of a metallic workpiece Download PDF

Info

Publication number
EP2604710A1
EP2604710A1 EP11009827.4A EP11009827A EP2604710A1 EP 2604710 A1 EP2604710 A1 EP 2604710A1 EP 11009827 A EP11009827 A EP 11009827A EP 2604710 A1 EP2604710 A1 EP 2604710A1
Authority
EP
European Patent Office
Prior art keywords
workpiece
cooling
temperature
fixture
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP11009827.4A
Other languages
German (de)
French (fr)
Inventor
Anders ASTRÖM
Matthias Bors
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde GmbH filed Critical Linde GmbH
Priority to EP11009827.4A priority Critical patent/EP2604710A1/en
Publication of EP2604710A1 publication Critical patent/EP2604710A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/673Quenching devices for die quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/56General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
    • C21D1/613Gases; Liquefied or solidified normally gaseous material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0068Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for particular articles not mentioned below
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/28Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for plain shafts
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/32Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for gear wheels, worm wheels, or the like
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/34Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tyres; for rims
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the invention relates to a method for hardening of a metallic workpiece, wherein the workpiece is placed and fixed in a fixture and wherein in the fixture the workpiece is cooled by a cooling medium.
  • a hot heat-treated metal workpiece inside a fixture.
  • the workpiece is placed in a fixture and inside the fixture it is subjected to a cooling medium.
  • the fixture ensures that the workpiece retains the desired dimensions while it is cooled down.
  • a gear is attached to a fixture serving as a mandrel and cooled in that position.
  • the mandrel ensures that during the cooling process the inner diameter of the gear does not shrink too much.
  • Another disadvantage of oil cooling is the poor controllability of the cooling process.
  • the cooling rate is difficult to adjust and in particular the cooling speed can hardly be varied during the cooling process.
  • An object of the present invention is therefore to provide an improved method for hardening of metallic workpieces.
  • This object is solved by a method for hardening of a metallic workpiece, wherein the workpiece is placed and fixed in a fixture and wherein in the fixture the workpiece is cooled by a cooling medium, which is characterized in that a gaseous cooling medium is used.
  • the invention relates to a method for cooling and hardening of a metallic workpiece, wherein the workpiece is cooled in a fixture which prevents or at least minimizes distortion or deformation of the workpiece such that the desired tolerances are met with regard to the dimensions of the workpiece.
  • Fixture hardening In the following such a method shall be called "fixture hardening”.
  • the invention especially relates to a method for cooling and fixture hardening of a workpiece made of steel.
  • the invention does not relate to methods for cooling and hardening of work pieces wherein the shape or particular dimensions of the workpiece are actively changed during the cooling process, for example by means of a press or another appropriate tool.
  • fixture hardening the workpiece is positioned in and/or fixed to a fixture in order to avoid changes with respect to at least one dimension of the workpiece, preferably to some or even all dimensions, and/or to the shape of the workpiece.
  • the fixture does not change the dimensions or shape of the workpiece.
  • thermal stresses and / or phase transformations shall not induce re-shaping or re-forming of the workpiece.
  • the term fixture shall mean a tool, which is used to hold the workpiece during the cooling process.
  • the fixture is not used for active deformation of the workpiece, but only to prevent or minimize deformations of the workpiece, which are caused by temperature changes, thermal stresses and / or structural changes during the cooling process.
  • the fixture could be a clamping fixture or a mandrel or a tool with segments and/or jaws that can be pressed against the workpiece to fix it.
  • the fixture comprises two or more component parts which can be moved relative to each other in order to fix the workpiece.
  • the component parts are held in fixed positions relative to each other.
  • the fixture is not used to change the dimensions of the workpiece by compressive forces or other mechanical interaction.
  • the workpiece is positioned in a fixture and the workpiece is cooled in the fixture by means of a gaseous cooling medium.
  • a gaseous cooling medium allows a better and more specific control of the cooling process.
  • the cooling rate can be varied by variation of one or more of the parameters flow rate, pressure and temperature of the gaseous cooling medium. For example, by increasing the flow rate or the pressure of the gaseous cooling medium the cooling rate can be increased.
  • the invention is particularly suitable for fixture hardening of one or more metal workpieces, which prior to being placed into the fixture have been heat treated.
  • the cooling medium is preferably brought into direct heat exchange with the workpiece to be cooled.
  • the gaseous cooling medium is supplied to the workpiece so that it comes in direct contact with one or more locations or regions on the workpiece.
  • the heat transfer is primarily achieved by convection and heat flow.
  • the workpiece it is also possible to cool the workpiece by indirect heat exchange with the gaseous cooling medium.
  • the workpiece and the gaseous cooling medium are spatially separated, for example by a heat-permeable wall.
  • the fixture can be provided with cooling channels through which the gaseous cooling medium flows and thereby cools the fixture and indirectly the workpiece.
  • the indirect heat exchange between the workpiece and the cooling medium is significantly slower than the direct heat exchange, in which the gaseous cooling medium flows against and/or around the workpiece. Therefore, direct heat exchange or a combination of direct heat exchange and indirect heat exchange is normally preferred.
  • the conventional inlets for the cooling oil could be used for the gaseous cooling medium.
  • the fixture may be provided with cooling channels or cooling fins.
  • the second coolant may flow through, against and/or around the cooling channels or cooling fins such that there is a heat exchange between the fixture and the second coolant.
  • the second coolant may also be a gaseous medium, in particular also the same substance as the gaseous cooling medium, which according to the invention is used for cooling the workpiece.
  • the fixture is cooled by means of a liquid coolant, in particular by means of water or oil.
  • water or oil is passed through cooling channels or spaces located in the fixture to cool the fixture.
  • the workpiece, which is located in the fixture is subjected to a flow of the gaseous cooling medium flowing against, around and/or through the workpiece.
  • At least one of the parameters of pressure, flow, quantity or temperature of the gaseous cooling medium supplied to the workpiece and/or at least one of the parameters of pressure, flow, quantity or temperature of the second coolant is controlled, i.e. changed in a controlled manner during the cooling process.
  • the cooling effect and the cooling rate depend on the type of cooling medium, the flow of the cooling medium, that means the quantity of cooling medium supplied to the workpiece per unit time, its pressure and its temperature.
  • the cooling of the fixture is dependent on the type, quantity, pressure, flow and temperature of the second coolant.
  • one or more of these parameters such as pressure and/or flow and/or flow rate of the gaseous cooling medium and/or of the second coolant are controlled to affect the cooling process.
  • the temperature can be determined in one or more locations or regions on the workpiece either continuously during the cooling process or at - preferably regular - time intervals.
  • the temperature may be measured by a thermometer or a temperature sensor or by measuring the heat radiation, for example by means of a pyrometer.
  • a particularly good and uniform metallic microstructure is achieved by reducing the cooling when the surface temperature of the workpiece deviates by less than a predetermined or preselected value from the martensite start temperature.
  • the reduction of the cooling effect is particularly achieved in that at least one of the parameters of pressure, flow or quantity of the gaseous cooling medium supplied to the workpiece and/or at least one of the parameters of pressure, flow or quantity of the second coolant is reduced or in that the supply of gaseous cooling medium and/or the second coolant is interrupted for a certain period of time.
  • martensite start temperature shall mean the temperature at which the martensitic transformation begins. When a ferrous metal is cooled below the martensite start temperature, the austenite structure begins to transform into a martensitic structure.
  • the martensite start temperature abbreviated as Ms, depends not only on the basic metal but also on the alloying elements and their content.
  • the martensite start temperature Ms is steel specific and the man skilled in the art can found them in special public available tables.
  • the cooling rate is reduced when the surface temperature of the workpiece deviates by less than a predetermined value from the martensite start temperature. At this time the core temperature is still significantly higher. By reducing the cooling rate the core temperature of the workpiece and its surface temperature are allowed to get equal or close to equal. In this way, thermal stresses inside the workpiece are removed and a more uniform transformation to martensite structure is achieved.
  • the cooling rate is preferably reduced when the surface temperature of the workpiece is between Ms and Ms50 (50% completion of martensite), that is in the range between the martensite start temperature and the temperature when the transformation to martensite structure has been completed to 50%.
  • the following slow cooling shall be considerably slower than the original cooling rate.
  • a cooling rate less than 1°C per second has proven advantageous for the fatigue properties.
  • the re-start of faster cooling is determined by other material properties but preferably the material is let to slow cool as long as possible (with respect to that enough martensite is formed, the right hardness is achieved etc).
  • An actual halt at a specific temperature does not improve the fatigue if not followed by a slow cooling.
  • the halt can be from 0 seconds up to 300 seconds depending on size and target.
  • the invention is particularly suitable for fixture hardening of ferrous metals, alloyed and unalloyed steels.
  • the work pieces are preferably rotationally symmetrical components, components such as gears, crown wheels, sleeves, or gear parts, shafts, clutch components or bearing rings.
  • the workpiece is cooled at a cooling rate of more than 10 °C/s, preferably between 10 and 20 °C/s, when the surface temperature of the workpiece is above the martensite start temperature Ms.
  • the cooling rate is preferably reduced or even stopped.
  • the cooling rate is less than 5 °C/s, preferably less than 3 °C/s, more preferred less than 1 °C/s. It is also possible to first stop the cooling for a certain period of time, for example for a time period up to 300 seconds, followed by slow cooling at a cooling rate of less than 5 °C/s, less than 3 °C/s or less than 1 °C/s. Thereafter, when the surface temperature has reached a certain value or when the slow cooling has been carried out for a certain period of time, the cooling rate is preferably increased to 10 °C/s to 20 °C/s.
  • a preferred cooling process could comprise the following steps:
  • the cooling is achieved by using a gaseous cooling medium.
  • the flow rate of the gaseous cooling medium is preferably between 20 and 400 m 3 /h.
  • the pressure of the gaseous cooling medium is preferably close to atmospheric pressure due to the construction of today's fixture hardening equipment. But theoretically the total process time for cooling the workpiece can be shortened by increasing the pressure to a range inbetween 1 bar and 30bar.
  • the flow velocity of the gaseous cooling medium is preferably between 1 m/s and 50 m/s, more preferred between 1 and 20 m/s. It is also possible to use an impingement cooling process wherein the gaseous cooling medium is directed to the workpiece at gas velocities of more than 30 m/s up to 60 m/s.
  • Preferable conditions for carburization are a temperature between 900 °C and 1100 °C.
  • the still hot workpiece 1 shall be fixture hardened, that is it shall be cooled down and thereby hardened while it is fixed in a fixture 2.
  • the fixture 2 is a rotational-symmetric tool comprising a component support 3 and an upper part 4.
  • the component support 3 is provided with a central passage 9.
  • the diameter of the central passage 9 is adapted to the inner diameter of the ring-like workpiece 1.
  • the upper part 4 comprises vertical cylindrical walls 5 covered by a top plate 6 and a piston 7 which allows to move and position the upper part 4 relative to the component support 3. Upper part 4 and component support 3 can be moved relative to each other along the symmetry axis of the fixture 2.
  • the vertical cylindrical walls 5 are provided with openings 12.
  • a hood 8 is fixed to the piston 7 and encloses the upper part 4.
  • the hood 8 has a cylindrical form with vertical side walls and is closed to the top.
  • a mandrel 10 can be moved through the central passage 9 into the hollow interior of the upper part 4.
  • the outer diameter of the mandrel 10 matches the inner diameter of the workpiece 1.
  • the mandrel 10 is provided with cooling channels 11.
  • a supply of cooling water (not shown) is connected to the cooling channels 11 and allows to pass cooling water through the cooling channels 11 and to thereby cool the mandrel 10.
  • the upper part 4 is also provided with cooling channels 13 connected to a supply of cooling water (not shown). By passing cooling water through the cooling channels 13 it is possible to cool the upper part 4, too.
  • the workpiece 1 For fixture hardening the workpiece 1 is placed on the component support 3.
  • the inner diameter of the workpiece 1 is equal to the diameter of the central passage 9 through the component support 3.
  • the workpiece is fixed by a component holder 14.
  • Mandrel 10 is moved through the central passage 9 and through the inner opening of the workpiece 1 into the hollow interior of the upper part 4.
  • the outer diameter of the mandrel 10 and the inner diameter of the workpiece 1 are the same or at least nearly the same.
  • gaseous nitrogen as cooling medium is supplied via the central passage 9 into the hollow interior of the upper part 4.
  • the gaseous nitrogen passes the workpiece 1, leaves the interior of the upper part 4 via the openings 12, enters into the space between the upper part 4 and the hood 8 and finally leaves the hood 8 at its lower end.
  • the gaseous nitrogen flows around the workpiece 1 and thereby cools the workpiece 1 by direct heat exchange.
  • cooling water is passed through cooling channels 11 in the mandrel 10 and through cooling channels 13 of the upper part 4.
  • the cooling water 16, 17 cools down the mandrel 10 and the upper part 4 which in the case of the mandrel 10 are in direct contact with the workpiece 1 or in case of the upper part 4 are in indirect contact with the workpiece1 via component holders 14.
  • the cooling water 16, 17 indirectly cools the workpiece 1 and boosts the cooling rate. This is in particular advantageous when thick and heavy workpieces are cooled.
  • the gaseous nitrogen 15 is supplied to the fixture 2 and to the workpiece 1 at a pressure between 1 and 3 bar and a flow rate of for example 20 to 400 m 3 /h.
  • the surface temperature of the workpiece 1 has been lowered to a predefined temperature between Ms and Ms50 the flow of gaseous nitrogen is reduced such that the cooling rate is less than 1°C / s.
  • the cooling rate is decreased and the temperature of the inner core of the workpiece 1 and its surface temperature are allowed to approach each other.
  • the time for entering and / or passing the Martensitic range increases which has been shown to increase the fatigue strength of the workpiece material.
  • the cooling water 16, 17 can also be flow controlled.
  • the invention allows a controlled gaseous fixture hardening process by adopting the flow and / or pressure of the gaseous cooling medium with respect to the Martensitic start temperature of the workpiece material.
  • a workpiece 1 made of steel is cooled by gaseous nitrogen as cooling medium at a pressure of 1 barg and a flow rate of 250 m 3 /h for 25 seconds and by a flow of 1 m 3 /h cooling water (as second coolant) for 25 seconds.
  • This cooling step results in a workpiece having a surface temperature of 180°C. Then having reached this surface temperature the cooling is stopped for 30 seconds. Thereafter the cooling process is continued for 180 seconds by using a flow of 2.5 m 3 /h for 60 seconds gaseous nitrogen at a pressure of 1 barg (no water cooling in this phase) until finish temperature 120°C is reached.

Abstract

The invention relates to a method for hardening of a metallic workpiece (1), wherein the workpiece (1) is placed and fixed in a fixture (2) and wherein in the fixture (2) the workpiece (1) is cooled by a gaseous cooling medium (15)

Description

  • The invention relates to a method for hardening of a metallic workpiece, wherein the workpiece is placed and fixed in a fixture and wherein in the fixture the workpiece is cooled by a cooling medium.
  • During the heat treatment of metal workpieces, such as gear parts, unwanted deformations of the workpiece may occur due to thermal stresses and structural transformations. To eliminate these deformations often costly reworking of the workpiece is needed to meet the required tolerances.
  • It is therefore already known to cool down a hot heat-treated metal workpiece inside a fixture. The workpiece is placed in a fixture and inside the fixture it is subjected to a cooling medium. The fixture ensures that the workpiece retains the desired dimensions while it is cooled down. For example, a gear is attached to a fixture serving as a mandrel and cooled in that position. In this case the mandrel ensures that during the cooling process the inner diameter of the gear does not shrink too much.
  • In the prior art the cooling of the workpieces is carried out by direct heat exchange with oil. That technology, however, requires the use of quenching oils and the need for cleaning equipment in order to remove the oil from the quenched workpieces. In addition, the oil must be destructed when its material properties deteriorate and from time to time oil must be replenished due to product withdrawal.
  • Another disadvantage of oil cooling is the poor controllability of the cooling process. The cooling rate is difficult to adjust and in particular the cooling speed can hardly be varied during the cooling process.
  • An object of the present invention is therefore to provide an improved method for hardening of metallic workpieces.
  • This object is solved by a method for hardening of a metallic workpiece, wherein the workpiece is placed and fixed in a fixture and wherein in the fixture the workpiece is cooled by a cooling medium, which is characterized in that a gaseous cooling medium is used.
  • The invention relates to a method for cooling and hardening of a metallic workpiece, wherein the workpiece is cooled in a fixture which prevents or at least minimizes distortion or deformation of the workpiece such that the desired tolerances are met with regard to the dimensions of the workpiece. In the following such a method shall be called "fixture hardening". The invention especially relates to a method for cooling and fixture hardening of a workpiece made of steel.
  • The invention does not relate to methods for cooling and hardening of work pieces wherein the shape or particular dimensions of the workpiece are actively changed during the cooling process, for example by means of a press or another appropriate tool. In contrast, in fixture hardening the workpiece is positioned in and/or fixed to a fixture in order to avoid changes with respect to at least one dimension of the workpiece, preferably to some or even all dimensions, and/or to the shape of the workpiece. In contrast to a press, the fixture does not change the dimensions or shape of the workpiece. In general, during cooling of the workpiece thermal stresses and / or phase transformations shall not induce re-shaping or re-forming of the workpiece.
  • The term fixture shall mean a tool, which is used to hold the workpiece during the cooling process. The fixture is not used for active deformation of the workpiece, but only to prevent or minimize deformations of the workpiece, which are caused by temperature changes, thermal stresses and / or structural changes during the cooling process. The fixture could be a clamping fixture or a mandrel or a tool with segments and/or jaws that can be pressed against the workpiece to fix it.
  • Preferably, the fixture comprises two or more component parts which can be moved relative to each other in order to fix the workpiece. During the cooling process the component parts are held in fixed positions relative to each other. The fixture is not used to change the dimensions of the workpiece by compressive forces or other mechanical interaction.
  • According to the invention, the workpiece is positioned in a fixture and the workpiece is cooled in the fixture by means of a gaseous cooling medium. The use of a gaseous cooling medium allows a better and more specific control of the cooling process. The cooling rate can be varied by variation of one or more of the parameters flow rate, pressure and temperature of the gaseous cooling medium. For example, by increasing the flow rate or the pressure of the gaseous cooling medium the cooling rate can be increased.
  • The invention is particularly suitable for fixture hardening of one or more metal workpieces, which prior to being placed into the fixture have been heat treated.
  • It is advantageous to use nitrogen, argon, helium and/or hydrogen as cooling medium or any mixtures thereof. Gaseous nitrogen is used with particular advantage due to its viability and low price.
  • The cooling medium is preferably brought into direct heat exchange with the workpiece to be cooled. The gaseous cooling medium is supplied to the workpiece so that it comes in direct contact with one or more locations or regions on the workpiece. The heat transfer is primarily achieved by convection and heat flow.
  • It is also possible to cool the workpiece by indirect heat exchange with the gaseous cooling medium. In that case, the workpiece and the gaseous cooling medium are spatially separated, for example by a heat-permeable wall. For example, the fixture can be provided with cooling channels through which the gaseous cooling medium flows and thereby cools the fixture and indirectly the workpiece. The indirect heat exchange between the workpiece and the cooling medium is significantly slower than the direct heat exchange, in which the gaseous cooling medium flows against and/or around the workpiece. Therefore, direct heat exchange or a combination of direct heat exchange and indirect heat exchange is normally preferred.
  • In case a conventional fixture hardening tool shall be used for the inventive method, the conventional inlets for the cooling oil could be used for the gaseous cooling medium. However, it is preferred to design a new fixture hardening tool optimized for the flow conditions of the gaseous cooling medium.
  • It has also proven advantageous to cool the fixture by a second coolant, in addition to the cooling of the workpiece by means of the gaseous cooling medium wherein the gaseous cooling medium is used to cool the workpiece directly and/or indirectly. For this purpose the fixture may be provided with cooling channels or cooling fins. The second coolant may flow through, against and/or around the cooling channels or cooling fins such that there is a heat exchange between the fixture and the second coolant.
  • The second coolant may also be a gaseous medium, in particular also the same substance as the gaseous cooling medium, which according to the invention is used for cooling the workpiece. But preferably, the fixture is cooled by means of a liquid coolant, in particular by means of water or oil. In a preferred embodiment, water or oil is passed through cooling channels or spaces located in the fixture to cool the fixture. In addition, the workpiece, which is located in the fixture, is subjected to a flow of the gaseous cooling medium flowing against, around and/or through the workpiece.
  • Especially when solid workpieces are cooled relative large differences between the surface temperature of the workpiece and its core temperature inside the workpiece can occur. These temperature differences can cause thermal stress in the workpiece and lead to material fatigue. In a preferred embodiment, therefore, at least one of the parameters of pressure, flow, quantity or temperature of the gaseous cooling medium supplied to the workpiece and/or at least one of the parameters of pressure, flow, quantity or temperature of the second coolant is controlled, i.e. changed in a controlled manner during the cooling process.
  • The cooling effect and the cooling rate depend on the type of cooling medium, the flow of the cooling medium, that means the quantity of cooling medium supplied to the workpiece per unit time, its pressure and its temperature. Likewise, the cooling of the fixture is dependent on the type, quantity, pressure, flow and temperature of the second coolant. Preferably, therefore, one or more of these parameters such as pressure and/or flow and/or flow rate of the gaseous cooling medium and/or of the second coolant are controlled to affect the cooling process.
  • These parameters are preferably controlled and/or varied depending on the temperature of the workpiece. The temperature can be determined in one or more locations or regions on the workpiece either continuously during the cooling process or at - preferably regular - time intervals. The temperature may be measured by a thermometer or a temperature sensor or by measuring the heat radiation, for example by means of a pyrometer.
  • It is also possible to determine in advance the relationship between the cooling time, the workpiece temperature and one or more of the above-mentioned parameters of the gaseous cooling medium or of the second coolant. During fixture hardening this relationship is then used to control the inventive process. For example, after a certain cooling time which corresponds to a certain temperature decrease one or more of the parameters are changed to affect the cooling rate.
  • It has been shown that a particularly good and uniform metallic microstructure is achieved by reducing the cooling when the surface temperature of the workpiece deviates by less than a predetermined or preselected value from the martensite start temperature. The reduction of the cooling effect is particularly achieved in that at least one of the parameters of pressure, flow or quantity of the gaseous cooling medium supplied to the workpiece and/or at least one of the parameters of pressure, flow or quantity of the second coolant is reduced or in that the supply of gaseous cooling medium and/or the second coolant is interrupted for a certain period of time.
  • The term "martensite start temperature" shall mean the temperature at which the martensitic transformation begins. When a ferrous metal is cooled below the martensite start temperature, the austenite structure begins to transform into a martensitic structure. The martensite start temperature, abbreviated as Ms, depends not only on the basic metal but also on the alloying elements and their content. The martensite start temperature Ms is steel specific and the man skilled in the art can found them in special public available tables.
  • In a preferred embodiment, the cooling rate is reduced when the surface temperature of the workpiece deviates by less than a predetermined value from the martensite start temperature. At this time the core temperature is still significantly higher. By reducing the cooling rate the core temperature of the workpiece and its surface temperature are allowed to get equal or close to equal. In this way, thermal stresses inside the workpiece are removed and a more uniform transformation to martensite structure is achieved.
  • The cooling rate is preferably reduced when the surface temperature of the workpiece is between Ms and Ms50 (50% completion of martensite), that is in the range between the martensite start temperature and the temperature when the transformation to martensite structure has been completed to 50%. The following slow cooling shall be considerably slower than the original cooling rate. For example, a cooling rate less than 1°C per second has proven advantageous for the fatigue properties. The re-start of faster cooling is determined by other material properties but preferably the material is let to slow cool as long as possible (with respect to that enough martensite is formed, the right hardness is achieved etc). An actual halt at a specific temperature does not improve the fatigue if not followed by a slow cooling. The halt can be from 0 seconds up to 300 seconds depending on size and target.
  • The invention is particularly suitable for fixture hardening of ferrous metals, alloyed and unalloyed steels. The work pieces are preferably rotationally symmetrical components, components such as gears, crown wheels, sleeves, or gear parts, shafts, clutch components or bearing rings.
  • In one embodiment the workpiece is cooled at a cooling rate of more than 10 °C/s, preferably between 10 and 20 °C/s, when the surface temperature of the workpiece is above the martensite start temperature Ms.
  • At a surface temperature between Ms and Ms50 the cooling rate is preferably reduced or even stopped. In that phase the cooling rate is less than 5 °C/s, preferably less than 3 °C/s, more preferred less than 1 °C/s. It is also possible to first stop the cooling for a certain period of time, for example for a time period up to 300 seconds, followed by slow cooling at a cooling rate of less than 5 °C/s, less than 3 °C/s or less than 1 °C/s. Thereafter, when the surface temperature has reached a certain value or when the slow cooling has been carried out for a certain period of time, the cooling rate is preferably increased to 10 °C/s to 20 °C/s.
  • A preferred cooling process could comprise the following steps:
    • ● The workpiece which for example has a temperature between 860 °C and 1050 °C is fast cooled at a cooling rate of more than 10 °C/s.
    • ● When a preselected temperature between Ms and Ms50 has been reached the cooling is stopped for 0 to 300 seconds.
    • ● Thereafter, the workpiece is cooled at a slow cooling rate of less than 5°C for a time interval of 60 seconds to 300 seconds.
    • ● Finally, the workpiece is cooled at a cooling rate of more than 10 °C/s to the desired end temperature.
  • According to the invention the cooling is achieved by using a gaseous cooling medium. The flow rate of the gaseous cooling medium is preferably between 20 and 400 m3/h. The pressure of the gaseous cooling medium is preferably close to atmospheric pressure due to the construction of today's fixture hardening equipment. But theoretically the total process time for cooling the workpiece can be shortened by increasing the pressure to a range inbetween 1 bar and 30bar.
  • The flow velocity of the gaseous cooling medium is preferably between 1 m/s and 50 m/s, more preferred between 1 and 20 m/s. It is also possible to use an impingement cooling process wherein the gaseous cooling medium is directed to the workpiece at gas velocities of more than 30 m/s up to 60 m/s.
  • In the following, the invention as well as preferred details of the invention will be described with respect to the attached drawing wherein
  • figure 1
    shows an apparatus for the inventive fixture hardening process
  • A steel workpiece 1, for example a ring-like rotational symmetric gear component, has been carburized. Preferable conditions for carburization are a temperature between 900 °C and 1100 °C. Subsequently, the still hot workpiece 1 shall be fixture hardened, that is it shall be cooled down and thereby hardened while it is fixed in a fixture 2.
  • The fixture 2 is a rotational-symmetric tool comprising a component support 3 and an upper part 4. The component support 3 is provided with a central passage 9. The diameter of the central passage 9 is adapted to the inner diameter of the ring-like workpiece 1.
  • The upper part 4 comprises vertical cylindrical walls 5 covered by a top plate 6 and a piston 7 which allows to move and position the upper part 4 relative to the component support 3. Upper part 4 and component support 3 can be moved relative to each other along the symmetry axis of the fixture 2. The vertical cylindrical walls 5 are provided with openings 12.
  • A hood 8 is fixed to the piston 7 and encloses the upper part 4. The hood 8 has a cylindrical form with vertical side walls and is closed to the top.
  • A mandrel 10 can be moved through the central passage 9 into the hollow interior of the upper part 4. The outer diameter of the mandrel 10 matches the inner diameter of the workpiece 1. The mandrel 10 is provided with cooling channels 11. A supply of cooling water (not shown) is connected to the cooling channels 11 and allows to pass cooling water through the cooling channels 11 and to thereby cool the mandrel 10.
  • The upper part 4 is also provided with cooling channels 13 connected to a supply of cooling water (not shown). By passing cooling water through the cooling channels 13 it is possible to cool the upper part 4, too.
  • For fixture hardening the workpiece 1 is placed on the component support 3. The inner diameter of the workpiece 1 is equal to the diameter of the central passage 9 through the component support 3. The workpiece is fixed by a component holder 14. Mandrel 10 is moved through the central passage 9 and through the inner opening of the workpiece 1 into the hollow interior of the upper part 4. The outer diameter of the mandrel 10 and the inner diameter of the workpiece 1 are the same or at least nearly the same.
  • Then, gaseous nitrogen as cooling medium is supplied via the central passage 9 into the hollow interior of the upper part 4. The gaseous nitrogen passes the workpiece 1, leaves the interior of the upper part 4 via the openings 12, enters into the space between the upper part 4 and the hood 8 and finally leaves the hood 8 at its lower end.
  • The gaseous nitrogen flows around the workpiece 1 and thereby cools the workpiece 1 by direct heat exchange.
  • In addition cooling water is passed through cooling channels 11 in the mandrel 10 and through cooling channels 13 of the upper part 4. The cooling water 16, 17 cools down the mandrel 10 and the upper part 4 which in the case of the mandrel 10 are in direct contact with the workpiece 1 or in case of the upper part 4 are in indirect contact with the workpiece1 via component holders 14. Thus, the cooling water 16, 17 indirectly cools the workpiece 1 and boosts the cooling rate. This is in particular advantageous when thick and heavy workpieces are cooled.
  • In the beginning when the workpiece 1 is still hot with a temperature between for example 900 °C and 1100 °C, the gaseous nitrogen 15 is supplied to the fixture 2 and to the workpiece 1 at a pressure between 1 and 3 bar and a flow rate of for example 20 to 400 m3/h. When the surface temperature of the workpiece 1 has been lowered to a predefined temperature between Ms and Ms50 the flow of gaseous nitrogen is reduced such that the cooling rate is less than 1°C / s. Thus, at or close to the Martensitic start temperature the cooling rate is decreased and the temperature of the inner core of the workpiece 1 and its surface temperature are allowed to approach each other. The time for entering and / or passing the Martensitic range increases which has been shown to increase the fatigue strength of the workpiece material. The cooling water 16, 17 can also be flow controlled.
  • It is also possible to first stop the cooling at the predefined temperature between Ms and Ms50 for a certain time, for example 50 seconds to 300 seconds, and then proceed with the slow cooling at a cooling rate of less than 1 °C/s.
  • The invention allows a controlled gaseous fixture hardening process by adopting the flow and / or pressure of the gaseous cooling medium with respect to the Martensitic start temperature of the workpiece material.
  • For example, a workpiece 1 made of steel is cooled by gaseous nitrogen as cooling medium at a pressure of 1 barg and a flow rate of 250 m3/h for 25 seconds and by a flow of 1 m3/h cooling water (as second coolant) for 25 seconds. This cooling step results in a workpiece having a surface temperature of 180°C. Then having reached this surface temperature the cooling is stopped for 30 seconds. Thereafter the cooling process is continued for 180 seconds by using a flow of 2.5 m3/h for 60 seconds gaseous nitrogen at a pressure of 1 barg (no water cooling in this phase) until finish temperature 120°C is reached.
  • The invention has several advantages over the prior art:
    • increased fatigue strength of the fixture hardened workpiece,
    • reduced distortions
    • provides dry clean workpieces
    • elimination of the need for cooling oils
    • no need to control the quality of the cooling oil
    • no need to replenish withdrawn cooling oil
    • no need to destruct used oil
    • allows the customer to customize the cooling sequence to optimize fatigue properties
    • allows the customer to customize the cooling sequence to optimize hardness
    • allows the customer to customize the cooling sequence to optimize the surface structure

Claims (15)

  1. Method for hardening of a metallic workpiece (1), wherein the workpiece (1) is placed and fixed in a fixture (2) and wherein in the fixture (2) the workpiece (1) is cooled by a cooling medium (15), characterized in that a gaseous cooling medium (15) is used.
  2. Method according to claim 1, characterized in that nitrogen, argon, helium and / or hydrogen are used as cooling medium (15).
  3. Method according to claim 1 or 2, characterized in that prior to being placed into the fixture (2) the workpiece (1) is subjected to a heat treatment.
  4. Method according to any of claims 1 to 3, characterized in that the workpiece (1) is cooled by direct heat exchange with the gaseous cooling medium (15).
  5. Method according to any of claims 1 to 4, characterized in that the fixture (2) is cooled by a second coolant (16, 17).
  6. Method of claim 5, characterized in that the fixture (2) is cooled with water or oil.
  7. Method according to any of claims 1 to 6, characterized in that at least one of the parameters of pressure, flow, quantity or temperature of the gaseous cooling medium (15) and / or at least one of the parameters of pressure, flow, quantity or temperature of the second coolant (16, 17) is changed.
  8. Method according to claim 8, characterized in that at least one of the parameters of pressure, flow, quantity or temperature of the gaseous cooling medium (15) and / or at least one of the parameters of pressure, flow, quantity or temperature of the second coolant (16, 17) is controlled depending on the temperature of the workpiece (1).
  9. Method according to claim 8, wherein said at least one of the parameters of pressure, flow or quantity of the gaseous cooling medium (15) and / or at least one of the parameters of pressure, flow or quantity of the second coolant (16, 17) is reduced when the surface temperature of the workpiece (1) differs from the martensite start temperature by less than a predetermined value.
  10. Method according to claim 9 characterized in that said at least one of the parameters of pressure, flow or quantity of the gaseous cooling medium (15) and / or at least one of the parameters of pressure, flow or quantity of the second coolant (16, 17) is reduced when the surface temperature of the workpiece (1) is between the martensite start temperature Ms of the workpiece material and the temperature when the transformation of the workpiece material to martensite structure has been completed to 50% (Ms50).
  11. Method according to any of claims 9 or 10, wherein said at least one of the parameters of pressure, flow or quantity of the gaseous cooling medium (15) and / or at least one of the parameters of pressure, flow or quantity of the second coolant (16, 17) is reduced for a time period between 60 and 300 seconds.
  12. Method according to claim 11 characterized in that the cooling rate is reduced to less than 5 °C/s, preferably less than 3 °C/s, more preferred less than 1 °C/s.
  13. Method according to any of claims 1 to 12 characterized in that the workpiece (1) is cooled at a cooling rate between 10 and 20 °C / s when the workpiece temperature is above the martensite start temperature Ms.
  14. Method according to any of claims 1 to 13, characterized in that the cooling of the work piece (1) comprises the following steps:
    - fast cooling at a cooling rate of more than 10 °C/s,
    - no cooling or slow cooling at a cooling rate less than 5°C for a time interval of 60 seconds to 300 seconds,
    - fast cooling at a cooling rate of more than 10 °C/s.
  15. Method according to any of claims 1 to 14, characterized in that the flow rate of the gaseous cooling medium (15) is between 20 and 400 m3/h.
EP11009827.4A 2011-12-13 2011-12-13 Method for hardening of a metallic workpiece Withdrawn EP2604710A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP11009827.4A EP2604710A1 (en) 2011-12-13 2011-12-13 Method for hardening of a metallic workpiece

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP11009827.4A EP2604710A1 (en) 2011-12-13 2011-12-13 Method for hardening of a metallic workpiece

Publications (1)

Publication Number Publication Date
EP2604710A1 true EP2604710A1 (en) 2013-06-19

Family

ID=45607533

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11009827.4A Withdrawn EP2604710A1 (en) 2011-12-13 2011-12-13 Method for hardening of a metallic workpiece

Country Status (1)

Country Link
EP (1) EP2604710A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3375894A4 (en) * 2015-11-11 2018-09-26 Nissan Motor Co., Ltd. Gas quenching method
CN110951951A (en) * 2019-12-31 2020-04-03 太原重工轨道交通设备有限公司 Immersion quenching apparatus and method
CN110964900A (en) * 2019-12-30 2020-04-07 綦江齿轮传动有限公司 Speed changer gear die pressing quenching method
CN111235376A (en) * 2019-05-31 2020-06-05 洪晖溪 Cooling device and cooling method for automobile hub blank material processing

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3307041A1 (en) * 1982-11-26 1984-05-30 Jenny Pressen AG, 8500 Frauenfeld Method and apparatus for the low-distortion series hardening of workpieces and application of the method
US5452882A (en) * 1992-03-17 1995-09-26 Wunning; Joachim Apparatus for quenching metallic ring-shaped workpieces
EP0869189A1 (en) * 1997-03-11 1998-10-07 Linde Aktiengesellschaft Process for gas quenching metallic workpieces
WO1999002744A1 (en) * 1997-07-10 1999-01-21 Skf Engineering & Research Centre B.V. Method for performing a heat treatment on metallic rings, and bearing ring thus obtained
WO2006042538A1 (en) * 2004-10-22 2006-04-27 Ald Vacuum Technologies Gmbh Method for the low-warping case hardening of metallic parts

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3307041A1 (en) * 1982-11-26 1984-05-30 Jenny Pressen AG, 8500 Frauenfeld Method and apparatus for the low-distortion series hardening of workpieces and application of the method
US5452882A (en) * 1992-03-17 1995-09-26 Wunning; Joachim Apparatus for quenching metallic ring-shaped workpieces
EP0869189A1 (en) * 1997-03-11 1998-10-07 Linde Aktiengesellschaft Process for gas quenching metallic workpieces
WO1999002744A1 (en) * 1997-07-10 1999-01-21 Skf Engineering & Research Centre B.V. Method for performing a heat treatment on metallic rings, and bearing ring thus obtained
WO2006042538A1 (en) * 2004-10-22 2006-04-27 Ald Vacuum Technologies Gmbh Method for the low-warping case hardening of metallic parts

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3375894A4 (en) * 2015-11-11 2018-09-26 Nissan Motor Co., Ltd. Gas quenching method
CN111235376A (en) * 2019-05-31 2020-06-05 洪晖溪 Cooling device and cooling method for automobile hub blank material processing
CN111235376B (en) * 2019-05-31 2021-12-14 方都 Cooling device and cooling method for automobile hub blank material processing
CN110964900A (en) * 2019-12-30 2020-04-07 綦江齿轮传动有限公司 Speed changer gear die pressing quenching method
CN110964900B (en) * 2019-12-30 2021-08-31 綦江齿轮传动有限公司 Speed changer gear die pressing quenching method
CN110951951A (en) * 2019-12-31 2020-04-03 太原重工轨道交通设备有限公司 Immersion quenching apparatus and method

Similar Documents

Publication Publication Date Title
CA2664912C (en) Microtreatment of iron-based alloy, apparatus and method therefor, and articles resulting therefrom
US4744836A (en) Method for selectively heating a workpiece subjected to low temperature thermomechanical processing
US20140352388A1 (en) Method of forming parts from sheet steel
EP2604710A1 (en) Method for hardening of a metallic workpiece
US20210285067A1 (en) Microtreatment of iron-based alloy, apparatus and method therefor and articles resulting therefrom
Gorbatyuk et al. Reindustrialization principles in the heat treatment of die steels
Kobasko Steel quenching in liquid media under pressure
JP2017514996A (en) Method and apparatus for making steel strip
US3944444A (en) Method for heat treating cylindrical products
CN111954722A (en) High pressure instantaneous uniform quench to control part performance
WO2009064234A1 (en) A process for forming steel
US20100163140A1 (en) Microtreatment of Iron-Based Alloy, Apparatus and Method Therefor, and Microstructure Resulting Therefrom
DK2732066T3 (en) Method of cooling metal blanks which have been subjected to nitration or nitrocarburation in a molten salt bath, apparatus for carrying out the process and similarly treated blanks
US5009395A (en) Method and apparatus for selectively heating a workpiece subjected to low temperature thermomechanical processing
Kobasko et al. Improved production of automotive parts by intensive quench processing
CN115232948B (en) Steel cylindrical part horizontal shape cooperative regulation and control heat treatment method
RU2773549C1 (en) Method for water-and-air quenching of large-sized molds with a given distribution of structures along the cross-section from the working surface to the shank
Sahay Annealing of steel
RU2537981C1 (en) Method of straightening of steel thin-walled piped combined with tempering
JP2004169178A (en) Method for manufacturing member formed of hardened steel, in particular, member formed of rolling bearing steel
Boyer et al. Techniques of quenching
Korecki et al. Best practice in heat treatment of large dies made of hot work tool steels
Rudnev Induction Heating: Everything You Wanted to Know But Were Afraid to Ask
Bugliarello et al. Heat Treat Process for Gears
RU2655875C1 (en) Method of tempering thin-wall long components made of 12x2nvfa steel in controlled air flow

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20131220