EP2598867A2 - Fast measurement method for detecting ofw sensor data - Google Patents

Fast measurement method for detecting ofw sensor data

Info

Publication number
EP2598867A2
EP2598867A2 EP11732406.1A EP11732406A EP2598867A2 EP 2598867 A2 EP2598867 A2 EP 2598867A2 EP 11732406 A EP11732406 A EP 11732406A EP 2598867 A2 EP2598867 A2 EP 2598867A2
Authority
EP
European Patent Office
Prior art keywords
frequency
physical properties
signal
multiplier element
excitation signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP11732406.1A
Other languages
German (de)
French (fr)
Inventor
Janos Gila
Reinhard Hladik
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG Oesterreich
Original Assignee
Siemens AG Oesterreich
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG Oesterreich filed Critical Siemens AG Oesterreich
Publication of EP2598867A2 publication Critical patent/EP2598867A2/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • G01N29/2462Probes with waveguides, e.g. SAW devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/22Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using measurement of acoustic effects
    • G01K11/26Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using measurement of acoustic effects of resonant frequencies
    • G01K11/265Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using measurement of acoustic effects of resonant frequencies using surface acoustic wave [SAW]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • G01N29/2475Embedded probes, i.e. probes incorporated in objects to be inspected
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/36Detecting the response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/42Detecting the response signal, e.g. electronic circuits specially adapted therefor by frequency filtering or by tuning to resonant frequency
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/01Indexing codes associated with the measuring variable
    • G01N2291/014Resonance or resonant frequency
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02872Pressure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02881Temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/042Wave modes
    • G01N2291/0423Surface waves, e.g. Rayleigh waves, Love waves

Definitions

  • the invention relates to a method for measuring
  • Coupling elements are embedded and in which an interrogation device is further provided, which to the
  • Koppelementen has an electrical operative connection and in which the sensor elements are excited, and from the
  • SAW surface acoustic wave
  • Electrode structures on the surface of piezocrystals can generate sound waves that occur on the
  • Electrodes or other shape parameters frequencies can be selected.
  • acoustic surface wave is converted back into electrical signals.
  • SAW sensors When used as SAW sensors, the dependence of the surface wave velocity of the mechanical
  • the SAW resonator Upon excitation with an RF signal near its resonant frequency, therefore, the SAW resonator responds with a signal whose frequency is indicative of the Ambient temperature, the mechanical stress or, for example, in conjunction with a pressure-dependent
  • Capacitor over the ambient pressure supplies For this purpose, from WO 2009/133050 a method for measuring physical properties of continuous products is known, in which sensor elements and associated coupling elements are embedded in the pressed material and in which an interrogation device is further provided, which to the
  • Koppelementen having an electrical operative connection and in which the sensor elements are excited, and from the statement of a statement about the physical properties of the continuous presses is taken.
  • the invention is therefore based on the object, the
  • a further improvement of the measurement can be achieved if the frequency spacing between the
  • Resonance frequency of the SAW sensor and the frequency at which this was excited - the excitation frequency - is as low as possible.
  • FIG. 1 shows an inventive element of the interrogator
  • the circuit of FIG. 1 comprises a multiplier element M, a frequency-dependent phase shifter P, and a low-pass filter TP.
  • the temperature or pressure to be used in a pressed material is applied both to the first input A of the multiplier element M and via a frequency-dependent phase shifter P to a second input B of the multiplier element M.
  • Inputs A, B of the multiplier element M are as follows:
  • the output signal of the multiplier element M is passed through a low-pass filter TP.
  • the Resonant frequency of the SAW sensor is a direct measure of the physical parameter to be measured
  • Sc (t) i. the amplitude of the signal at the output of the low-pass filter TP no time dependence. This also allows arbitrarily small time intervals for the determination of the
  • the entire measuring method can be significantly accelerated.
  • a further improvement of the measurement can be achieved if the frequency spacing between the
  • Resonance frequency of the SAW sensor and the frequency at which this was excited - the excitation frequency - is as low as possible.
  • FIG. 1 shows a schematic representation of the course of the frequency of
  • Excitation signal TX as well as the time periods TX_ON in which this signal TX is turned on, and the OFF times TX_OFF, and the response signal of the SAW resonator with the resonance frequency RX, which is assumed to be approximately constant during the course of the process.
  • the SAW sensor is now during a first time period 1 with an excitation signal
  • Excitation signal during a second period of time 2 and after a settling time is from the output signal of the circuit of FIG. 1, the frequency difference between the Resonant frequency RX of the sensor and the first frequency of the excitation signal TX determined.
  • the frequency spacing is only roughly calculated so that during the second switch-on of the
  • Excitation signal TX in period 3 in which the frequency of the excitation signal corresponding to the detected

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Acoustics & Sound (AREA)
  • Measuring Fluid Pressure (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)

Abstract

The invention relates to a method for measuring physical properties of endless pressed goods, wherein sensor elements and coupling elements connected thereto are embedded in the pressed goods and wherein a scanning device is further provided, said scanning device having an electrical operative connection to the coupling elements and wherein the sensor elements are excited and a statement is made about the physical properties of the endless pressed goods from the reply signal (TX). Said method is characterized in that the reply signal (TX) in the scanning device is applied to the first input (A) of a multiplier element (M) and to a second input (A) of the multiplier element (M) via a frequency-dependent phase shifter (P), that the output signal (C) of the multiplier element (M) is conducted via a low pass (TP) and that the output signal (C) of the low pass (TP) is utilized to determine the statement about the physical properties of the endless pressed goods.

Description

Beschreibung / Description Description / Description
Schnelles Messverfahren zur Erfassung von OFW-Sensordaten Die Erfindung betrifft ein Verfahren zur Messung The invention relates to a method for measuring
physikalischer Eigenschaften von Endlospressgütern, bei dem in das Pressgut Sensorelemente und damit verbundene physical properties of Endlospressgütern, in which in the pressed material sensor elements and related
Koppelelemente eingebettet werden und bei dem weiterhin eine Abfrageeinrichtung vorgesehen ist, welche zu den Coupling elements are embedded and in which an interrogation device is further provided, which to the
Koppelementen eine elektrische Wirkverbindung aufweist und bei dem die Sensorelemente angeregt werden, und aus dem Koppelementen has an electrical operative connection and in which the sensor elements are excited, and from the
Antwortsignal eine Aussage über die physikalischen Response signal a statement about the physical
Eigenschaften der Endlospressgüter getroffen wird. Der Einsatz von Oberflächenwellen (OFW) -Resonatoren oder nach anderer Bezeichnung SAW-Sensoren als Temperatursensoren hat sich auch bei anspruchsvollen Umgebungsbedingungen bewährt. Properties of the continuous presses. The use of surface acoustic wave (SAW) resonators or other designation SAW sensors as temperature sensors has proven itself in demanding environmental conditions.
Diese Elemente beruhen darauf, dass sich mittels These elements are based on that by means of
Elektrodenstrukturen auf der Oberfläche von Piezokristallen Schallwellen erzeugen lassen, die sich auf der Electrode structures on the surface of piezocrystals can generate sound waves that occur on the
Substratoberfläche ausbreiten. Durch die Gestalt der Spread substrate surface. By the figure of
Elektroden oder anderen Formparametern können Frequenzen selektiert werden. Electrodes or other shape parameters frequencies can be selected.
Mit geeigneten weiteren Elektrodenstrukturen wird die With suitable further electrode structures is the
akustische Oberflächenwelle wieder in elektrische Signale umgewandelt . Beim Einsatz als OFW-Sensoren wird die Abhängigkeit der Oberflächenwellengeschwindigkeit von der mechanischen acoustic surface wave is converted back into electrical signals. When used as SAW sensors, the dependence of the surface wave velocity of the mechanical
Spannung (Verformung) , der Massenbeaufschlagung (Ablagerungen auf der Oberfläche) oder der Temperatur Tension (deformation), mass (deposits on the surface) or temperature
(Temperaturkoeffizient der Schallgeschwindigkeit) genutzt.  (Temperature coefficient of the speed of sound) used.
Auf eine Anregung mit einem HF-Signal in der Nähe seiner Resonanzfrequenz antwortet daher der OFW-Resonator mit einem Signal, dessen Frequenz eine Aussage über die Umgebungstemperatur, die mechanische Spannung, oder aber beispielsweise in Verbindung mit einem druckabhängigen Upon excitation with an RF signal near its resonant frequency, therefore, the SAW resonator responds with a signal whose frequency is indicative of the Ambient temperature, the mechanical stress or, for example, in conjunction with a pressure-dependent
Kondensator über den Umgebungsdruck liefert. Dazu ist aus der WO 2009/133050 ein Verfahren zur Messung physikalischer Eigenschaften von Endlospressgütern bekannt, bei dem in das Pressgut Sensorelemente und damit verbundene Koppelelemente eingebettet werden und bei dem weiterhin eine Abfrageeinrichtung vorgesehen ist, welche zu den Capacitor over the ambient pressure supplies. For this purpose, from WO 2009/133050 a method for measuring physical properties of continuous products is known, in which sensor elements and associated coupling elements are embedded in the pressed material and in which an interrogation device is further provided, which to the
Koppelementen eine elektrische Wirkverbindung aufweist und bei dem die Sensorelemente angeregt werden, und aus der Antwort eine Aussage über die physikalischen Eigenschaften der Endlospressgüter getroffen wird. Bei herkömmlichen Verfahren zur Messung mittels OFW-Koppelementen having an electrical operative connection and in which the sensor elements are excited, and from the statement of a statement about the physical properties of the continuous presses is taken. In conventional methods for measurement by means of SAW
Resonatoren ist die Zeitdauer der einzelnen Messungen relativ hoch, wodurch die Einsatzmöglichkeiten begrenzt sind. Resonators, the duration of each measurement is relatively high, which limits the application possibilities.
Der Erfindung liegt daher die Aufgabe zugrunde, die The invention is therefore based on the object, the
Messgeschwindigkeit zu erhöhen. To increase the measuring speed.
Erfindungsgemäß geschieht dies mit einem Verfahren nach According to the invention, this is done by a method
Anspruch 1. Mit dem erfindungsgemäßen Verfahren kann daher das gesamte Messverfahren erheblich beschleunigt werden. Claim 1. With the method according to the invention, therefore, the entire measuring method can be significantly accelerated.
Eine weitere Verbesserung der Messung kann dann erreicht werden, wenn der Frequenzabstand zwischen der A further improvement of the measurement can be achieved if the frequency spacing between the
Resonanzfrequenz des OFW-Sensors und der Frequenz mit der dieser angeregt wurde - der Anregungsfrequenz - möglichst gering ist. Resonance frequency of the SAW sensor and the frequency at which this was excited - the excitation frequency - is as low as possible.
Dies geschieht erfindungsgemäß mit einem Verfahren nach This is done according to the invention with a method according to
Anspruch 2. Claim 2.
Die weiteren Unteransprüche enthalten ebenfalls vorteilhafte Ausgestaltungen des Verfahrens. Die Erfindung wird anhand von zwei Figuren näher erläutert. The further subclaims also contain advantageous embodiments of the method. The invention will be explained in more detail with reference to two figures.
Es zeigen beispielhaft: Fig.l ein erfindungsgemäßes Element der Abfrageeinrichtung zeigt, und By way of example, FIG. 1 shows an inventive element of the interrogator, and FIG
Fig.2 den Ablauf des Verfahrens zur Bestimmung der Frequenz des Anregungssignales. Die Schaltung nach Fig. 1 umfasst ein Multiplikatorelement M, einen frequenzabhängigen Phasenschieber P, und einen Tiefpass TP.  2 shows the sequence of the method for determining the frequency of the excitation signal. The circuit of FIG. 1 comprises a multiplier element M, a frequency-dependent phase shifter P, and a low-pass filter TP.
Das Antwortsignal des OFW-Sensors, dessen Frequenz zur The response signal of the SAW sensor whose frequency is to
Bestimmung beispielsweise der Temperatur oder des Druckes in einem Pressgut herangezogen werden soll, wird sowohl an den ersten Eingang A des Multiplikatorelementes M als auch über einen frequenzabhängigen Phasenschieber P an einen zweiten Eingang B des Multiplikatorelementes M angelegt. Determining example, the temperature or pressure to be used in a pressed material is applied both to the first input A of the multiplier element M and via a frequency-dependent phase shifter P to a second input B of the multiplier element M.
Die mathematische Darstellung der beiden Signale an den The mathematical representation of the two signals to the
Eingängen A, B des Multiplikatorelementes M lautet wie folgt: Inputs A, B of the multiplier element M are as follows:
SA(t) = U*cos[ 2Π * (f o+Af) *t+3>0 ] S A (t) = U * cos [2Π * (f o + Af) * t + 3> 0 ]
SB(t) = U*cos[ 2Π * (f o+Af) *t+3>0+k*Af+n/2] S B (t) = U * cos [2Π * (f o + Af) * t + 3> 0 + k * Af + n / 2]
Das Ausgangssignal des Multiplikatorelementes M wird über einen Tiefpass TP geführt. The output signal of the multiplier element M is passed through a low-pass filter TP.
Es entspricht danach der folgenden mathematischen Formel: Sc(t) = U/2*cos [k*Af+n/2] It then conforms to the following mathematical formula: S c (t) = U / 2 * cos [k * Af + n / 2]
Damit ist die Amplitude dieses Signals proportional der Thus, the amplitude of this signal is proportional to the
Differenz aus der Resonanzfrequenz des OFW-Sensors und der Frequenz mit der dieser angeregt worden ist. Die Resonanzfrequenz des OFW-Sensors wiederum ist ein direktes Maß für den zu messenden physikalischen Parameter, Difference between the resonant frequency of the SAW sensor and the frequency with which it has been excited. The Resonant frequency of the SAW sensor, in turn, is a direct measure of the physical parameter to be measured,
beispielsweise die Temperatur. Wie aus der letztgenannten mathematischen Formel ersichtlich, enthält Sc (t) d.h. die Amplitude des Signals am Ausgang des Tiefpassfilters TP keine Zeitabhängigkeit. Damit reichen auch beliebig kleine Zeitintervalle für die Bestimmung des for example, the temperature. As can be seen from the latter mathematical formula, Sc (t) i. the amplitude of the signal at the output of the low-pass filter TP no time dependence. This also allows arbitrarily small time intervals for the determination of the
Frequenzabstandes zwischen der Resonanzfrequenz des OFW- Sensors und der Frequenz mit der dieser angeregt wurde. Frequency difference between the resonant frequency of the SAW sensor and the frequency at which this was excited.
Mit dem erfindungsgemäßen Verfahren kann daher das gesamte Messverfahren erheblich beschleunigt werden. Eine weitere Verbesserung der Messung kann dann erreicht werden, wenn der Frequenzabstand zwischen der With the method according to the invention, therefore, the entire measuring method can be significantly accelerated. A further improvement of the measurement can be achieved if the frequency spacing between the
Resonanzfrequenz des OFW-Sensors und der Frequenz mit der dieser angeregt wurde - der Anregungsfrequenz - möglichst gering ist. Resonance frequency of the SAW sensor and the frequency at which this was excited - the excitation frequency - is as low as possible.
Das dazu durchgeführte erfindungsgemäße Verfahren wird anhand der Figur 2 näher erläutert. Diese Figur zeigt anhand einer schematischen Darstellung den Verlauf der Frequenz des The method according to the invention carried out for this purpose is explained in more detail with reference to FIG. This figure shows a schematic representation of the course of the frequency of
Anregungssignals TX, sowie die Zeitabschnitte TX_ON, in denen dieses Signal TX eingeschaltet ist, und die Ausschaltzeiten TX_OFF, sowie das Antwortsignal des OFW Resonators mit der Resonanzfrequenz RX, die während des Ablaufs des Verfahrens als annähernd konstant angenommen wird. In einem ersten Schritt wird nun der OFW-Sensor während einem ersten Zeitabschnitt 1 mit einem Anregungssignal Excitation signal TX, as well as the time periods TX_ON in which this signal TX is turned on, and the OFF times TX_OFF, and the response signal of the SAW resonator with the resonance frequency RX, which is assumed to be approximately constant during the course of the process. In a first step, the SAW sensor is now during a first time period 1 with an excitation signal
angestrahlt, dass eine erste Frequenz aufweist, die einem vorgegebenen Wert entspricht. Während der darauffolgenden Ausschaltzeit des illuminated, that has a first frequency that corresponds to a predetermined value. During the subsequent off time of the
Anregungssignales, während eines zweiten Zeitabschnittes 2 und nach einer Einschwingzeit wird aus dem Ausgangssignal der Schaltung gemäß Fig. 1 der Frequenzabstand zwischen der Resonanzfrequenz RX des Sensors und der ersten Frequenz des Anregungssignals TX ermittelt. Excitation signal, during a second period of time 2 and after a settling time is from the output signal of the circuit of FIG. 1, the frequency difference between the Resonant frequency RX of the sensor and the first frequency of the excitation signal TX determined.
Der Frequenzabstand wird dabei lediglich grob berechnet, sodass während der zweiten Einschaltphase des The frequency spacing is only roughly calculated so that during the second switch-on of the
Anregungssignals TX in Zeitabschnitt 3, in dem die Frequenz des Anregungssignals entsprechend der festgestellten  Excitation signal TX in period 3, in which the frequency of the excitation signal corresponding to the detected
Abweichung korrigiert wird, noch keine völlige Deviation is corrected, not yet complete
Übereinstimmung zwischen der Frequenz von Anregungssignal TX und der Resonanzfrequenz RX vorliegt. Erst mit Anwendung einer Phase-locked Loop Schaltung wird in einem dritten Schritt während der nächsten Einschaltdauer in Zeitabschnitt 5 eine nahezu vollständige Übereinstimmung der Frequenz des Anregungssignals und der Resonanzfrequenz herbeigeführt. There is a match between the frequency of excitation signal TX and the resonant frequency RX. Only with the use of a phase-locked loop circuit, in a third step during the next turn-on time in period 5, an almost complete coincidence of the frequency of the excitation signal and the resonant frequency is brought about.

Claims

Patentansprüche / Patent Claims Claims / Patent Claims
1. Verfahren zur Messung physikalischer Eigenschaften von Endlospressgütern, bei dem in das Pressgut 1. A method for measuring physical properties of continuous products, in which in the pressed material
Sensorelemente und damit verbundene Koppelelemente eingebettet werden und bei dem weiterhin eine  Sensor elements and associated coupling elements are embedded and continue to be a
Abfrageeinrichtung vorgesehen ist, welche zu den  Interrogator is provided, which to the
Koppelementen eine elektrische Wirkverbindung aufweist und bei dem die Sensorelemente angeregt werden, und aus dem Antwortsignal (TX) eine Aussage über die  Koppelementen has an electrical operative connection and in which the sensor elements are excited, and from the response signal (TX) a statement about the
physikalischen Eigenschaften der Endlospressgüter getroffen wird, dadurch gekennzeichnet, dass das  physical properties of the continuous presses is taken, characterized in that the
Antwortsignal (TX) in der Abfrageeinrichtung sowohl an den ersten Eingang (A) eines Multiplikatorelementes (M) als auch über einen frequenzabhängigen Phasenschieber Response signal (TX) in the interrogator both to the first input (A) of a multiplier element (M) and via a frequency-dependent phase shifter
(P) an einen zweiten Eingang (A) des (P) to a second input (A) of the
Multiplikatorelementes (M) angelegt wird, dass das Ausgangssignal (C) des Multiplikatorelementes (M) über einen Tiefpass (TP) geführt wird und dass das  Multiplier element (M) is applied, that the output signal (C) of the multiplier element (M) via a low pass (TP) is guided and that the
Ausgangssignal (C) des Tiefpasses (TP) zur Ermittlung der Aussage über die physikalischen Eigenschaften der Endlospressgüter herangezogen wird.  Output signal (C) of the low-pass filter (TP) is used to determine the statement about the physical properties of the continuous presses.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass in einem ersten Schritt mit einem Anregungssignal mit einer ersten Frequenz der Sensor angeregt wird und aus dem Ausgangssignal (C) des Tiefpasses (TP) der 2. The method according to claim 1, characterized in that in a first step with an excitation signal having a first frequency of the sensor is excited and from the output signal (C) of the low-pass filter (TP) of
Frequenzabstand zwischen der Resonanzfrequenz (RX) des Sensors und der ersten Frequenz des Anregungssignals ermittelt wird, dass in einem zweiten Schritt der so ermittelte wert der Resonanzfrequenz (RX) als Frequenz des Anregungssignals herangezogen wird und in einem dritten Schritt mit einer Phase-locked Loop Schaltung eine nahezu vollständige Übereinstimmung der Frequenz des Anregungssignals und der Resonanzfrequenz (RX) herbeigeführt wird. Frequency difference between the resonant frequency (RX) of the sensor and the first frequency of the excitation signal is determined that in a second step, the thus determined value of the resonant frequency (RX) is used as the frequency of the excitation signal and in a third step with a phase-locked loop circuit an almost complete coincidence of the frequency of the excitation signal and the resonance frequency (RX) is brought about.
3. Verfahren nach Anspruch 1 oder zwei, dadurch 3. The method according to claim 1 or two, characterized
gekennzeichnet, dass als Sensorelemente OFW-Resonatoren vorgesehen werden.  in that SAW resonators are provided as sensor elements.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch 4. The method according to any one of claims 1 to 3, characterized
gekennzeichnet, dass als physikalische Eigenschaften Temperatur und Druck gemessen werden.  characterized in that are measured as physical properties temperature and pressure.
EP11732406.1A 2010-07-28 2011-07-04 Fast measurement method for detecting ofw sensor data Withdrawn EP2598867A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ATA1266/2010A AT510244B1 (en) 2010-07-28 2010-07-28 FAST MEASUREMENT PROCEDURE FOR DETECTING OFW SENSOR DATA
PCT/EP2011/061187 WO2012013449A2 (en) 2010-07-28 2011-07-04 Fast measurement method for detecting ofw sensor data

Publications (1)

Publication Number Publication Date
EP2598867A2 true EP2598867A2 (en) 2013-06-05

Family

ID=44628521

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11732406.1A Withdrawn EP2598867A2 (en) 2010-07-28 2011-07-04 Fast measurement method for detecting ofw sensor data

Country Status (3)

Country Link
EP (1) EP2598867A2 (en)
AT (1) AT510244B1 (en)
WO (1) WO2012013449A2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB233839A (en) * 1924-03-29 1925-05-21 Brown William Improvements in and relating to water heaters or the like
DE19533123C2 (en) * 1995-09-07 1998-05-28 Siemens Ag Signal generator for generating a linear frequency modulated signal
DE59601957D1 (en) * 1995-09-07 1999-06-24 Siemens Ag DEVICE FOR DISTANCE MEASUREMENT
US6044332A (en) * 1998-04-15 2000-03-28 Lockheed Martin Energy Research Corporation Surface acoustic wave harmonic analysis
DE10215834A1 (en) * 2002-05-10 2003-11-06 Digades Gmbh Tire pressure and temperature sensor comprises a hermetically sealed housing with a membrane, piezoelectric support, interdigital transducer and measurement and reference reflectors
WO2009133050A1 (en) * 2008-04-29 2009-11-05 Siemens Ag Österreich Method for measuring physical properties of endless compressed products, in particular of chip boards

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2012013449A2 *

Also Published As

Publication number Publication date
AT510244A1 (en) 2012-02-15
AT510244B1 (en) 2015-06-15
WO2012013449A3 (en) 2012-04-05
WO2012013449A2 (en) 2012-02-02

Similar Documents

Publication Publication Date Title
EP2041529B1 (en) Sytem for determining and/or monitoring a process quantity of a medium
DE10203461A1 (en) Vibration level sensor
DE102009028022A1 (en) Method for determining and / or monitoring at least one physical process variable of a medium
EP2555019B1 (en) Inductive proximity sensor
DE102005038649A1 (en) Method and system for operating an ultrasonic transducer
DE102009027997A1 (en) Measuring unit for use in measuring system for telemetric evaluation of electrical oscillating circuit, has phase detector determining phase difference between electrical reference oscillation and electrical measuring oscillation
DE112007001465T5 (en) Method and device for high-frequency radiation measurement
DE102010028303A1 (en) Device for determining and / or monitoring a process variable of a medium
DE19619311C2 (en) Interrogation device for passive resonators as frequency-analog sensors with radio control
WO2010006896A1 (en) Device for determining and/or monitoring a process variable and method for testing a device
CH699752A1 (en) DEVICE AND METHOD FOR A CAPACITY measure.
WO1998053282A1 (en) Vibration filling level limit switch and method for determining and/or monitoring the filling level of a medium in a container
EP2881181A1 (en) Method for determining electrical parameters of a tuning unit for an ultrasonic transducer
DE112018004944B4 (en) Concentration meter
AT510244B1 (en) FAST MEASUREMENT PROCEDURE FOR DETECTING OFW SENSOR DATA
DE102011084983A1 (en) Method for testing immunity of electrical or electronic device, particularly control device for motor vehicles, involves supplying interference signal by electrical or electronic device
EP3171291B1 (en) Method and inquiring device for requesting data from a passive element
EP1936403B1 (en) Ultrasonic sensor and method for determining the distance of an object from an ultrasonic sensor
DE3779621T2 (en) METHOD AND DEVICE FOR MONITORING SMALL PIK SHIFTINGS IN A FREQUENCY SPECTRUM.
EP4260089A1 (en) Ultrasonic sensor system for a motor vehicle and method for operating the ultrasonic sensor system
EP2478389B1 (en) Ultrasonic measurement system for parking assistance for vehicles
DE102004018506A1 (en) Measuring device manufacturing method for determining and/or monitoring process factor, involves modifying vibration characteristics of mechanically vibrating unit if difference between its frequencies is greater than tolerance value
EP2725353A1 (en) Method for automatic operating frequency work point adjustment of an ultrasound detection device
DE19742683A1 (en) Method for determining the content of a gas cylinder
EP2798312B1 (en) Apparatus and method for measuring a relative movement of a target

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20121212

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20170201