EP2603791B1 - Method and device for determining an orientation of a defect present within a mechanical component - Google Patents

Method and device for determining an orientation of a defect present within a mechanical component Download PDF

Info

Publication number
EP2603791B1
EP2603791B1 EP11766898.8A EP11766898A EP2603791B1 EP 2603791 B1 EP2603791 B1 EP 2603791B1 EP 11766898 A EP11766898 A EP 11766898A EP 2603791 B1 EP2603791 B1 EP 2603791B1
Authority
EP
European Patent Office
Prior art keywords
component
orientation
ultrasonic signals
defect
echo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11766898.8A
Other languages
German (de)
French (fr)
Other versions
EP2603791A1 (en
Inventor
Matthias Goldammer
Werner Heinrich
Hubert Mooshofer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Energy Global GmbH and Co KG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to PL11766898T priority Critical patent/PL2603791T3/en
Publication of EP2603791A1 publication Critical patent/EP2603791A1/en
Application granted granted Critical
Publication of EP2603791B1 publication Critical patent/EP2603791B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/4445Classification of defects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/06Visualisation of the interior, e.g. acoustic microscopy
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/043Analysing solids in the interior, e.g. by shear waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/06Visualisation of the interior, e.g. acoustic microscopy
    • G01N29/0654Imaging
    • G01N29/069Defect imaging, localisation and sizing using, e.g. time of flight diffraction [TOFD], synthetic aperture focusing technique [SAFT], Amplituden-Laufzeit-Ortskurven [ALOK] technique
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Definitions

  • the invention relates to a method and a device for determining an orientation of a defect existing within a mechanical component by means of ultrasonic testing.
  • a focusing method is also known from Spies et al .: "Synthetic aperture focusing for defect reconstruction in anisotropic media", Ultrasonics, Vol. 41, 2003 ; A three-dimensional defect reconstruction is used to determine the position, shape, size and orientation of defects.
  • Ultrasonic testing is a non-destructive material testing method for examining components made of sound-conductive materials, e.g. metal, plastic, ceramic or concrete, for internal and external defects or defects as well as inhomogeneities of all kinds, e.g. cracks, slag inclusions, cavities, etc.
  • ultrasonic testing methods are one of the most frequently used non-destructive material testing methods.
  • forged parts such as wheel disks, shafts or hollow shafts, which are exposed to high loads during operation, possibly in a low-contour state after their manufacture, are tested with ultrasound using ultrasonic testing methods. If defects are displayed by the ultrasonic testing method, a decision can be made on the basis of the displayed defect as to whether the tested component is to be used or not.
  • the so-called SAFT method (Synthetique Aperture Focusing Technique) is sometimes used for the detection and better characterization of defects. If the measured ultrasonic signals are summed up in the correct phase, a localized defect display is obtained for each point in the volume of the component to be examined. In a variant of the SAFT method, the so-called FT-SAFT method, signals are evaluated for faster calculation in the frequency range.
  • a disadvantage of the conventional SAFT process is that it does not provide any information about the orientation or alignment of smaller defects within the component, which can be of particular importance for assessing whether a component is being used.
  • the orientation of an existing defect can be of different importance. If the component is, for example, a wheel disc, radially oriented defects within the component are problematic, since tangential tensile forces promote the growth of the defect or crack. In contrast, tangentially oriented defects or cracks in the component can be tolerated more easily.
  • the invention creates a method for determining an orientation of a defect existing within a mechanical component with the features of claim 1.
  • the echo ultrasound signals received offset in time at the various measuring points are summed in the correct phase, taking into account an angle characteristic of the ultrasound head.
  • the various echo-ultrasonic signals received at the various measuring points by the ultrasonic head are temporarily stored in a memory for evaluation, together with the location coordinates of the respective measuring point.
  • an envelope curve is determined for the temporarily stored echo ultrasonic signals.
  • the temporarily stored echo ultrasonic signals are rectified and low-pass filtered for this purpose.
  • the temporarily stored echo ultrasound signals are subjected to a Hilbert transformation and an absolute value for this purpose.
  • an angle characteristic of the rectified echo ultrasound signals is statistically evaluated as a function of the direction of irradiation.
  • the received echo-ultrasonic signals are evaluated only when the signal amplitude of the echo-ultrasonic signals added in the correct phase exceeds an adjustable threshold value.
  • the echo ultrasound signals are added in the correct phase in a direction-dependent manner, in particular by weighting with a sine or cosine factor.
  • a two-dimensional surface orientation angle is output as the orientation of the defect.
  • a three-dimensional spatial orientation angle of the defect is output as the orientation of the defect.
  • a future probability of failure of the component is calculated as a function of the determined orientation of the defect existing in the component and on the basis of stored geometric data of the component.
  • mechanical loading forces that act on the component during operation are taken into account to calculate the failure probability of the component.
  • the determined orientation is taken into account when evaluating a display in order to determine a correct display size.
  • the invention also provides a device for determining an orientation of a defect existing within a mechanical component having the features of claim 13.
  • the ultrasonic signals are transmitted by at least generates an ultrasound head that is movably arranged on the surface of the mechanical component and acts on the mechanical component with ultrasonic signals based on the measuring points.
  • the ultrasonic signals are generated by an array test head with a plurality of ultrasonic heads.
  • the device has a memory which temporarily stores the various echo-ultrasonic signals received at the various measuring points together with the location coordinates of the respective measuring point for further evaluation.
  • the echo ultrasound signals temporarily stored in the memory are subjected to a Hilbert transformation and an absolute value formation by a transformation unit.
  • the echo ultrasound signals temporarily stored in the memory are rectified by a transformation unit and low-pass filtered.
  • the evaluation unit calculates a future failure probability of the component as a function of the determined orientation of the defect existing in the component and on the basis of stored geometric data of the component.
  • the invention further provides a machine with a device for determining an orientation of a defect existing within a mechanical component with the features of claim 18.
  • the device 1 for determining an orientation of a defect existing within a mechanical component B has at least one ultrasound head 2 which applies ultrasound signals to the mechanical component starting from different measuring points MP.
  • echo ultrasound signals which are reflected back to the measuring points MP from a point P to be examined and located within the component B, are received by the same or a different ultrasound head.
  • the ultrasound signals are generated by an ultrasound head 2 which is movably arranged on the surface of the mechanical component B and acts on the mechanical component B with ultrasound signals based on the various measuring points MP.
  • the ultrasonic signals are generated by an array test head with several ultrasonic heads 2.
  • the sound propagation within the component takes place in the form of an elastic wave that is bound to the material of component B.
  • the matter can be a solid, liquid or gaseous substance. No matter is transported during the propagation of sound, rather the matter particles of component B, which for example consist of atoms, ions or molecules, vibrate from the respective propagation medium to their stay periodically around a position of rest and thereby transfer their movement to neighboring particles. In this way, the vibration process propagates at a speed of sound that is characteristic of the propagation medium or component material. Sound with a frequency above 20 kHz is commonly referred to as ultrasound.
  • the ultrasound head 2 can generate ultrasound in different ways. For example, a piezoelectric effect, a magnetorestrictive effect can be used.
  • the ultrasound head 2 is used, as in FIG Fig. 1 shown, both as a transmitter and receiver of ultrasonic waves.
  • the echo ultrasound signal reflected from the point P to be examined can be received by another ultrasound head.
  • Ultrasonic waves propagate in a straight line.
  • boundary surfaces as they pass through the test object or component B, for example boundary surfaces that are caused by pores, cavities, cracks or slag influences, the ultrasonic signals do not pass over this defect, but are reflected by them.
  • Reflection or echo ultrasound methods have various advantages, in particular the depth of a defect or fault can be determined.
  • the component to be tested must only be accessible from one side in the case of the echo ultrasound method.
  • an exact alignment between transmitter and receiver is not necessary, since only one coupling surface for the ultrasound head 2 is present.
  • the various echo ultrasonic signals that are received at the various measuring points MP are temporarily stored in a data memory 3 for further evaluation.
  • the coordinates of the respective measuring points MP i and the associated sampled echo-ultrasonic signals of the respective measuring points MP are thus located in the data memory 3.
  • the device 1 also has a Data processing unit 4, which evaluates the echo ultrasound signals temporarily stored in the data memory 3 for the various measuring points MP i .
  • the data processing unit 4 evaluates the received echo ultrasound signals as a function of a direction of irradiation between the respective measuring point MP i and the point P to be examined to determine the orientation of a defect.
  • a distance d between the measuring point MP i and the point P to be examined is calculated for each measuring point MP i as a function of a recorded signal transit time between the point in time when the ultrasound signal is emitted and the point in time when the echo ultrasound signal reflected back by a defect is received Echo ultrasound signals of the point P to be examined received at the various measuring points MP i offset in time are added in the correct phase to their evaluation.
  • the data processing unit 4 has a distance calculation unit 5 which calculates a distance d between the respective measuring point MP and the point P to be examined. Furthermore, the data processing unit 4 has a direction or orientation calculation unit 6, which reflects the received echo ultrasound signals, which are located within the component B, to be examined point P back to the measurement points MP i , depending on a direction of sonication between the respective Evaluates measuring point MP and the point to be examined P of component B to determine the orientation of the defect.
  • the data processing unit 4 also has an optional signal transformation unit 7.
  • This transformation unit 7 calculates an envelope curve in each case for the temporarily stored echo ultrasonic signals.
  • the temporarily stored echo ultrasound signals are rectified and low-pass filtered by the transformation unit 7.
  • the temporarily stored echo ultrasound signals subjected to a Hilbert transformation and an amount formation by the transformation unit 7.
  • the data processing unit 4 also has time shift units 8, 9, which allow the correct phase addition of the contributing echo-ultrasonic signals.
  • the time shift takes place as a function of the distance d calculated by the distance calculation unit 5.
  • a direction-dependent, phase-correct addition of the echo ultrasonic signals read out from the data memory 3 for the various measuring points is carried out by a summation circuit or adding circuit 10.
  • the direction-dependent in-phase addition can be carried out, for example, by weighting with a sine or cosine factor for the determined direction.
  • the summed up, weighted signal can then be smoothed by a low-pass filter 11 of the data processing unit 4.
  • the data processing unit 4 also has an evaluation unit 12.
  • the evaluation unit 12 statistically evaluates the angle characteristics of the echo ultrasound signals as a function of the direction of exposure.
  • the angle characteristic indicates a dependence of the signal amplitude as a function of the direction of the sound.
  • the evaluation unit 12 calculates a possible future failure probability of the respective component B based on the determined orientation of the defect existing in the component B on the basis of stored geometry data of the component B.
  • the evaluation unit 12 has access to a data memory 13 for this purpose , in which the geometry data of the component B to be examined are stored.
  • the evaluation unit 12 calculates a future probability of failure of the component as a function of the determined orientation of the defect existing in component B using the component geometry data read from the data memory 13. There Mechanical loading forces that can act on component B during operation of component B are preferably also taken into account.
  • the data processing unit 4 outputs a two-dimensional surface orientation angle in one possible embodiment. It is also possible for the data processing unit 4 to output a three-dimensional spatial orientation angle of the defect. In one possible embodiment, a color-coded representation of the directional information of phase-correct echo sums can take place.
  • a mean value or a median value is calculated to determine the orientation of the defect. Furthermore, a standard deviation or a variance is calculated as a measure for the directivity of the defect. The mean value indicates an angle, while the standard deviation or the variance indicates an angle range.
  • the in Fig. 1 The data processing unit 4 shown can be integrated in a machine and monitor a component B of this machine to determine an orientation of a defect occurring within the component B.
  • FIG. 11 shows a flow chart to illustrate the most important steps of the method according to the invention for determining an orientation of a defect existing within a mechanical component B.
  • a first step S1 an ultrasound signal is initially applied to the mechanical component B, starting from various measuring points MP.
  • the ultrasonic signals are generated by at least one ultrasonic head 2, which emits an ultrasonic signal to component B at the measuring points MP. Furthermore, through the ultrasound head receive echo ultrasound signals that are reflected back with a time delay.
  • the received echo ultrasound signals which are reflected back to the measuring points MP from a point P to be examined located within component B, are transmitted between the respective measuring point MP and the point P to be examined of component B depending on a direction of irradiation Determination of the orientation of a defect evaluated.
  • a distance d between the measuring point MP and the point P to be examined is calculated for each measuring point as a function of a recorded signal transit time between the point in time when the ultrasonic signal was emitted and the point in time when the reflected echo ultrasonic signal was received.
  • the echo ultrasound signals of the point P to be examined, received at the various measuring points MP with a time offset, are added in the correct phase for their evaluation.
  • the test object or the component is scanned one or more times with ultrasonic heads 2 with different insonification angles.
  • An area of interest of component B is defined and an evaluation grid that covers the area of interest of component B is defined.
  • the grid is provided with such a fine resolution that no defects can be overlooked.
  • the orientation of defects is calculated, in that a direction or alignment between a contributing measurement point MP and the point P to be examined takes into account the amplitude of the signal contribution.
  • the determination according to the invention of an orientation of a defect existing within a mechanical component B can, in one possible embodiment, be carried out in parallel to a conventional SAFT evaluation.
  • the method according to the invention can be carried out following a conventional SAFT calculation or evaluation.
  • the method according to the invention is carried out following the production of component B.
  • the method is carried out during ongoing operation of component B for its monitoring.
  • an optimization of the computing time of the data processing unit 4 can be achieved by changing the sequence of computation steps. For example, complex ultrasonic signals can be calculated in advance.
  • the received echo ultrasound signals are evaluated only when the signal amplitude of the echo ultrasound signals added in the correct phase exceeds an adjustable signal threshold value. Additional post-signal processing can also take place, for example by filtering and smoothing directional information data.
  • the SAFT result can be divided or broken down into radial, tangential and axial components depending on the determined direction.
  • the signal contributions from the various measuring points are shown in vector form.
  • the contribution of the measuring point MP is determined by evaluating the rectified ultrasonic signal in the correct phase.
  • the vectorial and contributory sum can be determined in order to characterize the direction, that is to say the direction of the vector sum, and the directivity, that is to say the amount of the vector sum, in relation to the absolute sum.
  • the determined SAFT result and the determined orientation can be shown in a brightness or color-coded manner on a display for an operator.
  • several main directions 2 in the plane or three in space can be taken into account, the main directions being different in each point P to be examined could be.
  • the in-phase addition of the ultrasonic signals takes place separately for each main direction.
  • the signal contributions can be weighted with a cosine or sine factor between the sound direction and the main direction.
  • the main directions are perpendicular to one another. In alternative embodiments, the main directions are not perpendicular to one another.
  • the number of main directions can vary.
  • the results are converted from different main directions according to amount and phase.
  • the calculation results determined by the method according to the invention can be used to feed the defect positions and defect orientation into a mechanical simulation of the tested component B, for example to evaluate defects found and to calculate a future probability of failure. For example, components B that have smaller defects, the orientation of which is not critical, can also be approved for use or operation for higher loads.
  • the defect orientation of a defect is characterized while at the same time good separation or resolution of nearby defects.
  • the method according to the invention increases the detection sensitivity by reducing the noise and the divergence of the ultrasonic signal.
  • the information obtained about the defect orientation can be related to the radial, tangential or axial stresses or forces considered during the construction, so that the admissibility of defects can be better assessed, especially if a component B is mainly loaded in a certain direction becomes. In this way, manufactured components B can be approved that would otherwise have to be discarded due to the safety reserve, although they would be suitable for use in themselves.
  • the components B tested with the method according to the invention can be approved for higher loads during operation.
  • the method according to the invention can also be used in what is known as an immersion technique test.
  • the data processing unit 4 has an input device or an interface via which additional information about the component A can be specified. For example, one or more material constants of the component material can be entered via the interface. Furthermore, it is possible to enter a propagation speed of ultrasonic signals in the component B to be examined via this interface and, if necessary, to store this in a corresponding data memory.
  • the data processing unit 4 also has an interface for connecting measuring sensors which measure loading forces that act on the component B during its operation.
  • the data memory 3 is integrated in the data processing unit 4 and connected to one or more ultrasound heads 2 via an interface.
  • the reception of the ultrasonic time signals and the coordinates of the measuring points MP can take place via a wireless or wired interface to the data processing unit 4.
  • the ultrasound heads 2 can be connected to the data processing unit 4 via a data network, for example. It is also possible for the coordinates of the measuring points MP and the corresponding ultrasonic time signals to be written locally in a data memory 3.
  • This local data storage device can be a portable data carrier, for example.
  • different units of the data processing unit 4 can be integrated in a common calculation unit.
  • the direction calculation unit 6, the distance calculation unit 5 and the transformation unit 7 can be implemented by one or more microprocessors.
  • the movement of the ultrasound head 2, for example on the surface of the test object B to be examined can be controlled as a function of the measured data. If, for example, an interesting point within the component B is discovered with the ultrasound head 2, the ultrasound head 2 can be directed through the data processing unit 4 can be moved to suitable measuring points MP i in order to gain more data for the defect orientation of the detected defect.
  • the defects occurring in component B are primarily unwanted defects such as cracks and the like.
  • the defects present in component B can also include desired recesses, for example cavities or bores, the method according to the invention being used to check whether the orientation and extent of the defect corresponds to the specifications or target values.
  • the frequency with which the ultrasonic signal is radiated from the ultrasonic head 2 into the component B to be examined can be set. In this way it is possible to examine different locations or defects with different sound frequencies.

Landscapes

  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Ermittlung einer Orientierung eines innerhalb eines mechanischen Bauteils bestehenden Defektes mittels Ultraschallprüfung.The invention relates to a method and a device for determining an orientation of a defect existing within a mechanical component by means of ultrasonic testing.

Aus der EP 2 051 070 A1 und der WO 2008/138684 A1 sind SAFT-Verfahren zur zerstörungsfreien Materialprüfung eines Prüfgegenstandes mit Ultraschallwellen bekannt. In WO 2008/138684 wird eine winkelabhängige Amplitudenverteilung verwendet, um einen Korrekturfaktor zu bestimmen.From the EP 2 051 070 A1 and the WO 2008/138684 A1 SAFT methods for non-destructive material testing of a test object with ultrasonic waves are known. In WO 2008/138684 an angle-dependent amplitude distribution is used to determine a correction factor.

Ein Verfahren zur Verbesserung der Bildqualität ist bekannt aus Pignone: " Enhancment in image quality in ultrasonic flaw detection process in rotor turbine using SAFT", Imaging Systems and Techniques, 2004, Seiten 117-122 .A method for improving the image quality is known from Pignone: " Enhancment in image quality in ultrasonic flaw detection process in rotor turbine using SAFT ", Imaging Systems and Techniques, 2004, pages 117-122 .

Ultraschallprüfverfahren sind beschrieben in Deutsch et al.: "3.4.3.6 Rechnergestützte Fehlerbeschreibung", Ultraschallprüfung: Grundlagen und industrielle Anwendungen, 1997, Seiten 133-141 .Ultrasonic testing methods are described in Deutsch et al .: "3.4.3.6 Computer-Aided Description of Errors", Ultrasonic Testing: Basics and Industrial Applications, 1997, pages 133-141 .

Weiter ist ein Fokussierungsverfahren bekannt aus Spies et al.: "Synthetic aperture focusing for defect reconstruction in anisotropic media", Ultrasonics, Bd. 41, 2003 ; durch eine dreidimensionale Defekt-Rekonstruktion werden Lage, Form, Größe und Orientierung von Defekten ermittelt.A focusing method is also known from Spies et al .: "Synthetic aperture focusing for defect reconstruction in anisotropic media", Ultrasonics, Vol. 41, 2003 ; A three-dimensional defect reconstruction is used to determine the position, shape, size and orientation of defects.

Die Ultraschallprüfung ist ein zerstörungsfreies Werkstoffprüfverfahren, um Bauteile, die aus schallleitfähigen Werkstoffen, beispielsweise Metall, Kunststoff, Keramik oder Beton bestehen, auf innere und äußere Fehler bzw. Defekte sowie Inhomogenitäten aller Art, beispielsweise Risse, Schlackeneinschlüsse, Lunker usw. zu untersuchen.Ultrasonic testing is a non-destructive material testing method for examining components made of sound-conductive materials, e.g. metal, plastic, ceramic or concrete, for internal and external defects or defects as well as inhomogeneities of all kinds, e.g. cracks, slag inclusions, cavities, etc.

Aufgrund der einfachen und universellen Anwendbarkeit sowie der Tatsache, dass das Prüfpersonal keiner Strahlenbelastung ausgesetzt ist, sind Ultraschallprüfverfahren eines der am häufigsten eingesetzten zerstörungsfreien Werkstoffprüfverfahren.Due to the simple and universal applicability as well as the fact that the test personnel are not exposed to radiation is exposed, ultrasonic testing methods are one of the most frequently used non-destructive material testing methods.

Mit Ultraschallprüfverfahren werden beispielsweise große Schmiedeteile, wie etwa Radscheiben, Wellen oder Hohlwellen, die im Betrieb hohen Belastungen ausgesetzt sind, möglicherweise nach deren Herstellung ggf. in einem konturarmen Zustand, mit Ultraschall geprüft. Werden durch das Ultraschallprüfverfahren Defekte angezeigt kann anhand des angezeigten Defektes entschieden werden, ob das geprüfte Bauteil zum Einsatz kommt oder nicht.For example, large forged parts such as wheel disks, shafts or hollow shafts, which are exposed to high loads during operation, possibly in a low-contour state after their manufacture, are tested with ultrasound using ultrasonic testing methods. If defects are displayed by the ultrasonic testing method, a decision can be made on the basis of the displayed defect as to whether the tested component is to be used or not.

Zur Erkennung und besseren Charakterisierung von Defekten wird zum Teil das sogenannte SAFT-Verfahren (Synthetique Aperture Focusing Technique) eingesetzt. Bei einer phasenrichtigen Summierung der gemessenen Ultraschallsignale wird für jeden Punkt im Volumen des zu untersuchenden Bauteils eine lokalisierte Defektanzeige erhalten. Bei einer Variante des SAFT-Verfahren, dem sogenannten FT-SAFT-Verfahren, erfolgt eine Signalauswertung zur schnelleren Berechnung im Frequenzbereich.The so-called SAFT method (Synthetique Aperture Focusing Technique) is sometimes used for the detection and better characterization of defects. If the measured ultrasonic signals are summed up in the correct phase, a localized defect display is obtained for each point in the volume of the component to be examined. In a variant of the SAFT method, the so-called FT-SAFT method, signals are evaluated for faster calculation in the frequency range.

Ein Nachteil des herkömmlichen SAFT-Verfahrens besteht jedoch darin, dass man hierdurch keinerlei Information über die Orientierung bzw. Ausrichtung von kleineren Defekten innerhalb des Bauteils erhält, die insbesondere für die Bewertung, ob ein Bauteil zum Einsatz kommt, von Bedeutung sein kann. Abhängig von der jeweiligen Belastung und der Geometrie des jeweiligen Bauteils kann die Orientierung eines bestehenden Defektes von unterschiedlicher Bedeutung sein. Handelt es sich bei dem Bauteil beispielsweise um eine Radscheibe, sind radial orientierte Defekte innerhalb des Bauteils problematisch, da tangentiale Zugkräfte das Wachstum des Defektes bzw. Risses fördern. Demgegenüber können tangential orientierte Defekte bzw. Risse in dem Bauteil eher toleriert werden.A disadvantage of the conventional SAFT process, however, is that it does not provide any information about the orientation or alignment of smaller defects within the component, which can be of particular importance for assessing whether a component is being used. Depending on the respective load and the geometry of the respective component, the orientation of an existing defect can be of different importance. If the component is, for example, a wheel disc, radially oriented defects within the component are problematic, since tangential tensile forces promote the growth of the defect or crack. In contrast, tangentially oriented defects or cracks in the component can be tolerated more easily.

Es ist daher eine Aufgabe der vorliegenden Erfindung, ein Verfahren und eine Vorrichtung zur Ermittlung einer Orientierung eines innerhalb eines mechanischen Bauteils bestehenden Defektes zu schaffen.It is therefore an object of the present invention to create a method and a device for determining an orientation of a defect existing within a mechanical component.

Diese Aufgabe wird erfindungsgemäß durch ein Verfahren mit den in Patentanspruch 1 angegebenen Merkmalen gelöst.According to the invention, this object is achieved by a method having the features specified in patent claim 1.

Die Erfindung schafft ein Verfahren zum Ermitteln einer Orientierung eines innerhalb eines mechanischen Bauteils bestehenden Defektes mit den Merkmalen des Patentanspruchs 1.The invention creates a method for determining an orientation of a defect existing within a mechanical component with the features of claim 1.

Bei einer Ausführungsform des erfindungsgemäßen Verfahrens werden die zeitlich an den verschiedenen Messpunkten versetzt empfangenen Echo-Ultraschallsignale unter Berücksichtigung einer Winkelcharakteristik des Ultraschallkopfes phasenrichtig summiert.In one embodiment of the method according to the invention, the echo ultrasound signals received offset in time at the various measuring points are summed in the correct phase, taking into account an angle characteristic of the ultrasound head.

Bei einer möglichen Ausführungsform des erfindungsgemäßen Verfahrens werden die verschiedenen Echo-Ultraschallsignale, die an den verschiedenen Messpunkten durch den Ultraschallkopf empfangen werden, zusammen mit den Ortskoordinaten des jeweiligen Messpunktes in einem Speicher zur Auswertung zwischengespeichert.In a possible embodiment of the method according to the invention, the various echo-ultrasonic signals received at the various measuring points by the ultrasonic head are temporarily stored in a memory for evaluation, together with the location coordinates of the respective measuring point.

Bei einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens wird für die zwischengespeicherten Echo-Ultraschallsignale eine Hüllkurve ermittelt.In a preferred embodiment of the method according to the invention, an envelope curve is determined for the temporarily stored echo ultrasonic signals.

Bei einer möglichen Ausführungsform des erfindungsgemäßen Verfahrens werden hierzu die zwischengespeicherten Echo-Ultraschallsignale gleichgerichtet und tiefpassgefiltert.In a possible embodiment of the method according to the invention, the temporarily stored echo ultrasonic signals are rectified and low-pass filtered for this purpose.

Bei einer alternativen Ausführungsform des erfindungsgemäßen Verfahrens werden hierzu die zwischengespeicherten Echo-Ultraschallsignale einer Hilbert-Transformation und einer Betragsbildung unterzogen.In an alternative embodiment of the method according to the invention, the temporarily stored echo ultrasound signals are subjected to a Hilbert transformation and an absolute value for this purpose.

Erfindungsgemäß wird eine Winkelcharakteristik der gleichgerichteten Echo-Ultraschallsignale in Abhängigkeit der Beschallungsrichtung statistisch ausgewertet.According to the invention, an angle characteristic of the rectified echo ultrasound signals is statistically evaluated as a function of the direction of irradiation.

Bei einer möglichen Ausführungsform des erfindungsgemäßen Verfahrens erfolgt das Auswerten der empfangenen Echo-Ultraschallsignale nur dann, wenn die Signalamplitude der phasenrichtig addierten Echo-Ultraschallsignale einen einstellbaren Schwellenwert überschreitet.In a possible embodiment of the method according to the invention, the received echo-ultrasonic signals are evaluated only when the signal amplitude of the echo-ultrasonic signals added in the correct phase exceeds an adjustable threshold value.

Bei einer möglichen Ausführungsform des erfindungsgemäßen Verfahrens erfolgt eine richtungsabhängige phasenrichtige Addition der Echo-Ultraschallsignale, insbesondere durch Gewichtung mit einem Sinus- oder Cosinusfaktor.In a possible embodiment of the method according to the invention, the echo ultrasound signals are added in the correct phase in a direction-dependent manner, in particular by weighting with a sine or cosine factor.

Bei einer möglichen Ausführungsform des erfindungsgemäßen Verfahrens wird als Orientierung des Defektes ein zweidimensionaler Flächen-Orientierungswinkel ausgegeben.In one possible embodiment of the method according to the invention, a two-dimensional surface orientation angle is output as the orientation of the defect.

Bei einer alternativen Ausführungsform des erfindungsgemäßen Verfahrens wird als Orientierung des Defektes ein dreidimensionaler Raum-Orientierungswinkel des Defektes ausgegeben.In an alternative embodiment of the method according to the invention, a three-dimensional spatial orientation angle of the defect is output as the orientation of the defect.

Bei einer möglichen Ausführungsform des erfindungsgemäßen Verfahrens wird in Abhängigkeit von der ermittelten Orientierung des in dem Bauteil bestehenden Defektes und anhand gespeicherter Geometriedaten des Bauteils eine zukünftige Ausfallwahrscheinlichkeit des Bauteils berechnet.In a possible embodiment of the method according to the invention, a future probability of failure of the component is calculated as a function of the determined orientation of the defect existing in the component and on the basis of stored geometric data of the component.

Bei einer möglichen Ausführungsform des erfindungsgemäßen Verfahrens werden zur Berechnung der Ausfallwahrscheinlichkeit des Bauteils mechanische Belastungskräfte, die im Betrieb auf das Bauteil wirken, berücksichtigt.In a possible embodiment of the method according to the invention, mechanical loading forces that act on the component during operation are taken into account to calculate the failure probability of the component.

Bei einer möglichen Ausführungsform des erfindungsgemäßen Verfahrens wird bei einer Bewertung einer Anzeige die ermittelte Orientierung berücksichtigt, um eine korrekte Anzeigengröße zu erfassen.In one possible embodiment of the method according to the invention, the determined orientation is taken into account when evaluating a display in order to determine a correct display size.

Die Erfindung schafft ferner eine Vorrichtung zur Ermittlung einer Orientierung eines innerhalb eines mechanischen Bauteils bestehenden Defektes mit den Merkmalen des Patentanspruchs 13.The invention also provides a device for determining an orientation of a defect existing within a mechanical component having the features of claim 13.

Bei einer möglichen Ausführungsform der erfindungsgemäßen Vorrichtung werden die Ultraschallsignale durch mindestens einen Ultraschallkopf generiert, der auf der Oberfläche des mechanischen Bauteils beweglich angeordnet ist und das mechanische Bauteil ausgehend von den Messpunkten mit Ultraschallsignalen beaufschlagt.In one possible embodiment of the device according to the invention, the ultrasonic signals are transmitted by at least generates an ultrasound head that is movably arranged on the surface of the mechanical component and acts on the mechanical component with ultrasonic signals based on the measuring points.

Bei einer möglichen Ausführungsform der erfindungsgemäßen Vorrichtung werden die Ultraschallsignale durch einen Array-Prüfkopf mit mehreren Ultraschallköpfen generiert.In a possible embodiment of the device according to the invention, the ultrasonic signals are generated by an array test head with a plurality of ultrasonic heads.

Bei einer möglichen Ausführungsform der erfindungsgemäßen Vorrichtung weist diese einen Speicher auf, welcher die verschiedenen Echo-Ultraschallsignale, die an den verschiedenen Messpunkten empfangen werden, zusammen mit den Ortskoordinaten des jeweiligen Messpunktes zur weiteren Auswertung zwischenspeichert.In a possible embodiment of the device according to the invention, it has a memory which temporarily stores the various echo-ultrasonic signals received at the various measuring points together with the location coordinates of the respective measuring point for further evaluation.

Bei einer möglichen Ausführungsform der erfindungsgemäßen Vorrichtung werden die in dem Speicher zwischengespeicherten Echo-Ultraschallsignale durch eine Transformationseinheit einer Hilbert-Transformation und einer Betragsbildung unterzogen.In one possible embodiment of the device according to the invention, the echo ultrasound signals temporarily stored in the memory are subjected to a Hilbert transformation and an absolute value formation by a transformation unit.

Bei einer alternativen Ausführungsform der erfindungsgemäßen Vorrichtung werden die in dem Speicher zwischengespeicherten Echo-Ultraschallsignale durch eine Transformationseinheit gleichgerichtet und tiefpassgefiltert.In an alternative embodiment of the device according to the invention, the echo ultrasound signals temporarily stored in the memory are rectified by a transformation unit and low-pass filtered.

Bei einer möglichen Ausführungsform der erfindungsgemäßen Vorrichtung berechnet die Auswerteeinheit in Abhängigkeit von der ermittelten Orientierung des in dem Bauteil bestehenden Defektes und anhand gespeicherter Geometriedaten des Bauteiles eine zukünftige Ausfallwahrscheinlichkeit des Bauteiles.In a possible embodiment of the device according to the invention, the evaluation unit calculates a future failure probability of the component as a function of the determined orientation of the defect existing in the component and on the basis of stored geometric data of the component.

Die Erfindung schafft ferner eine Maschine mit einer Vorrichtung zur Ermittlung einer Orientierung eines innerhalb eines mechanischen Bauteils bestehenden Defektes mit den Merkmalen des Patentanspruchs 18.The invention further provides a machine with a device for determining an orientation of a defect existing within a mechanical component with the features of claim 18.

Im Weiteren werden mögliche Ausführungsformen der erfindungsgemäßen Vorrichtung und des erfindungsgemäßen Verfahren zum Ermitteln einer Orientierung eines innerhalb eines mechanischen Bauteils bestehenden Defektes unter Bezugnahme auf die beigefügten Figuren beschrieben.In the following, possible embodiments of the device according to the invention and the method according to the invention for determining an orientation of a defect existing within a mechanical component are described with reference to the attached figures.

Es zeigen:

Figur 1
ein Blockschaltbild einer möglichen Ausführungsform der erfindungsgemäßen Vorrichtung zur Ermittlung einer Orientierung eines innerhalb eines mechanischen Bauteils bestehenden Defektes;
Figur 2
ein Ablaufdiagramm einer möglichen Ausführungsform eines erfindungsgemäßen Verfahrens zur Ermittlung einer Orientierung eines innerhalb eines mechanischen Bauteils bestehenden Defektes.
Show it:
Figure 1
a block diagram of a possible embodiment of the device according to the invention for determining an orientation of a defect existing within a mechanical component;
Figure 2
a flowchart of a possible embodiment of a method according to the invention for determining an orientation of a defect existing within a mechanical component.

Wie man in Fig. 1 erkennen kann, weist die erfindungsgemäße Vorrichtung 1 zur Ermittlung einer Orientierung eines innerhalb eines mechanischen Bauteils B bestehenden Defektes, mindestens einen Ultraschallkopf 2 auf, der das mechanische Bauteil ausgehend von verschiedenen Messpunkten MP mit Ultraschallsignalen beaufschlagt. Dabei werden Echo-Ultraschallsignale, die von einem innerhalb des Bauteils B befindlichen, zu untersuchenden Punkt P zu den Messpunkten MP zurückreflektiert werden, von dem gleichen oder einem anderen Ultraschallkopf empfangen.How to get in Fig. 1 The device 1 according to the invention for determining an orientation of a defect existing within a mechanical component B has at least one ultrasound head 2 which applies ultrasound signals to the mechanical component starting from different measuring points MP. In this case, echo ultrasound signals, which are reflected back to the measuring points MP from a point P to be examined and located within the component B, are received by the same or a different ultrasound head.

Bei einer möglichen Ausführungsform werden die Ultraschallsignale durch einen Ultraschallkopf 2 generiert, der auf der Oberfläche des mechanischen Bauteils B beweglich angeordnet ist und das mechanische Bauteil B ausgehend von den verschiedenen Messpunkten MP mit Ultraschallsignalen beaufschlagt. Bei einer möglichen Ausführungsform werden die Ultraschallsignale durch einen Array-Prüfkopf mit mehreren Ultraschallköpfen 2 generiert.In one possible embodiment, the ultrasound signals are generated by an ultrasound head 2 which is movably arranged on the surface of the mechanical component B and acts on the mechanical component B with ultrasound signals based on the various measuring points MP. In one possible embodiment, the ultrasonic signals are generated by an array test head with several ultrasonic heads 2.

Die Schallausbreitung innerhalb des Bauteils erfolgt in Form einer elastischen Welle, die an die Materie des Bauteils B gebunden ist. Bei der Materie kann es sich um einen festen, flüssigen oder gasförmigen Stoff handeln. Bei der Schallausbreitung wird keine Materie transportiert, vielmehr schwingen die Materienteilchen des Bauteils B, das beispielsweise aus Atomen, Ionen oder Molekülen besteht, des jeweiligen Ausbreitungsmediums an ihren Aufenthalt periodisch um eine Ruhelage und übertragen dabei ihre Bewegung auf benachbarte Teilchen. Auf diese Weise breitet sich der Schwingungsvorgang mit einer für das Ausbreitungsmedium bzw. Bauteilmaterial charakteristischen Schallgeschwindigkeit aus. Schall mit einer Frequenz über 20 kHz wird allgemein als Ultraschall bezeichnet. Das Erzeugen von Ultraschall durch den Ultraschallkopf 2 kann auf unterschiedliche Weise erfolgen. Beispielsweise kann ein piezoelektrischer Effekt ein magnetorestriktiver Effekt ausgenutzt werden. Bei einer möglichen Ausführungsform dient der Ultraschallkopf 2, wie in Fig. 1 dargestellt, sowohl als Sender als auch Empfänger von Ultraschallwellen. Alternativ kann das von dem zu untersuchenden Punkt P zurückgeworfene Echo-Ultraschallsignal durch einen anderen Ultraschallkopf empfangen werden. Ultraschallwellen breiten sich geradlinig aus. Treffen die Ultraschallwellen jedoch bei ihrem Durchgang durch den Prüfling bzw. das Bauteil B auf Grenzflächen, beispielsweise Grenzflächen, die durch Poren, Lunker, Risse oder Schlackeeinflüsse hervorgerufen sind, gehen die Ultraschallsignale nicht über diese Fehlstelle hinweg, sondern werden von ihnen reflektiert. Bei der Ultraschallprüfung könne entweder die durchgelassenen oder die reflektierenden Schallanteile gemessen werden. Reflektions- bzw. Echo-Ultraschallverfahren haben dabei verschiedene Vorteile, insbesondere kann die Tiefenlage eines Defektes bzw. Fehlers ermittelt werden. Weiterhin muss das zu prüfende Bauteil bei dem Echo-Ultraschallverfahren nur von einer Seite zugänglich sein. Weiterhin ist keine exakte Ausrichtung zwischen Sender und Empfänger erforderlich, da nur eine Ankopplungsfläche für den Ultraschallkopf 2 vorhanden ist.The sound propagation within the component takes place in the form of an elastic wave that is bound to the material of component B. The matter can be a solid, liquid or gaseous substance. No matter is transported during the propagation of sound, rather the matter particles of component B, which for example consist of atoms, ions or molecules, vibrate from the respective propagation medium to their stay periodically around a position of rest and thereby transfer their movement to neighboring particles. In this way, the vibration process propagates at a speed of sound that is characteristic of the propagation medium or component material. Sound with a frequency above 20 kHz is commonly referred to as ultrasound. The ultrasound head 2 can generate ultrasound in different ways. For example, a piezoelectric effect, a magnetorestrictive effect can be used. In one possible embodiment, the ultrasound head 2 is used, as in FIG Fig. 1 shown, both as a transmitter and receiver of ultrasonic waves. Alternatively, the echo ultrasound signal reflected from the point P to be examined can be received by another ultrasound head. Ultrasonic waves propagate in a straight line. However, if the ultrasonic waves hit boundary surfaces as they pass through the test object or component B, for example boundary surfaces that are caused by pores, cavities, cracks or slag influences, the ultrasonic signals do not pass over this defect, but are reflected by them. With the ultrasonic test, either the transmitted or the reflective sound components can be measured. Reflection or echo ultrasound methods have various advantages, in particular the depth of a defect or fault can be determined. Furthermore, the component to be tested must only be accessible from one side in the case of the echo ultrasound method. Furthermore, an exact alignment between transmitter and receiver is not necessary, since only one coupling surface for the ultrasound head 2 is present.

Wie man in Fig. 1 erkennen kann, werden die verschiedenen Echo-Ultraschallsignale, die an den verschiedenen Messpunkten MP empfangen werden, zur weiteren Auswertung in einem Datenspeicher 3 zwischengespeichert. In dem Datenspeicher 3 befinden sich somit die Koordinaten der jeweiligen Messpunkte MPi und die zugehörigen gesampleten Echo-Ultraschallsignale der jeweiligen Messpunkte MP. Die Vorrichtung 1 weist ferner eine Datenverarbeitungseinheit 4 auf, die die in dem Datenspeicher 3 zwischengespeicherten Echo-Ultraschallsignale für die verschiedenen Messpunkte MPi auswertet. Die Datenverarbeitungseinheit 4 wertet die empfangenen Echo-Ultraschallsignale in Abhängigkeit einer Beschallungsrichtung zwischen dem jeweiligen Messpunkt MPi und dem zu untersuchenden Punkt P zur Bestimmung der Orientierung eines Defektes aus. Dabei wird in Abhängigkeit von einer erfassten Signallaufzeit zwischen dem Zeitpunkt der Abgabe des Ultraschallsignales und dem Zeitpunkt des Empfangs des durch einen Defekt zurückreflektierten Echo-Ultraschallsignals für jeden Messpunkt MPi ein Abstand d zwischen dem Messpunkt MPi und dem zu untersuchenden Punkt P berechnet und die zeitlich versetzt an den verschiedenen Messpunkten MPi empfangenen Echo-Ultraschallsignale des zu untersuchenden Punkte P phasenrichtig zu ihrer Auswertung addiert.How to get in Fig. 1 can recognize, the various echo ultrasonic signals that are received at the various measuring points MP are temporarily stored in a data memory 3 for further evaluation. The coordinates of the respective measuring points MP i and the associated sampled echo-ultrasonic signals of the respective measuring points MP are thus located in the data memory 3. The device 1 also has a Data processing unit 4, which evaluates the echo ultrasound signals temporarily stored in the data memory 3 for the various measuring points MP i . The data processing unit 4 evaluates the received echo ultrasound signals as a function of a direction of irradiation between the respective measuring point MP i and the point P to be examined to determine the orientation of a defect. A distance d between the measuring point MP i and the point P to be examined is calculated for each measuring point MP i as a function of a recorded signal transit time between the point in time when the ultrasound signal is emitted and the point in time when the echo ultrasound signal reflected back by a defect is received Echo ultrasound signals of the point P to be examined received at the various measuring points MP i offset in time are added in the correct phase to their evaluation.

Bei dem in Fig. 1 dargestellten Ausführungsbeispiel weist die Datenverarbeitungseinheit 4 eine Abstandsberechnungseinheit 5 auf, die einen Abstand d zwischen dem jeweiligen Messpunkt MP und dem zu untersuchenden Punkt P berechnet. Weiterhin weist die Datenverarbeitungseinheit 4 eine Richtungs- bzw. und Orientierungsberechnungseinheit 6 auf, die die empfangenen Echo-Ultraschallsignale, die von dem innerhalb des Bauteils B befindlichen, zu untersuchenden Punkt P zu den Messpunkten MPi zurückreflektiert werden, in Abhängigkeit einer Beschallungsrichtung zwischen dem jeweiligen Messpunkt MP und dem zu untersuchenden Punkt P des Bauteils B zur Bestimmung der Orientierung des Defektes auswertet.The in Fig. 1 In the illustrated embodiment, the data processing unit 4 has a distance calculation unit 5 which calculates a distance d between the respective measuring point MP and the point P to be examined. Furthermore, the data processing unit 4 has a direction or orientation calculation unit 6, which reflects the received echo ultrasound signals, which are located within the component B, to be examined point P back to the measurement points MP i , depending on a direction of sonication between the respective Evaluates measuring point MP and the point to be examined P of component B to determine the orientation of the defect.

Die Datenverarbeitungseinheit 4 weist ferner eine optionale Signaltransformationseinheit 7 auf. Diese Transformationseinheit 7 berechnet für die zwischengespeicherten Echo-Ultraschallsignale jeweils eine Hüllkurve. Bei einer möglichen Ausführungsform werden durch die Transformationseinheit 7 die zwischengespeicherten Echo-Ultraschallsignale gleichgerichtet und tiefpassgefiltert. Bei einer alternativen Ausführungsform werden die zwischengespeicherten Echo-Ultraschallsignale durch die Transformationseinheit 7 einer Hilbert-Transformation und einer Betragsbildung unterzogen.The data processing unit 4 also has an optional signal transformation unit 7. This transformation unit 7 calculates an envelope curve in each case for the temporarily stored echo ultrasonic signals. In one possible embodiment, the temporarily stored echo ultrasound signals are rectified and low-pass filtered by the transformation unit 7. In an alternative embodiment, the temporarily stored echo ultrasound signals subjected to a Hilbert transformation and an amount formation by the transformation unit 7.

Die Datenverarbeitungseinheit 4 weist ferner Zeitverschiebungseinheiten 8, 9 auf, welche eine phasenrichtige Addition der beitragenden Echo-Ultraschallsignale erlauben. Die Zeitverschiebung erfolgt dabei in Abhängigkeit des durch die Abstandsberechnungseinheit 5 berechneten Abstandes d. Durch eine Summationsschaltung bzw. Addierschaltung 10 erfolgt eine richtungsabhängige phasenrichtige Addition der aus dem Datenspeicher 3 ausgelesenen Echo-Ultraschallsignale für die verschiedenen Messpunkte. Die richtungsabhängige phasenrichtige Addition kann beispielsweise durch Gewichtung mit einem Sinus- oder Kosinusfaktor für die ermittelte Richtung durchgeführt werden. Anschließend kann das aufsummierte, gewichtete Signal durch ein Tiefpassfilter 11 der Datenverarbeitungseinheit 4 geglättet werden.The data processing unit 4 also has time shift units 8, 9, which allow the correct phase addition of the contributing echo-ultrasonic signals. The time shift takes place as a function of the distance d calculated by the distance calculation unit 5. A direction-dependent, phase-correct addition of the echo ultrasonic signals read out from the data memory 3 for the various measuring points is carried out by a summation circuit or adding circuit 10. The direction-dependent in-phase addition can be carried out, for example, by weighting with a sine or cosine factor for the determined direction. The summed up, weighted signal can then be smoothed by a low-pass filter 11 of the data processing unit 4.

Die Datenverarbeitungseinheit 4 weist ferner eine Auswerteeinheit 12 auf. Die Auswerteeinheit 12 wertet die Winkelcharakteristik der Echo-Ultraschallsignale in Abhängigkeit der Beschallungsrichtung statistisch aus. Die Winkelcharakteristik gibt dabei eine Abhängigkeit der Signalamplitude in Abhängigkeit der Beschallungsrichtung an. Bei einer möglichen Ausführungsform berechnet die Auswerteeinheit 12 in Abhängigkeit von der ermittelten Orientierung des in dem Bauteil B bestehenden Defektes anhand gespeicherter Geometriedaten des Bauteils B eine mögliche zukünftige Ausfallwahrscheinlichkeit des jeweiligen Bauteils B. Bei einer möglichen Ausführungsform hat die Auswerteeinheit 12 hierzu Zugriff auf einen Datenspeicher 13, in dem Geometriedaten des zu untersuchenden Bauteils B abgelegt sind.The data processing unit 4 also has an evaluation unit 12. The evaluation unit 12 statistically evaluates the angle characteristics of the echo ultrasound signals as a function of the direction of exposure. The angle characteristic indicates a dependence of the signal amplitude as a function of the direction of the sound. In one possible embodiment, the evaluation unit 12 calculates a possible future failure probability of the respective component B based on the determined orientation of the defect existing in the component B on the basis of stored geometry data of the component B. In one possible embodiment, the evaluation unit 12 has access to a data memory 13 for this purpose , in which the geometry data of the component B to be examined are stored.

Bei einer möglichen Ausführungsform berechnet die Auswerteeinheit 12 in Abhängigkeit von der ermittelten Orientierung des in dem Bauteil B bestehenden Defektes anhand der aus dem Datenspeicher 13 ausgelesenen Geometriedaten des Bauteils eine zukünftige Ausfallwahrscheinlichkeit des Bauteils. Dabei werden vorzugsweise auch mechanische Belastungskräfte, die in einem Betrieb des Bauteils B auf das Bauteil B wirken können, berücksichtigt.In one possible embodiment, the evaluation unit 12 calculates a future probability of failure of the component as a function of the determined orientation of the defect existing in component B using the component geometry data read from the data memory 13. There Mechanical loading forces that can act on component B during operation of component B are preferably also taken into account.

Zur Orientierung des Defektes des Bauteils B wird durch die Datenverarbeitungseinheit 4 bei einer möglichen Ausführung ein zweidimensionaler Flächenorientierungswinkel ausgegeben. Weiterhin ist es möglich, dass die Datenverarbeitungseinheit 4 einen dreidimensionalen Raumorientierungswinkel des Defektes ausgibt. Bei einer möglichen Ausführungsform kann eine farbkodierte Darstellung der Richtungsinformation phasenrichtiger Echo-Summen erfolgen.To orient the defect of component B, the data processing unit 4 outputs a two-dimensional surface orientation angle in one possible embodiment. It is also possible for the data processing unit 4 to output a three-dimensional spatial orientation angle of the defect. In one possible embodiment, a color-coded representation of the directional information of phase-correct echo sums can take place.

Für die Bestimmung der Orientierung des Defektes wird ein Mittelwert oder ein Medianwert berechnet Weiterhin wird als ein Maß für die Richtwirkung des Defektes eine Standardabweichung bzw. eine Varianz berechnet. Der Mittelwert gibt dabei einen Winkel an, während die Standardabweichung bzw. die Varianz einen Winkelbereich angibt.A mean value or a median value is calculated to determine the orientation of the defect. Furthermore, a standard deviation or a variance is calculated as a measure for the directivity of the defect. The mean value indicates an angle, while the standard deviation or the variance indicates an angle range.

Bei einer möglichen Ausführungsform kann die in Fig. 1 dargestellte Datenverarbeitungseinheit 4 in einer Maschine integriert sein und ein Bauteil B dieser Maschine zur Ermittlung einer Orientierung eines innerhalb des Bauteils B auftretenden Defektes überwachen.In one possible embodiment, the in Fig. 1 The data processing unit 4 shown can be integrated in a machine and monitor a component B of this machine to determine an orientation of a defect occurring within the component B.

Fig. 2 zeigt ein Ablaufdiagramm zur Darstellung der wichtigsten Schritte des erfindungsgemäßen Verfahrens zum Ermitteln einer Orientierung eines innerhalb eines mechanischen Bauteils B bestehenden Defektes. Fig. 2 FIG. 11 shows a flow chart to illustrate the most important steps of the method according to the invention for determining an orientation of a defect existing within a mechanical component B. FIG.

In einem ersten Schritt S1 wird zunächst das mechanische Bauteil B ausgehend von verschiedenen Messpunkten MP mit einem Ultraschallsignal beaufschlagt. Dabei werden die Ultraschallsignale durch mindestens einen Ultraschallkopf 2 generiert, der an den Messpunkten MP jeweils ein Ultraschallsignal an das Bauteil B abgibt. Weiterhin werden durch den Ultraschallkopf zeitlich verzögert jeweils zurückgeworfene Echo-Ultraschallsignale empfangen.In a first step S1, an ultrasound signal is initially applied to the mechanical component B, starting from various measuring points MP. The ultrasonic signals are generated by at least one ultrasonic head 2, which emits an ultrasonic signal to component B at the measuring points MP. Furthermore, through the ultrasound head receive echo ultrasound signals that are reflected back with a time delay.

In einem weiteren Schritt S2 werden die empfangenen Echo-Ultraschallsignale, die von einem innerhalb des Bauteils B befindlichen zu untersuchenden Punkt P zu den Messpunkten MP zurückreflektiert werden, in Abhängigkeit einer Beschallungsrichtung zwischen dem jeweiligen Messpunkt MP und dem zu untersuchenden Punkt P des Bauteils B zur Bestimmung der Orientierung eines Defektes ausgewertet.In a further step S2, the received echo ultrasound signals, which are reflected back to the measuring points MP from a point P to be examined located within component B, are transmitted between the respective measuring point MP and the point P to be examined of component B depending on a direction of irradiation Determination of the orientation of a defect evaluated.

In einem weiteren Schritt S3 wird in Abhängigkeit von einer erfassten Signallaufzeit zwischen dem Zeitpunkt der Abgabe des Ultraschallsignals und dem Zeitpunkt des Empfangs des zurückreflektierten Echo-Ultraschallsignals für jeden Messpunkt ein Abstand d zwischen dem Messpunkt MP und dem zu untersuchenden Punkt P berechnet. Die zeitlich versetzt an den verschiedenen Messpunkten MP empfangenen Echo-Ultraschallsignale des zu untersuchenden Punktes P werden phasenrichtig zu ihrer Auswertung addiert.In a further step S3, a distance d between the measuring point MP and the point P to be examined is calculated for each measuring point as a function of a recorded signal transit time between the point in time when the ultrasonic signal was emitted and the point in time when the reflected echo ultrasonic signal was received. The echo ultrasound signals of the point P to be examined, received at the various measuring points MP with a time offset, are added in the correct phase for their evaluation.

In einer möglichen Ausführungsform wird das Prüfobjekt bzw. das Bauteil ein oder mehrmals mit Ultraschallköpfen 2 mit verschiedenen Einschallwinkeln gescannt. Dabei wird ein interessierender Bereich des Bauteils B definiert und ein Auswertegitter festgelegt, das den interessierenden Bereich des Bauteils B abdeckt. Das Gitter wird dabei derart fein aufgelöst bereitgestellt, dass keine Defekte übersehen werden können. Bei den Gitterpunkten erfolgt nicht nur eine phasenrichtige Überlagerung der Echo-Ultraschallsignale aller beitragenden Messpositionen, sondern auch eine Berechnung der Orientierung von Defekten, indem eine Richtung bzw. Ausrichtung zwischen einem beitragenden Messpunkt MP und dem zu untersuchenden Punkt P die Amplitude des Signalbeitrags berücksichtigt. Das erfindungsgemäße Ermitteln einer Orientierung eines innerhalb eines mechanischen Bauteils B bestehenden Defektes kann bei einer möglichen Ausführungsform parallel zu einer herkömmlichen SAFT-Auswertung durchgeführt werden. Alternativ kann das erfindungsgemäße Verfahren im Anschluss an eine herkömmliche SAFT-Berechnung bzw. -Auswertung durchgeführt werden. Bei einer möglichen Ausführungsform wird das erfindungsgemäße Verfahren im Anschluss an die Herstellung des Bauteils B durchgeführt. Bei einer weiteren möglichen Ausführungsform des erfindungsgemäßen Verfahrens wird das Verfahren während des laufenden Betriebes des Bauteils B zu dessen Überwachung ausgeführt.In one possible embodiment, the test object or the component is scanned one or more times with ultrasonic heads 2 with different insonification angles. An area of interest of component B is defined and an evaluation grid that covers the area of interest of component B is defined. The grid is provided with such a fine resolution that no defects can be overlooked. At the grid points, not only is the echo-ultrasound signals superimposed in the correct phase of all contributing measurement positions, but also the orientation of defects is calculated, in that a direction or alignment between a contributing measurement point MP and the point P to be examined takes into account the amplitude of the signal contribution. The determination according to the invention of an orientation of a defect existing within a mechanical component B can, in one possible embodiment, be carried out in parallel to a conventional SAFT evaluation. Alternatively the method according to the invention can be carried out following a conventional SAFT calculation or evaluation. In one possible embodiment, the method according to the invention is carried out following the production of component B. In a further possible embodiment of the method according to the invention, the method is carried out during ongoing operation of component B for its monitoring.

Bei möglichen Ausführungsvarianten kann durch Änderung der Reihenfolge von Berechnungsschritten eine Rechenzeitoptimierung der Datenverarbeitungseinheit 4 erreicht werden. Beispielsweise können komplexe Ultraschallsignale vorab berechnet werden. Bei einer weiteren möglichen Ausführungsform erfolgt das Auswerten der empfangenen Echo-Ultraschallsignale nur dann, wenn die Signalamplitude der phasenrichtig addierten Echo-Ultraschallsignale einen einstellbaren Signal-Schwellenwert überschreitet. Weiterhin kann eine zusätzliche Nachsignalverarbeitung erfolgen, beispielsweise durch Filterung und Glättung von Richtungsinformationsdaten. Weiterhin kann das SAFT-Ergebnis abhängig von der ermittelten Richtung in radiale, tangentiale und axiale Komponenten aufgeteilt bzw. zerlegt werden.In the case of possible design variants, an optimization of the computing time of the data processing unit 4 can be achieved by changing the sequence of computation steps. For example, complex ultrasonic signals can be calculated in advance. In a further possible embodiment, the received echo ultrasound signals are evaluated only when the signal amplitude of the echo ultrasound signals added in the correct phase exceeds an adjustable signal threshold value. Additional post-signal processing can also take place, for example by filtering and smoothing directional information data. Furthermore, the SAFT result can be divided or broken down into radial, tangential and axial components depending on the determined direction.

Bei einer möglichen Ausführungsform erfolgt eine vektorielle Darstellung der Signalbeiträge der verschiedenen Messpunkte. Dabei wird der Beitrag des Messpunktes MP durch phasenrichtige Auswertung des gleichgerichteten Ultraschallsignals ermittelt. Es kann eine Bestimmung der vektoriellen und beitragsmäßigen Summe zur Charakterisierung der Richtung, das heißt der Richtung der Vektorsumme, und der Richtwirkung, das heißt dem Betrag der Vektorsumme, im Verhältnis zur betragsmäßigen Summe erfolgen. Das ermittelte SAFT-Ergebnis und die ermittelten Orientierung können helligkeits- bzw. farbkodiert auf einer Anzeige für eine Betriebsperson dargestellt werden. Bei möglichen Ausführungsformen können mehrere Hauptrichtungen 2 in der Ebene bzw. drei im Raum, berücksichtigt werden, wobei die Hauptrichtungen in jedem zu untersuchenden Punkt P unterschiedlich sein können. Bei möglichen Ausführungsformen erfolgt die phasenrichtige Addition der Ultraschallsignale für jede Hauptrichtung getrennt. Dabei kann eine Gewichtung der Signalbeiträge mit einem Kosinus- bzw. Sinusfaktor zwischen Schallrichtung und Hauptrichtung durchgeführt werden. Bei möglichen Ausführungsformen sind die Hauptrichtungen zueinander senkrecht. Bei alternativen Ausführungsformen sind die Hauptrichtungen zueinander nicht senkrecht. Die Anzahl der Hauptrichtungen kann variieren. Bei einer möglichen Ausführungsform erfolgt eine Umrechnung der Ergebnisse von verschiedenen Hauptrichtungen nach Betrag und Phase. Die durch das erfindungsgemäße Verfahren ermittelten Rechenergebnisse lassen sich nutzen zur Einspeisung der Defektpositionen und Defektorientierung in eine mechanische Simulation des geprüften Bauteils B, beispielsweise um gefundene Defekte zu bewerten und eine zukünftige Ausfallswahrscheinlichkeit zu berechnen. Beispielsweise können Bauteile B, die kleinere Defekte aufweisen, deren Orientierung unkritisch ist, für einen Einsatz bzw. Betrieb ist auch für höhere Belastungen zugelassen werden. Mit dem erfindungsgemäßen Verfahren wird die Defektorientierung eines Defektes bei gleichzeitig guter Trennung bzw. Auflösung nahe benachbarter Defekte charakterisiert. Durch das erfindungsgemäße Verfahren wird die Nachweisempfindlichkeit durch Reduzierung des Rauschens und der Divergenz des Ultraschallsignals erhöht. Die gewonnenen Informationen über die Defektorientierung können in Zusammenhang mit dem bei der Konstruktion betrachteten radialen, tangentialen oder axialen Spannungen bzw. Kräften gebracht werden, so dass man die Zulässigkeit von Defekten besser bewertet werden kann, insbesondere wenn ein Bauteil B hauptsächlich in einer bestimmten Richtung belastet wird. Auf diese Weise können hergestellte Bauteile B zugelassen werden, die ansonsten aufgrund der Sicherheitsreserve verworfen werden müssen, obwohl sie an sich einsatztauglich wären. Die mit dem erfindungsgemäßen Verfahren geprüften Bauteile B können im Betrieb für höhere Belastungen zugelassen werden. Das erfindungsgemäße Verfahren kann bei einer möglichen Ausführungsform auch bei einer sogenannten Tauchtechnik-Prüfung verwendet werden. Bei einer möglichen Ausführungsform weist die Datenverarbeitungseinheit 4 eine Eingabeeinrichtung bzw. eine Schnittstelle auf, über die zusätzliche Information über das Bauteil A angegeben werden können. Beispielsweise können über die Schnittstelle eine oder mehrere Materialkonstanten des Bauteilmaterials eingegeben werden. Weiterhin ist es möglich, über diese Schnittstelle eine Ausbreitungsgeschwindigkeit von Ultraschallsignalen in dem zu untersuchenden Bauteil B einzugeben und gegebenenfalls diese in einem entsprechenden Datenspeicher zu hinterlegen. Bei einer weiteren möglichen Ausführungsform verfügt die Datenverarbeitungseinheit 4 zudem über eine Schnittstelle zum Anschluss von Messsensoren, welche Belastungskräfte messen, die auf das Bauteil B während dessen Betriebes wirken. Bei einer möglichen Ausführungsform ist der Datenspeicher 3 in der Datenverarbeitungseinheit 4 integriert und über eine Schnittstelle mit einem oder mehreren Ultraschallköpfen 2 verbunden. Der Empfang der Ultraschallzeitsignale sowie der Koordinaten der Messpunkte MP kann über eine drahtlose oder eine drahtgebundene Schnittstelle zu der Datenverarbeitungseinheit 4 erfolgen. Die Ultraschallköpfe 2 können beispielsweise über ein Datennetzwerk mit der Datenverarbeitungseinheit 4 verbunden sein. Weiterhin ist es möglich, dass die Koordinaten der Messpunkte MP sowie die entsprechende Ultraschallzeitsignale lokal in einem Datenspeicher 3 eingeschrieben werden. Bei diesem lokalen Datenspeicher kann es sich beispielsweise um einen tragbaren Datenträger handeln. Weiterhin ist es möglich, dass verschiedene Einheiten der Datenverarbeitungseinheit 4 in einer gemeinsamen Berechnungseinheit integriert sind. So kann beispielsweise die Richtungsberechnungseinheit 6, die Abstandsberechnungseinheit 5 sowie die Transformationseinheit 7 durch einen oder mehrere Mikroprozessoren implementiert werden. Weiterhin kann bei einer möglichen Ausführungsform die Bewegung des Ultraschallkopfes 2 beispielsweise auf der Oberfläche des zu untersuchenden Prüflings B, in Abhängigkeit von den gemessenen Daten gesteuert werden. Wird mit dem Ultraschallkopf 2 beispielsweise eine interessante Stelle innerhalb des Bauteils B entdeckt, kann der Ultraschallkopf 2 gezielt durch die Datenverarbeitungseinheit 4 zu geeigneten Messpunkten MPi bewegt werden, um mehr Daten für die Defektorientierung des erfassten Defektes zu gewinnen. Bei den in dem Bauteil B auftretenden Defekten handelt es sich vor allem um ungewollte Defekte, wie beispielsweise Risse und dergleichen. Bei einer möglichen Ausführungsform können die in dem Bauteil B vorhandenen Defekte auch gewünschte Ausnehmungen umfassen, beispielsweise Hohlräume oder Bohrungen, wobei mit dem erfindungsgemäßen Verfahren überprüft wird, ob die Orientierung und Ausdehnung des Defektes den Vorgaben bzw. Sollwerten entspricht. Bei weiteren möglichen Ausführungsformen ist die Frequenz mit der das Ultraschallsignal von dem Ultraschallkopf 2 in das zu untersuchende Bauteil B abgestrahlt wird, einstellbar. Auf diese Weise ist es möglich unterschiedliche Stellen bzw. Defekte mit unterschiedlichen Schallfrequenzen zu untersuchen.In one possible embodiment, the signal contributions from the various measuring points are shown in vector form. The contribution of the measuring point MP is determined by evaluating the rectified ultrasonic signal in the correct phase. The vectorial and contributory sum can be determined in order to characterize the direction, that is to say the direction of the vector sum, and the directivity, that is to say the amount of the vector sum, in relation to the absolute sum. The determined SAFT result and the determined orientation can be shown in a brightness or color-coded manner on a display for an operator. In possible embodiments, several main directions 2 in the plane or three in space can be taken into account, the main directions being different in each point P to be examined could be. In possible embodiments, the in-phase addition of the ultrasonic signals takes place separately for each main direction. The signal contributions can be weighted with a cosine or sine factor between the sound direction and the main direction. In possible embodiments, the main directions are perpendicular to one another. In alternative embodiments, the main directions are not perpendicular to one another. The number of main directions can vary. In one possible embodiment, the results are converted from different main directions according to amount and phase. The calculation results determined by the method according to the invention can be used to feed the defect positions and defect orientation into a mechanical simulation of the tested component B, for example to evaluate defects found and to calculate a future probability of failure. For example, components B that have smaller defects, the orientation of which is not critical, can also be approved for use or operation for higher loads. With the method according to the invention, the defect orientation of a defect is characterized while at the same time good separation or resolution of nearby defects. The method according to the invention increases the detection sensitivity by reducing the noise and the divergence of the ultrasonic signal. The information obtained about the defect orientation can be related to the radial, tangential or axial stresses or forces considered during the construction, so that the admissibility of defects can be better assessed, especially if a component B is mainly loaded in a certain direction becomes. In this way, manufactured components B can be approved that would otherwise have to be discarded due to the safety reserve, although they would be suitable for use in themselves. The components B tested with the method according to the invention can be approved for higher loads during operation. In one possible embodiment, the method according to the invention can also be used in what is known as an immersion technique test. At In one possible embodiment, the data processing unit 4 has an input device or an interface via which additional information about the component A can be specified. For example, one or more material constants of the component material can be entered via the interface. Furthermore, it is possible to enter a propagation speed of ultrasonic signals in the component B to be examined via this interface and, if necessary, to store this in a corresponding data memory. In a further possible embodiment, the data processing unit 4 also has an interface for connecting measuring sensors which measure loading forces that act on the component B during its operation. In one possible embodiment, the data memory 3 is integrated in the data processing unit 4 and connected to one or more ultrasound heads 2 via an interface. The reception of the ultrasonic time signals and the coordinates of the measuring points MP can take place via a wireless or wired interface to the data processing unit 4. The ultrasound heads 2 can be connected to the data processing unit 4 via a data network, for example. It is also possible for the coordinates of the measuring points MP and the corresponding ultrasonic time signals to be written locally in a data memory 3. This local data storage device can be a portable data carrier, for example. Furthermore, it is possible for different units of the data processing unit 4 to be integrated in a common calculation unit. For example, the direction calculation unit 6, the distance calculation unit 5 and the transformation unit 7 can be implemented by one or more microprocessors. Furthermore, in one possible embodiment, the movement of the ultrasound head 2, for example on the surface of the test object B to be examined, can be controlled as a function of the measured data. If, for example, an interesting point within the component B is discovered with the ultrasound head 2, the ultrasound head 2 can be directed through the data processing unit 4 can be moved to suitable measuring points MP i in order to gain more data for the defect orientation of the detected defect. The defects occurring in component B are primarily unwanted defects such as cracks and the like. In one possible embodiment, the defects present in component B can also include desired recesses, for example cavities or bores, the method according to the invention being used to check whether the orientation and extent of the defect corresponds to the specifications or target values. In further possible embodiments, the frequency with which the ultrasonic signal is radiated from the ultrasonic head 2 into the component B to be examined can be set. In this way it is possible to examine different locations or defects with different sound frequencies.

Claims (18)

  1. Method for determining an orientation of a defect present within a mechanical component (B), comprising the steps:
    a) applying (S1) ultrasonic signals emitted from various measuring points (MP) to the mechanical component (B),
    wherein the ultrasonic signals are generated by at least one ultrasonic head (2) which applies an ultrasonic signal to the component (B) at each of the measuring points (MP), wherein an echo ultrasonic signal thereby generated is received temporally offset by said ultrasonic head (2) or a different ultrasonic head in each case;
    b) calculating an angular characteristic of the received echo ultrasonic signals depending on a sound emission direction between the respective measuring point (MP) and the point (P) to be investigated, wherein the angular characteristic gives a dependency of the signal amplitude on the sound emission direction;
    c) wherein (S3), depending on a detected signal propagation time between the time point of emission of the ultrasonic signal and the time point of reception of the reflected echo ultrasonic signal for each measuring point (MP), a distance (d) between the measuring point (MP) and the points (P) under investigation is calculated and the echo ultrasonic signals from the points (P) under investigation and received temporally offset at the different measuring points (MP) are added together in phase for the analysis thereof.
    d) wherein the phase characteristic is analysed to statistically determine the orientation of the defect, wherein a mean value or a median value is calculated, which indicates an angle of the defect, and wherein a standard deviation and/or a variance are calculated, which gives an angular range.
  2. Method according to claim 1, wherein the echo ultrasonic signals received temporally offset at the different measuring points are added together in phase taking account of an angular characteristic of the ultrasonic head.
  3. Method according to claim 1, wherein the different echo ultrasonic signals that are received at the different measuring points (MP) by the ultrasonic head (2) are placed in intermediate storage in a memory store (3) together with the spatial coordinates of the respective measuring point (MP).
  4. Method according to claim 2, wherein an envelope curve is determined for the echo ultrasonic signals placed in intermediate storage.
  5. Method according to claim 4, wherein the echo ultrasonic signals placed in intermediate storage are rectified and low-pass filtered.
  6. Method according to claim 4, wherein the echo ultrasonic signals placed in intermediate storage are subjected to a Hilbert transformation and absolute value generation.
  7. Method according to claim 1, wherein analysis of the echo ultrasonic signals received takes place only once the signal amplitude of the in-phase added-together echo ultrasonic signals exceeds a settable threshold value.
  8. Method according to claim 1, wherein a direction-dependent in-phase addition of the echo ultrasonic signals is carried out, in particular by weighting with a sine factor or a cosine factor.
  9. Method according to one of claims 1 to 8, wherein as the orientation of the defect, a two-dimensional plane orientation angle or a three-dimensional solid orientation angle of the defect is output.
  10. Method according to one of claims 1 to 9, wherein, depending on the determined orientation of the defect present in the component (B) and based on stored geometric data of the component (B), a future failure probability of the component (B) is calculated.
  11. Method according to claim 10, wherein in order to calculate the failure probability of the component (B), mechanical loading forces which act upon the component (B) during operation are taken into account.
  12. Method according to claim 1, wherein during evaluation of an indication, the orientation as determined is taken into account in order to detect a correct indication variable.
  13. Device for determining an orientation of a defect present within a mechanical component (B), comprising:
    - at least one ultrasonic head (2) which applies ultrasonic signals to the mechanical component (B) from various measuring points (MP), wherein echo ultrasonic signals which are reflected by points (P) to be investigated present within the component (B) to the measuring points (MP), are received by the same or another ultrasonic head (2); and
    - a data processing unit (4) which is configured to calculate an angular characteristic of the received echo ultrasonic signals depending on a sound emission direction between the respective measuring point (MP) and the points (P) to be investigated, wherein the angular characteristic gives a dependency of the signal amplitude on the sound emission direction;
    wherein the data processing unit (4) is configured, depending on a detected signal propagation time between the time point of emission of the ultrasonic signal and the time point of reception of the echo ultrasonic signal reflected by a defect for each measuring point (MP), to calculate a distance (d) between the measuring point (MP) and the points (P) to be investigated, and to add together in phase the echo ultrasonic signals of the points (P) to be investigated received temporally offset at the various measuring points (MP) for the analysis thereof, and
    an analysis unit (12), which is configured to statistically analyse the angular characteristic to determine the orientation of a defect, wherein the analysis unit (12) is configured to a calculate a mean value and/or a median value, which indicates an angle of the defect, and wherein the analysis unit (12) is configured to calculate a standard deviation and/or a variance, which gives an angular range.
  14. Device according to claim 13, comprising a memory store (3) which places the various echo ultrasonic signals that are received at the different measuring points (MP) together with the spatial coordinates of each measuring point (MP) into storage for further analysis.
  15. Device according to claim 14, which is provided with a transforming unit which is configured to subject the echo ultrasonic signals placed in intermediate storage in the memory store (3) to a Hilbert transformation and absolute value formation.
  16. Device according to claim 14, which is provided with a transforming unit which is configured to rectify and deep-pass filter the echo ultrasonic signals placed in intermediate storage in the memory store (3).
  17. Device according to claim 13, wherein the analysing unit (12) is configured to calculate a future failure probability for the component (B) depending on the orientation of the defect present in the component (B) as determined and based on stored geometric data of the component (B).
  18. Machine having a device according to claims 13 to 17, wherein the device (1) monitors a component (B) of the machine in order to determine an orientation of a defect occurring within the component (B).
EP11766898.8A 2010-09-16 2011-09-05 Method and device for determining an orientation of a defect present within a mechanical component Active EP2603791B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL11766898T PL2603791T3 (en) 2010-09-16 2011-09-05 Method and device for determining an orientation of a defect present within a mechanical component

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010040856A DE102010040856A1 (en) 2010-09-16 2010-09-16 Method and device for determining an orientation of a defect existing within a mechanical component
PCT/EP2011/065269 WO2012034882A1 (en) 2010-09-16 2011-09-05 Method and device for determining an orientation of a defect present within a mechanical component

Publications (2)

Publication Number Publication Date
EP2603791A1 EP2603791A1 (en) 2013-06-19
EP2603791B1 true EP2603791B1 (en) 2020-10-28

Family

ID=44764087

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11766898.8A Active EP2603791B1 (en) 2010-09-16 2011-09-05 Method and device for determining an orientation of a defect present within a mechanical component

Country Status (8)

Country Link
US (2) US20130167645A1 (en)
EP (1) EP2603791B1 (en)
KR (1) KR101830461B1 (en)
CN (1) CN103097884B (en)
DE (1) DE102010040856A1 (en)
PL (1) PL2603791T3 (en)
RU (1) RU2538069C2 (en)
WO (1) WO2012034882A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102621237A (en) * 2012-03-12 2012-08-01 河海大学常州校区 High-power single-pulse ultrasonic signal generator and nondestructive inspection method thereof
DE102013200974A1 (en) 2013-01-22 2014-07-24 Siemens Aktiengesellschaft Method and system for hand-held ultrasonic testing of a test object
DE102013211064A1 (en) * 2013-06-13 2014-12-18 Siemens Aktiengesellschaft SAFT analysis of near-surface defects
KR101705112B1 (en) * 2015-05-22 2017-02-22 (주) 제일엠아이 Apparatus for monitoring result of nondestructive inspection remotely and Method thereof
RU2723058C1 (en) * 2016-10-19 2020-06-08 Просек Са Method and device for compensation of heterogeneity of connection at ultrasonic test
WO2018210431A1 (en) * 2017-05-19 2018-11-22 Metso Sweden Ab Ultrasonic detection system and method

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1001857A (en) * 1962-12-20 1965-08-18 Dickinson Ben Wade O Iii Method and apparatus for flaw detection by ultrasonic means
DE3272530D1 (en) * 1981-06-11 1986-09-18 Bbc Brown Boveri & Cie Ultrasonic non destructive testing of generator rotor teeth
US4524622A (en) * 1982-07-20 1985-06-25 Kabushiki Kaisha Kobe Seiko Sho Method and apparatus of ultrasonic flaw detection
US4991427A (en) 1986-06-26 1991-02-12 Westinghouse Electric Corp. Bore mapping and surface time measurement system
DE3720219A1 (en) * 1987-06-17 1988-12-29 Betr Forsch Inst Angew Forsch METHOD FOR CHECKING COMPONENTS
JPH0435653A (en) * 1990-05-31 1992-02-06 Fujitsu Ltd Supersonic diagnosis device
RU2037819C1 (en) * 1992-05-29 1995-06-19 Пермский государственный технический университет Method for carrying out quality control of articles made of reinforced material
RU2160893C1 (en) * 1999-03-29 2000-12-20 Ставропольский государственный технический университет Process of nondestructive inspection of quality of finished reinforced concrete articles
US6487909B2 (en) 2001-02-05 2002-12-03 Siemens Westinghouse Power Corporation Acoustic waveguide sensing the condition of components within gas turbines
JP2004340809A (en) 2003-05-16 2004-12-02 Mitsubishi Heavy Ind Ltd Phased array probe and ultrasonic test equipment using it
RU2280863C1 (en) * 2005-02-14 2006-07-27 Вячеслав Вячеславович Казаков Nonlinear ultrasonic method and device for detecting cracksand their locations in solid body
SG138524A1 (en) * 2006-06-22 2008-01-28 Siltronic Ag Method and apparatus for detection of mechanical defects in an ingot piece composed of semiconductor material
RU2423690C1 (en) * 2007-05-15 2011-07-10 Сименс Акциенгезелльшафт Method and device for nondestructive inspection of material of test object using ultrasonic waves
EP2051070A1 (en) * 2007-10-18 2009-04-22 Siemens Aktiengesellschaft Method and device for non-destructive materials testing of a test specimen with ultrasonic waves
DE102010032093B4 (en) * 2010-07-23 2018-12-27 Aed Engineering Gmbh Repairing device for repair patches, repair kit and method for monitoring a repair patch

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SPIES M., JAGER W.: "Synthetic aperture focusing for defect reconstruction in anisotropic media", ULTRASONICS, vol. 41, 2003 *

Also Published As

Publication number Publication date
PL2603791T3 (en) 2021-10-25
KR101830461B1 (en) 2018-02-20
US20150323506A1 (en) 2015-11-12
US20130167645A1 (en) 2013-07-04
KR20130138237A (en) 2013-12-18
RU2013117095A (en) 2014-10-27
CN103097884B (en) 2016-12-28
DE102010040856A1 (en) 2012-03-22
CN103097884A (en) 2013-05-08
RU2538069C2 (en) 2015-01-10
WO2012034882A1 (en) 2012-03-22
US9329155B2 (en) 2016-05-03
EP2603791A1 (en) 2013-06-19

Similar Documents

Publication Publication Date Title
EP2603791B1 (en) Method and device for determining an orientation of a defect present within a mechanical component
EP2469276B1 (en) Method and device for non-destructive materials testing of a test specimen with ultrasonic waves
EP2992321B1 (en) Method and apparatus for sizing of defects by means of saft (synthetic aperture focussing technique)
EP2567224B1 (en) Method and device for non-destructive material testing by means of ultrasound
EP1649301B1 (en) Method and circuit arrangement for disturbance-free examination of objects by means of ultrasonic waves
EP2051070A1 (en) Method and device for non-destructive materials testing of a test specimen with ultrasonic waves
DE102006052168A1 (en) Digital log amplifier for ultrasound examinations
DE102012112121B4 (en) Method and device for non-destructive testing of a rotationally symmetrical workpiece which has sections of different diameters
DE102018208824B4 (en) Method for the non-destructive examination of a test body using ultrasound
Guan et al. A time-domain synthetic aperture ultrasound imaging method for material flaw quantification with validations on small-scale artificial and natural flaws
Mehdinia et al. A pipeline for enhanced multimodal 2D imaging of concrete structures
EP2052246A1 (en) Method for testing the microstructure of a welded joint
Zima et al. Experimental and numerical identification of corrosion degradation of ageing structural components
EP2764356B1 (en) Method and device for detecting defects within a test object
EP3938139A1 (en) Workpiece testing method and workpiece testing system
DE102012112120A1 (en) Method and device for near-surface non-destructive testing of a rotationally symmetrical workpiece with sections of varying diameter by means of ultrasound
DE4233958A1 (en) Ultrasonic testing of composite mineral building materials - using longitudinal wave with axial and radial component, and analysing mixture of component frequencies by rapid FFT
DE4022152C2 (en)
BE1027961B1 (en) Acoustic fault detection in a pipeline
Cuenca et al. A novel method of ultrasonic tomographic imaging of defects in the coating layer by image fusion and binarization techniques
DE102009050160A1 (en) Method for ultrasonic inspection of test object e.g. steel product, involves determining entropy value for phase value, and obtaining weighting of amplitude value, where weighting represents amplitude values determined at spatial points
Li et al. 3-D ultrasonic imaging of bolt thread cracks using a linear array probe
Muller et al. Lamb Waves Boundary Reflections in an Aluminium Plate for Defect Detection related to Structural Health Monitoring.
WO2008040407A1 (en) Ultrasonic test arrangement
Rimal Impact localization using Lamb wave and spiral FSAT

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130315

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20170320

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200615

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1328713

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011016958

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG, CH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502011016958

Country of ref document: DE

Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG, DE

Free format text: FORMER OWNER: SIEMENS AKTIENGESELLSCHAFT, 80333 MUENCHEN, DE

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20201028

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210129

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201028

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201028

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210128

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210301

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201028

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210128

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201028

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210228

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201028

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201028

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201028

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011016958

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201028

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201028

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201028

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201028

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201028

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201028

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201028

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20210729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201028

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20210920

Year of fee payment: 11

Ref country code: FR

Payment date: 20210920

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201028

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20211208

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20210827

Year of fee payment: 11

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210930

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210905

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210228

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201028

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210905

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210905

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210905

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210930

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20220617

Year of fee payment: 12

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1328713

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210905

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210905

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110905

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201028

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220930

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220905

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502011016958

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201028

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220905