EP2602671A1 - Sliding layer for a barrel spring made of a composite material - Google Patents

Sliding layer for a barrel spring made of a composite material Download PDF

Info

Publication number
EP2602671A1
EP2602671A1 EP11192835.4A EP11192835A EP2602671A1 EP 2602671 A1 EP2602671 A1 EP 2602671A1 EP 11192835 A EP11192835 A EP 11192835A EP 2602671 A1 EP2602671 A1 EP 2602671A1
Authority
EP
European Patent Office
Prior art keywords
barrel spring
spring
coating
composition
barrel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP11192835.4A
Other languages
German (de)
French (fr)
Inventor
Christophe Avril
Dominique Perreux
Jean-Michel Tisserand
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cartier Creation Studio SA
Original Assignee
Cartier Creation Studio SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cartier Creation Studio SA filed Critical Cartier Creation Studio SA
Priority to EP11192835.4A priority Critical patent/EP2602671A1/en
Priority to US14/361,238 priority patent/US20140355395A1/en
Priority to JP2014545190A priority patent/JP2015500474A/en
Priority to CN201280060582.1A priority patent/CN104081294A/en
Priority to EP12794714.1A priority patent/EP2788821B1/en
Priority to PCT/EP2012/074139 priority patent/WO2013083494A1/en
Publication of EP2602671A1 publication Critical patent/EP2602671A1/en
Priority to HK14111837.8A priority patent/HK1198343A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B1/00Driving mechanisms
    • G04B1/10Driving mechanisms with mainspring
    • G04B1/14Mainsprings; Bridles therefor
    • G04B1/145Composition and manufacture of the springs

Definitions

  • the present invention relates to a barrel spring coated for a motor member in a mechanical clockwork movement.
  • the coating reduces friction of spring turns and has good cohesion.
  • the spiral barrel spring is the organ for storing the mechanical energy necessary for the operation of the watch. Generally, its geometric dimensions and the mechanical properties of the material that compose it determine the potential energy that the spiral barrel is capable of storing and the maximum torque that it delivers.
  • the unwinding of the leaf of the spring produces the energy necessary for the operation of the watch.
  • the figure 1 shows an exploded view of a barrel spring 1 housed in a barrel drum 2.
  • the shape of the leaf of the spring has evolved to a shape recognized in S returned (see figure 2 and "Clockwork Theory" by CA Reymondin et al., Published by the Federation of Technical Schools, Switzerland, 1998 ). This particular shape makes it possible to produce a relatively constant torque irrespective of the state of arming of the spring.
  • the maximum energy is stored by the mainspring when the proportion between the area occupied by the latter, when it is armed, and that which remains free in the drum is about 50%.
  • Watch manufacturers have always sought to increase the energy storage capacity of the barrel springs and, thus, the power reserve of mechanical watches, without increasing the volume, that is to say the congestion , barrels. Efforts have mainly been directed towards the reduction of energy losses, particularly due to friction. This is how it was proposed to wear the barrel spring of a lubricating layer, for example a metal coating or DLC ("Diamond-Like Carbon”), to limit internal friction.
  • a lubricating layer for example a metal coating or DLC ("Diamond-Like Carbon")
  • the coating of the spring must withstand several stresses. On the one hand it must participate in reducing the friction between the turns and on the other hand it must participate in the overall cohesion of the spring material. However between the armed and disarmed position, the surface of the spring undergoes very important deformations. In the case of the aforementioned coatings, the repetition of such deformations, during the winding and disarming of the spring, may result in the breakage of the coating or its delamination. For the same reasons, a coating whose elastic behavior is provided by covalent or ionic type bonds, such as a ceramic or diamond coating, can also ensure a satisfactory cohesion of the coating with the spring.
  • An object of the present invention is to provide a driving member spring for a watch movement, said barrel spring being made of a material comprising a fiber-containing polymer matrix, said barrel spring having a coating comprising a thermosetting or thermoplastic polymer.
  • Another object of the invention is to provide a driving member for a watch movement comprising said mainspring.
  • Yet another object of the invention is to propose a timepiece comprising the driving member.
  • coating the barrel spring may include a step of immersing the spring in the composition, or a spray coating step, or a vapor deposition step.
  • the proposed barrel spring makes it possible to reduce the friction of the turns of the mainspring and the coating has a good cohesion.
  • a barrel spring 1 is made of a composite material.
  • composite material is meant herein a polymer matrix containing fibers, such as glass fibers or the like.
  • the fibers are oriented unidirectionally in the polymeric matrix.
  • Such springs made of the composite material may be less susceptible than conventional metal springs to fatigue fractures and, therefore, have a longer life.
  • the fibers of such a composite spring may be carbon, glass, aramid or of another nature (for example fiber mixtures) but in all cases their axial elastic modulus is preferably between 80GPa and 600GPa.
  • the fibers are generally the same length as the spring and are arranged as parallel as possible to the great length of the spring. Preferably, the angle between the axis of each fiber and the axis of the spring is as close as possible to 0 ° and does not exceed locally 5 °.
  • the fibers typically have a diameter of between 1 ⁇ m and 35 ⁇ m.
  • a single spring may have fibers of different diameters but preferably the diameters used in the thickness of the spring allow to place at least ten fibers side by side to obtain a barrel spring of better homogeneity.
  • the polymer matrix may comprise a thermoplastic or a thermosetting plastic.
  • the volume fraction of fibers in the polymer is preferably between 30% and 75% or between 45% and 55%.
  • Nanoparticles may be added to the polymer matrix so as to harden the latter to repel the micro-buckling of the fibers in the compressive face of the spring in flexion. These nanoparticles may be silica, fullerenes, or any other material having the ability to bind to the polymeric resin and increase its compressive strength, without decreasing the ability of the polymeric resin to bind to the fibers.
  • a unidirectional fiberglass reinforced polymer matrix has a modulus of elasticity approximately four to five times lower than that of steel for a yield strength of about half. All things being equal in the geometry of a steel spring or composite spring: same length, same thickness and width, will drive the composite spring to a level of elastic energy stored restorable at least equal often a little larger than that of the steel spring and a torque variation delivered as a function of the lower barrel rotation, this variation being proportionally related to the inverse of the Young's modulus of the material. On the other hand, the maximum possible torque level will be lower for the composite spring with respect to the steel spring, this maximum torque being proportional to the breaking stress of the material.
  • the polymer matrix comprises an epoxy resin and the fibers are type E glass fibers or S or S2 type glass fibers.
  • Table 1 reports the properties of these glass fibers.
  • Table 1 fibers Glass E S or S2 glass Modulus of elasticity at 20 ° C 70 (+/- 2) GPa 88 (+/- 2) GPa Resistance to fracture at 20 ° C 3620 (+/- 170) MPa 4980 (+ / 150) MPa
  • the composite barrel spring 1 can be made by mixing fibers and the polymer matrix in the liquid state in the form of a strip.
  • the barrel spring can also be made using a prepreg material in which the fibers and the polymer matrix are already mixed, and wherein the polymerization reaction is stopped by a chemical retarder.
  • the fibers are preferably aligned along the longer length of the web.
  • the strip is then wound in a mold by exerting a tension along the length, allowing the winding of the composite strip.
  • the composite is then polymerized, for example, by external pressure of about 10 bar, so that the composite is forced to remain in the mold and take good shape. After cooking, the composite is removed from the mold and the surface of the thus-formed barrel spring is polished to remove imperfections related to the manufacturing process.
  • the composite barrel spring 1 is advantageously coated with an anti-friction coating 3 (see FIG. figure 3 ) so as to reduce the friction between the turns of the spring 1 when the latter is mounted in the barrel.
  • the figure 3 shows a sectional view of the mainspring spring 1 comprising said coating 3.
  • the deformations discussed above may be greater than 3% in tension respectively, -3% in compression.
  • the coating 3 must therefore be able to ensure satisfactory cohesion in these conditions.
  • the coating 3 comprises a material whose bonds are of hydrogen or Van der Walls type. More particularly, the spring is coated with a coating comprising a thermosetting or thermoplastic polymer. Preferably, the coating comprises a slow polymerization epoxy resin, i.e., having a gel time greater than 20 min at 90 ° C.
  • the composition can be made by mixing a hardener, the polymer and a catalyst under ambient conditions (ambient temperature and pressure).
  • the composition is heated to a temperature between 35 ° C and 70 ° so as to render the composition sufficiently fluid, that is to say until the composition has a critical viscosity of less than 3000mPa.s and preferably less than 300mPa.s.
  • Put on the Barrel spring 1 may comprise fully immersing the spring in the composition during a time of immersion typically between 5 and 20 seconds. After the immersion step, the composition still in relatively liquid form.
  • the compatibility between the composition and the epoxy resin forming the spring matrix leads to a good wettability of the composition on the surface of the spring.
  • the polymer of the composition is an epoxy resin.
  • coating the barrel spring 1 may include a spray coating step or a vapor deposition step. In the latter case, the polymer of the composition is preferably a parylene polymer.
  • the homogenization step comprises rotating the barrel spring coated with the composition along axes of rotation oriented in the three orthogonal dimensions X, Y and Z (see FIG. figure 2 ).
  • the spring can be held at both ends, for example, using a pair of small clamps (not shown).
  • the two ends of the spring can be secured to one another by a metal rod or a plate (also not shown).
  • the rotation of the spring is performed so as to take advantage of the gravity which acts on the still fluid composition.
  • the rotation can be carried out at a rotation speed of between 5 rpm and 60 rpm, and preferably between 10 rpm and 30 rpm.
  • the rotation of the barrel spring coated with the composition is carried out along a single axis of rotation oriented at an angle of between 10 ° and 80 ° to the winding plane of the mainspring.
  • the homogenization step is carried out until the composition is polymerized thereby forming the coating.
  • the polymerization step of the composition may include heating the barrel spring 1 coated with the composition. Heating can be achieved by placing the barrel spring 1 in an oven or by providing infrared or microwave radiation. The heating is preferably performed during the homogenization step. Heating can also include a gradual increase in temperature until the polymerization temperature of the composition is reached.
  • the method may also comprise a step of polishing the coating so as to eliminate the imperfections of the coating 3.
  • the polishing is preferably carried out in such a way as to leave the coating with a thickness of between 3 ⁇ m and 20 ⁇ m, or at least equal to a quarter of the thickness of the coating. width of a fiber.
  • the coating covers the fibers present at the surface of the spring and the method of manufacturing the mainspring, as well as the step of polishing the spring before the coating, had eliminated. This is advantageous since the fibers present at the surface of the spring tend to increase the friction between the turns.
  • the coating makes it possible to reduce the friction of the turns of the mainspring spring during operation.
  • the coating described here also reduces the risk of breakage of the coating or its delamination, which can be raised with a conventional metal coating. As the modulus of elasticity of the composite matrix of the mainspring is much higher than that of the coating, the latter plays only a negligible part in the mechanical properties of the coated coil spring.

Landscapes

  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Springs (AREA)

Abstract

The spring (1) has a coating (3) including a thermoplastic or thermosetting polymer, where the spring is made of a material including a polymer matrix containing fibers. The thermoplastic or thermosetting polymer includes a slow polymerization type epoxy resin, where the volume fraction of fibers in the polymer matrix is between 30 percent and 75 percent, preferably between 45 percent and 55 percent. The fibers are S or S2 type glass fibers, where the thickness of the coating is between 3 mm and 20 mm, or equal to a quarter of the width of a fiber. An independent claim is also included for a method for manufacturing a barrel spring.

Description

Domaine techniqueTechnical area

La présente invention concerne un ressort de barillet revêtu pour organe moteur dans un mouvement d'horlogerie mécanique. Le revêtement permet de réduire les frottements des spires du ressort et possède une bonne cohésion.The present invention relates to a barrel spring coated for a motor member in a mechanical clockwork movement. The coating reduces friction of spring turns and has good cohesion.

Etat de la techniqueState of the art

Le ressort de barillet spiral est l'organe permettant d'emmagasiner l'énergie mécanique nécessaire au fonctionnement de la montre. Généralement, ses dimensions géométriques et les propriétés mécaniques du matériau qui le compose déterminent l'énergie potentielle que le barillet spiral est capable d'emmagasiner et le couple maximal qu'il délivre. Le déroulement de la lame du ressort produit l'énergie nécessaire au fonctionnement de la montre. La figure 1 montre une vue éclatée d'un ressort de barillet 1 logé dans un tambour de barillet 2. La forme de la lame du ressort a évolué jusqu'à une forme reconnue en S retourné (voir figure 2 et « Théorie d'horlogerie » par C-A Reymondin et al., édité par la Fédération des Ecoles Techniques, Suisse, 1998 ). Cette forme particulière permet de produire un couple relativement constant quel que soit l'état d'armement du ressort. L'énergie maximale est emmagasinée par le ressort de barillet lorsque la proportion entre la surface occupée par ce dernier, lorsqu'il est arme, et celle qui reste libre dans le tambour est d'environ 50 %.The spiral barrel spring is the organ for storing the mechanical energy necessary for the operation of the watch. Generally, its geometric dimensions and the mechanical properties of the material that compose it determine the potential energy that the spiral barrel is capable of storing and the maximum torque that it delivers. The unwinding of the leaf of the spring produces the energy necessary for the operation of the watch. The figure 1 shows an exploded view of a barrel spring 1 housed in a barrel drum 2. The shape of the leaf of the spring has evolved to a shape recognized in S returned (see figure 2 and "Clockwork Theory" by CA Reymondin et al., Published by the Federation of Technical Schools, Switzerland, 1998 ). This particular shape makes it possible to produce a relatively constant torque irrespective of the state of arming of the spring. The maximum energy is stored by the mainspring when the proportion between the area occupied by the latter, when it is armed, and that which remains free in the drum is about 50%.

Les manufacturiers horlogers ont cherché de tout temps à augmenter la capacité de stockage d'énergie des ressorts de barillet et, ainsi, la réserve de marche des montres mécaniques, sans pour autant accroitre le volume, c'est-à-dire l'encombrement, des barillets. Les efforts ont principalement été dirigés vers la réduction des pertes d'énergie, notamment dues aux frottements. C'est ainsi qu'il a été propose de revêtir le ressort de barillet d'une couche lubrifiante, par exemple un revêtement métallique ou en DLC («Diamond-Like Carbon»), pour limiter les frottements internes.Watch manufacturers have always sought to increase the energy storage capacity of the barrel springs and, thus, the power reserve of mechanical watches, without increasing the volume, that is to say the congestion , barrels. Efforts have mainly been directed towards the reduction of energy losses, particularly due to friction. This is how it was proposed to wear the barrel spring of a lubricating layer, for example a metal coating or DLC ("Diamond-Like Carbon"), to limit internal friction.

Cependant, le revêtement du ressort doit supporter plusieurs contraintes. D'une part il doit participer à diminuer la friction entre les spires et d'autre part il doit participer à la cohésion globale du matériau du ressort. Cependant entre la position armée et désarmée, la surface du ressort subit des déformations très importantes. Dans le cas des revêtements précités, la répétition de telles déformations, pendant l'armage et désarmage du ressort, peut résulter dans la cassure du revêtement ou de sa délamination. Pour les mêmes raisons, un revêtement dont le comportement élastique est assuré par des liaisons de type covalentes ou ioniques, tel qu'un revêtement en céramique ou diamant, ne pourra également assurer une cohésion satisfaisante du revêtement avec le ressort.However, the coating of the spring must withstand several stresses. On the one hand it must participate in reducing the friction between the turns and on the other hand it must participate in the overall cohesion of the spring material. However between the armed and disarmed position, the surface of the spring undergoes very important deformations. In the case of the aforementioned coatings, the repetition of such deformations, during the winding and disarming of the spring, may result in the breakage of the coating or its delamination. For the same reasons, a coating whose elastic behavior is provided by covalent or ionic type bonds, such as a ceramic or diamond coating, can also ensure a satisfactory cohesion of the coating with the spring.

Bref résumé de l'inventionBrief summary of the invention

Un objet de la présente invention consiste à proposer un ressort de barillet pour organe moteur pour un mouvement d'horlogerie, ledit ressort de barillet étant réalisé dans un matériau comprenant une matrice de polymère contenant des fibres, ledit ressort de barillet comportant un revêtement comprenant un polymère thermodurcissable ou thermoplastique.An object of the present invention is to provide a driving member spring for a watch movement, said barrel spring being made of a material comprising a fiber-containing polymer matrix, said barrel spring having a coating comprising a thermosetting or thermoplastic polymer.

Un autre objet de l'invention consiste à proposer un organe moteur pour un mouvement d'horlogerie comprenant ledit ressort de barillet.Another object of the invention is to provide a driving member for a watch movement comprising said mainspring.

Encore un autre objet de l'invention consiste à proposer une pièce d'horlogerie comportant l'organe moteur.Yet another object of the invention is to propose a timepiece comprising the driving member.

Encore un autre objet de l'invention consiste dans un procédé de réalisation du ressort de barillet comprenant les étapes de:

  • fournir le ressort de barillet réalisé dans un matériau comprenant une matrice de polymère contenant des fibres;
  • revêtir le ressort de barillet (1) d'une composition comprenant un polymère;
  • homogénéiser l'épaisseur de la composition revêtant le ressort de barillet; et
  • polymériser la composition pour former le revêtement.
Yet another object of the invention consists in a method for producing the mainspring spring comprising the steps of:
  • providing the barrel spring made of a material comprising a polymer matrix containing fibers;
  • coating the barrel spring (1) with a composition comprising a polymer;
  • homogenizing the thickness of the composition coating the mainspring; and
  • polymerize the composition to form the coating.

Dans un mode de réalisation, revêtir le ressort de barillet peut comprendre une étape d'immersion du ressort dans la composition, ou une étape de revêtement par pulvérisation, ou une étape de déposition en phase vapeur.In one embodiment, coating the barrel spring may include a step of immersing the spring in the composition, or a spray coating step, or a vapor deposition step.

Le ressort de barillet proposé permet de réduire les frottements des spires du ressort de barillet et le revêtement possède une bonne cohésion.The proposed barrel spring makes it possible to reduce the friction of the turns of the mainspring and the coating has a good cohesion.

Brève description des figuresBrief description of the figures

Des exemples de mise en oeuvre de l'invention sont indiqués dans la description illustrée par les figures annexées dans lesquelles :

  • la figure 1 montre une vue éclatée d'un ressort de barillet logé dans un tambour de barillet;
  • la figure 2 illustre forme en S retourné de la lame du ressort de barillet; et
  • la figure 3 montre une vue en coupe du ressort de barillet, selon un mode de réalisation.
Examples of implementation of the invention are indicated in the description illustrated by the appended figures in which:
  • the figure 1 shows an exploded view of a barrel spring housed in a barrel drum;
  • the figure 2 illustrious S-shape returned from the barrel spring blade; and
  • the figure 3 shows a sectional view of the mainspring, according to one embodiment.

Exemple(s) de mode de réalisation de l'inventionExample (s) of embodiment of the invention

Dans un mode de réalisation, un ressort de barillet 1 est fabriqué dans un matériau composite. Par "matériau composite" on entend ici une matrice de polymère contenant des fibres, telles que des fibres de verre ou autres. Préférablement, les fibres sont orientées de façon unidirectionnelle dans la matrice polymérique. De tels ressorts fabriqués dans le matériau composite peuvent être moins susceptibles que les ressorts conventionnels métalliques aux fractures par fatigue et, par conséquent, avoir une durée de vie plus longue.In one embodiment, a barrel spring 1 is made of a composite material. By "composite material" is meant herein a polymer matrix containing fibers, such as glass fibers or the like. Preferably, the fibers are oriented unidirectionally in the polymeric matrix. Such springs made of the composite material may be less susceptible than conventional metal springs to fatigue fractures and, therefore, have a longer life.

Les fibres d'un tel ressort composite pourront être en carbone, en verre, en aramide ou encore d'une autre nature (par exemple des mélanges de fibres) mais dans tous les cas leur module d'élasticité axiale est de préférence compris entre 80GPa et 600GPa. Les fibres ont généralement la même longueur que le ressort et sont disposées de façon aussi parallèle que possible à la grande longueur du ressort. De préférence, l'angle entre l'axe de chaque fibre et l'axe du ressort est le plus proche possible à 0° et ne dépasse pas localement 5°. Les fibres ont typiquement un diamètre compris entre 1µm et 35µm. Un seul ressort peut avoir des fibres de diamètres différents mais de préférence les diamètres utilisées dans l'épaisseur du ressort permettent de placer au moins dix fibres côte à côte afin d'obtenir un ressort de barillet d'une meilleure homogénéité.The fibers of such a composite spring may be carbon, glass, aramid or of another nature (for example fiber mixtures) but in all cases their axial elastic modulus is preferably between 80GPa and 600GPa. The fibers are generally the same length as the spring and are arranged as parallel as possible to the great length of the spring. Preferably, the angle between the axis of each fiber and the axis of the spring is as close as possible to 0 ° and does not exceed locally 5 °. The fibers typically have a diameter of between 1 μm and 35 μm. A single spring may have fibers of different diameters but preferably the diameters used in the thickness of the spring allow to place at least ten fibers side by side to obtain a barrel spring of better homogeneity.

La matrice de polymère peut comprendre un thermoplastique ou un plastique thermodurcissable. La fraction volumique de fibres dans le polymère est de préférence comprise entre 30% et 75% ou encore entre 45% et 55%. Des nanoparticules peuvent être ajoutées dans la matrice de polymère de façon à durcir cette dernière pour repousser le micro-flambage des fibres dans la face en compression du ressort en flexion. Ces nanoparticules pourront être de la silice, des fullerènes, ou tout autre matériau ayant la possibilité de se lier à la résine polymérique et d'en augmenter la résistance à la compression, sans diminuer la capacité de la résine polymérique à se lier aux fibres.The polymer matrix may comprise a thermoplastic or a thermosetting plastic. The volume fraction of fibers in the polymer is preferably between 30% and 75% or between 45% and 55%. Nanoparticles may be added to the polymer matrix so as to harden the latter to repel the micro-buckling of the fibers in the compressive face of the spring in flexion. These nanoparticles may be silica, fullerenes, or any other material having the ability to bind to the polymeric resin and increase its compressive strength, without decreasing the ability of the polymeric resin to bind to the fibers.

Une matrice de polymère renforcée de fibres de verre unidirectionnelles présente un module d'élasticité environ quatre à cinq fois inférieur à celui de l'acier pour une limite élastique inférieure d'environ la moitié. Toute chose égale par ailleurs dans la géométrie d'un ressort acier ou d'un ressort composite: même longueur, même épaisseur et largeur, conduira le ressort composite à un niveau d'énergie élastique stocké restituable au moins égale souvent un peu plus importante que celle du ressort acier et à une variation du couple délivré en fonction de la rotation de barillet plus faible, cette variation étant liée proportionnellement à l'inverse du module de Young du matériau. Par contre le niveau de couple maximal possible sera inférieur pour le ressort composite par rapport au ressort acier, ce couple maximal étant proportionnel à la contrainte à rupture du matériau. De façon préférée, la matrice de polymère comprend une résine époxy et les fibres sont des fibres de verre de type E ou des fibres de verre de type S ou S2. La table 1 rapporte les propriétés de ces fibres de verre. Table 1 fibres Verre E Verre S ou S2 Module d'élasticité, à 20°C 70 (+/-2) GPa 88 (+/-2) GPa Résistance à la rupture, à 20°C 3620 (+/-170) MPa 4980 (+/150) MPa A unidirectional fiberglass reinforced polymer matrix has a modulus of elasticity approximately four to five times lower than that of steel for a yield strength of about half. All things being equal in the geometry of a steel spring or composite spring: same length, same thickness and width, will drive the composite spring to a level of elastic energy stored restorable at least equal often a little larger than that of the steel spring and a torque variation delivered as a function of the lower barrel rotation, this variation being proportionally related to the inverse of the Young's modulus of the material. On the other hand, the maximum possible torque level will be lower for the composite spring with respect to the steel spring, this maximum torque being proportional to the breaking stress of the material. Preferably, the polymer matrix comprises an epoxy resin and the fibers are type E glass fibers or S or S2 type glass fibers. Table 1 reports the properties of these glass fibers. Table 1 fibers Glass E S or S2 glass Modulus of elasticity at 20 ° C 70 (+/- 2) GPa 88 (+/- 2) GPa Resistance to fracture at 20 ° C 3620 (+/- 170) MPa 4980 (+ / 150) MPa

Le ressort de barillet composite 1 peut être fabriqué en mélangeant fibres et la matrice de polymère dans l'état liquide sous la forme d'une bande. Le ressort de barillet peut également être fabriqué en utilisant un matériau prépreg dans lequel les fibres et la matrice de polymère sont déjà mélangés, et dans lequel la réaction de polymérisation est stoppée par un retardateur chimique. Les fibres sont préférablement alignées sur la plus grande longueur de la bande. La bande est ensuite enroulée dans un moule en exerçant une tension suivant la longueur, permettre l'enroulement de la bande composite. Le composite est ensuite polymérisé, par exemple, par pression externe d'environ 10 bar, de façon à ce que le composite soit forcé de rester dans le moule et en prenne bien la forme. Après cuisson, le composite est sorti du moule et la surface du ressort de barillet ainsi formé est poli pour enlever les imperfections liées au procédé de fabrication.The composite barrel spring 1 can be made by mixing fibers and the polymer matrix in the liquid state in the form of a strip. The barrel spring can also be made using a prepreg material in which the fibers and the polymer matrix are already mixed, and wherein the polymerization reaction is stopped by a chemical retarder. The fibers are preferably aligned along the longer length of the web. The strip is then wound in a mold by exerting a tension along the length, allowing the winding of the composite strip. The composite is then polymerized, for example, by external pressure of about 10 bar, so that the composite is forced to remain in the mold and take good shape. After cooking, the composite is removed from the mold and the surface of the thus-formed barrel spring is polished to remove imperfections related to the manufacturing process.

Le ressort de barillet composite 1 est avantageusement revêtu d'un revêtement antifriction 3 (voir figure 3) de façon à réduire les frottements entre les spires du ressort 1 lorsque le celui-ci est monté dans le barillet. La figure 3 montre une vue en coupe du ressort de barillet 1 comportant ledit revêtement 3. Dans le cas d'un ressort en résine d'époxy renforcée de fibres de verre de type S, les déformations discutées ci-dessus peuvent être supérieures à 3% en tension, respectivement -3% en compression. Le revêtement 3 devra donc être à même d'assurer une cohésion satisfaisante dans ces conditions.The composite barrel spring 1 is advantageously coated with an anti-friction coating 3 (see FIG. figure 3 ) so as to reduce the friction between the turns of the spring 1 when the latter is mounted in the barrel. The figure 3 shows a sectional view of the mainspring spring 1 comprising said coating 3. In the case of an S type glass fiber reinforced epoxy resin spring, the deformations discussed above may be greater than 3% in tension respectively, -3% in compression. The coating 3 must therefore be able to ensure satisfactory cohesion in these conditions.

Dans un mode de réalisation, le revêtement 3 comprend un matériau dont les liaisons sont de type hydrogène ou Van der Walls. Plus particulièrement, le ressort est revêtu d'un revêtement comprenant un polymère thermodurcissable ou thermoplastique. De façon préférée, le revêtement comprend une résine de type époxy à polymérisation lente, c'est-à-dire ayant un temps de gélification plus grand que 20 min à 90°C.In one embodiment, the coating 3 comprises a material whose bonds are of hydrogen or Van der Walls type. More particularly, the spring is coated with a coating comprising a thermosetting or thermoplastic polymer. Preferably, the coating comprises a slow polymerization epoxy resin, i.e., having a gel time greater than 20 min at 90 ° C.

Dans un mode de réalisation, un procédé de réalisation du ressort de barillet 1 comprenant le revêtement 3 comprend les étapes de:

  • fournir le ressort de barillet 1 réalisé dans un matériau comprenant une matrice de polymère contenant des fibres;
  • revêtir le ressort de barillet 1 d'une composition comprenant un polymère;
  • homogénéiser l'épaisseur de la composition revêtant le ressort de barillet 1 afin d'égaliser l'épaisseur de la composition à la surface du ressort de barillet 1; et
  • polymériser la composition pour former le revêtement 3.
In one embodiment, a method of making the barrel spring 1 comprising the liner 3 comprises the steps of:
  • providing the barrel spring 1 made of a material comprising a polymer matrix containing fibers;
  • coating the barrel spring 1 with a composition comprising a polymer;
  • homogenizing the thickness of the composition coating the barrel spring 1 in order to equalize the thickness of the composition on the surface of the barrel spring 1; and
  • polymerizing the composition to form the coating 3.

La composition peut être réalisée en mélangeant un durcisseur, le polymère et un catalyseur, dans des conditions ambiantes (température et pression ambiante). La composition est chauffée à une température comprise entre 35°C et 70° de façon à rendre la composition suffisamment fluide, c'est-à-dire jusqu'à ce que la composition a une viscosité critique inférieure à 3000mPa.s et de préférence inférieure à 300mPa.s. Revêtir le ressort de barillet 1 peut comprendre immerger complètement le ressort dans la composition pendant un temps d'immersion compris typiquement entre 5 et 20 secondes. Après l'étape d'immersion, la composition encore sous forme relativement liquide. La compatibilité entre la composition et la résine époxy formant la matrice du ressort conduit à une bonne mouillabilité de la composition à la surface du ressort. De façon préférée, le polymère de la composition est une résine de type époxy. De façon alternative, revêtir le ressort de barillet 1 peut comprendre une étape de revêtement par pulvérisation (spray coating) ou encore une étape de déposition en phase vapeur. Dans ce dernier cas, le polymère de la composition est préférablement un polymère de parylène.The composition can be made by mixing a hardener, the polymer and a catalyst under ambient conditions (ambient temperature and pressure). The composition is heated to a temperature between 35 ° C and 70 ° so as to render the composition sufficiently fluid, that is to say until the composition has a critical viscosity of less than 3000mPa.s and preferably less than 300mPa.s. Put on the Barrel spring 1 may comprise fully immersing the spring in the composition during a time of immersion typically between 5 and 20 seconds. After the immersion step, the composition still in relatively liquid form. The compatibility between the composition and the epoxy resin forming the spring matrix leads to a good wettability of the composition on the surface of the spring. Preferably, the polymer of the composition is an epoxy resin. Alternatively, coating the barrel spring 1 may include a spray coating step or a vapor deposition step. In the latter case, the polymer of the composition is preferably a parylene polymer.

Dans un mode de réalisation, l'étape d'homogénéisation comprend la rotation du ressort de barillet revêtu de la composition selon des axes de rotation orientés dans les trois dimensions orthogonales X, Y et Z (voir la figure 2). A cette fin, le ressort peut être tenu par ses deux extrémités, par exemple, à l'aide d'une paire de petites pinces (non représentées). Les deux extrémités du ressort peuvent être rendues solidaires l'une de l'autre par une tige métallique ou une plaque (également non représentées). La rotation du ressort est réalisée de sorte à mettre à profit la gravité qui agit sur la composition encore fluide. La rotation peut être réalisée à une vitesse de rotation comprise entre 5 tr/min et 60 tr/min, et de préférence entre 10 tr/min et 30 tr/min. Selon une variante, la rotation du ressort de barillet revêtu de la composition est réalisée selon un seul axe de rotation orienté avec un angle compris entre 10° et 80° du plan d'enroulement du ressort de barillet. L'étape d'homogénéisation est réalisée jusqu'à ce que la composition soit polymérisée formant ainsi le revêtement.In one embodiment, the homogenization step comprises rotating the barrel spring coated with the composition along axes of rotation oriented in the three orthogonal dimensions X, Y and Z (see FIG. figure 2 ). To this end, the spring can be held at both ends, for example, using a pair of small clamps (not shown). The two ends of the spring can be secured to one another by a metal rod or a plate (also not shown). The rotation of the spring is performed so as to take advantage of the gravity which acts on the still fluid composition. The rotation can be carried out at a rotation speed of between 5 rpm and 60 rpm, and preferably between 10 rpm and 30 rpm. According to one variant, the rotation of the barrel spring coated with the composition is carried out along a single axis of rotation oriented at an angle of between 10 ° and 80 ° to the winding plane of the mainspring. The homogenization step is carried out until the composition is polymerized thereby forming the coating.

L'étape de polymérisation de la composition peut comporter le chauffage du ressort de barillet 1 revêtu de la composition. Le chauffage peut être réalisé en plaçant le ressort de barillet 1 dans un four ou encore en fournissant une radiation infrarouge ou micro-ondes. Le chauffage est préférablement réalisé pendant l'étape d'homogénéisation. Le chauffage peut également comporter une augmentation graduelle de la température jusqu'à ce que la température de polymérisation de la composition soit atteinte.The polymerization step of the composition may include heating the barrel spring 1 coated with the composition. Heating can be achieved by placing the barrel spring 1 in an oven or by providing infrared or microwave radiation. The heating is preferably performed during the homogenization step. Heating can also include a gradual increase in temperature until the polymerization temperature of the composition is reached.

Le procédé peut également comporter une étape de polissage du revêtement de sorte à supprimer les imperfections du revêtement 3. Le polissage est préférablement réalisé de façon à laisser au revêtement une épaisseur comprise entre 3 µm et 20 µm, ou au moins égale au quart de la largeur d'une fibre.The method may also comprise a step of polishing the coating so as to eliminate the imperfections of the coating 3. The polishing is preferably carried out in such a way as to leave the coating with a thickness of between 3 μm and 20 μm, or at least equal to a quarter of the thickness of the coating. width of a fiber.

Le revêtement permet de recouvrir les fibres présentes en surface du ressort et que le procédé de fabrication du ressort de barillet, ainsi que l'étape de polissage du ressort avant le revêtement, n'avaient permis d'éliminer. Ceci est avantageux puisque les fibres présentes en surface du ressort tendent à augmenter la friction entre les spires. Le revêtement permet de réduire les frottements des spires du ressort de barillet en fonctionnement. Le revêtement décrit ici permet également de diminuer les risques de cassure du revêtement ou de sa délamination, qui peuvent être élevés avec un revêtement métallique conventionnel. Comme le module d'élasticité de la matrice composite du ressort de barillet est beaucoup plus élevé que celui du revêtement, ce dernier ne participe que de façon négligeable aux propriétés mécaniques du ressort de barillet revêtu.The coating covers the fibers present at the surface of the spring and the method of manufacturing the mainspring, as well as the step of polishing the spring before the coating, had eliminated. This is advantageous since the fibers present at the surface of the spring tend to increase the friction between the turns. The coating makes it possible to reduce the friction of the turns of the mainspring spring during operation. The coating described here also reduces the risk of breakage of the coating or its delamination, which can be raised with a conventional metal coating. As the modulus of elasticity of the composite matrix of the mainspring is much higher than that of the coating, the latter plays only a negligible part in the mechanical properties of the coated coil spring.

Numéros de référence employés sur les figuresReference numbers used in the figures

11
ressort de barilletbarrel spring
22
tambour de barilletbarrel drum
33
revêtementcoating

Claims (15)

Ressort de barillet pour organe moteur pour un mouvement d'horlogerie, ledit ressort de barillet étant réalisé dans un matériau comprenant une matrice de polymère contenant des fibres, caractérisé en ce que
ledit ressort de barillet comporte un revêtement comprenant un polymère thermodurcissable ou thermoplastique.
Barrel spring for a motor member for a clock movement, said barrel spring being made of a material comprising a polymer matrix containing fibers, characterized in that
said barrel spring comprises a coating comprising a thermosetting or thermoplastic polymer.
Ressort de barillet selon la revendication 1, dans lequel ledit polymère thermodurcissable ou thermoplastique comprend une résine de type époxy à polymérisation lente.The barrel spring of claim 1, wherein said thermosetting or thermoplastic polymer comprises a slow polymerization epoxy resin. Ressort de barillet selon les revendications 1 ou 2, dans lequel le revêtement comprend un matériau dont les liaisons sont de type hydrogène ou Van der Walls.Barrel spring according to claims 1 or 2, wherein the coating comprises a material whose bonds are hydrogen or Van der Walls. Ressort de barillet selon la revendication 1, 2 ou 3, dans lequel ladite matrice de polymère comprend un thermoplastique ou un plastique thermodurcissable.The barrel spring of claim 1, 2 or 3, wherein said polymer matrix comprises a thermoplastic or a thermosetting plastic. Ressort de barillet selon la revendication 4, dans lequel ledit polymère thermodurcissable ou thermoplastique de ladite matrice de polymère comprend une résine de type époxy.The barrel spring of claim 4, wherein said thermosetting or thermoplastic polymer of said polymer matrix comprises an epoxy resin. Ressort de barillet selon l'une des revendications de 1 à 5, dans lequel
la fraction volumique de fibres dans la matrice de polymère est comprise entre 30% et 75%, et de préférence entre 45% et 55%.
Barrel spring according to one of Claims 1 to 5, in which
the volume fraction of fibers in the polymer matrix is between 30% and 75%, and preferably between 45% and 55%.
Ressort de barillet selon l'une des revendications de 1 à 6, dans lequel
les fibres comprennent des fibres de verre de type S ou S2.
Barrel spring according to one of Claims 1 to 6, in which
the fibers comprise type S or S2 glass fibers.
Ressort de barillet selon l'une des revendications de 1 à 7, dans lequel
le revêtement a une épaisseur comprise entre 3 µm et 20 µm, ou au moins égale au quart de la largeur d'une fibre.
Barrel spring according to one of Claims 1 to 7, in which
the coating has a thickness of between 3 μm and 20 μm, or at least equal to a quarter of the width of a fiber.
Organe moteur pour un mouvement d'horlogerie comprenant le ressort de barillet caractérisé par l'une des revendications de 1 à 8.Motor unit for a watch movement comprising the mainspring characterized by one of the claims from 1 to 8. Pièce d'horlogerie comportant l'organe moteur selon la revendication 9.Timepiece comprising the driving member according to claim 9. Procédé de réalisation du ressort de barillet caractérisé par l'une des revendications de 1 à 8, comprenant: fournir le ressort de barillet réalisé dans un matériau comprenant une matrice de polymère contenant des fibres; revêtir le ressort de barillet (1) d'une composition comprenant un polymère; homogénéiser l'épaisseur de la composition revêtant le ressort de barillet; et polymériser la composition pour former le revêtement. A method of producing the barrel spring characterized by one of claims 1 to 8, comprising: providing the barrel spring made of a material comprising a polymer matrix containing fibers; coating the barrel spring (1) with a composition comprising a polymer; homogenizing the thickness of the composition coating the mainspring; and polymerize the composition to form the coating. Procédé selon la revendication 11, dans lequel l'étape d'homogénéisation comprend la rotation du ressort de barillet revêtu de la composition selon des axes de rotation orientés dans les trois dimensions orthogonales X, Y et Z.The method of claim 11, wherein the homogenizing step comprises rotating the barrel spring coated with the composition along axes of rotation oriented in the three orthogonal dimensions X, Y and Z. Procédé selon la revendication 11, dans lequel l'étape d'homogénéisation comprend la rotation du ressort de barillet revêtu de la composition selon un axe de rotation orienté avec un angle compris entre 10° et 80° du plan d'enroulement du ressort de barillet.The method of claim 11, wherein the step of homogenizing comprises rotating the barrel spring coated with the composition along an axis of rotation oriented at an angle of between 10 ° and 80 ° of the winding plane of the mainspring . Procédé selon l'une des revendications de 11 à 13, dans lequel l'étape de polymérisation de la composition comporte le chauffage du ressort de barillet revêtu de la composition.A method according to one of claims 11 to 13, wherein the step of polymerizing the composition comprises heating the barrel spring coated with the composition. Procédé selon l'une des revendications de 11 à 14, dans lequel revêtir le ressort de barillet (1) comprend une étape d'immersion du ressort dans la composition, ou une étape de revêtement par pulvérisation, ou une étape de déposition en phase vapeur.Method according to one of claims 11 to 14, wherein to coat the barrel spring (1) comprises a step of immersing the spring in the composition, or a spray coating step, or a vapor deposition step .
EP11192835.4A 2011-12-09 2011-12-09 Sliding layer for a barrel spring made of a composite material Withdrawn EP2602671A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP11192835.4A EP2602671A1 (en) 2011-12-09 2011-12-09 Sliding layer for a barrel spring made of a composite material
US14/361,238 US20140355395A1 (en) 2011-12-09 2012-11-30 Antifriction coating for mainspring made of composite material
JP2014545190A JP2015500474A (en) 2011-12-09 2012-11-30 Abrasion resistant coatings for mainsprings made of composite materials.
CN201280060582.1A CN104081294A (en) 2011-12-09 2012-11-30 Antifriction coating for mainspring made of composite material
EP12794714.1A EP2788821B1 (en) 2011-12-09 2012-11-30 Sliding layer for a barrel spring made of a composite material
PCT/EP2012/074139 WO2013083494A1 (en) 2011-12-09 2012-11-30 Antifriction coating for mainspring made of composite material
HK14111837.8A HK1198343A1 (en) 2011-12-09 2014-11-24 Antifriction coating for mainspring made of composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP11192835.4A EP2602671A1 (en) 2011-12-09 2011-12-09 Sliding layer for a barrel spring made of a composite material

Publications (1)

Publication Number Publication Date
EP2602671A1 true EP2602671A1 (en) 2013-06-12

Family

ID=47278301

Family Applications (2)

Application Number Title Priority Date Filing Date
EP11192835.4A Withdrawn EP2602671A1 (en) 2011-12-09 2011-12-09 Sliding layer for a barrel spring made of a composite material
EP12794714.1A Active EP2788821B1 (en) 2011-12-09 2012-11-30 Sliding layer for a barrel spring made of a composite material

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP12794714.1A Active EP2788821B1 (en) 2011-12-09 2012-11-30 Sliding layer for a barrel spring made of a composite material

Country Status (6)

Country Link
US (1) US20140355395A1 (en)
EP (2) EP2602671A1 (en)
JP (1) JP2015500474A (en)
CN (1) CN104081294A (en)
HK (1) HK1198343A1 (en)
WO (1) WO2013083494A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3010804A1 (en) * 2013-09-17 2015-03-20 Mahytec MECHANICAL OSCILLATOR FOR WATCHMAKING MOVEMENT AND METHOD FOR MANUFACTURING THE SAME
CH709705A1 (en) * 2014-05-28 2015-11-30 Sigatec Sa Method of manufacturing a micro-mechanical part and corresponding micro-mechanical part.

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6125915B2 (en) * 2013-06-10 2017-05-10 三菱重工業株式会社 Prepreg spiral body forming apparatus and method, and scroll fluid machine including the prepreg spiral body
JP6133767B2 (en) * 2013-12-26 2017-05-24 シチズン時計株式会社 Hairspring and method for manufacturing the same
JP6223193B2 (en) * 2014-01-10 2017-11-01 シチズン時計株式会社 Hairspring and method for manufacturing the same
WO2016016019A1 (en) * 2014-08-01 2016-02-04 Cartier International Ag Timepiece component with a surface comprising silk fibroin
FR3052881B1 (en) * 2016-06-21 2020-10-02 Lvmh Swiss Mft Sa PART FOR CLOCK MOVEMENT, CLOCK MOVEMENT, CLOCK PART AND PROCESS FOR MANUFACTURING SUCH A PART FOR CLOCK MOVEMENT
JP7006065B2 (en) * 2017-09-14 2022-01-24 セイコーエプソン株式会社 Watch parts, watch movements and watches
CH716627A1 (en) * 2019-09-23 2021-03-31 Mft Dhorlogerie Audemars Piguet Sa Forged composite material.
EP3839643B1 (en) * 2019-12-20 2024-02-21 The Swatch Group Research and Development Ltd Flexible timepiece component and clockwork comprising such a component
EP3839649A1 (en) 2019-12-20 2021-06-23 Nivarox-FAR S.A. Rigid timepiece component for oscillator mechanism or for escapement mechanism and clockwork comprising such a component

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB864531A (en) * 1956-06-02 1961-04-06 Inst Dr Inc Reinhard Straumann Components for watch and clock mechanisms and method for the manufacture thereof
US2979417A (en) * 1957-06-26 1961-04-11 Straumann Inst Ag Method of preparing self-lubricating watch and clock parts and the coated article
GB894591A (en) * 1957-08-17 1962-04-26 Straumann Inst Ag Improvements in components of clockwork and like mechanisms and processes for their manufacture
US4464216A (en) * 1982-03-26 1984-08-07 Hercules Incorporated Composite negator springs
DE102005054314A1 (en) * 2005-11-11 2007-05-24 Universität Rostock Spiral spring arrangement has spring element which comprises of fiber-plastics combination and inner end of spring element is attached fixed

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3968958A (en) * 1972-11-30 1976-07-13 Edgewater Corporation Composite material springs and manufacture
US4753423A (en) * 1985-06-03 1988-06-28 Nippon Petrochemicals Co., Ltd Synthetic resin-coated spring and method for making same
JP3017673B2 (en) * 1996-03-21 2000-03-13 日機装株式会社 Spiral spring and energy storage / discharge device using the same
TWI534171B (en) * 2007-07-26 2016-05-21 Ajinomoto Kk Resin composition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB864531A (en) * 1956-06-02 1961-04-06 Inst Dr Inc Reinhard Straumann Components for watch and clock mechanisms and method for the manufacture thereof
US2979417A (en) * 1957-06-26 1961-04-11 Straumann Inst Ag Method of preparing self-lubricating watch and clock parts and the coated article
GB894591A (en) * 1957-08-17 1962-04-26 Straumann Inst Ag Improvements in components of clockwork and like mechanisms and processes for their manufacture
US4464216A (en) * 1982-03-26 1984-08-07 Hercules Incorporated Composite negator springs
DE102005054314A1 (en) * 2005-11-11 2007-05-24 Universität Rostock Spiral spring arrangement has spring element which comprises of fiber-plastics combination and inner end of spring element is attached fixed

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
C-A REYMONDIN ET AL.: "Théorie d'horlogerie", 1998, FÉDÉRATION DES ECOLES TECHNIQUES

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3010804A1 (en) * 2013-09-17 2015-03-20 Mahytec MECHANICAL OSCILLATOR FOR WATCHMAKING MOVEMENT AND METHOD FOR MANUFACTURING THE SAME
WO2015039881A3 (en) * 2013-09-17 2016-02-25 Mahytec Mechanical oscillator for clock movement and method for manufacturing same
CH709705A1 (en) * 2014-05-28 2015-11-30 Sigatec Sa Method of manufacturing a micro-mechanical part and corresponding micro-mechanical part.

Also Published As

Publication number Publication date
HK1198343A1 (en) 2015-04-02
JP2015500474A (en) 2015-01-05
US20140355395A1 (en) 2014-12-04
EP2788821B1 (en) 2019-04-10
WO2013083494A1 (en) 2013-06-13
EP2788821A1 (en) 2014-10-15
CN104081294A (en) 2014-10-01

Similar Documents

Publication Publication Date Title
EP2788821B1 (en) Sliding layer for a barrel spring made of a composite material
EP1726678B1 (en) Process for fabricating a tubular body with a metal matrix composite insert
EP2555201B1 (en) Improved method of manufacturing a tubular geometry part in a ceramic matrix composite material
EP2445705A2 (en) Method for manufacturing composite connecting rods, and connecting rods produced according to the method
BE1021537B1 (en) BIELLE MONOBLOC
EP2455820B1 (en) Driving organ for clockwork
WO2003074260A1 (en) Method for making a double-walled thermostructural composite monolithic component and resulting component
EP2864841B1 (en) Driving device for clockwork
FR2919283A1 (en) Manufacturing mechanical component, comprises fabricating an insert by winding beam or sheet linked with coated wire around a rotating component, and inserting insert in opposite sides of container undergoing hot isostatic compaction
FR2992745A1 (en) SPIRAL GUIDE OF LIGHT, IN-SITU CONTROL SYSTEM OF A WATCHING MOVEMENT EQUIPPED WITH THIS SPIRAL, AND PORTABLE CONTROL DEVICE
WO2014001660A2 (en) Light guide hairspring, in situ control system for a timepiece movement fitted with this hairspring, and portable control device
EP2616231B1 (en) Simplified method for the production of a suspension spring made from a composite material
EP2981405B1 (en) Link between a thin metal liner and a composite wall by thermoplastic particle-filled coating
EP3047337B1 (en) Mechanical oscillator for clockwork and method for manufacturing the same
EP3175303B1 (en) Timepiece component with a surface comprising silk fibroin
FR3055039A1 (en) CONCRETE INERTILE WHEEL AND WIRE PRE-STRENGTH ENVELOPE AND METHOD FOR MANUFACTURING THE SAME
WO2016041767A1 (en) Inertial energy storage system comprising a disk made of a composite material
FR3066572B1 (en) PRESSURIZED INERTIA FLYWHEEL WITH LIQUID UNDER PRESSURE
WO2010146256A1 (en) Deformable mirror with a cellular structure
CH710790A1 (en) Mainspring composite metal matrix cylinder and watch.
WO2018002507A1 (en) Method for manufacturing a friction lining
FR3009511A1 (en) COMPACTION ROLLER FOR HEAD FOR FIBER IMPORTING THERMOPLASTIC RESIN FIBER AND FIBER DISPLACEMENT HEAD

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20131213