EP2602239B1 - Active material for an infra-red decoy with area effect which emits mainly spectral radiation upon combustion - Google Patents

Active material for an infra-red decoy with area effect which emits mainly spectral radiation upon combustion Download PDF

Info

Publication number
EP2602239B1
EP2602239B1 EP12007978.5A EP12007978A EP2602239B1 EP 2602239 B1 EP2602239 B1 EP 2602239B1 EP 12007978 A EP12007978 A EP 12007978A EP 2602239 B1 EP2602239 B1 EP 2602239B1
Authority
EP
European Patent Office
Prior art keywords
active mass
burnup
active
component
mass component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12007978.5A
Other languages
German (de)
French (fr)
Other versions
EP2602239A2 (en
EP2602239A3 (en
Inventor
Arno Hahma
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Diehl Defence GmbH and Co KG
Original Assignee
Diehl Defence GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Diehl Defence GmbH and Co KG filed Critical Diehl Defence GmbH and Co KG
Publication of EP2602239A2 publication Critical patent/EP2602239A2/en
Publication of EP2602239A3 publication Critical patent/EP2602239A3/en
Application granted granted Critical
Publication of EP2602239B1 publication Critical patent/EP2602239B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06CDETONATING OR PRIMING DEVICES; FUSES; CHEMICAL LIGHTERS; PYROPHORIC COMPOSITIONS
    • C06C15/00Pyrophoric compositions; Flints
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B45/00Compositions or products which are defined by structure or arrangement of component of product
    • C06B45/04Compositions or products which are defined by structure or arrangement of component of product comprising solid particles dispersed in solid solution or matrix not used for explosives where the matrix consists essentially of nitrated carbohydrates or a low molecular organic explosive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41JTARGETS; TARGET RANGES; BULLET CATCHERS
    • F41J2/00Reflecting targets, e.g. radar-reflector targets; Active targets transmitting electromagnetic or acoustic waves
    • F41J2/02Active targets transmitting infrared radiation

Definitions

  • the invention relates to an active mass for a pyrotechnic infrared glow target with a spatial effect that burns essentially spectrally when burned.
  • a pyrotechnic infrared glow target which is essentially spectrally radiating when burned off, emits significantly more radiation of a wavelength of 3.5 to 4.6 ⁇ m, ie. H. radiation in the so-called B-band, as radiation in the range from 1.8 to 2.6 ⁇ m, the so-called A-band.
  • the A-band and the B-band are the wavelengths that are detected by conventional search heads.
  • a pyrotechnic illusion torch to be fired from an aircraft to deflect those flying towards the aircraft Shot from the gas outlet with at least one table, which is contained in an airtight, tearable container, known.
  • the tablet has a compactly pressed, essentially bubble-free area of separate pieces of a pyrotechnic composition that emits infrared radiation, which may be embedded in a base material, the base material, if present, or the separated pieces, if no base material is present, from one Gas-releasing infrared light-emitting pyrotechnic composition exists.
  • the container is designed such that it tears under a predetermined internal pressure resulting from the combustion of the pyrotechnic composition and releases the individual pieces shortly after essentially all parts have been ignited.
  • the active masses known from this publication emit predominantly radiation in the A band and not in the B band when they burn up.
  • a cloud is formed from the burning pyrotechnic composition, which is slowed down quickly and burns for a short time with high infrared intensity.
  • Such a deceptive torch is unable to simulate a new-generation seeker head for a fast-flying aircraft because the infrared source, due to the rapid braking in the air, has no movement similar to the missile and therefore does not resemble an exhaust gas jet.
  • EP2151664 A2 discloses an apparent target, wherein at least two active masses are accommodated in a cartridge, wherein a first active mass generates a spectrum similar to a blackbody when burned up, and wherein a second active mass burns a spectrum which is essentially H 2 O and CO 2 different from the first active mass generated, and wherein an ejection device is provided for the temporally staggered ejection of the first and the second active mass from the cartridge, the ejection device being designed such that the first active mass and subsequently the second active mass are subsequently ejected from the cartridge, and wherein the second active mass is provided with a braking means for braking the falling speed.
  • the object of the present invention is to provide an active mass which radiates strongly spectrally when burned with high radiation power, i. H. emits a relatively high proportion of radiation in the B band and a comparatively low proportion of radiation in the A band.
  • the active mass during combustion and with simultaneous rapid movement in the air should have a strong spatial effect which simulates an exhaust gas jet from a fast-moving jet aircraft.
  • the use of such an active mass is to be specified.
  • an active mass for a pyrotechnic infrared glow target with a spatial effect that burns essentially spectrally during the combustion.
  • This Active mass comprises a first active mass component which radiates spectrally when burned and a second spectrally radiant when burned Effective mass components.
  • the first and the second active mass component each comprise at least one fuel and one oxidizing agent and optionally a binder.
  • the active mass is inhomogeneous in that the first active mass component forms a matrix in which particles formed from the second active mass component are embedded.
  • the first and the second active mass components are selected so that the ratio of the burning rate of the first active mass component to the burning rate of the second active mass component is at least 2: 1 and that when the first and second active mass components burn off separately in air, the ratio between the specific power of the emitted radiation in the wavelength range from 3.5 to 4.6 ⁇ m to the specific power of the emitted radiation in the wavelength range from 1.8 to 2.6 ⁇ m is in each case at least 5: 1.
  • the first active mass component and the second active mass component can be composed of the same or different components.
  • the first active mass component and the second active mass component can be any known active mass which meet the criteria mentioned.
  • conventional manufacturing processes can be easily adapted to the production of the active compound according to the invention.
  • Another essential advantage of the active mass according to the invention is that the apparent targets containing these active compositions can be constructed like previous apparent targets. No major changes in manufacturing are required. Essentially the same tools and tablet geometries can be used as with previous active materials.
  • the effective burn-up rate of the apparent target can be set by choosing the first and second active mass components so that it corresponds to the burn-up rate of active masses used previously. The effort involved in converting production to the manufacture of apparent targets containing the active compound according to the invention is therefore low.
  • the active mass according to the invention makes it possible to use known active masses with a high ratio between the specific power of the emitted radiation in the B band to the specific power of the emitted radiation in the A band (spectral ratio) and to produce a spatial effect with these active masses, although these active masses normally represent a spotlight when burning.
  • the active mass according to the invention allows one with a spatial effect Burning known active masses to provide previously unattainable spectral ratio of over 10: 1.
  • the first active mass component burns off and ignites the particles formed from the second active mass component. Since the first active mass component burns faster than the second active mass component, the burning particles are released before they have completely burned off. If the active mass moves at high speed during combustion, the released burning particles are braked faster than the entire active mass and a tail is created. Since the output of an active mass that burns in flight generally decreases with increasing speed, the braking of the released burning particles by air resistance causes an increase in the output in the tail produced. At the same time, a higher spectral ratio is achieved by braking the burning particles in the air. A higher output can also be achieved in that the second active mass component is selected such that the radiation emitted when it burns off has significantly more specific power than the radiation emitted when the first active mass component burned off.
  • the size of the spatial effect and the intensity distribution within the space occupied by the burning particles can be set by the ratio of the burning rate of the first active mass component to the burning rate of the second active mass component.
  • the active mass can be set such that the radiation emitted during movement when it is burned up corresponds to the radiation of a real jet engine or at least comes very close to this radiation.
  • the ratio of the burning rate of the first active mass component to the burning rate of the second active mass component is at least 4: 1, in particular at least 7: 1, in particular at least 10: 1.
  • the particles can have a grain size in the range from 0.5 to 5 mm, in particular 0.5 to 3 mm.
  • the first and the second active mass components are selected such that when the first and / or the second active mass components are burned off separately in air, the ratio between the specific power of the emitted radiation in the wavelength range from 3.5 to 4.6 ⁇ m for the specific power of the emitted radiation in the wavelength range from 1.8 to 2.6 ⁇ m is in each case at least 8: 1, in particular at least 11: 1, in particular at least 14: 1.
  • the active compound according to the invention is not embedded in a container or at most embedded in a container in such a way that no excess pressure which destroys the container builds up in the container when it burns. This can prevent an explosive release of the particles. This is particularly advantageous if the active mass moves when it burns up and a spatial effect in the form of a tail is to be created. An explosive release of the particles of a moving active mass would only result in a relatively stationary spatial effect.
  • the use of the active compound according to the invention is provided according to the invention for producing a pyrotechnic infrared glow target that moves at a speed of at least 150 m / s. It can be a pyrotechnic infrared target, which moves at least 200 m / s, in particular at least 250 m / s.
  • 1a to c show schematic representations of the active mass according to the invention before and at the beginning of the erosion and in the case of advanced erosion.
  • Fig. 1a shows the active mass 10 according to the invention, which consists of a matrix formed by the first active mass component 12 and particles of the second active mass component 14 embedded therein.
  • first flame 16 resulting from the erosion of the first active mass component 12
  • the first active mass component 12 releases the particles of the second active mass component 14.
  • these are ignited by the first flame 16.
  • the second flame 18 is formed on the particles of the second active mass component 14. Since the particles of the second active mass component 14 burn more slowly than the first active mass component 12, the particles of the second active mass component 14 continue to burn after their release in the air. This is in Fig. 1c for the case of an active mass 10 moving away from the first flame 16.
  • Tablets weighing 10 g each were produced from all of the compositions given below. When they burned off, a spatial effect could be determined in each case by burning particles of the second active mass component flying away.
  • Type weight first active mass component Burning rate approx. 3 mm / s ammonium perchlorate ⁇ 30 ⁇ m 77.80
  • HTPB Sartomer R45HT-M M 2800 10.32 IPDI 0.78 hexamethylenetetramine 11.0 iron acetonyl 0.10 second active mass component: Burn rate approx.
  • the first active mass component has a theoretical average density of 1678 kg / m 3 and the second active mass component has a theoretical average density of 1633 kg / m 3 .
  • the active mass consists of 70% by weight of the first active mass component forming a matrix and 30% by weight of the second active mass component present in the form of particles embedded therein.
  • the particles of the second active mass component have a grain size of 0.5 to 3.0 mm.
  • the theoretical average density of the first active mass component is 1678 kg / m 3 .
  • the second active mass component here consists of the propellant powder Vihtavuori 20N29 from Eurenco Vihtavuori Oy, Ruutitehtaantie 80, 41330 Vihtavuori, Finland, which can be purchased.
  • the active mass consists of 60% by weight of the first active mass component forming the matrix and 40% by weight of particles of the second active mass component.
  • the particles of the second active mass component have a grain size in the range from 2 to 3 mm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • Remote Sensing (AREA)
  • General Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Air Bags (AREA)
  • Radiation-Therapy Devices (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)

Description

Die Erfindung betrifft eine Wirkmasse für ein beim Abbrand im Wesentlichen spektral strahlendes pyrotechnisches Infrarotscheinziel mit Raumwirkung. Ein beim Abbrand im Wesentlichen spektral strahlendes pyrotechnisches Infrarotscheinziel emittiert beim Abbrand deutlich mehr Strahlung einer Wellenlänge von 3,5 bis 4,6 µm, d. h. eine Strahlung im sogenannten B-Band, als Strahlung im Bereich einer Wellenlänge von 1,8 bis 2,6 µm, dem sogenannten A-Band. Das A-Band und das B-Band sind die Wellenlängen, die von herkömmlichen Suchköpfen erfasst werden.The invention relates to an active mass for a pyrotechnic infrared glow target with a spatial effect that burns essentially spectrally when burned. A pyrotechnic infrared glow target, which is essentially spectrally radiating when burned off, emits significantly more radiation of a wavelength of 3.5 to 4.6 µm, ie. H. radiation in the so-called B-band, as radiation in the range from 1.8 to 2.6 µm, the so-called A-band. The A-band and the B-band are the wavelengths that are detected by conventional search heads.

Ein Raumeffekt wird bisher durch den Einsatz von rotem Phosphor oder pyrophorischen Systemen in Wirkmassen erreicht. Derartige Wirkmassen sind sicherheitstechnisch problematisch. Der durch diese Wirkmassen erzeugte Raumeffekt ist stationär. Der stationäre Raumeffekt ermöglicht es nicht, einem bildauflösenden Suchkopf ein fliegendes Düsenflugzeug vorzutäuschen, wenn sich ein diese Wirkmasse enthaltendes Scheinziel beim Abbrand der Wirkmasse in der Luft so schnell wie ein Düsenflugzeug bewegt. Beim Abbrand einer sich bewegenden derartigen Wirkmasse erscheint diese für einen im B-Band sensitiven IR-Sensor nur als punktförmige Strahlenquelle und nicht wie ein Düsentriebwerk eines Flugzeugs mit Abgasfahne als punktförmige Strahlenquelle mit einem langen Schweif. Darüber hinaus liegt ein verhältnismäßig hoher Anteil der spezifischen Leistung der beim Abbrand derartiger Wirkmassen emittierten Strahlung im Wellenlängenbereich von 1,8 bis 2,6 µm. Die Strahlung weist damit einen verhältnismäßig hohen Anteil an Schwarzkörperstrahlung auf.So far, a spatial effect has been achieved through the use of red phosphorus or pyrophoric systems in active materials. Such active masses are problematic in terms of safety. The spatial effect created by these active masses is stationary. The stationary spatial effect does not make it possible to simulate an image-resolving seeker head of a flying jet plane if a dummy target containing this active mass moves as quickly as a jet plane when the active mass burns up in the air. When a moving active mass of this type burns up, it appears to an IR sensor sensitive in the B band only as a punctiform radiation source and not as a jet engine of an aircraft with an exhaust plume as a punctiform radiation source with a long tail. In addition, a relatively high proportion of the specific power of the radiation emitted when such active materials are burned is in the wavelength range from 1.8 to 2.6 μm. The radiation therefore has a relatively high proportion of blackbody radiation.

Aus der DE 42 44 682 A1 ist eine von einem Flugzeug abzuschießende pyrotechnische Täuschungsfackel zum Ablenken von auf das Flugzeug zufliegenden Geschossen von dessen Gasaustritt mit mindestens einer Tabelle, die in einem luftdichten, zerreißbaren Behälter enthalten ist, bekannt. Dabei weist die Tablette ein kompakt gepresstes, im Wesentlichen blasenfreies Gebiet separater Stücke einer Infrarotstrahlung emittierenden pyrotechnischen Zusammensetzung auf, die ggf. in einem Grundmaterial eingebettet sind, wobei das Grundmaterial, falls vorhanden, oder die getrennten Stücke, falls kein Grundmaterial vorhanden ist, aus einer Gas freisetzenden Infrarotlicht emittierenden pyrotechnischen Zusammensetzung besteht/bestehen. Der Behälter ist dabei so ausgebildet, dass er unter einem aus der Verbrennung der pyrotechnischen Zusammensetzung resultierenden vorgegebenen Innendruck reißt und die einzelnen Stücke freigibt, kurz nachdem im Wesentlichen alle Teile gezündet wurden. Die aus dieser Druckschrift bekannten Wirkmassen emittieren beim Abbrand überwiegend Strahlung im A-Band und nicht im B-Band. Durch die explosionsartige Freisetzung der Stücke nach Zündung der pyrotechnischen Zusammensetzung beim Zerplatzen der Tablette bildet sich eine Wolke aus der brennenden pyrotechnischen Zusammensetzung, die schnell abgebremst wird und mit hoher Infrarotintensität für eine kurze Zeit brennt. Eine derartige Täuschungsfackel ist nicht in der Lage, einem Suchkopf neuer Generation ein schnell fliegendes Flugzeug vorzutäuschen, weil die Infrarotquelle durch die schnelle Abbremsung in der Luft keine dem Flugkörper ähnliche Bewegung aufweist und daher einem Abgasstrahl nicht ähnelt. EP2151664 A2 offenbart ein Scheinziel, wobei in einer Patrone zumindest zwei Wirkmassen aufgenommen sind, wobei eine erste Wirkmasse beim Abbrand ein einem Schwarzkörper ähnliches Spektrum erzeugt und wobei eine zweite Wirkmasse beim Abbrand ein von der ersten Wirkmasse verschiedenes, im Wesentlichen H2O und CO2 ähnliches Spektrum erzeugt, und wobei eine Ausstoßeinrichtung zum zeitlich versetzten Ausstoß der ersten und der zweiten Wirkmasse aus der Patrone vorgesehen ist, wobei die Ausstoßeinrichtung derart ausgestaltet ist, dass beim Zünden zuerst die erste Wirkmasse und nachfolgend die zweite Wirkmasse aus der Patrone ausgestoßen wird, und wobei die zweite Wirkmasse mit einem Bremsmittel zum Abbremsen der Fallgeschwindigkeit versehen ist.From the DE 42 44 682 A1 is a pyrotechnic illusion torch to be fired from an aircraft to deflect those flying towards the aircraft Shot from the gas outlet with at least one table, which is contained in an airtight, tearable container, known. The tablet has a compactly pressed, essentially bubble-free area of separate pieces of a pyrotechnic composition that emits infrared radiation, which may be embedded in a base material, the base material, if present, or the separated pieces, if no base material is present, from one Gas-releasing infrared light-emitting pyrotechnic composition exists. The container is designed such that it tears under a predetermined internal pressure resulting from the combustion of the pyrotechnic composition and releases the individual pieces shortly after essentially all parts have been ignited. The active masses known from this publication emit predominantly radiation in the A band and not in the B band when they burn up. As a result of the explosive release of the pieces after the pyrotechnic composition has ignited when the tablet bursts, a cloud is formed from the burning pyrotechnic composition, which is slowed down quickly and burns for a short time with high infrared intensity. Such a deceptive torch is unable to simulate a new-generation seeker head for a fast-flying aircraft because the infrared source, due to the rapid braking in the air, has no movement similar to the missile and therefore does not resemble an exhaust gas jet. EP2151664 A2 discloses an apparent target, wherein at least two active masses are accommodated in a cartridge, wherein a first active mass generates a spectrum similar to a blackbody when burned up, and wherein a second active mass burns a spectrum which is essentially H 2 O and CO 2 different from the first active mass generated, and wherein an ejection device is provided for the temporally staggered ejection of the first and the second active mass from the cartridge, the ejection device being designed such that the first active mass and subsequently the second active mass are subsequently ejected from the cartridge, and wherein the second active mass is provided with a braking means for braking the falling speed.

Aufgabe der vorliegenden Erfindung ist es, eine Wirkmasse bereitzustellen, die beim Abbrand mit hoher Strahlungsleistung stark spektral strahlt, d. h. einen verhältnismäßig hohen Anteil an Strahlung im B-Band und einen verhältnismäßig geringen Anteil an Strahlung im A-Band emittiert. Gleichzeitig soll die Wirkmasse beim Abbrand und bei gleichzeitiger schneller Bewegung in der Luft einen starken Raumeffekt aufweisen, der einen Abgasstrahl eines sich schnell bewegenden Düsenflugzeugs nachbildet. Darüber hinaus soll eine Verwendung einer solchen Wirkmasse angegeben werden.The object of the present invention is to provide an active mass which radiates strongly spectrally when burned with high radiation power, i. H. emits a relatively high proportion of radiation in the B band and a comparatively low proportion of radiation in the A band. At the same time, the active mass during combustion and with simultaneous rapid movement in the air should have a strong spatial effect which simulates an exhaust gas jet from a fast-moving jet aircraft. In addition, the use of such an active mass is to be specified.

Die Aufgabe wird durch die Merkmale der Ansprüche 1 und 7 gelöst. Zweckmäßige Ausgestaltungen der Erfindung ergeben sich aus den Merkmalen der Ansprüche 2 bis 6 und 8.The object is solved by the features of claims 1 and 7. Expedient embodiments of the invention result from the features of claims 2 to 6 and 8.

Erfindungsgemäß ist eine Wirkmasse für ein beim Abbrand im Wesentlichen spektral strahlendes pyrotechnisches Infrarotscheinziel mit Raumwirkung vorgesehen. Diese Wirkmasse umfasst eine erste beim Abbrand spektral strahlende Wirkmassenkomponente und eine zweite beim Abbrand spektral strahlende Wirkmassenkomponenten. Die erste und die zweite Wirkmassenkomponente umfassen jeweils mindestens einen Brennstoff und ein Oxidationsmittel sowie ggf. ein Bindemittel. Die Wirkmasse ist dadurch inhomogen, dass die erste Wirkmassenkomponente eine Matrix bildet, in der aus der zweiten Wirkmassenkomponente gebildete Partikel eingebettet sind. Dabei sind die erste und die zweite Wirkmassenkomponente so gewählt, dass das Verhältnis der Abbrandgeschwindigkeit der ersten Wirkmassenkomponente zur Abbrandgeschwindigkeit der zweiten Wirkmassenkomponente mindestens 2:1 beträgt und dass bei einem jeweils separat erfolgenden Abbrand der ersten und der zweiten Wirkmassenkomponente an der Luft das Verhältnis zwischen der spezifischen Leistung der emittierten Strahlung im Wellenlängenbereich von 3,5 bis 4,6 µm zur spezifischen Leistung der emittierten Strahlung im Wellenlängenbereich von 1,8 bis 2,6 µm jeweils mindestens 5:1 beträgt.According to the invention, an active mass is provided for a pyrotechnic infrared glow target with a spatial effect that burns essentially spectrally during the combustion. This Active mass comprises a first active mass component which radiates spectrally when burned and a second spectrally radiant when burned Effective mass components. The first and the second active mass component each comprise at least one fuel and one oxidizing agent and optionally a binder. The active mass is inhomogeneous in that the first active mass component forms a matrix in which particles formed from the second active mass component are embedded. The first and the second active mass components are selected so that the ratio of the burning rate of the first active mass component to the burning rate of the second active mass component is at least 2: 1 and that when the first and second active mass components burn off separately in air, the ratio between the specific power of the emitted radiation in the wavelength range from 3.5 to 4.6 µm to the specific power of the emitted radiation in the wavelength range from 1.8 to 2.6 µm is in each case at least 5: 1.

Die erste Wirkmassenkomponente und die zweite Wirkmassenkomponente können dabei aus gleichen oder unterschiedlichen Komponenten zusammengesetzt sein. Bei der ersten Wirkmassenkomponente und der zweiten Wirkmassenkomponente kann es sich um beliebige bekannte Wirkmassen handeln, welche die genannten Kriterien erfüllen. Dadurch lassen sich herkömmliche Fertigungsprozesse einfach an die Herstellung der erfindungsgemäßen Wirkmasse anpassen. Ein weiterer wesentlicher Vorteil der erfindungsgemäßen Wirkmasse besteht darin, dass diese Wirkmasse enthaltende Scheinziele wie bisherige Scheinziele aufgebaut sein können. Es sind keine wesentlichen Änderungen in der Fertigung erforderlich. Es können im Wesentlichen die gleichen Werkzeuge und Tablettengeometrien wie bei bisherigen Wirkmassen verwendet werden. Die effektive Abbrandrate des Scheinziels kann durch die Wahl der ersten und zweiten Wirkmassenkomponente so eingestellt werden, dass sie der Abbrandrate bisher verwendeter Wirkmassen entspricht. Der Aufwand bei der Umstellung der Fertigung auf die Fertigung von die erfindungsgemäße Wirkmasse enthaltenden Scheinzielen ist daher gering.The first active mass component and the second active mass component can be composed of the same or different components. The first active mass component and the second active mass component can be any known active mass which meet the criteria mentioned. As a result, conventional manufacturing processes can be easily adapted to the production of the active compound according to the invention. Another essential advantage of the active mass according to the invention is that the apparent targets containing these active compositions can be constructed like previous apparent targets. No major changes in manufacturing are required. Essentially the same tools and tablet geometries can be used as with previous active materials. The effective burn-up rate of the apparent target can be set by choosing the first and second active mass components so that it corresponds to the burn-up rate of active masses used previously. The effort involved in converting production to the manufacture of apparent targets containing the active compound according to the invention is therefore low.

Die erfindungsgemäße Wirkmasse erlaubt es, bekannte Wirkmassen mit einem hohen Verhältnis zwischen der spezifischen Leistung der emittierten Strahlung im B-Band zur spezifischen Leistung der emittierten Strahlung im A-Band (Spektralverhältnis) einzusetzen und mit diesen Wirkmassen einen Raumeffekt zu erzeugen, obgleich diese Wirkmassen normalerweise beim Abbrand einen Punktstrahler darstellen. Insbesondere erlaubt es die erfindungsgemäße Wirkmasse, ein bei mit Raumwirkung abbrennenden bekannten Wirkmassen bisher nicht erreichbares Spektralverhältnis von über 10:1 bereitzustellen.The active mass according to the invention makes it possible to use known active masses with a high ratio between the specific power of the emitted radiation in the B band to the specific power of the emitted radiation in the A band (spectral ratio) and to produce a spatial effect with these active masses, although these active masses normally represent a spotlight when burning. In particular, the active mass according to the invention allows one with a spatial effect Burning known active masses to provide previously unattainable spectral ratio of over 10: 1.

Beim Abbrennen der Wirkmasse brennt die erste Wirkmassenkomponente ab und zündet dabei die aus der zweiten Wirkmassenkomponente gebildeten Partikel an. Da die erste Wirkmassenkomponente schneller als die zweite Wirkmassenkomponente abbrennt, werden die brennenden Partikel freigesetzt, bevor sie vollständig abgebrannt sind. Wenn sich die Wirkmasse beim Abbrand mit hoher Geschwindigkeit bewegt, werden die freigesetzten brennenden Partikel schneller abgebremst als die gesamte Wirkmasse und es entsteht ein Schweif. Da die Leistung einer im Flug abbrennenden Wirkmasse generell mit zunehmender Geschwindigkeit abnimmt, bewirkt das Abbremsen der freigesetzten brennenden Partikel durch den Luftwiderstand eine Erhöhung der Leistung im erzeugten Schweif. Gleichzeitig wird durch das Abbremsen der brennenden Partikel in der Luft ein höheres Spektralverhältnis erreicht. Eine höhere Leistung kann auch dadurch erreicht werden, dass die zweite Wirkmassenkomponente so gewählt wird, dass die bei deren Abbrand emittierte Strahlung deutlich mehr spezifische Leistung aufweist als die beim Abbrand der ersten Wirkmassenkomponente emittierte Strahlung.When the active mass burns off, the first active mass component burns off and ignites the particles formed from the second active mass component. Since the first active mass component burns faster than the second active mass component, the burning particles are released before they have completely burned off. If the active mass moves at high speed during combustion, the released burning particles are braked faster than the entire active mass and a tail is created. Since the output of an active mass that burns in flight generally decreases with increasing speed, the braking of the released burning particles by air resistance causes an increase in the output in the tail produced. At the same time, a higher spectral ratio is achieved by braking the burning particles in the air. A higher output can also be achieved in that the second active mass component is selected such that the radiation emitted when it burns off has significantly more specific power than the radiation emitted when the first active mass component burned off.

Durch das Verhältnis der Abbrandgeschwindigkeit der ersten Wirkmassenkomponente zur Abbrandgeschwindigkeit der zweiten Wirkmassenkomponente lässt sich die Größe des Raumeffekts sowie die Intensitätsverteilung innerhalb des von den abbrennenden Partikeln eingenommenen Raums einstellen. Dadurch kann die Wirkmasse so eingestellt werden, dass die beim Abbrand unter Bewegung emittierte Strahlung der Strahlung eines realen Düsentriebwerks entspricht oder dieser Strahlung zumindest sehr nahe kommt. Je größer die Partikel sind, desto länger und stärker wird der Raumeffekt bei einer sich beim Abbrand mit hoher Geschwindigkeit bewegenden Wirkmasse. Gleichzeitig erscheinen die Partikel beim Abbrand aber auch umso diskreter je größer sie sind. Dadurch nimmt die Dichte des Schweifs ab. Es sollte daher jeweils für den Einzelfall, beispielsweise in Abhängigkeit von der Geschwindigkeit des Scheinziels und dem nachzuahmenden Düsentriebwerk durch die Wahl der Größe der Partikel ein Kompromiss zwischen Stärke und Dichte des Schweifs gefunden werden.The size of the spatial effect and the intensity distribution within the space occupied by the burning particles can be set by the ratio of the burning rate of the first active mass component to the burning rate of the second active mass component. As a result, the active mass can be set such that the radiation emitted during movement when it is burned up corresponds to the radiation of a real jet engine or at least comes very close to this radiation. The larger the particles are, the longer and stronger the spatial effect becomes with an active mass that moves at high speed when burned. At the same time, the particles appear more discreet when they burn up, the larger they are. This reduces the density of the tail. A compromise between the strength and density of the tail should therefore be found for the individual case, for example depending on the speed of the apparent target and the jet engine to be imitated by the choice of the size of the particles.

Bei einer Ausgestaltung der erfindungsgemäßen Wirkmasse beträgt das Verhältnis der Abbrandgeschwindigkeit der ersten Wirkmassenkomponente zur Abbrandgeschwindigkeit der zweiten Wirkmassenkomponente mindestens 4:1, insbesondere mindestens 7:1, insbesondere mindestens 10:1.In one embodiment of the active mass according to the invention, the ratio of the burning rate of the first active mass component to the burning rate of the second active mass component is at least 4: 1, in particular at least 7: 1, in particular at least 10: 1.

Die Partikel können eine Korngröße im Bereich von 0,5 bis 5 mm, insbesondere 0,5 bis 3 mm, aufweisen.The particles can have a grain size in the range from 0.5 to 5 mm, in particular 0.5 to 3 mm.

Bei einer Ausgestaltung der erfindungsgemäßen Wirkmasse sind die erste und die zweite Wirkmassenkomponente so gewählt, dass bei einem jeweils separat erfolgenden Abbrand der ersten und/oder der zweiten Wirkmassenkomponente an der Luft das Verhältnis zwischen der spezifischen Leistung der emittierten Strahlung im Wellenlängenbereich von 3,5 bis 4,6 µm zur spezifischen Leistung der emittierten Strahlung im Wellenlängenbereich von 1,8 bis 2,6 µm jeweils mindestens 8:1, insbesondere mindestens 11:1, insbesondere mindestens 14:1, beträgt.In one embodiment of the active mass according to the invention, the first and the second active mass components are selected such that when the first and / or the second active mass components are burned off separately in air, the ratio between the specific power of the emitted radiation in the wavelength range from 3.5 to 4.6 µm for the specific power of the emitted radiation in the wavelength range from 1.8 to 2.6 µm is in each case at least 8: 1, in particular at least 11: 1, in particular at least 14: 1.

Bei einer Ausgestaltung der erfindungsgemäßen Wirkmasse ist diese in kein Behältnis eingebettet oder allenfalls so in ein Behältnis eingebettet, dass sich bei deren Abbrand kein das Behältnis zerstörender Überdruck in dem Behältnis aufbaut. Dadurch kann eine explosionsartige Freisetzung der Partikel vermieden werden. Dies ist insbesondere dann vorteilhaft, wenn die Wirkmasse sich beim Abbrand bewegt und dabei ein Raumeffekt in Form eines Schweifs erzeugt werden soll. Bei einer explosionsartigen Freisetzung der Partikel einer sich bewegenden Wirkmasse würde lediglich ein verhältnismäßig stationärer Raumeffekt entstehen.In one embodiment of the active compound according to the invention, it is not embedded in a container or at most embedded in a container in such a way that no excess pressure which destroys the container builds up in the container when it burns. This can prevent an explosive release of the particles. This is particularly advantageous if the active mass moves when it burns up and a spatial effect in the form of a tail is to be created. An explosive release of the particles of a moving active mass would only result in a relatively stationary spatial effect.

Weiterhin ist erfindungsgemäß eine Verwendung der erfindungsgemäßen Wirkmasse für die Herstellung eines sich beim Abbrand mit einer Geschwindigkeit von mindestens 150 m/s bewegenden pyrotechnischen Infrarotscheinziels vorgesehen. Es kann sich dabei um ein pyrotechnisches Infrarotscheinziel handeln, welches sich mit mindestens 200 m/s, insbesondere mindestens 250 m/s, bewegt.Furthermore, the use of the active compound according to the invention is provided according to the invention for producing a pyrotechnic infrared glow target that moves at a speed of at least 150 m / s. It can be a pyrotechnic infrared target, which moves at least 200 m / s, in particular at least 250 m / s.

Nachfolgend wird die Erfindung anhand von Ausführungsbeispielen und Zeichnungen näher erläutert.The invention is explained in more detail below on the basis of exemplary embodiments and drawings.

Fig. 1a bis c zeigen schematische Darstellungen der erfindungsgemäßen Wirkmasse vor und am Beginn des Abbrands sowie bei fortgeschrittenem Abbrand. 1a to c show schematic representations of the active mass according to the invention before and at the beginning of the erosion and in the case of advanced erosion.

Fig. 1a zeigt die erfindungsgemäße Wirkmasse 10, welche aus einer von der ersten Wirkmassenkomponente 12 gebildeten Matrix und darin eingebetteten Partikeln der zweiten Wirkmassenkomponente 14 besteht. Nach Zündung der Wirkmasse 10 entsteht zunächst nur die in Fig. 1b dargestellte aus dem Abbrand der ersten Wirkmassenkomponente 12 resultierende erste Flamme 16. Durch den Abbrand der ersten Wirkmassenkomponente 12 werden die Partikel der zweiten Wirkmassenkomponente 14 freigesetzt. Gleichzeitig werden diese durch die erste Flamme 16 entzündet. An den Partikeln der zweiten Wirkmassenkomponente 14 entsteht jeweils die zweite Flamme 18. Da die Partikel der zweiten Wirkmassenkomponente 14 langsamer abbrennen als die erste Wirkmassenkomponente 12 brennen die Partikel der zweiten Wirkmassenkomponente 14 nach deren Freisetzung an der Luft weiter. Dies ist in Fig. 1c für den Fall einer sich von der ersten Flamme 16 wegbewegenden Wirkmasse 10 dargestellt. Fig. 1a shows the active mass 10 according to the invention, which consists of a matrix formed by the first active mass component 12 and particles of the second active mass component 14 embedded therein. After ignition of the active mass 10, initially only the in Fig. 1b shown first flame 16 resulting from the erosion of the first active mass component 12 The first active mass component 12 releases the particles of the second active mass component 14. At the same time, these are ignited by the first flame 16. The second flame 18 is formed on the particles of the second active mass component 14. Since the particles of the second active mass component 14 burn more slowly than the first active mass component 12, the particles of the second active mass component 14 continue to burn after their release in the air. This is in Fig. 1c for the case of an active mass 10 moving away from the first flame 16.

Aus sämtlichen der im Folgenden angegebenen Zusammensetzungen wurden jeweils Tabletten mit einem Gewicht von 10 g hergestellt. Bei deren Abbrand konnte jeweils eine Raumwirkung durch wegfliegende brennende Partikel der zweiten Wirkmassenkomponente festgestellt werden.Tablets weighing 10 g each were produced from all of the compositions given below. When they burned off, a spatial effect could be determined in each case by burning particles of the second active mass component flying away.

Beispiel 1:Example 1:

Stoffmaterial TypType Gewichtsprozentweight erste Wirkmassenkomponente:first active mass component: Abbrandrate ca. 3 mm/sBurning rate approx. 3 mm / s Ammoniumperchloratammonium perchlorate < 30 µm<30 µm 77,8077.80 HTPBHTPB Sartomer R45HT-M M=2800Sartomer R45HT-M M = 2800 10,3210.32 IPDIIPDI 0,780.78 Hexamethylentetraminhexamethylenetetramine 11,011.0 Eisenacetonylacetatiron acetonyl 0,100.10 zweite Wirkmassenkomponente:second active mass component: Abbrandrate ca. 0,3 mm/sBurn rate approx. 0.3 mm / s Ammoniumperchloratammonium perchlorate < 200 µm<200 µm 49,049.0 Hexamethylentetraminhexamethylenetetramine 32,032.0 Hexogenhexogen feinkörnigfine-grain 14,014.0 Eisenacetonylacetatiron acetonyl 0,10.1 Magnesiumoxidmagnesia 1,01.0 Epoxidharzepoxy resin Delo Monopox AD066Delo Monopox AD066 3,93.9 "HTPB" steht für Hydroxyl-terminiertes Polybutadien und "IPDI" steht für Isophorondiisocyanat."HTPB" stands for hydroxyl-terminated polybutadiene and "IPDI" stands for isophorone diisocyanate.

Die erste Wirkmassenkomponente weist eine theoretische mittlere Dichte von 1678 kg/m3 und die zweite Wirkmassenkomponente eine theoretische mittlere Dichte von 1633 kg/m3 auf. Die Wirkmasse besteht zu 70 Gew.% aus der eine Matrix bildenden ersten Wirkmassenkomponente und zu 30 Gew.% aus der in Form von darin eingebetteten Partikeln vorliegenden zweiten Wirkmassenkomponente. Die Partikel der zweiten Wirkmassenkomponente weisen eine Korngröße von 0,5 bis 3,0 mm auf.The first active mass component has a theoretical average density of 1678 kg / m 3 and the second active mass component has a theoretical average density of 1633 kg / m 3 . The active mass consists of 70% by weight of the first active mass component forming a matrix and 30% by weight of the second active mass component present in the form of particles embedded therein. The particles of the second active mass component have a grain size of 0.5 to 3.0 mm.

Beispiel 2:Example 2:

Stoffmaterial TypType Gewichtsprozentweight erste Wirkmassenkomponente:first active mass component: Abbrandrate ca. 3 mm/sBurning rate approx. 3 mm / s Ammoniumperchloratammonium perchlorate < 30 µm<30 µm 77,8077.80 HTPBHTPB Sartomer R45HT-M M=2800Sartomer R45HT-M M = 2800 10,3210.32 IPDIIPDI 0,780.78 Hexamethylentetraminhexamethylenetetramine 11,011.0 Eisenacetonylacetatiron acetonyl 0,100.10 zweite Wirkmassenkomponente:second active mass component: Abbrandrate ca. 0,5 mm/sBurn rate approx. 0.5 mm / s TreibladungspulverPropellants Körnung: ca. 2-3 mmGrain size: approx. 2-3 mm 100100

Die theoretische mittlere Dichte der ersten Wirkmassenkomponente beträgt 1678 kg/m3. Die zweite Wirkmassenkomponente besteht hier aus dem käuflich zu erwerbenden Treibladungspulver Vihtavuori 20N29 der Firma Eurenco Vihtavuori Oy, Ruutitehtaantie 80, 41330 Vihtavuori, Finnland. Die Wirkmasse besteht zu 60 Gew.% aus der die Matrix bildenden ersten Wirkmassenkomponente und zu 40 Gew.% aus Partikeln der zweiten Wirkmassenkomponente. Die Partikel der zweiten Wirkmassenkomponente weisen dabei eine Korngröße im Bereich von 2 bis 3 mm auf.The theoretical average density of the first active mass component is 1678 kg / m 3 . The second active mass component here consists of the propellant powder Vihtavuori 20N29 from Eurenco Vihtavuori Oy, Ruutitehtaantie 80, 41330 Vihtavuori, Finland, which can be purchased. The active mass consists of 60% by weight of the first active mass component forming the matrix and 40% by weight of particles of the second active mass component. The particles of the second active mass component have a grain size in the range from 2 to 3 mm.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

1010
Wirkmasseeffective mass
1212
erste Wirkmassenkomponentefirst active mass component
1414
zweite Wirkmassenkomponentesecond active mass component
1616
erste Flammefirst flame
1818
zweite Flammesecond flame

Claims (8)

  1. Active mass for a pyrotechnic infrared decoy with space effect substantially spectrally radiating during burnup, comprising a first active mass component spectrally radiating during burnup and a second active mass component spectrally radiating during burnup,
    in which the first and second active mass components respectively comprise at least one fuel and one oxidizer, in which the active mass is inhomogeneous by virtue of the fact that the first active mass component forms a matrix in which particles formed from the second active mass component are embedded, and
    in which the first and second active mass components are selected such that the ratio of the burnup rate of the first active mass component to the burnup rate of the second active mass component is at least 2:1, and that during respective separate burnup of the first and second active mass components in air, the ratio between the specific power of the emitted radiation in the wavelength range from 3.5 to 4.6 µm and the specific power of the emitted radiation in the wavelength range from 1.8 to 2.6 µm is respectively at least 5:1.
  2. Active mass according to Claim 1,
    in which the ratio of the burnup rate of the first active mass component to the burnup rate of the second active mass component is at least 4:1, in particular at least 7:1, in particular at least 10:1.
  3. Active mass according to one of the preceding claims,
    in which the particles have a grain size in the range from 0.5 mm to 5 mm, in particular 0.5 mm to 3 mm.
  4. Active mass according to one of the preceding claims,
    in which the first and second active mass components are selected such that during respective separate burnup the first and/or second active mass component in air, the ratio between the specific power of the emitted radiation in the wavelength range from 3.5 to 4.6 µm and the specific power of the emitted radiation in the wavelength range from 1.8 to 2.6 µm is respectively at least 8:1, in particular at least 11:1, in particular at least 14:1.
  5. Active mass according to one of the preceding claims,
    in which the active mass is not embedded in a container, or is embedded in a container only such that no excess pressure destroying the container builds up in the container during burnup of said active mass.
  6. Active mass according to one of the preceding claims,
    in which the first and/or the second active mass component respectively comprise a binder.
  7. Use of the active mass according to one of the preceding claims for the production of a pyrotechnic infrared decoy moving at a speed of at least 150 m/s during burnup.
  8. Use according to Claim 7,
    in which the infrared decoy moves at at least 200 m/s, in particular at least 250 m/s.
EP12007978.5A 2011-12-07 2012-11-28 Active material for an infra-red decoy with area effect which emits mainly spectral radiation upon combustion Active EP2602239B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102011120454A DE102011120454A1 (en) 2011-12-07 2011-12-07 Active mass for a substantially spectrally radiating infrared light target during combustion with room effect

Publications (3)

Publication Number Publication Date
EP2602239A2 EP2602239A2 (en) 2013-06-12
EP2602239A3 EP2602239A3 (en) 2017-07-19
EP2602239B1 true EP2602239B1 (en) 2020-01-01

Family

ID=47294638

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12007978.5A Active EP2602239B1 (en) 2011-12-07 2012-11-28 Active material for an infra-red decoy with area effect which emits mainly spectral radiation upon combustion

Country Status (4)

Country Link
EP (1) EP2602239B1 (en)
DE (1) DE102011120454A1 (en)
IL (1) IL223417B (en)
ZA (1) ZA201209172B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013010266A1 (en) * 2013-06-18 2014-12-18 Diehl Bgt Defence Gmbh & Co. Kg Decoy target active body with a pyrotechnic active mass

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9120803D0 (en) 1991-10-01 1995-03-08 Secr Defence Pyrotechnic decoy flare
DE4327976C1 (en) * 1993-08-19 1995-01-05 Buck Chem Tech Werke Flare charge for producing decoys
DE19617701C2 (en) * 1996-05-03 2000-01-13 Buck Werke Gmbh & Co I K Method of providing a dummy target
US6427599B1 (en) * 1997-08-29 2002-08-06 Bae Systems Integrated Defense Solutions Inc. Pyrotechnic compositions and uses therefore
DE102007011662A1 (en) * 2007-03-09 2008-09-11 Diehl Bgt Defence Gmbh & Co. Kg pyrotechnic active mass (I) for the production of IR radiation, useful in military field, comprises oxidizers of fluoro nitro formate and fluoronitramide of alkali- and alkaline earth metal and its derivatives
DE102008036408A1 (en) * 2008-08-06 2010-02-11 Diehl Bgt Defence Gmbh & Co. Kg Hybrid decoy

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP2602239A2 (en) 2013-06-12
DE102011120454A1 (en) 2013-06-13
EP2602239A3 (en) 2017-07-19
IL223417B (en) 2018-12-31
ZA201209172B (en) 2013-09-25

Similar Documents

Publication Publication Date Title
DE3515166C2 (en)
EP1794537B1 (en) Active charge
EP0108939A2 (en) Fume generating charge and process for generating a fume impervious to visible and infrared radiation
DE69512158T2 (en) Explosive projectile
EP2446219A1 (en) Active body
EP0780658A2 (en) Hand grenade for generating smoke quickly
EP2553380A1 (en) Encapsulated explosive body for an infrared deceptive target or decoy
EP2602239B1 (en) Active material for an infra-red decoy with area effect which emits mainly spectral radiation upon combustion
DE19756204C1 (en) Pyrotechnic effects flare for a firework
DE102006008309A1 (en) Grenade producing infra-red emitting, visually-opaque smoke preventing hostile targeting, comprises modular blocks generating smoke quickly and burning over protracted interval
DE19830134B4 (en) Lighting torch for a helicopter and method for generating a bait trace
EP2530065B1 (en) High performance active material for an infra-red decoy which emits spectral radiation upon combustion
EP2530064B1 (en) Active material for an infra-red decoy with area effect which emits spectral radiation upon combustion
DE69310238T2 (en) Method and device for neutralizing a threat by releasing a neutralizing agent
DE2720695A1 (en) Incendiary compsn. for armour-piercing shell - contg. metallic oxidant, metal powder and reducing agent with separate ignition charge in tip
DE102013003172B4 (en) Explosives active substance, their use and combat ammunition
EP2151664A2 (en) Hybrid decoy
EP2133653B1 (en) Smoke-producing projectile
DE102012012536A1 (en) Solid drive
DE102010026641A1 (en) A smoke
DE2128243B2 (en) PROCEDURE FOR STARTING UP A SOLID MISSILE ENGINE
DE7439412U (en) Incendiary bullet for a launcher
DE102015004306A1 (en) A smoke
DE2522879A1 (en) Incendiary projectile with metal powder bonded to oxygen carriers - gives wide long lasting spread of fire

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DIEHL DEFENCE GMBH & CO. KG

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: C06C 15/00 20060101AFI20170615BHEP

Ipc: C06B 45/04 20060101ALI20170615BHEP

Ipc: F41J 2/02 20060101ALI20170615BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180118

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20181005

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190717

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1219609

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012015649

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200101

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200527

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200501

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200402

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502012015649

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20201002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201128

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20201130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201128

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1219609

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231123

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20231127

Year of fee payment: 12

Ref country code: FR

Payment date: 20231120

Year of fee payment: 12

Ref country code: CH

Payment date: 20231201

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240118

Year of fee payment: 12