EP2604342A1 - Probenkammer mit Trennplatte - Google Patents

Probenkammer mit Trennplatte Download PDF

Info

Publication number
EP2604342A1
EP2604342A1 EP11193029.3A EP11193029A EP2604342A1 EP 2604342 A1 EP2604342 A1 EP 2604342A1 EP 11193029 A EP11193029 A EP 11193029A EP 2604342 A1 EP2604342 A1 EP 2604342A1
Authority
EP
European Patent Office
Prior art keywords
reservoir
side wall
sample chamber
partition plate
chamber according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP11193029.3A
Other languages
English (en)
French (fr)
Other versions
EP2604342B1 (de
Inventor
Elias Horn
Roman Zantl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibidi GmbH
Original Assignee
Ibidi GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibidi GmbH filed Critical Ibidi GmbH
Priority to DK11193029.3T priority Critical patent/DK2604342T3/da
Priority to EP11193029.3A priority patent/EP2604342B1/de
Priority to US13/705,759 priority patent/US9333503B2/en
Priority to CN201210536279.6A priority patent/CN103157524B/zh
Publication of EP2604342A1 publication Critical patent/EP2604342A1/de
Application granted granted Critical
Publication of EP2604342B1 publication Critical patent/EP2604342B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/508Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0848Specific forms of parts of containers
    • B01L2300/0851Bottom walls

Definitions

  • the present invention relates to a sample chamber for microscope examinations comprising a reservoir for receiving a sample.
  • sample chambers Particularly in the field of cell microscopy, a wide variety of forms of sample chambers are known. Almost all sample chambers have structures for receiving a sample, for example in the form of microfluidic channels or reservoirs. Examples of such sample chambers are in EP 1 886 792 A2 , of the WO 2008/149914 A2 , of the WO 2005/079985 or the DE 101 48 210 shown.
  • sample chambers Possible fields of use for such sample chambers are in particular in the field of microscopy of molecules or cells.
  • the samples to be examined are placed with a liquid in a reservoir of the sample chamber and can then be examined by high-resolution methods (for example, transmitted light microscopy, fluorescence microscopy, confocal microscopy, etc.).
  • a sample chamber in which a meniscus is to be avoided or minimized by a cover plate.
  • the outer surface of the sample chamber is contaminated when liquid from the inlet through which the liquid can be filled into the reservoir exits. Cross-contamination with samples in adjacent reservoirs can not be ruled out in this case either.
  • a cover used to cover the sample chamber may be contaminated in this case.
  • a meniscus-free microscopy is possible by a liquid to be examined is filled into the lower part of the reservoir, so that the filling level completely wets the lower surface of the partition plate.
  • the liquid can be introduced via the inlet / outlet in the lower part of the reservoir.
  • the partition plate is disposed at a height which is less than the minimum height of the side wall, and the upper part of the reservoir is laterally completely bounded by the side wall. Consequently, it is possible to prevent or at least minimize contamination of the outside of the sample chamber or cross-contamination when excess liquid exits the inlet / outlet. In other words, leaking fluid would first be collected in the upper reservoir without escaping from the reservoir to create contamination of the outer surfaces of the sample chamber. The excess liquid in the upper part reservoir can then optionally be removed by pipetting.
  • the reservoir may in particular be a reservoir for receiving a liquid.
  • the sample may either correspond to a liquid or be suspended in a liquid.
  • cells may be considered as a sample.
  • the height of the side wall and / or the height at which the partition plate is arranged in the reservoir can be measured in particular from the bottom of the reservoir.
  • the height of the side wall and / or the height in the reservoir in which the partition plate is arranged can also be determined from a flat surface on which the sample chamber rests, in particular during operation. The height can be measured in particular up to the upper edge of the side wall.
  • the side wall of the reservoir can in particular limit the reservoir completely laterally so that a liquid filled into the reservoir does not flow laterally out of the reservoir can escape.
  • the side wall may be formed circumferentially, in particular wherein the side wall does not comprise through openings.
  • the side wall may in particular have a constant height.
  • the minimum height of the side wall corresponds to the (constant) height of the side wall.
  • the side wall may also have a variable height.
  • the minimum height of the side wall can thus correspond in particular to that height up to which a liquid can be filled into the reservoir without it leaking out of the reservoir.
  • the height at which the partition plate is arranged may in particular be less than or equal to three quarters, in particular less than or equal to half, in particular less than or equal to a quarter, of the minimum height of the side wall.
  • parallel to the base plate may in particular mean parallel to a planar region of the base plate, in particular wherein the sample chamber rests at least partially on this planar region during operation.
  • Parallel to the bottom plate may also mean parallel to the region of the bottom plate on which the sample chamber rests during operation.
  • parallel to the base plate may mean that the angle between the base plate, in particular the flat region of the base plate, and the separating plate is less than 5 °, in particular less than 1 °.
  • the partition plate may be connected to the side wall, in particular with a side edge or with two opposite sides of the side wall.
  • the partition plate may be connected only to one side edge or to two opposite sides of the side wall.
  • the partition plate may at least partially not be connected to the side wall.
  • the partition plate can be fixed, in particular not non-destructively releasably connected to the side wall.
  • the side wall can be glued or welded to the partition plate.
  • the side wall and the partition plate may also be integrally formed.
  • the partition plate may be loosely connected to the side wall.
  • a higher flexibility with regard to the samples to be examined can be achieved.
  • the sample chamber can be designed such that the partition plate is exchangeable.
  • the upper part reservoir can be open towards the outside, so that the partition plate can be removed and / or inserted via this opening.
  • the side wall may have a, in particular circumferential, edge on which the partition plate rests loosely.
  • a simple and secure loose connection of the partition plate with the side wall is possible.
  • this allows the height at which the partition plate is arranged to be precisely determined.
  • the edge may in particular be formed by a projection or a shoulder.
  • the inside of the side wall could also be arranged at a certain height in the reservoir.
  • this reversible connection can be made somewhat more stable, since a frictional connection between the partition plate and the side wall can be formed by the tapering of the side wall.
  • one or more Einrastelmente can be introduced or arranged on the side wall, so that the partition plate is thereby positively connected to the side wall.
  • the partition plate may have a geometry that corresponds to the geometry of the reservoir. This can provide an optimal surface for microscopy without meniscus. For example, if the reservoir has a rectangular cross section, the partition plate may also be rectangular.
  • the partition plate may be liquid-impermeable, porous or membrane-shaped. If a membrane or other porous material is chosen as the separating plate, the pores can be dimensioned such that from below the liquid is drawn into the separating plate, but due to the surface tension of the water the upper side of the separating plate is not wetted.
  • pore sizes of 0.2 .mu.m to 50 .mu.m, in particular from 0.2 .mu.m to 20 .mu.m are advantageous.
  • the membrane may be formed as a permeable or semipermeable membrane.
  • the partition plate may have a thickness between 0.1 mm and 10 mm, in particular between 1 mm and 3 mm. As a result, sufficient stability of the partition plate can be achieved.
  • the partition plate may in particular be rigid. As a result, it is possible to prevent the partition plate from being deformed under the pressure of a liquid arranged in the reservoir, as a result of which the meniscus could no longer be reliably prevented.
  • the partition plate may have a flexural rigidity greater than or equal to the flexural rigidity of a square, plane PC (polycarbonate) plate having a side length of 1 cm, a constant thickness of 1 mm, and a rectangular cross section.
  • a flexural rigidity greater than or equal to the flexural rigidity of a square, plane PC (polycarbonate) plate having a side length of 1 cm, a constant thickness of 1 mm, and a rectangular cross section.
  • the flexural rigidity of the separator plate may be more than 190,000 N ⁇ mm 2 .
  • the bending stiffness corresponds to the product of the modulus of elasticity of the material of the separating plate and the geometrical moment of inertia of the separating plate.
  • the elastic modulus can be determined by a method according to DIN 53457.
  • the flexural rigidity may be related in particular to a bending by a force perpendicular to the surface of the partition plate, in particular perpendicular to the surface of the partition plate which is arranged parallel to the bottom plate.
  • the at least one inlet / outlet can be formed through an opening in the partition plate or through an opening between the partition plate and the side wall. This allows a simple and direct connection between the upper and the lower part of the reservoir.
  • the opening in the partition plate may be, for example, a through hole.
  • An opening between the partition plate and the side wall may be at least partially formed by a lateral recess in the partition plate.
  • the lateral recess can be provided in particular in the region of a corner of the partition plate.
  • the opening between the partition plate and the side wall may also be formed at least in part by the partition plate being at least partially spaced from the side wall.
  • an elongated passage opening between the partition plate and the side wall can be formed from the upper to the lower part reservoir.
  • the opening between the partition plate and the side wall may extend over the entire length of one of the side walls extend. This allows easier filling of the lower reservoir.
  • the opening in particular in the form of a through hole in the partition plate, may have a diameter of at least 0.6 mm, in particular at least 0.8 mm.
  • the lower part reservoir can advantageously be filled with a pipette, since the dimensions of the opening thus correspond at least to the typical size of a pipette tip.
  • the upper and the lower part of the reservoir can also be connected by two inlets / outlets, which are arranged in particular on opposite sides of the reservoir.
  • two inlets / outlets which are arranged in particular on opposite sides of the reservoir.
  • a good venting can be achieved during filling of the lower part of the reservoir.
  • the Applicant has surprisingly found that this also allows a more homogeneous distribution of suspended in a liquid samples in the lower part of the reservoir can be achieved.
  • the ratio of the area of the separating plate to the base surface of the reservoir can be greater than 0.7, in particular greater than 0.8. As a result, the largest possible area for microscopy examination can be provided.
  • the reservoir may in particular have a rectangular or square base. In principle, however, any other geometries of the reservoir, in particular the base of the reservoir, are possible.
  • the side wall may in particular comprise four side walls.
  • the side walls may enclose with the bottom plate an angle between 80 ° and 90 °, in particular 90 °.
  • the reservoir can be open at the top.
  • the reservoir can be designed such that the upper part of the reservoir is freely accessible from the outside.
  • simple filling methods for introducing the samples into the lower part reservoir can be made possible. For example, this pipetting can be enabled or facilitated.
  • the sample chamber may further comprise a further reservoir for receiving a sample, wherein the further reservoir is bounded by the bottom plate and a side wall, and wherein in the further reservoir a plate parallel to the bottom plate is arranged, wherein the partition plate is disposed in the further reservoir at a height which is less than the minimum height of the side wall, so that the further reservoir is subdivided into an upper and a lower partial reservoir, the lower part reservoir and the upper part reservoir are bounded laterally completely by the side wall, and wherein the upper and the lower part reservoir are connected by at least one inlet / outlet.
  • the sample chamber can have a plurality of reservoirs described above, each with a corresponding partition plate. This allows different investigations to be carried out with a single sample chamber.
  • the sample chamber may have two or more reservoirs, each of the reservoirs comprising a partition plate as described above in the arrangement described above.
  • the sample chamber may comprise exactly two, four, eight, twelve, 24, 48, or 96 reservoirs.
  • the reservoir and the further reservoir may partially have a common side wall.
  • the reservoir and the further reservoir may be two adjacent reservoirs that share at least part of the sidewall.
  • the sample chamber may also include a lid for closing the reservoir, in particular wherein the lid rests at least partially flat against the lateral outer surface of the side wall.
  • a lid for closing the reservoir, in particular wherein the lid rests at least partially flat against the lateral outer surface of the side wall.
  • the lid can seal the liquid reservoir in particular gas-tight or gas-permeable. With such a lid also the risk of contamination of the liquid contained in the reservoir can be reduced. In a gas-tight closure, in particular, investigations under a predetermined gas atmosphere can be carried out.
  • the lid and the side wall may be formed such that the lateral outer surface of the lid is flush with the lateral outer surface of the side wall. This makes it easier to grip this device, which simplifies in particular the manual transport and makes safer.
  • a flat concern of the lid on the lateral outer surface can ensure a secure and tight connection between the lid and side wall.
  • the lid and / or the side wall may have a latching element and / or a recess for receiving the latching element.
  • the lid can be firmly connected to the side wall.
  • the cover can also rest loosely on the side wall, for example on an edge, in particular circumferential, on the outside of the side wall.
  • the edge can be formed by a projection or by a paragraph.
  • the cover may in particular be designed such that it covers all reservoirs of the sample chamber.
  • the side wall and the partition plate can be integrally formed, in particular be formed from an injection molded part. As a result, a simple production of the sample chamber is possible.
  • the bottom plate may in particular be firmly connected to the side wall, in particular liquid-tight.
  • the bottom plate may be connected to the side wall by means of adhesive, solvent, UV treatment, radioactive treatment, laser treatment or thermal welding.
  • the thermal welding can be flat or strip-shaped, in particular only along the edge of the bottom plate and / or the side wall, be carried out. This advantageously allows a firm connection of side wall and bottom plate.
  • the sidewall may also be bonded to the separator plate by means of an adhesive, solvent, UV treatment, radioactive treatment, laser treatment or thermal welding.
  • the bottom plate may be formed in particular planar. Planar can mean in this context that two opposing surfaces of the bottom plate are formed plane-parallel.
  • the bottom plate may also be formed only partially planar.
  • the bottom plate may have a thickness of 1 .mu.m to 300 .mu.m, preferably 100 .mu.m to 200 .mu.m. Such a bottom plate advantageously allows an application of inverse microscopy.
  • the thickness may correspond to the maximum thickness of the bottom plate. In the case of a planar bottom plate, the thickness is constant.
  • the bottom plate may have a depression in the region of the reservoir.
  • the thickness of the bottom plate can be reduced, which has a positive effect on the Use for microscopy examinations may have, while outside the reservoir area is a greater thickness, which may have a positive effect on the stability of the sample chamber.
  • the bottom plate may also be formed as an injection molded part.
  • the sample chamber may in particular comprise a cover plate which is fixedly connected to the bottom plate, wherein a recess is provided in the cover plate, so that a reservoir is formed by the bottom plate and the recess.
  • the side wall may be part of a cover plate connected to the bottom plate.
  • the bottom plate, the cover plate, in particular the side wall, and / or the separating plate may be a plastic, in particular COC (cyclo-olefin copolymer), COP (cyclo-olefin polymer), PE (polyethylene), PS (polystyrene), PC (polycarbonate) and / or PMMA (polymethyl methacrylate).
  • the plastic may have low birefringence (such as glass) and / or intrinsic fluorescence substantially equal to the intrinsic fluorescence of a conventional coverslip. Such a high-quality plastic can improve microscopy studies, especially in the application of fluorescence microscopy.
  • the bottom plate may comprise a flexible material, for example a foil.
  • the bottom plate may also consist of a glass, in particular a cover glass.
  • the base area of the sample chamber in particular the bottom plate, may have the dimensions of a conventional microscope slide, in particular a width of about 25.5 mm and a length of about 75.5 mm, or the dimensions of a multi-well plate, in particular in a width of approx 85.6 mm and a length of approx. 127.6 mm
  • the reservoir may have a volume of between 10 ⁇ l and 10 ml, preferably between 20 ⁇ l and 5 ml.
  • the height of the reservoir may be between 25 ⁇ m and 20 mm, preferably between 0.1 mm and 5 mm.
  • The, in particular maximum, diameter of the reservoir, or the edge length of e.g. rectangular reservoirs may be between 0.5 mm and 50 mm, preferably between 1 mm and 25 mm.
  • this cover plate may include a planar portion that is parallel to the bottom plate.
  • the height of the sample chamber in a planar region of such a cover plate may be between 0.5 mm and 10 mm, preferably between 1 mm and 2 mm, in particular 1.7 mm. If the cover plate of the sample chamber has an elevation in which a recess is formed, then the volume of a reservoir formed in this way can be between 50 ⁇ l and 3 ml, preferably between 80 ⁇ l and 2.5 ml, lie.
  • the height of an elevation starting from a planar region of the cover plate may be between 1 mm and 2 cm, preferably between 5 mm and 1 cm.
  • the inner surface of the reservoir may be at least partially hydrophilized.
  • the penetration of undesired substances, for example hydrophobic solvents, into the material of the sample chamber can be prevented or at least minimized.
  • the inner surface of the sample chamber may be hydrophilized in the lower part reservoir.
  • the inner surface of the reservoir may be at least partially hydrophilized by introducing a plasma or plasma gases or reactive gases such as ozone or nitrogen oxides into the reservoir.
  • the plasma can be passed in particular through the at least one inlet / outlet in the lower part of the reservoir. As a result, effective hydrophilization of a reservoir surface can be achieved.
  • FIG. 1 an exemplary sample chamber for microscope examinations, for example for fluorescence microscopy, is shown.
  • the exemplary sample chamber 1 comprises a bottom plate 2 and a side wall 3. Through the bottom plate 2 and the side wall 3, a reservoir is limited, which is open at the top.
  • a partition plate 4 is arranged so that the reservoir is subdivided into a lower part reservoir 5 and an upper part reservoir 6.
  • the side wall 3 has a constant height in this case.
  • the partition plate 4 is arranged at a height in the reservoir, which is less than the height of the side wall third
  • the reservoir has a side wall 3 with variable height.
  • the partition plate is placed at a height which is less than the minimum height of the side wall.
  • Both the lower part of the reservoir 5 and the upper part of reservoir 6 are laterally completely bounded by the side wall 3.
  • the lower part reservoir 5 and the upper part reservoir 6 are arranged in alignment in this example one above the other.
  • the upper part of the reservoir 6 is connected to the lower part of the reservoir 5 through a first inlet / outlet 7 and a second inlet / outlet 8.
  • a sample in particular suspended in a liquid, can be introduced into the lower part reservoir 5. If the lower part of the reservoir 5 is filled with a liquid so that the filling height is completely wetted the underside of the partition plate 4, no meniscus forms.
  • the height at which the partition plate 4 is arranged may correspond to, in particular, half of the minimum height of the side wall 3 or less.
  • the flexural rigidity of the partition plate 4 may in particular be more than 191666 N ⁇ mm 2 . This corresponds to the bending stiffness of a square separator plate with a thickness of 1 mm and a side length of 1 cm, consisting of polycarbonate.
  • the flexural rigidity is based on a bend perpendicular to the surface of the partition plate 4, which is arranged parallel to the bottom plate 2.
  • FIG. 2 shows a top view of an exemplary sample chamber after FIG. 1 ,
  • the two inlets / outlets 7, 8 are formed in that the partition plate 4 is at least partially spaced from the side wall 3.
  • the partition plate 4 is connected to only two opposite sides of the side wall 3.
  • the partition plate 4 is spaced, whereby a passage opening between the upper part of the reservoir 6 and the lower part of the reservoir 5 is formed.
  • the inlets / outlets 7, 8 thus have the shape of a slot.
  • widenings are provided at the ends of the slot-shaped openings. These can facilitate the filling, for example with a pipette.
  • These widenings are formed by lateral recesses at the corners of the separating plate 4.
  • the distance between the partition plate 4 and the side wall 3 is in the region of the widenings more than 0.6 mm, in particular more than 0.8 mm.
  • the partition plate 4 is fixedly connected to the side wall 3, for example by thermal welding.
  • the partition plate 4 could also be connected loosely to the side wall 3.
  • the side wall 3 could have at least on two opposite sides an edge on which the partition plate 4 can rest loosely.
  • FIG. 3 shows a further cross-sectional view of an exemplary sample chamber.
  • this sample chamber has a bottom plate 2, a side wall 3 and a partition plate 4.
  • a reservoir for receiving a sample is limited.
  • the partition plate 4 the reservoir is divided into a lower part of the reservoir 5 and an upper part of the reservoir 6, which are connected by two inlets / outlets 7, 8.
  • the reservoir is closed by a cover 9 in this example.
  • the cover 9 can close the reservoir gas-tight or gas-permeable. Such a lid also reduces the risk of contamination of the sample contained in the reservoir.
  • investigations can be carried out under a predetermined gas atmosphere.
  • the side wall 3 on its outer surface on an edge, which is formed by a paragraph and on which the lid 9 rests.
  • the outer surface of the lid 9 is aligned with the outer surfaces of the side wall 3. This allows the sample chamber better grip, which makes hand transport easier and safer.
  • the cover 9 is in this example also flat against the lateral outer surface of the side wall 3. This ensures a secure and tight connection between the cover 9 and side wall 3.
  • FIG. 4 shows a perspective view of another exemplary sample chamber 1.
  • this sample chamber 1 two adjacent reservoirs are provided, each bounded by a side wall 3 and a bottom plate 2.
  • a parallel to the bottom plate 2 partition plate 4 is arranged, which is liquid impermeable and the respective reservoir into a lower part of the reservoir 5 and an upper part of reservoir 6, which are connected by inlets / outlets 7, 8 shares.
  • the partition plate 4 could alternatively be porous or formed as a membrane.
  • an edge 10 can be seen, on which a lid for closing the reservoirs can rest.
  • FIG. 5 shows an exemplary sample chamber after FIG. 4 with a lid 9 for closing the reservoirs.
  • FIG. 6 is the exemplary sample chamber of FIG. 5 shown, both reservoirs are closed by the lid 9.
  • the inner surface of the reservoirs shown above may also be at least partially hydrophilized, so have a hydrophilic layer.
  • a hydrophilic layer can prevent or at least minimize the migration of undesired substances, for example solvents, into the material of the sample chamber.
  • the layer may have a surface tension of more than 70 mN / m, in particular more than 72 mN / m. In this way, preferably hydrophilic properties are achieved.
  • a hydrophilic layer may be, for example, an SiO x layer. Such a hydrophilic layer can be achieved, for example, by plasma technologies in which SiO x is deposited. SiO x has a surface tension of over 72 mN / m.
  • the surface tension (or surface energy) is determined according to ISO 8296: 2003 (Plastics - Films and webs - Determination of wetting tension, ISO 8296: 2003).
  • ISO 8296 (formerly DIN 53 364) regulates the assessment of the average wettability of plastics.
  • the criterion is the behavior of the edge of brushstrokes with test inks. Test inks with different surface tensions are used. If the edge of the brush stroke contracts within 2 seconds, the measurement is repeated with the next lower value. If the edge of the brush stroke runs outwards, the measurement is repeated with the next highest value.
  • the (critical) surface energy is the value of the test liquid whose edge stops just 2 seconds.
  • the geometry of the reservoirs is not limited to the square shape shown in the figures. Any other geometries are possible.
  • the reservoirs can also be cylindrical.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Optical Measuring Cells (AREA)

Abstract

Die Erfindung umfasst eine Probenkammer für Mikroskopuntersuchungen umfassend ein Reservoir zum Aufnehmen einer Probe, wobei das Reservoir durch eine Bodenplatte und eine Seitenwandung begrenzt wird, und eine im Reservoir angeordnete, zur Bodenplatte parallele Trennplatte, wobei die Trennplatte im Reservoir in einer Höhe angeordnet ist, die geringer als die minimale Höhe der Seitenwandung ist, sodass sie das Reservoir in ein oberes und ein unteres Teilreservoir unterteilt, wobei das untere Teilreservoir und das obere Teilreservoir seitlich vollständig durch die Seitenwandung begrenzt werden, und wobei das obere und das untere Teilreservoir durch wenigstens einen Zu-/Ablauf verbunden sind.

Description

  • Die vorliegende Erfindung betrifft eine Probenkammer für Mikroskopuntersuchungen umfassend ein Reservoir zum Aufnehmen einer Probe.
  • Insbesondere im Bereich der Zellmikroskopie sind unterschiedlichste Formen von Probenkammern bekannt. Fast alle Probenkammern weisen dabei Strukturen zum Aufnehmen einer Probe, beispielsweise in Form von Mikrofluidkanälen oder Reservoiren auf. Beispiele für solche Probenkammern sind in der EP 1 886 792 A2 , der WO 2008/149914 A2 , der WO 2005/079985 oder der DE 101 48 210 gezeigt.
  • Mögliche Einsatzgebiete für solche Probenkammern liegen insbesondere im Bereich der Mikroskopie von Molekülen oder Zellen. Die zu untersuchenden Proben werden dabei mit einer Flüssigkeit in ein Reservoir der Probenkammer gegeben und können dann mit hochauflösenden Verfahren (beispielsweise Durchlichtmikroskopie, Fluoreszenzmikroskopie, konfokale Mikroskopie, etc.) untersucht werden.
  • Bei solchen Untersuchungen ist jedoch die Ausbildung eines Meniskus, also einer Wölbung der Oberfläche der Flüssigkeit, nachteilig. Das Mikroskopieren ohne Meniskus ist beispielsweise dann wichtig, wenn eine Kontrastverstärkung mittels Phasenkontrastmikroskopie angestrebt wird. Bei bekannten Probenkammern ergibt sich häufig der Nachteil, dass durch die Geometrien eine Befüllung oder ein Mikroskopieren ohne Meniskus nicht einfach möglich ist.
  • Aus der WO 2008/149914 A2 ist daher eine Probenkammer bekannt, bei der ein Meniskus durch eine Abdeckplatte vermieden oder minimiert werden soll. Bei dieser Probenkammer kann es jedoch vorkommen, dass die Außenfläche der Probenkammer kontaminiert wird, wenn Flüssigkeit aus dem Zulauf, über den die Flüssigkeit in das Reservoir eingefüllt werden kann, austritt. Auch eine Kreuzkontamination mit Proben in benachbarten Reservoiren kann in diesem Fall nicht ausgeschlossen werden. Ferner kann ein zum Abdecken der Probenkammer verwendeter Deckel in diesem Fall kontaminiert werden.
  • Daher ist es Aufgabe der vorliegenden Erfindung, eine Probenkammer für Mikroskopuntersuchungen bereitzustellen, die ein meniskusfreies Mikroskopieren erlaubt und gleichzeitig ein geringeres Risiko für eine Kontamination der Außenfläche der Probenkammer aufweist.
  • Diese Aufgabe wird durch eine Probenkammer gemäß Anspruch 1 gelöst.
  • Die erfindungsgemäße Probenkammer für Mikroskopuntersuchungen umfasst:
    • ein Reservoir zum Aufnehmen einer Probe, wobei das Reservoir durch eine Bodenplatte und eine Seitenwandung begrenzt wird, und
    • eine im Reservoir angeordnete, zur Bodenplatte parallele Trennplatte,
      wobei die Trennplatte im Reservoir in einer Höhe angeordnet ist, die geringer als die minimale Höhe der Seitenwandung ist, so dass sie das Reservoir in ein oberes und ein unteres Teilreservoir unterteilt, wobei das untere Teilreservoir und das obere Teilreservoir seitlich vollständig durch die Seitenwandung begrenzt werden, und
      wobei das obere und das untere Teilreservoir durch wenigstens einen Zu-/Ablauf verbunden sind.
  • In einer solchen Probenkammer ist ein meniskusfreies Mikroskopieren möglich, indem eine zu untersuchende Flüssigkeit in das untere Teilreservoir eingefüllt wird, so dass die Füllhöhe die untere Oberfläche der Trennplatte vollständig benetzt. Die Flüssigkeit kann dabei über den Zu-/Ablauf in das untere Teilreservoir eingebracht werden. Dadurch, dass die Trennplatte in einer Höhe angeordnet ist, die geringer als die minimale Höhe der Seitenwandung ist, wird auch das obere Teilreservoir seitlich vollständig durch die Seitenwandung begrenzt. Folglich ist es möglich, eine Kontamination der Außenseite der Probenkammer oder eine Kreuzkontamination zu verhindern oder wenigstens zu minimieren, wenn überschüssige Flüssigkeit aus dem Zu-/Ablauf austritt. Mit anderen Worten würde austretende Flüssigkeit zunächst in dem oberen Reservoir gesammelt, ohne aus dem Reservoir zu entweichen und damit eine Kontamination der Außenflächen der Probenkammer zu erzeugen. Die überschüssige Flüssigkeit im oberen Teilreservoir kann dann gegebenenfalls durch Pipettieren entfernt werden.
  • Das Reservoir kann insbesondere ein Reservoir zum Aufnehmen einer Flüssigkeit sein. In diesem Fall kann die Probe entweder einer Flüssigkeit entsprechen oder in einer Flüssigkeit suspensiert sein. Als Probe kommen beispielsweise Zellen in Frage.
  • Die Höhe der Seitenwandung und/oder die Höhe, in der die Trennplatte im Reservoir angeordnet ist, kann insbesondere vom Boden des Reservoirs aus gemessen sein. Insbesondere wenn die Bodenfläche des Reservoirs nicht plan ist, können die Höhe der Seitenwandung und/oder die Höhe im Reservoir, in der die Trennplatte angeordnet ist, auch von einer planen Fläche aus bestimmt werden, auf der die Probenkammer, insbesondere im Betrieb, aufliegt. Die Höhe kann insbesondere bis zur oberen Kante der Seitenwandung gemessen werden.
  • Die Seitenwandung des Reservoirs kann das Reservoir insbesondere vollständig seitlich begrenzen, so dass eine in das Reservoir eingefüllte Flüssigkeit nicht seitlich aus dem Reservoir austreten kann. Mit anderen Worten kann die Seitenwand umlaufend ausgebildet sein, insbesondere wobei die Seitenwandung keine Durchgangsöffnungen umfasst.
  • Die Seitenwandung kann insbesondere eine konstante Höhe aufweisen. In diesem Fall entspricht die minimale Höhe der Seitenwandung der (konstanten) Höhe der Seitenwandung. Die Seitenwandung kann jedoch auch eine variable Höhe aufweisen.
  • Die minimale Höhe der Seitenwandung kann also insbesondere jener Höhe entsprechen, bis zu der eine Flüssigkeit in das Reservoir eingefüllt werden kann, ohne dass sie aus dem Reservoir ausläuft.
  • Die Höhe, in der die Trennplatte angeordnet ist, kann insbesondere kleiner oder gleich drei Viertel, insbesondere kleiner oder gleich der Hälfte, insbesondere kleiner oder gleich einem Viertel, der minimalen Höhe der Seitenwandung sein. Dadurch kann das Volumen des oberen Teilreservoirs ausreichend groß sein, um überschüssige Flüssigkeit aus dem unteren Teilreservoir temporär aufzunehmen, um eine Kontamination der Außenseite der Probenkammer zu verhindern.
  • Parallel zur Bodenplatte kann in diesem Zusammenhang insbesondere parallel zu einem planen Bereich der Bodenplatte bedeuten, insbesondere wobei die Probenkammer im Betrieb wenigstens teilweise auf diesem planen Bereich aufliegt. Parallel zur Bodenplatte kann auch parallel zu dem Bereich der Bodenplatte bedeuten, auf dem die Probenkammer im Betrieb aufliegt.
  • Parallel zur Bodenplatte kann insbesondere bedeuten, dass der Winkel zwischen der Bodenplatte, insbesondere dem planen Bereich der Bodenplatte, und der Trennplatte kleiner als 5°, insbesondere kleiner als 1 ° ist.
  • Die Trennplatte kann mit der Seitenwandung verbunden sein, insbesondere mit einer Seitenkante oder mit zwei gegenüberliegenden Seiten der Seitenwandung. Insbesondere kann die Trennplatte nur mit einer Seitenkante oder mit zwei gegenüberliegenden Seiten der Seitenwandung verbunden sein. Mit anderen Worten kann die Trennplatte wenigstens teilweise nicht mit der Seitenwandung verbunden sein.
  • Die Trennplatte kann dabei fest, insbesondere nicht zerstörungsfrei lösbar, mit der Seitenwandung verbunden sein. Beispielsweise kann die Seitenwandung mit der Trennplatte verklebt oder verschweißt sein. Die Seitenwandung und die Trennplatte können auch einstückig ausgebildet sein.
  • Alternativ kann die Trennplatte mit der Seitenwandung lose verbunden sein. Dadurch ist es beispielsweise möglich, in das untere Teilreservoir größere Objekte einzubringen und anschließend erst die Trennplatte einzulegen. Dadurch kann eine höhere Flexibilität hinsichtlich der zu untersuchenden Proben erreicht werden.
  • Insbesondere kann die Probenkammer derart ausgebildet sein, dass die Trennplatte austauschbar ist. Dafür kann insbesondere das obere Teilreservoir nach außen hin offen sein, sodass die Trennplatte über diese Öffnung entfernt und/oder eingesetzt werden kann.
  • Die Seitenwandung kann eine, insbesondere umlaufende, Kante aufweisen, auf der die Trennplatte lose aufliegt. Dadurch ist eine einfache und sichere lose Verbindung der Trennplatte mit der Seitenwandung möglich. Insbesondere kann dadurch die Höhe, in der die Trennplatte angeordnet wird, genau festegelegt werden. Die Kante kann insbesondere durch einen Vorsprung oder einen Absatz gebildet sein.
  • Alternativ ist es jedoch auch möglich, dass sich die Innenseite der Seitenwandung in Richtung zur Bodenplatte hin verjüngt, insbesondere konisch verjüngt. Dadurch könnte die Trennplatte ebenfalls in einer gewissen Höhe im Reservoir angeordnet werden. Im Gegensatz zur Stufe kann diese reversible Verbindung etwas stabiler ausgebildet sein, da sich durch die Verjüngung der Seitenwandung eine kraftschlüssige Verbindung zwischen der Trennplatte und der Seitenwandung ausbilden kann.
  • Alternativ können an der Seitenwandung auch ein oder mehr Einrastelmente eingebracht oder angeordnet sein, so dass die Trennplatte dadurch kraftschlüssig mit der Seitenwandung verbunden ist.
  • Die Trennplatte kann eine Geometrie aufweisen, die der Geometrie des Reservoirs entspricht. Damit kann eine optimale Fläche zum Mikroskopieren ohne Meniskus bereitgestellt werden. Wenn das Reservoir beispielsweise einen rechteckigen Querschnitt aufweist, kann die Trennplatte ebenfalls rechteckig ausgebildet sein.
  • Die Trennplatte kann flüssigkeitsundurchlässig, porös oder als Membran ausgebildet sein. Wenn als Trennplatte eine Membran oder ein anderes poröses Material gewählt wird, können die Poren so dimensioniert sein, dass von unten die Flüssigkeit in die Trennplatte eingezogen werden, aufgrund der Oberflächenspannung des Wassers die Oberseite der Trennplatte aber nicht benetzt wird. Hier sind Porengrößen von 0,2µm bis 50 µm, insbesondere von 0,2 µm - 20µm, vorteilhaft.
  • Die Membran kann als permeable oder semipermeable Membran ausgebildet sein.
  • Die Trennplatte kann eine Dicke zwischen 0,1 mm und 10 mm, insbesondere zwischen 1 mm und 3 mm aufweisen. Dadurch kann eine ausreichende Stabilität der Trennplatte erreicht werden.
  • Die Trennplatte kann insbesondere starr ausgebildet sein. Dadurch kann verhindert werden, dass sich die Trennplatte unter dem Druck einer im Reservoir angeordneten Flüssigkeit verformt, wodurch der Meniskus nicht mehr zuverlässig verhindert werden könnte.
  • Insbesondere kann die Trennplatte eine Biegesteifigkeit aufweisen, die größer oder gleich der Biegesteifigkeit einer quadratischen, planen Platte bestehend aus PC (Polycarbonat) ist, die eine Seitenlänge von 1 cm, eine konstante Dicke von 1 mm und einen rechteckigen Querschnitt aufweist.
  • Insbesondere kann die Biegesteifigkeit der Trennplatte mehr als 190 000 N·mm2 betragen. Die Biegesteifigkeit entspricht dem Produkt aus dem Elastizitätsmodul des Materials der Trennplatte und dem geometrischen Flächenträgheitsmoment der Trennplatte. Der Elastizitätsmodul kann mit einem Verfahren gemäß DIN 53457 festgestellt werden. Die Biegesteifigkeit kann insbesondere auf eine Biegung durch eine Kraft senkrecht zur Oberfläche der Trennplatte bezogen sein, insbesondere senkrecht zur Oberfläche der Trennplatte die parallel zur Bodenplatte angeordnet ist.
  • Der wenigstens eine Zu-/Ablauf kann durch eine Öffnung in der Trennplatte oder durch eine Öffnung zwischen der Trennplatte und der Seitenwandung gebildet werden. Dies ermöglicht eine einfache und direkte Verbindung zwischen dem oberen und dem unteren Teilreservoir.
  • Bei der Öffnung in der Trennplatte kann es sich beispielsweise um ein Durchgangsloch handeln.
  • Eine Öffnung zwischen der Trennplatte und der Seitenwandung kann wenigstens teilweise durch eine seitliche Aussparung in der Trennplatte gebildet werden. Die seitliche Aussparung kann insbesondere im Bereich einer Ecke der Trennplatte vorgesehen sein.
  • Die Öffnung zwischen der Trennplatte und der Seitenwandung kann auch wenigstens teilweise dadurch gebildet werden, dass die Trennplatte wenigstens teilweise von der Seitenwandung beabstandet ist. Dadurch kann eine längliche Durchgangsöffnung zwischen der Trennplatte und der Seitenwandung vom oberen in das untere Teilreservoir gebildet werden.
  • Bei einer rechteckigen oder quadratischen Geometrie des Reservoirs, kann sich die Öffnung zwischen der Trennplatte und der Seitenwandung über die gesamte Länge einer der Seitenwände erstrecken. Dadurch kann eine einfachere Befüllung des unteren Reservoirs ermöglicht werden.
  • Die Öffnung, insbesondere in Form eines Durchgangslochs in der Trennplatte, kann einen Durchmesser von mindestens 0,6 mm, insbesondere mindestens 0,8 mm, aufweisen. Dadurch kann das untere Teilreservoir vorteilhaft mit einer Pipette befüllt werden, da die Dimensionen der Öffnung damit wenigstens der typischen Größe einer Pipettenspitze entsprechen.
  • Das obere und das untere Teilreservoir können auch durch zwei Zu-/Abläufe verbunden sein, die insbesondere an gegenüberliegenden Seiten des Reservoirs angeordnet sind. Insbesondere bei sich gegenüberliegenden Zu-/Abläufen kann eine gute Entlüftung während des Befüllens des unteren Teilreservoirs erzielt werden. Die Anmelderin hat überraschend festgestellt, dass sich dadurch auch eine homogenere Verteilung von in einer Flüssigkeit suspensierten Proben im unteren Teilreservoir erzielen lässt.
  • Es können jedoch auch mehr als zwei Zu-/Abläufe vorgesehen sein.
  • Das Verhältnis der Fläche der Trennplatte zur Grundfläche des Reservoirs kann größer als 0,7, insbesondere größer als 0,8 sein. Dadurch kann eine möglichst große Fläche zur Mikroskopieuntersuchung bereitgestellt werden.
  • Das Reservoir kann insbesondere eine rechteckige oder quadratische Grundfläche aufweisen. Prinzipiell sind aber auch beliebige andere Geometrien des Reservoirs, insbesondere der Grundfläche des Reservoirs, möglich.
  • Bei einer rechteckigen oder quadratischen Geometrie kann die Seitenwandung insbesondere vier Seitenwände umfassen. Die Seitenwände können mit der Bodenplatte einen Winkel zwischen 80° und 90°, insbesondere 90°, einschließen.
  • Das Reservoir kann nach oben offen sein. Mit anderen Worten kann das Reservoir derart ausgebildet sein, dass das obere Teilreservoir von außen frei zugänglich ist. Dadurch können einfache Befüllverfahren zum Einbringen der Proben in das untere Teilreservoir ermöglicht werden. Beispielsweise können dadurch Pipettierverfahren ermöglicht oder erleichtert werden.
  • Die Probenkammer kann außerdem ein weiteres Reservoir zum Aufnehmen einer Probe umfassen, wobei das weitere Reservoir durch die Bodenplatte und eine Seitenwandung begrenzt wird, und
    wobei im weiteren Reservoir eine zur Bodenplatte parallele Trennplatte angeordnet ist,
    wobei die Trennplatte im weiteren Reservoir in einer Höhe angeordnet ist, die geringer als die minimale Höhe der Seitenwandung ist, so dass sich das weitere Reservoir in ein oberes und ein unteres Teilreservoir unterteilt,
    wobei das untere Teilreservoir und das obere Teilreservoir seitlich vollständig durch die Seitenwandung begrenzt werden, und
    wobei das obere und das untere Teilreservoir durch wenigstens einen Zu-/Ablauf verbunden sind.
  • Mit anderen Worten kann die Probenkammer mehrere oben beschriebene Reservoire, jeweils mit einer entsprechenden Trennplatte, aufweisen. Dadurch können unterschiedliche Untersuchungen mit einer einzelnen Probenkammer durchgeführt werden.
  • Insgesamt kann die Probenkammer zwei oder mehr Reservoire aufweisen, wobei jedes der Reservoire eine oben beschriebene Trennplatte in der oben beschriebenen Anordnung umfasst. Vorzugsweise kann die Probenkammer genau zwei, vier, acht zwölf, 24, 48 oder 96 Reservoire umfassen.
  • Das Reservoir und das weitere Reservoir können teilweise eine gemeinsame Seitenwandung aufweisen. Mit anderen Worten können das Reservoir und das weitere Reservoir zwei benachbarte Reservoire sein, die sich wenigstens einen Teil der Seitenwandung teilen.
  • Die Probenkammer kann außerdem einen Deckel zum Verschließen des Reservoirs umfassen, insbesondere wobei der Deckel wenigstens teilweise an der seitlichen Außenfläche der Seitenwandung flächig anliegt. Durch einen solchen Deckel kann das Verdunsten von Flüssigkeit aus dem Reservoir vermieden oder wenigstens reduziert werden.
  • Der Deckel kann das Flüssigkeitsreservoir insbesondere gasdicht oder gasdurchlässig verschließen. Mit einem solchen Deckel kann außerdem das Kontaminierungsrisiko der im Reservoir enthaltenen Flüssigkeit reduziert werden. Bei einem gasdichten Verschließen können insbesondere Untersuchungen unter einer vorbestimmten Gasatmosphäre durchgeführt werden.
  • Vorzugsweise können der Deckel und die Seitenwandung derart ausgebildet sein, dass die seitliche Außenfläche des Deckels mit der seitlichen Außenfläche der Seitenwandung fluchtet. Damit lässt sich diese Vorrichtung besser greifen, was insbesondere den händischen Transport vereinfacht und sicherer macht.
  • Ein flächiges Anliegen des Deckels an der seitlichen Außenfläche kann eine sichere und dichte Verbindung zwischen Deckel und Seitenwandung gewährleisten.
  • Der Deckel und/oder die Seitenwandung können ein Einrastelement und/oder eine Aussparung zur Aufnahme des Einrastelements aufweisen. Auf diese Weise kann der Deckel fest mit der Seitenwandung verbunden werden. Alternativ kann der Deckel jedoch auch lose auf der Seitenwandung aufliegen, beispielsweise auf einer, insbesondere umlaufenden, Kante an der Außenseite der Seitenwandung. Die Kante kann durch einen Vorsprung oder durch einen Absatz gebildet werden.
  • Der Deckel kann insbesondere derart ausgebildet sein, dass er alle Reservoire der Probenkammer überdeckt.
  • Die Seitenwandung und die Trennplatte können einstückig ausgebildet, insbesondere aus einem Spritzgussteil gebildet sein. Dadurch ist eine einfache Herstellung der Probenkammer möglich.
  • Die Bodenplatte kann insbesondere fest mit der Seitenwandung verbunden sein, insbesondere flüssigkeitsdicht.
  • Die Bodenplatte kann mit der Seitenwandung mittels Klebemittel, Lösungsmittel, UV-Behandlung, radioaktiver Behandlung, Laserbehandlung oder thermischem Verschweißen verbunden sein. Das thermische Verschweißen kann flächig oder streifenförmig, insbesondere nur entlang des Randes der Bodenplatte und/oder der Seitenwandung, erfolgt sein. Dies ermöglicht in vorteilhafter Weise eine feste Verbindung von Seitenwandung und Bodenplatte. Die Seitenwandung kann mit der Trennplatte ebenfalls mittels Klebemittel, Lösungsmittel, UV-Behandlung, radioaktiver Behandlung, Laserbehandlung oder thermischem Verschweißen verbunden sein.
  • Die Bodenplatte kann insbesondere planar ausgebildet sein. Planar kann in diesem Zusammenhang bedeuten, dass jeweils zwei sich gegenüberliegende Flächen der Bodenplatte planparallel ausgebildet sind. Die Bodenplatte kann auch nur teilweise planar ausgebildet sein.
  • Die Bodenplatte kann eine Dicke von 1 µm bis 300 µm, vorzugsweise 100 µm bis 200 µm, aufweisen. Eine solche Bodenplatte ermöglicht in vorteilhafter Weise eine Anwendung der inversen Mikroskopie. Die Dicke kann der maximalen Dicke der Bodenplatte entsprechen. Im Falle einer planaren Bodenplatte ist die Dicke konstant.
  • Die Bodenplatte kann im Bereich des Reservoirs eine Vertiefung aufweisen. Dadurch kann im Bereich des Reservoirs die Dicke der Bodenplatte reduziert werden, was sich positiv auf die Verwendung für Mikroskopieuntersuchungen auswirken kann, während außerhalb des Reservoirbereichs eine größere Dicke vorliegt, was sich positiv auf die Stabilität der Probenkammer auswirken kann.
  • Die Bodenplatte kann auch als Spritzgussteil ausgebildet sein.
  • Die Probenkammer kann insbesondere eine Deckplatte umfassen, die fest mit der Bodenplatte verbunden ist, wobei in der Deckplatte eine Aussparung vorgesehen ist, so dass durch die Bodenplatte und die Aussparung ein Reservoir gebildet wird. Mit anderen Worten kann die Seitenwandung Teil einer mit der Bodenplatte verbundenen Deckplatte sein.
  • Die Bodenplatte, die Deckplatte, insbesondere die Seitenwandung, und/oder die Trennplatte können einen Kunststoff, insbesondere COC (Cyclo-Olefin Copolymer), COP (Cyclo-Olefin Polymer), PE (Polyethylen), PS (Polysterol), PC (Polycarbonat) und/oder PMMA (Polymethylmetacrylat), umfassen. Der Kunststoff kann eine geringe Doppelbrechung (wie Glas) und/oder eine Eigenfluoreszenz, die im Wesentlichen gleich der Eigenfluoreszenz eines herkömmlichen Deckglases ist, aufweisen. Ein solcher optisch hochwertiger Kunststoff kann Mikroskopieuntersuchungen verbessern, insbesondere bei der Anwendung von Fluoreszenzmikroskopie.
  • Die Bodenplatte kann ein flexibles Material, beispielsweise eine Folie, umfassen. Die Bodenplatte kann aber auch aus einem Glas, insbesondere aus einem Deckglas bestehen.
  • Die Grundfläche der Probenkammer, insbesondere der Bodenplatte, kann die Abmessungen eines herkömmlichen Mikroskopieobjektträgers, insbesondere eine Breite von ca. 25,5 mm und eine Länge von ca. 75,5 mm, oder die Abmessungen einer Multititerplatte aufweisen, insbesondere in einer Breite von ca. 85.6 mm und einer Länge von ca. 127.6 mm
  • Das Reservoir kann ein Volumen von zwischen 10 µl und 10 ml, vorzugsweise zwischen 20 µl und 5 ml, aufweisen. Die Höhe des Reservoirs kann zwischen 25 µm und 20 mm, vorzugsweise zwischen 0,1 mm und 5 mm, liegen. Der, insbesondere maximale, Durchmesser des Reservoirs, bzw. die Kantenlänge von z.B. rechteckigen Reservoiren kann zwischen 0,5 mm und 50 mm, vorzugsweise zwischen 1 mm und 25 mm, betragen.
  • Wenn die Seitenwandung Teil einer Deckplatte ist, kann diese Deckplatte einen planaren Bereich umfassen, der parallel zur Bodenplatte ist. Die Höhe der Probenkammer in einem planaren Bereich einer solchen Deckplatte kann zwischen 0,5 mm und 10 mm, vorzugsweise zwischen 1 mm und 2 mm, insbesondere 1,7 mm, betragen. Weist die Deckplatte der Probenkammer eine Erhöhung auf, in der eine Ausnehmung ausgebildet ist, so kann das Volumen eines derart gebildeten Reservoirs zwischen 50 µl und 3 ml, vorzugsweise zwischen 80 µl und 2,5 ml, liegen. Die Höhe einer Erhöhung ausgehend von einem planaren Bereich der Deckplatte kann zwischen 1 mm und 2 cm, vorzugsweise zwischen 5 mm und 1 cm, liegen.
  • Die innere Oberfläche des Reservoirs kann wenigstens teilsweise hydrophilisiert sein. Dadurch kann ein Eindringen unerwünschter Substanzen, beispielsweise von hydrophoben Lösungsmitteln, in das Material der Probenkammer verhindert oder wenigstens minimiert werden. Insbesondere kann die innere Oberfläche der Probenkammer im unteren Teilreservoir hydrophilisiert sein.
  • Die innere Oberfläche des Reservoirs kann durch das Einleiten eines Plasmas oder von Plasmaabgasen oder reaktiven Gasen wie Ozon oder Stickoxyden in das Reservoir wenigstens zumindest teilsweise hydrophilisiert sein.
  • Das Plasma kann insbesondere durch den wenigstens einen Zu-/Ablauf in das untere Teilreservoir geleitet werden. Dadurch kann ein effektives Hydrophilisieren einer Reservoiroberfläche erreicht werden.
  • Weitere Merkmale und Vorteile der Erfindung werden nachfolgend anhand der beispielhaften Figuren erläutert. Dabei zeigt
  • Figur 1
    eine Querschnittsansicht einer beispielhaften Probenkammer für Mikroskopuntersuchungen;
    Figur 2
    eine Draufsicht auf eine beispielhafte Probenkammer nach Figur 1;
    Figur 3
    eine Querschnittsansicht einer beispielhaften Probenkammer nach Figur 1 mit einem Deckel;
    Figur 4
    eine perspektivische Ansicht einer weiteren beispielhaften Probenkammer für Mikroskopuntersuchungen;
    Figur 5
    eine perspektivische Ansicht einer beispielhaften Probenkammer nach Figur 4 mit Deckel; und
    Figur 6
    eine perspektivische Ansicht einer beispielhaften Probenkammer nach Figuren 4 und 5 mit Deckel.
  • In Figur 1 ist eine beispielhafte Probenkammer für Mikroskopuntersuchungen, beispielsweise für Fluoreszenzmikroskopie, gezeigt. Die beispielhafte Probenkammer 1 umfasst eine Bodenplatte 2 und eine Seitenwandung 3. Durch die Bodenplatte 2 und die Seitenwandung 3 wird ein Reservoir begrenzt, das nach oben hin offen ist.
  • In diesem Reservoir ist eine Trennplatte 4 angeordnet, so dass das Reservoir in ein unteres Teilreservoir 5 und ein oberes Teilreservoir 6 unterteilt wird. Die Seitenwandung 3 weist in diesem Fall eine konstante Höhe auf. Die Trennplatte 4 ist in einer Höhe im Reservoir angeordnet, die geringer ist als die Höhe der Seitenwandung 3.
  • Es ist jedoch auch möglich, dass das Reservoir eine Seitenwandung 3 mit variabler Höhe aufweist. In diesem Fall wird die Trennplatte in einer Höhe angeordnet, die geringer ist als die minimale Höhe der Seitenwandung.
  • Sowohl das untere Teilreservoir 5 als auch das obere Teilreservoir 6 werden durch die Seitenwandung 3 seitlich vollständig begrenzt.
  • Das untere Teilreservoir 5 und das obere Teilreservoir 6 sind in diesem Beispiel fluchtend übereinander angeordnet.
  • Das obere Teilreservoir 6 ist mit dem unteren Teilreservoir 5 durch einen ersten Zu-/Ablauf 7 und einen zweiten Zu-/Ablauf 8 verbunden. Durch diese Zu-/Abläufe 7, 8 kann eine Probe, insbesondere in einer Flüssigkeit suspensiert, in das untere Teilreservoir 5 eingebracht werden. Wird das untere Teilreservoir 5 mit einer Flüssigkeit so befüllt, dass die Füllhöhe die Unterseite der Trennplatte 4 vollständig benetzt wird, bildet sich kein Meniskus aus.
  • Beim Befüllen des unteren Teilreservoirs 5 kann es dazu kommen, dass Flüssigkeit durch einen der Zu-/Abläufe 7, 8 über die Höhe der Trennplatte 4 hinaus austritt. Da die Seitenwandung 3 jedoch auch das obere Teilreservoir 6 seitlich vollständig begrenzt, ist das Risiko einer Kontaminierung der Außenseiten der Probenkammer 1 verringert.
  • Die Höhe, in der die Trennplatte 4 angeordnet ist, kann insbesondere der Hälfte der minimalen Höhe der Seitenwandung 3 oder weniger entsprechen.
  • Die Biegesteifigkeit der Trennplatte 4 kann insbesondere mehr als 191666 N·mm2 betragen. Dies entspricht der Biegesteifigkeit einer quadratischen Trennplatte mit einer Dicke von 1 mm und einer Seitenlänge von 1 cm, bestehend aus Polycarbonat. Die Biegesteifigkeit ist dabei auf eine Biegung senkrecht zur Oberfläche der Trennplatte 4 bezogen, die parallel zur Bodenplatte 2 angeordnet ist.
  • Durch eine derart steife Trennplatte 4 kann eine Verformung der Trennplatte 4 unter dem Druck der in das Reservoir eingebrachten Flüssigkeit verhindert oder wenigstens minimiert werden, wodurch ein Meniskus zuverlässiger verhindert oder minimiert werden kann.
  • Figur 2 zeigt eine Draufsicht auf eine beispielhafte Probenkammer nach Figur 1. In dieser Draufsicht ist ersichtlich, dass die zwei Zu-/Abläufe 7, 8 dadurch gebildet werden, dass die Trennplatte 4 wenigstens teilweise von der Seitenwandung 3 beabstandet ist. Insbesondere ist die Trennplatte 4 mit nur zwei gegenüberliegenden Seiten der Seitenwandung 3 verbunden. Zu zwei Seiten der Seitenwandung 3 ist die Trennplatte 4 beabstandet, wodurch sich eine Durchgangsöffnung zwischen dem oberen Teilreservoir 6 und dem unteren Teilreservoir 5 bildet. Die Zu-/Abläufe 7, 8 weisen somit die Form eines Schlitzes auf. An den Enden der schlitzförmigen Öffnungen sind Verbreiterungen vorgesehen. Diese können das Befüllen, beispielsweise mit einer Pipette, erleichtern. Diese Verbreiterungen werden durch seitliche Aussparungen an den Ecken der Trennplatte 4 gebildet. Der Abstand zwischen der Trennplatte 4 und der Seitenwandung 3 beträgt im Bereich der Verbreiterungen mehr als 0,6 mm, insbesondere mehr als 0,8 mm.
  • In diesem Beispiel ist die Trennplatte 4 fest mit der Seitenwandung 3 verbunden, beispielsweise durch thermisches Verschweißen. Alternativ könnte die Trennplatte 4 jedoch auch lose mit der Seitenwandung 3 verbunden sein. Dafür könnte die Seitenwandung 3 wenigstens an zwei gegenüberliegenden Seiten eine Kante aufweisen, auf der die Trennplatte 4 lose aufliegen kann.
  • Figur 3 zeigt eine weitere Querschnittsansicht einer beispielhaften Probenkammer. Wie die Probenkammer aus Figur 1 weist diese Probenkammer eine Bodenplatte 2, eine Seitenwandung 3 und eine Trennplatte 4 auf. Durch die Seitenwandung 3 und die Bodenplatte 2 wird ein Reservoir zum Aufnehmen einer Probe begrenzt. Durch die Trennplatte 4 wird das Reservoir in ein unteres Teilreservoir 5 und ein oberes Teilreservoir 6 geteilt, die durch zwei Zu-/Abläufe 7, 8 verbunden sind.
  • Das Reservoir ist in diesem Beispiel durch einen Deckel 9 verschlossen. Der Deckel 9 kann das Reservoir gasdicht oder gasdurchlässig verschließen. Mit einem solchen Deckel lässt sich auch das Kontaminierungsrisiko der im Reservoir enthaltenen Probe reduzieren. Bei einem gasdichten Verschließen können insbesondere Untersuchungen unter einer vorherbestimmten Gasatmosphäre durchgeführt werden.
  • In diesem Beispiel weist die Seitenwandung 3 an ihrer äußeren Fläche eine Kante auf, die durch einen Absatz gebildet wird und auf der der Deckel 9 aufliegt. Die Außenfläche des Deckels 9 fluchtet dabei mit den Außenflächen der Seitenwandung 3. Dadurch lässt sich die Probenkammer besser greifen, was insbesondere den händischen Transport vereinfacht und sicherer macht. Der Deckel 9 liegt in diesem Beispiel auch flächig an der seitlichen Außenfläche der Seitenwandung 3 an. Damit kann eine sichere und dichte Verbindung zwischen Deckel 9 und Seitenwandung 3 gewährleistet werden.
  • Figur 4 zeigt eine perspektivische Ansicht einer weiteren beispielhaften Probenkammer 1. Bei dieser Probenkammer 1 sind zwei benachbarte Reservoire vorgesehen, die jeweils durch eine Seitenwandung 3 und eine Bodenplatte 2 begrenzt werden. In beiden Reservoiren ist eine zur Bodenplatte 2 parallele Trennplatte 4 angeordnet, die flüssigkeitsundurchlässig ist und das jeweilige Reservoir in ein unteres Teilreservoir 5 und ein oberes Teilreservoir 6, die durch Zu-/Abläufe 7, 8 verbunden sind, teilt.
  • Die Trennplatte 4 könnte alternativ auch porös oder als Membran ausgebildet sein.
  • An der Außenseite der Seitenwandung 3 ist eine Kante 10 zu sehen, auf der ein Deckel zum Verschließen der Reservoire aufliegen kann.
  • Figur 5 zeigt eine beispielhafte Probenkammer nach Figur 4 mit einem Deckel 9 zum Verschließen der Reservoire.
  • In Figur 6 ist die beispielhafte Probenkammer der Figur 5 gezeigt, wobei beide Reservoire durch den Deckel 9 verschlossen sind.
  • Die Innenfläche der oben gezeigten Reservoire, insbesondere die Innenfläche des unteren Teilreservoirs, können auch wenigstens teilweise hydrophilisiert sein, also eine hydrophile Schicht aufweisen. Durch eine derartige hydrophile Schicht kann das Einwandern von unerwünschten Substanzen, beispielsweise von Lösungsmitteln, in das Material der Probenkammer verhindert oder wenigstens minimiert werden.
  • Die Schicht kann eine Oberflächenspannung von mehr als 70 mN/m, insbesondere mehr als 72 mN/m, aufweisen. Auf diese Weise werden bevorzugt hydrophile Eigenschaften erzielt.
  • Bei einer hydrophilen Schicht kann es sich beispielsweise um eine SiOx-Schicht handeln. Eine derartige hydrophile Schicht kann beispielsweise mittels Plasmatechnologien erzielt werden, bei denen SiOx abgeschieden wird. SiOx weist eine Oberflächenspannung von über 72 mN/m auf.
  • Mögliche Verfahren für derartige Schichten ergeben sich beispielsweise aus B. Jacoby et al., "Abscheidung, Charakterisierung und Anwendung von Plasma-Polymerschichten auf HMDSO-Basis", Vakuum in Forschung und Praxis (2006), Seiten 12-18 oder D. Hegemann et al., "Deposition Rate and Three-dimensional Uniformity of RF plasma deposited SiOx films", Surface and Coating Technology (2001), Seite 849.
  • Die Oberflächenspannung (oder auch Oberflächenenergie) wird nach ISO 8296:2003 bestimmt (Kunststoffe - Folien und Bahnen - Bestimmung der Benetzungsspannung, ISO 8296:2003). Die ISO 8296 (früher DIN 53 364) regelt die Beurteilung der mittleren Benetzbarkeit von Kunststoffen. Kriterium ist das Verhalten des Randes von Pinselstrichen mit Testtinten. Dabei werden Testtinten mit unterschiedlichen Oberflächenspannungen verwendet. Zieht sich der Rand des Pinselstriches innerhalb von 2 Sekunden zusammen, wird die Messung mit dem nächstniedrigeren Wert wiederholt. Verläuft der Rand des Pinselstriches nach außen, wird die Messung mit dem nächsthöheren Wert wiederholt. Die (kritische) Oberflächenenergie ist der Wert der Prüfflüssigkeit, deren Rand gerade 2 Sekunden stehen bleibt.
  • Es versteht sich, dass in den zuvor beschriebenen Ausführungsbeispielen genannte Merkmale nicht auf diese speziellen Kombinationen beschränkt sind und auch in beliebigen anderen Kombinationen möglich sind. Außerdem ist auch die Geometrie der Reservoire nicht auf die in den Figuren gezeigte quadratische Form beschränkt. Es sind auch beliebige andere Geometrien möglich. Beispielsweise können die Reservoire auch zylindrisch ausgebildet sein.

Claims (16)

  1. Probenkammer (1) für Mikroskopuntersuchungen umfassend:
    ein Reservoir zum Aufnehmen einer Probe, wobei das Reservoir durch eine Bodenplatte (2) und eine Seitenwandung (3) begrenzt wird, und
    eine im Reservoir angeordnete, zur Bodenplatte (2) parallele Trennplatte (4),
    wobei die Trennplatte (3) im Reservoir in einer Höhe angeordnet ist, die geringer als die minimale Höhe der Seitenwandung (3) ist, sodass sie das Reservoir in ein oberes und ein unteres Teilreservoir (6, 5) unterteilt,
    wobei das untere Teilreservoir (5) und das obere Teilreservoir (6) seitlich vollständig durch die Seitenwandung (3) begrenzt werden, und
    wobei das obere und das untere Teilreservoir (6, 5) durch wenigstens einen Zu-/Ablauf (7, 8) verbunden sind.
  2. Probenkammer nach Anspruch 1, wobei die Seitenwandung (3) eine konstante Höhe aufweist.
  3. Probenkammer nach Anspruch 1 oder 2, wobei die Trennplatte (4) mit der Seitenwandung (3) verbunden ist, insbesondere mit einer Seitenkante oder mit zwei gegenüberliegenden Seiten der Seitenwandung (3).
  4. Probenkammer nach Anspruch 3, wobei die Trennplatte (4) mit der Seitenwandung (3) lose verbunden ist.
  5. Probenkammer nach einem der vorangegangenen Ansprüche, wobei die Seitenwandung (3) eine, insbesondere umlaufende, Kante (10) aufweist, auf der die Trennplatte (4) lose aufliegt.
  6. Probenkammer nach einem der vorangegangenen Ansprüche, wobei der wenigstens eine Zu-/Ablauf (7, 8) durch eine Öffnung in der Trennplatte oder einer Öffnung zwischen der Trennplatte (4) und der Seitenwandung (3) gebildet wird.
  7. Probenkammer nach Anspruch 6, wobei die Öffnung zwischen der Trennplatte (4) und der Seitenwandung (3) wenigstens teilweise durch eine seitliche Aussparung in der Trennplatte (3) gebildet wird.
  8. Probenkammer nach Anspruch 6 oder 7, wobei die Öffnung zwischen der Trennplatte (4) und der Seitenwandung (3) wenigstens teilweise dadurch gebildet wird, dass die Trennplatte (4) wenigstens teilweise von der Seitenwandung (3) beabstandet ist.
  9. Probenkammer nach einem der vorangegangenen Ansprüche, wobei das obere und das untere Teilreservoir (6, 5) durch zwei Zu-/Abläufe (7, 8) verbunden sind, die insbesondere an gegenüberliegenden Seiten des Reservoirs angeordnet sind.
  10. Probenkammer nach einem der vorangegangenen Ansprüche, wobei das Verhältnis der Fläche der Trennplatte (4) zur Grundfläche des Reservoirs größer als 0,7, insbesondere größer als 0,8 ist.
  11. Probenkammer nach einem der vorangegangenen Ansprüche, wobei das Reservoir eine rechteckige oder quadratische Grundfläche aufweist.
  12. Probenkammer nach einem der vorangegangenen Ansprüche, außerdem umfassend ein weiteres Reservoir zum Aufnehmen einer Probe, wobei das weitere Reservoir durch die Bodenplatte (2) und eine Seitenwandung (3) begrenzt wird, und
    wobei im weiteren Reservoir eine zur Bodenplatte (2) parallele Trennplatte (4) angeordnet ist,
    wobei die Trennplatte (4) im weiteren Reservoir in einer Höhe angeordnet ist, die geringer als die minimale Höhe der Seitenwandung (3) ist, so dass sie das weitere Reservoir in ein oberes und ein unteres Teilreservoir unterteilt,
    wobei das untere Teilreservoir und das obere Teilreservoir seitlich vollständig durch die Seitenwandung (3) begrenzt werden, und
    wobei das obere und das untere Teilreservoir (6, 5) durch wenigstens einen Zu-/Ablauf (7, 8) verbunden sind.
  13. Probenkammer nach Anspruch 12, wobei das Reservoir und das weitere Reservoir teilweise eine gemeinsame Seitenwandung (3) aufweisen.
  14. Probenkammer nach einem der vorangegangenen Ansprüche, außerdem umfassend einen Deckel (9) zum Verschließen des Reservoirs, insbesondere wobei der Deckel (9) wenigstens teilweise an der seitlichen Außenfläche der Seitenwandung (3) flächig anliegt.
  15. Probenkammer nach einem der vorangegangenen Ansprüche, wobei die innere Oberfläche des Reservoirs wenigstens teilsweise hydrophilisiert ist.
  16. Probenkammer nach einem der vorangegangenen Ansprüche, wobei die Trennplatte flüssigkeitsundurchlässig, porös oder als Membran ausgebildet ist
EP11193029.3A 2011-12-12 2011-12-12 Probenkammer mit Trennplatte Active EP2604342B1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DK11193029.3T DK2604342T3 (da) 2011-12-12 2011-12-12 Prøvekammer med skilleplade
EP11193029.3A EP2604342B1 (de) 2011-12-12 2011-12-12 Probenkammer mit Trennplatte
US13/705,759 US9333503B2 (en) 2011-12-12 2012-12-05 Sample chamber with parting plate
CN201210536279.6A CN103157524B (zh) 2011-12-12 2012-12-12 具有隔板的样品室

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP11193029.3A EP2604342B1 (de) 2011-12-12 2011-12-12 Probenkammer mit Trennplatte

Publications (2)

Publication Number Publication Date
EP2604342A1 true EP2604342A1 (de) 2013-06-19
EP2604342B1 EP2604342B1 (de) 2014-06-25

Family

ID=45418390

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11193029.3A Active EP2604342B1 (de) 2011-12-12 2011-12-12 Probenkammer mit Trennplatte

Country Status (4)

Country Link
US (1) US9333503B2 (de)
EP (1) EP2604342B1 (de)
CN (1) CN103157524B (de)
DK (1) DK2604342T3 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3095517A1 (de) 2015-05-22 2016-11-23 ibidi GmbH Probenträger mit einer referenzstruktur und verfahren zum herstellen eines probenträgers mit einer referenzstruktur

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2550522B1 (de) 2010-03-23 2016-11-02 California Institute of Technology Hochauflösende optofluidische mikroskope für 2d- und 3d-bildgebung
US9569664B2 (en) * 2010-10-26 2017-02-14 California Institute Of Technology Methods for rapid distinction between debris and growing cells
US9643184B2 (en) * 2010-10-26 2017-05-09 California Institute Of Technology e-Petri dishes, devices, and systems having a light detector for sampling a sequence of sub-pixel shifted projection images

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0648536A1 (de) * 1993-10-18 1995-04-19 Schweizerische Eidgenossenschaft vertreten durch das AC-Laboratorium Spiez der Gruppe für Rüstungsdienste Mehrgefässanordnung zur Instrumental-Analyse
DE10148210A1 (de) 2001-09-28 2003-04-24 Ibidi Gmbh Flusskammer
WO2005079985A1 (de) 2004-02-17 2005-09-01 Ibidi Gmbh Vorrichtung für mikrofluiduntersuchungen
EP1886792A2 (de) 2004-03-22 2008-02-13 ibidi GmbH Vorrichtung für Mikroskopuntersuchungen
WO2008149914A2 (en) 2007-05-30 2008-12-11 Nikon Corporation Incubation container
US20100067105A1 (en) * 2008-09-12 2010-03-18 Oliver Egeler Cell culture vessels for meniscus reduction with aqueous solutions

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4797259A (en) * 1986-12-15 1989-01-10 Pall Corporation Well-type diagnostic plate device
US4741619A (en) * 1987-05-05 1988-05-03 Molecular Devices Corporation Hydrophilic microplates for vertical beam photometry
US5795748A (en) * 1996-09-26 1998-08-18 Becton Dickinson And Company DNA microwell device and method
US6171780B1 (en) * 1997-06-02 2001-01-09 Aurora Biosciences Corporation Low fluorescence assay platforms and related methods for drug discovery
EP1262764B1 (de) * 2001-05-25 2007-04-11 Corning Incorporated Verfahren zur Bestimmung der Reaktionen und der Metabolischen Aktivitat mit Fluoreszentem temperaturempfindlichem Material
WO2003029788A2 (de) * 2001-09-28 2003-04-10 Ibidi Gmbh Flusskammer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0648536A1 (de) * 1993-10-18 1995-04-19 Schweizerische Eidgenossenschaft vertreten durch das AC-Laboratorium Spiez der Gruppe für Rüstungsdienste Mehrgefässanordnung zur Instrumental-Analyse
DE10148210A1 (de) 2001-09-28 2003-04-24 Ibidi Gmbh Flusskammer
WO2005079985A1 (de) 2004-02-17 2005-09-01 Ibidi Gmbh Vorrichtung für mikrofluiduntersuchungen
EP1886792A2 (de) 2004-03-22 2008-02-13 ibidi GmbH Vorrichtung für Mikroskopuntersuchungen
WO2008149914A2 (en) 2007-05-30 2008-12-11 Nikon Corporation Incubation container
US20100067105A1 (en) * 2008-09-12 2010-03-18 Oliver Egeler Cell culture vessels for meniscus reduction with aqueous solutions

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
B. JACOBY ET AL.: "Abscheidung, Charakterisierung und Anwendung von Plasma-Polymerschichten auf HMDSO-Basis", VAKUUM IN FORSCHUNG UND PRAXIS, 2006, pages 12 - 18
D. HEGEMANN ET AL.: "Depo sition Rate and Three-dimensional Uniformity of RF plasma deposited Si0, films", SURFACE AND COATING TECHNOLOGY, 2001, pages 849

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3095517A1 (de) 2015-05-22 2016-11-23 ibidi GmbH Probenträger mit einer referenzstruktur und verfahren zum herstellen eines probenträgers mit einer referenzstruktur

Also Published As

Publication number Publication date
EP2604342B1 (de) 2014-06-25
US9333503B2 (en) 2016-05-10
DK2604342T3 (da) 2014-09-01
CN103157524A (zh) 2013-06-19
US20130171043A1 (en) 2013-07-04
CN103157524B (zh) 2016-03-02

Similar Documents

Publication Publication Date Title
EP1194240B1 (de) Einrichtung zum handhaben von flüssigkeitsproben und herstellungsverfahren sowie system zum handhaben von flüssigkeitsproben
EP2263797B1 (de) Probenkammer
DE60211155T2 (de) Mehrfachlochtestvorrichtung
DE19941905C2 (de) Probenkammer zur Flüssigkeitsbehandlung biologischer Proben
DE69936719T2 (de) Mikro-fluidvorrichtung
DE69432402T2 (de) Chemotaktische testvorrichtung und verfahren mit mehreren angriffspunkten
EP1718409B1 (de) Vorrichtung für mikrofluiduntersuchungen
EP1458483B1 (de) Flusskammer
DE19948087B4 (de) Verfahren zur Herstellung eines Reaktionssubstrats
EP1750155B1 (de) Verfahren zur Herstellung einer Probenkammer
WO1995022406A1 (de) Mikrotiterplatte
EP2604342B1 (de) Probenkammer mit Trennplatte
EP3265796B1 (de) Gelelektrophorese-system für einzelzell-gelelektrophorese
DE10346417A1 (de) Analytisches Testelement umfassend ein Netzwerk zur Bildung eines Kapillarkanals
DE102020107599B3 (de) Verfahren zur Kultivierung von Zellen
EP1379622A2 (de) Verfahren und vorrichtung zum kultivieren und/oder verteilen von partikeln
EP2095876B1 (de) Abdeckvorrichtung für einen Probenträger
EP3430462B1 (de) Vorrichtung zum einsetzen in ein bildgebendes system
EP1397201B2 (de) Reaktionsgefäss zur herstellung von proben
EP1579982B1 (de) Verfahren zum flächigen Quellschweissen eines Kunststoffkörpers mit einem weiteren Körper
DE10117723A1 (de) Probenträger, insbesondere für biochemische Reaktionen
AT411334B (de) Aufnahmevorrichtung für proben
EP2674281B1 (de) Probenkammer und Verfahren zum Herstellen einer Probenkammer
AT500167A1 (de) Reaktionsgefäss
WO2017203037A1 (de) Mikroprobenbehälter und verfahren zum einbringen einer flüssigen probe in einen mikroprobenbehälter

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20130627

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140210

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ISLER AND PEDRAZZINI AG, CH

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 674276

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140715

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011003537

Country of ref document: DE

Effective date: 20140814

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20140828

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140625

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140925

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140625

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140625

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140926

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140625

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140625

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140625

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140625

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140625

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140625

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140625

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140625

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141027

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140625

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140625

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141025

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011003537

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140625

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20150326

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011003537

Country of ref document: DE

Effective date: 20150326

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141212

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140625

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140625

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140625

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140625

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20111212

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140625

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140625

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140625

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140625

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20191223

Year of fee payment: 9

Ref country code: BE

Payment date: 20191223

Year of fee payment: 9

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20201231

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20201231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231220

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20231222

Year of fee payment: 13

Ref country code: FR

Payment date: 20231220

Year of fee payment: 13

Ref country code: AT

Payment date: 20231220

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231221

Year of fee payment: 13

Ref country code: CH

Payment date: 20240101

Year of fee payment: 13