EP2598789A2 - Method for protecting heat exchanger pipes in steam boiler systems, molded body, heat exchanger pipe, and steam boiler system - Google Patents

Method for protecting heat exchanger pipes in steam boiler systems, molded body, heat exchanger pipe, and steam boiler system

Info

Publication number
EP2598789A2
EP2598789A2 EP11782009.2A EP11782009A EP2598789A2 EP 2598789 A2 EP2598789 A2 EP 2598789A2 EP 11782009 A EP11782009 A EP 11782009A EP 2598789 A2 EP2598789 A2 EP 2598789A2
Authority
EP
European Patent Office
Prior art keywords
heat exchanger
ceramic
steam boiler
exchanger tube
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP11782009.2A
Other languages
German (de)
French (fr)
Inventor
Johannes Martin
Toralf Weber
Thomas Putz
Andreas Kienzle
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Martin GmbH fuer Umwelt und Energietechnik
SGL Carbon SE
Original Assignee
Martin GmbH fuer Umwelt und Energietechnik
SGL Carbon SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Martin GmbH fuer Umwelt und Energietechnik, SGL Carbon SE filed Critical Martin GmbH fuer Umwelt und Energietechnik
Publication of EP2598789A2 publication Critical patent/EP2598789A2/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/522Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/536Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite based on expanded graphite or complexed graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/573Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained by reaction sintering or recrystallisation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6269Curing of mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63448Polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63472Condensation polymers of aldehydes or ketones
    • C04B35/63476Phenol-formaldehyde condensation polymers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • C04B35/83Carbon fibres in a carbon matrix
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/003Joining burned ceramic articles with other burned ceramic articles or other articles by heating by means of an interlayer consisting of a combination of materials selected from glass, or ceramic material with metals, metal oxides or metal salts
    • C04B37/005Joining burned ceramic articles with other burned ceramic articles or other articles by heating by means of an interlayer consisting of a combination of materials selected from glass, or ceramic material with metals, metal oxides or metal salts consisting of glass or ceramic material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/008Joining burned ceramic articles with other burned ceramic articles or other articles by heating by means of an interlayer consisting of an organic adhesive, e.g. phenol resin or pitch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L58/00Protection of pipes or pipe fittings against corrosion or incrustation
    • F16L58/02Protection of pipes or pipe fittings against corrosion or incrustation by means of internal or external coatings
    • F16L58/04Coatings characterised by the materials used
    • F16L58/14Coatings characterised by the materials used by ceramic or vitreous materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L9/00Rigid pipes
    • F16L9/14Compound tubes, i.e. made of materials not wholly covered by any one of the preceding groups
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/02Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
    • F22B37/10Water tubes; Accessories therefor
    • F22B37/107Protection of water tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/02Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
    • F22B37/10Water tubes; Accessories therefor
    • F22B37/107Protection of water tubes
    • F22B37/108Protection of water tube walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/003Multiple wall conduits, e.g. for leak detection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/002Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using inserts or attachments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/02Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/428Silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5248Carbon, e.g. graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/526Fibers characterised by the length of the fibers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5264Fibers characterised by the diameter of the fibers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5268Orientation of the fibers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/604Pressing at temperatures other than sintering temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/616Liquid infiltration of green bodies or pre-forms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/94Products characterised by their shape
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/95Products characterised by their size, e.g. microceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/365Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/38Fiber or whisker reinforced
    • C04B2237/385Carbon or carbon composite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/70Forming laminates or joined articles comprising layers of a specific, unusual thickness
    • C04B2237/708Forming laminates or joined articles comprising layers of a specific, unusual thickness of one or more of the interlayers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49826Assembling or joining
    • Y10T29/49879Spaced wall tube or receptacle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/131Glass, ceramic, or sintered, fused, fired, or calcined metal oxide or metal carbide containing [e.g., porcelain, brick, cement, etc.]
    • Y10T428/1314Contains fabric, fiber particle, or filament made of glass, ceramic, or sintered, fused, fired, or calcined metal oxide, or metal carbide or other inorganic compound [e.g., fiber glass, mineral fiber, sand, etc.]

Definitions

  • Knock-down devices are widely used, which mechanically act on the pipes in the superheater area in order to remove the deposits. Even with water and steam blowers is trying to remove the deposits, creating additional chemical stress. These loads severely limit the possible uses of ceramic linings for corrosion protection measures in superheater areas.
  • the coverings can be kept away from the heat exchanger tubes of the steam boiler systems by at least partially surrounding the heat exchanger tubes with fiber-reinforced ceramic.
  • the circular segment shell 3 has an outer side 6, which is particularly smooth in order to avoid deposits.
  • a structure for influencing the flow such as a wave structure or flow s may be provided to improve the heat transfer by turbulence or solely by the surface enlargement.
  • the deposition behavior on the surface of the enveloping elements can also be positively influenced.
  • the microscopic structure of the outer side 6 of the circular segment shell 3 should be as smooth as possible in order to avoid deposits, the macroscopic structure on a smooth surface may, for example, have corrugations.
  • One embodiment therefore envisages that, for example, a very smooth coating of the ceramic surface is achieved by nanoparticles in order to minimize the caking of particles such as dusts from the flue gas.
  • a gradation 14, 15 and 16, 17 is provided on axially opposite end faces 12, 13, which makes it possible to insert the axially projecting element 16, 17 into the recess 14, 15 in the next adjacent circular segment shell.
  • the gap can also be dimensioned so that the fiber-reinforced ceramic can simply be pulled over the heat exchanger tube and the inner surface of the ceramic is coated so that it foams on reaching a specific temperature to fill the gap.
  • special under the influence of heat foaming materials are known.
  • the C / SiC moldings produced in this way have a strength of 50 - 300 MPa and a thermal conductivity of 50 - 150 W / mK.
  • the material composition of the moldings may be given as follows: 2 - 30% carbon, 50 - 70% silicon carbide and 5 - 15% silicon. The porosity of the material is very low at ⁇ 2%.

Abstract

In order to protect heat exchanger pipes (1) in steam boiler systems, special casing elements (2) made of fiber-reinforced ceramic are proposed. Said casing elements prevent or reduce the formation of films and corrosion on the heat exchanger pipes and thus enable higher steam parameters of the boiler system and a correspondingly increased thermal efficiency.

Description

Verfahren zum Schutz von Wärmetauscherrohren in Dampfkesselanlagen, Formkörper, Wärmetauscherrohr und Dampfkesselanlage  Process for protecting heat exchanger tubes in steam boiler plants, shaped bodies, heat exchanger tubes and steam boiler plants
[01] Die Erfindung betrifft ein Verfahren zum Schutz von Wärmetauscherrohren in Dampfkesselanlagen und einen Forrnkörper zur Durchfüh- rung des Verfahrens. Weiterhin betrifft die Erfindung ein Wärmetauscherrohr und eine Dampfkesselanlage mit einem derartigen Wärmetauscherrohr. [01] The invention relates to a method for protecting heat exchanger tubes in steam boiler plants and to a mold body for carrying out the method. Furthermore, the invention relates to a heat exchanger tube and a steam boiler system with such a heat exchanger tube.
[02] Verbrennungsöfen zum Verbrennen fester Brennstoffe wie beispielsweise Müll- und Biomassenverbrennungsanlagen weisen einen Dampfkessel mit Wärmetauscherrohren auf. Diese Wärmetauscherrohre dienen zum Teil dazu, Wasser zu verdampfen und zum Teil dazu, verdampftes Wasser zu überhitzen. [02] Incinerators for burning solid fuels such as waste and biomass burning plants have a steam boiler with heat exchanger tubes. These heat exchanger tubes serve in part to vaporize water and partly to overheat evaporated water.
[03] Bei derartigen Anlagen besteht das Problem, dass die Wärmetauscherrohre während des Betriebs korrodieren. Zahlreiche Untersuchungen haben gezeigt, dass diese Korrosion durch anhaftende Beläge aus Aschen und Salzen induziert wird. Gasförmige Abgasbestandteile wie zum Beispiel HCl und SO2 beeinflussen die Zusammensetzung der Beläge, führen aber nicht direkt zu Korrosionsangriffen auf diesen Bauteilen. [03] In such systems, there is the problem that the heat exchanger tubes corrode during operation. Numerous studies have shown that this corrosion is induced by adhering deposits of ashes and salts. Gaseous exhaust gas constituents such as HCl and SO2 influence the composition of the deposits, but do not directly lead to corrosion attacks on these components.
[04] In Müll- und Biomasseverbrennungs anlagen können im Extremfall Korrosionsraten von bis zu einem Millimeter pro 1.000 Stunden auftreten. In waste and biomass incineration plants can occur in extreme cases, corrosion rates of up to one millimeter per 1,000 hours.
|Bestätigungskopie| [05] Als Korrosionsschutzmaßnahmen werden keramische Abkleidungen und metallische Beschichtungen eingesetzt. Keramische Abkleidungen werden entweder in mörtelartiger Form auf die Rohre aufgebracht, wo sie durch sog. Trockenheizen vor dem eigentlichen Betrieb aushärten oder als gebrannte Formsteine, welche die Rohrpartien, die dem Korrosionsangriff ausgesetzt sind, umschließen. Die metallischen Beschichtungen werden entweder auftragsgeschweißt oder thermisch aufgespritzt. | Confirmation copy | [05] As corrosion protection measures ceramic linings and metallic coatings are used. Ceramic liners are applied either in mortar-like form to the tubes, where they harden by so-called. Dry heating before the actual operation or as fired bricks, which enclose the tube sections, which are exposed to the corrosive attack. The metallic coatings are either job-welded or thermally sprayed on.
[06] Die DE 38 23 439 C2 beschreibt ein keramisches, fertig gesintertes Schutzelement aus miteinander verzahnten Halbschalen. Diese vorzugs- weise aus Siliziumkarbid hergestellten Schalen haben sich in der Praxis nicht bewährt, da das benötigte Material relativ dick und schwer ausgeführt werden muss, um der Beanspruchung während des Betriebs der Kesselanlage standzuhalten. Zudem wird das Schutzelement mit relativ viel Mörtel hinterfüllt. Da die Verzahnung keine Wärmeausdehnung zulässt, kommt es bei den im Normalbetrieb vorliegenden hohen Temperaturen zur Rissbildung bis hin zum Aufsprengen der Schalen. [0003] DE 38 23 439 C2 describes a ceramic, finish-sintered protective element made of half-shells toothed together. These shells, preferably made of silicon carbide, have not proven useful in practice, since the material required must be relatively thick and heavy in order to withstand the stress during operation of the boiler system. In addition, the protective element is backfilled with a relatively large amount of mortar. Since the teeth allow no thermal expansion, it comes with the high temperatures present in normal operation to cracking up to the bursting of the shells.
[07] Eine weitere keramische Schutzhülle aus sich überlappenden Halbschalen aus Siliziumkarbid beschreibt die DE 20 2008 006 044 Ul. [07] Another ceramic protective cover made of overlapping half shells made of silicon carbide describes the DE 20 2008 006 044 Ul.
[08] Keramische Abkleidungen an den Wänden haben sich im Feuerraum durchaus bewährt, wohingegen der Einsatz keramischer Schutzschalen im Überhitzerbereich nicht praktikabel ist. Neben der statischen Belastung der Stahlkonstruktion aufgrund des Gewichts der Schutzschalen unterliegen die Wärmetauscherrohre im Überhitzerbereich mechanischen Belastungen bei der Reinigung. [08] Ceramic linings on the walls have proven to work well in the furnace, whereas the use of ceramic shells in superheaters is not practical. In addition to the static load of the steel structure due to the weight of the protective shells subject the heat exchanger tubes in the superheater area mechanical loads during cleaning.
[09] Weit verbreitet sind Klopf einrichtun gen, die mechanisch auf die Rohre im Überhitzerbereich einwirken, um die Beläge zu entfernen. Auch mit Wasser- und Dampfbläsern wird versucht die Beläge zu entfernen, wodurch zusätzliche chemische Belastungen entstehen. Diese Belastungen schränken die Einsatzmöglichkeiten von keramischen Abkleidungen für Korrosionsschutzmaßnahmen im Überhitzerbereich stark ein. [09] Knock-down devices are widely used, which mechanically act on the pipes in the superheater area in order to remove the deposits. Even with water and steam blowers is trying to remove the deposits, creating additional chemical stress. These loads severely limit the possible uses of ceramic linings for corrosion protection measures in superheater areas.
[10] In den Strahlungszügen haben sich Auftragsschweißungen als wirk- samer Korrosionsschutz bewährt. Als Schweißmaterial hat sich der Werkstoff 2.4858 (Inconel 625) durchgesetzt. [10] Build-up welds have proven to be effective corrosion protection in radiation trains. As welding material the material 2.4858 (Inconel 625) has prevailed.
[11] Materialtemperaturen oberhalb von 400 °C, wie sie im Überhitzerbereich und - bei sehr hohen Betriebsdrücken - in den Verdampferrohren vorkommen, schränken den Korrosionsschutz dieses Werkstoffs jedoch deutlich ein. Auch der Einsatz anderer Schweißzusatzwerkstoffe, wie zum Beispiel 2.4606 (Inconel 686), bringt erfahrungsgemäß keine signifikante Verbesserung. [11] Material temperatures above 400 ° C, as they occur in the superheater area and - at very high operating pressures - in the evaporator tubes, however, significantly limit the corrosion protection of this material. The use of other welding consumables, such as 2.4606 (Inconel 686), experience shows no significant improvement.
[12] Daneben werden thermische Spritzverfahren immer öfter als Korro- sionsschutzmaßnahme eingesetzt. Versuche mit unterschiedlichsten Mate- rialkompositionen als Korrosionsschutzschicht auf den Kesselbauteilen zeigten, dass derartige Schutzschichten un vorher sehbar in kurzer Zeit ver- sagen können. Ein langfristiger Korrosionsschutz ist daher mit derartigen Verfahren nicht zu gewährleisten. [12] In addition, thermal spraying processes are being used more and more often as a corrosion protection measure. Experiments with a wide variety of material compositions as anticorrosive coating on the boiler components showed that such protective coatings can be seen in a short time in advance. can say. Long-term corrosion protection therefore can not be guaranteed with such methods.
[13] Der Korrosionsschutz von Kesselrohren hat einerseits einen Einfluss auf den Wirkungsgrad des Dampferzeugers, da die aufgebrachten Beläge den Wärmeübergang beeinträchtigen können. Andererseits werden die meisten Müll-und Biomasseverbrennungsanlagen nur mit Dampftemperaturen von bis zu 400 °C bei maximal 40 bar Dampfdruck betrieben, um die Korrosion in beherrschbaren Grenzen zu halten. Eine Erhöhung der Dampf parameter ist mit deutlich ansteigenden Korrosionsraten am Druck- körper und dadurch einer Reduzierung der Verfügbarkeiten der Anlage verbunden. Die bekannten Korrosionsschutzmaßnahmen konnten hier keine zufriedenstellenden Verbesserungen bieten. The corrosion protection of boiler tubes on the one hand has an impact on the efficiency of the steam generator, since the applied deposits can affect the heat transfer. On the other hand, most waste and biomass combustion plants are operated only with steam temperatures of up to 400 ° C at a maximum of 40 bar steam pressure to keep the corrosion within manageable limits. An increase in the steam parameters is associated with significantly increasing corrosion rates on the pressure element and thus a reduction in the availability of the system. The known corrosion protection measures could not offer satisfactory improvements here.
[14] Der Erfindung liegt daher die Aufgabe zugrunde, die Korrosion an Wärmetauscherrohren in Dampfkesselanlagen zu reduzieren unter gleich- zeitiger Minimierung der beschriebenen Nachteile. The invention is therefore based on the object to reduce the corrosion of heat exchanger tubes in steam boiler plants while minimizing the disadvantages described.
[15] Diese Aufgabe wird mit einem Verfahren zum Schutz von Wärmetauscherrohren in Dampfkesselanlagen gelöst, bei dem Wärmetauscherrohre der Dampfkesselanlage zumindest teilweise mit faserverstärkter Keramik umgeben werden. [16] Der Erfindung liegt die Erkenntnis zugrunde, dass die Korrosion aus Wärmetauscherrohren in Dampfkesselanlagen durch die anhaftenden Beläge induziert wird. Ein Fernhalten der Beläge, die eine Mischung aus Sal- zen und Aschen darstellen, von der Rohroberfläche führt erfahrungsgemäß zu einer deutlichen Reduzierung bzw. sogar zu einem Stillstand der Korrosionsvorgänge. This object is achieved with a method for the protection of heat exchanger tubes in steam boiler plants, are surrounded in the heat exchanger tubes of the boiler plant at least partially with fiber-reinforced ceramic. The invention is based on the finding that corrosion from heat exchanger tubes in steam boiler systems is induced by the adhering coatings. Keeping away the deposits containing a mixture of salmon zen and ashes, from the surface of the pipe experience has shown that it leads to a significant reduction or even to a standstill of the corrosion processes.
[17] Die Beläge können von den Wärmetauscherrohren der Dampfkessel- anläge dadurch ferngehalten werden, dass die Wärmetauscherrohre zumindest teilweise mit faserverstärkter Keramik umgeben werden. [17] The coverings can be kept away from the heat exchanger tubes of the steam boiler systems by at least partially surrounding the heat exchanger tubes with fiber-reinforced ceramic.
[18] Es hat sich herausgestellt, dass auch bei den hohen Temperaturen im Überhitzerbereich und den starken mechanischen Belastungen der Reinigungssysteme faserverstärkte Keramik eingesetzt werden kann, um die Bildung von Belägen an den Wärmetauscherrohren zu verringern. Faserverstärkte Keramik kann hohe Temperaturen unbeschadet überstehen und sie hat eine gute Widerstandsfähigkeit gegenüber wasserdampfhaltigen Atmosphären. Außerdem hat das Material eine gute Wärmeleitfähigkeit und eine geringe Wärmeaus dehnung. [19] Der Einsatz von faserverstärkter Keramik zum Schutz der Wärmetauscherrohre ermöglicht das Betreiben der Kesselanlage bei wesentlich höheren Temperaturen, wodurch der thermische Wirkungsgrad der Anlage deutlich verbessert werden kann. It has been found that even with the high temperatures in the superheater area and the strong mechanical loads of the cleaning systems fiber-reinforced ceramic can be used to reduce the formation of deposits on the heat exchanger tubes. Fiber-reinforced ceramics can withstand high temperatures without damage and it has good resistance to water vapor-containing atmospheres. In addition, the material has a good thermal conductivity and a low Wärmeaus stretch. The use of fiber-reinforced ceramic to protect the heat exchanger tubes allows operating the boiler system at much higher temperatures, whereby the thermal efficiency of the system can be significantly improved.
[20] Um Spannungen zwischen der Keramikhülle und dem Stahl eines Wärmetauscherrohres zu vermeiden, wird vorgeschlagen, dass die Keramik relativ zum Rohr verschiebbar angeordnet wird. Dazu können Keramikrohre oder -hülsen vor der Montage der Wärmetauscherrohre auf die Rohre aufgesteckt werden. Dies führt dazu, dass die Keramik in Form von mehreren aneinander anliegenden Hüllelementen angeordnet wird. In order to avoid stresses between the ceramic shell and the steel of a heat exchanger tube, it is proposed that the ceramic is slidably disposed relative to the tube. These ceramic tubes or sleeves before mounting the heat exchanger tubes on the pipes are attached. As a result, the ceramic is arranged in the form of a plurality of mutually adjacent enveloping elements.
[21] Insbesondere wenn die Keramik auf montierte Wärmetauscher aufgebracht werden soll, ist ein Auffädeln von Keramikringen oder Hülsen auf das Wärmetauscherrohr ohne dessen Beschädigung nicht mehr möglich. Daher wird vorgeschlagen, dass die Hüllelemente aus Kreissegmentschalen gebildet sind. Beispielsweise können zwei Kreissegmentschalen zu einer Hülse zusammengesetzt werden. Eine derartige Hülse kann nachträglich an einem Rohr angebracht werden, indem die Hülsenhälften von ge- genüberliegenden Seiten an das Rohr angelegt werden. [21] In particular, when the ceramic is to be applied to mounted heat exchanger, threading ceramic rings or sleeves onto the heat exchanger tube without damaging it is no longer possible. Therefore, it is proposed that the enveloping elements are formed from circular segment shells. For example, two circular segment shells can be assembled into a sleeve. Such a sleeve can be retrofitted to a pipe by applying the sleeve halves to the pipe from opposite sides.
[22] Die Hülsenhälften können anschließend miteinander verbunden werden oder ineinander einrasten. Vorteilhaft ist es, wenn die Kreissegmentschalen axial und/oder radial formschlüssig miteinander verbunden sind. Beispielsweise durch Hinterschneidungen oder Stufen kann eine Z- Fuge gebildet werden. Zwei gegenüberliegende Halbkreisschalen können so ineinander eingreifen oder so miteinander verbunden werden, dass auch an der Verbindungsstelle ein Partikel zu tritt zum Wärmetauscherrohr behindert wird. The sleeve halves can then be connected to each other or snap into each other. It is advantageous if the circular segment shells are axially and / or radially positively connected to each other. For example, by undercuts or steps, a Z-joint can be formed. Two opposing semicircular shells can interlock with each other or be connected to each other so that even at the junction of a particle is prevented from entering the heat exchanger tube.
[23] Aber auch axial aneinander anliegende Hüllelemente können inei- nandergreifende Hinterscheidungen oder Stufen aufweisen, um beispielsweise durch eine Z-Fuge den Zutritt von Partikeln zwischen zwei Hüllelemente zum Wärmetauscherrohr einzuschränken. [24] Dabei können die Hüllelemente durch Konsolen, Rohrbiegungen und/oder durch Schweißpunkte auf den Wärmetauscherrohren in ihrer Lage fixiert werden. [23] However, enveloping elements that lie against each other axially may also have interdependent undercuts or steps in order, for example, to restrict the access of particles between two enveloping elements to the heat exchanger tube by means of a Z-joint. [24] In this case, the sheath elements can be fixed by brackets, pipe bends and / or by welding points on the heat exchanger tubes in their position.
[25] Die faserverstärkte Keramik kann unterschiedlichste Zuschlagstoffe zur Verbesserung der Stabilität und der Oberflächeneigenschaften aufweisen. Vorteilhaft ist es, wenn die Keramik Kohlefasern aufweist. Kohlefasern sind schwer brennbar und ermöglichen eine besondere Stabilität der Keramik, die insbesondere im Hinblick auf die mechanischen Klopfreini- gungsmethoden sehr wichtig ist. [26] Um die Kosten für den Korrosionsschutz gering zu halten und den Wärmeübergang möglichst wenig zu beeinflussen, wird vorgeschlagen, dass die Keramik eine Dicke zwischen Innendurchmesser und Außendurchmesser von weniger als 10 Millimetern und vorzugsweise weniger als 5 Millimetern aufweist. [27] Die faserverstärkte Keramik kann auch als Beschichtung direkt auf die Rohre aufgebracht werden, um die Dicke des Materials möglichst gering zu halten und um eine Ausdehnung des keramischen Materials zusammen mit den Rohren zu ermöglichen. Sofern das keramische Material fest mit dem Rohr verbunden ist, können sogar Rissbildungen im kerami- sehen Material hingenommen werden, da sie die Funktion der Abkleidung nur unwesentlich beeinträchtigen. [28] Die Rohre können auch mit Fasermaterialien wie beispielsweise Faserkeramikmatten umgeben werden. Die Keramik kann dabei vor der Aufbringung auf das Rohr entstanden sein, nach Aufbringung auf das Rohr in einem Ofen entstehen oder sogar erst beim Erhitzen des Materials nach der Inbetriebnahme des Kessels in der Verbrenn ungs anläge. [25] The fiber-reinforced ceramic can have a wide variety of additives to improve its stability and surface properties. It is advantageous if the ceramic has carbon fibers. Carbon fibers are hardly combustible and allow a special stability of the ceramic, which is very important in particular with regard to the mechanical knock cleaning methods. [26] In order to keep the cost of corrosion protection low and to influence the heat transfer as little as possible, it is proposed that the ceramic has a thickness between inner diameter and outer diameter of less than 10 millimeters and preferably less than 5 millimeters. The fiber-reinforced ceramic can also be applied as a coating directly on the tubes in order to keep the thickness of the material as low as possible and to allow expansion of the ceramic material together with the tubes. If the ceramic material is firmly connected to the tube, even cracks in the ceramic see material can be accepted, since they affect the function of the lining only insignificantly. [28] The tubes can also be surrounded by fibrous materials such as fibrous ceramic mats. The ceramic can be created prior to application to the pipe, after application to the pipe in an oven or even when heating the material after commissioning of the boiler in the combustion aungsge.
[29] Die Kesselrohre können dazu mit dem Material umwickelt oder umgeben werden. Hierzu eignet sich ein Material in der Form von Matten, Gewebe oder in einer Art Kettenhemd. Diese Materialien weisen entweder bereits faserverstärkte Keramik auf oder die Keramik entsteht erst nach der Aufbringung auf das Rohr durch sintern, aushärten oder ähnliche Vorgänge- [29] The boiler tubes can be wrapped or surrounded by the material. For this purpose, a material in the form of mats, fabric or in a kind of chain mail is suitable. These materials either already have fiber-reinforced ceramic or the ceramic is formed only after the application to the tube by sintering, curing or similar processes-
[30] Versuche haben gezeigt, dass es somit möglich ist, dass die Keramik Temperaturen von über 400 °C ausgesetzt wird. [30] Experiments have shown that it is thus possible that the ceramic is exposed to temperatures of over 400 ° C.
[31] Entsprechend können die Wärmetauscherrohre an ihrer Innenseite einem Druck von über 40 bar ausgesetzt werden. [31] Accordingly, the heat exchanger tubes can be exposed on their inner side to a pressure of over 40 bar.
[32] Metallrohr und Keramik können auch fest miteinander verbunden sein, indem beispielsweise ein keramisches Compoundrohr hergestellt wird. [32] Metal tube and ceramic can also be firmly connected to each other, for example, by producing a ceramic compound tube.
[33] Damit die Hüllelemente für den Einsatz an Wärmetauscherrohren technischer Verbrennungsöfen geeignet sind, wird vorgeschlagen, dass die Keramik einen Innendurchmesser von mehr als 30 mm aufweist, vorzugsweise etwa 40 bis 60 mm. [34] Gegenstand der Erfindung ist auch ein Formkörper mit einer faserverstärkten Keramik zur Durchführung des Verfahrens, der dazu geeignet ist, ein Wärmetauscherrohr zu umhüllen. Weiterhin ist Gegenstand der Erfindung ein Wärmetauscherrohr, das mit einem derartigen Fonnkörper um- geben ist. Zwischen Formkörper und Wärmetauscherrohr kann ein vorzugsweise ringförmiger Spalt angeordnet sein. Letztlich betrifft die Erfindung eine Dampfkesselanlage mit einem derartigen Wärmetauscherrohr. [33] In order that the enveloping elements are suitable for use on heat exchanger tubes of industrial incinerators, it is proposed that the ceramic has an internal diameter of more than 30 mm, preferably about 40 to 60 mm. The invention also relates to a molded article with a fiber-reinforced ceramic for carrying out the method, which is adapted to envelop a heat exchanger tube. Furthermore, the subject of the invention is a heat exchanger tube, which is surrounded with such a Fonnkörper. Between the molded body and the heat exchanger tube, a preferably annular gap may be arranged. Finally, the invention relates to a steam boiler system with such a heat exchanger tube.
[35] Im Folgenden wird die Erfindung anhand eines Ausführungsbei- spiels näher erläutert. Es zeigt die einzige Figur eine Ansicht eines Wärmetauscherrohres mit einem[35] In the following, the invention will be explained in more detail by means of an exemplary embodiment. The single figure shows a view of a heat exchanger tube with a
Hüllelement. Envelope element.
[36] Das in Figur 1 gezeigte Wärmetauscherrohr 1 ist ein Rohr von vielen Wärmetauscherrohren eines Wärmetauschers (nicht gezeigt) einer Dampfkesselanlage (nicht gezeigt). Dieses Wärmetauscherrohr 1 ist mit einer Vielzahl an Hüllelementen 2 umgeben. Von diesen Hüllelementen 2 ist nur die Kreissegmentschale 3 eines Hüllelementes gezeigt. Diese Kreissegmentschale 3 hat eine Innenseite 4, die an der Außenseite 5 des Wärmetauscherrohres 1 anliegt. [36] The heat exchanger tube 1 shown in FIG. 1 is a tube of many heat exchanger tubes of a heat exchanger (not shown) of a steam boiler system (not shown). This heat exchanger tube 1 is surrounded by a plurality of enveloping elements 2. Of these Hüllelementen 2 only the circular segment shell 3 of a Hüllelementes is shown. This circular segment shell 3 has an inner side 4, which rests against the outer side 5 of the heat exchanger tube 1.
[37] In einem Abstand von beispielsweise 5 Millimetern von der Innen- seite 4 hat die Kreissegmentschale 3 eine Außenseite 6, die zur Vermeidung von Ablagerungen besonders glatt ausgebildet ist. [38] Auf der Außenseite 6 kann auch eine Struktur zur Strömungsbeeinflussung, wie beispielsweise eine Wellenstruktur oder Strömung s zapfen, vorgesehen sein, um durch Turbulenzen oder allein durch die Oberflächen Vergrößerung den Wärmeübergang zu verbessern. Mittels einer geeig- neten Struktur kann auch das Abscheideverhalten an der Oberfläche der Hüllelemente positiv beeinflusst werden. Während die mikroskopische Struktur der Außenseite 6 der Kreissegmentschale 3 zur Vermeidung von Ablagerungen möglichst glatt sein sollte, kann die makroskopische Struktur auf einer glatten Oberfläche beispielsweise Wellen aufweisen. [39] Eine Ausführungsvariante sieht daher vor, dass z.B. durch Nanoteil- chen eine sehr glatte Beschichtung der Keramikoberfläche erreicht wird, um das Anbacken von Partikeln wie Stäuben aus dem Rauchgas zu minimieren. [37] At a distance of, for example, 5 millimeters from the inner side 4, the circular segment shell 3 has an outer side 6, which is particularly smooth in order to avoid deposits. [38] On the outside 6, a structure for influencing the flow, such as a wave structure or flow s may be provided to improve the heat transfer by turbulence or solely by the surface enlargement. By means of a suitable structure, the deposition behavior on the surface of the enveloping elements can also be positively influenced. While the microscopic structure of the outer side 6 of the circular segment shell 3 should be as smooth as possible in order to avoid deposits, the macroscopic structure on a smooth surface may, for example, have corrugations. [39] One embodiment therefore envisages that, for example, a very smooth coating of the ceramic surface is achieved by nanoparticles in order to minimize the caking of particles such as dusts from the flue gas.
[40] Die Kreissegmentschale 3 weist zapfenförmig vorstehende Elemente 7, 8 auf, die mit entsprechenden Ausnehmungen in einer gegenüberliegenden Kreissegmentschale zusammenwirken, um eine formschlüssige und ggf. auch kraftschlüssige, passende Verbindung zwischen zwei radial gegenüberliegenden Kreissegmentschalen zu ermöglichen. [40] The circular segment shell 3 has peg-shaped protruding elements 7, 8, which cooperate with corresponding recesses in an opposing circular segment shell to allow a positive and possibly also positive, fitting connection between two radially opposite circular segment shells.
[41] Die Kreissegmentschale 3 hat auf ihrer anderen Stirnseite 9 zwei Sacklochbohrungen 10, 1 1, die mit Zapfen einer gegenüberliegenden Kreissegmentschale (nicht gezeigt) zusammenwirken können. Zapfen und Bohrungen können in einem Winkel von beispielsweise ca. 45° angebracht sein. Dies führt zu einer Positionierung der Schalen relativ zueinander und zu einer ausreichenden Befestigung der Schalen aneinander. [41] The circular segment shell 3 has on its other end face 9 two blind holes 10, 1 1, which can cooperate with pins of an opposite circular segment shell (not shown). Pins and holes can be mounted at an angle of, for example, about 45 ° be. This leads to a positioning of the shells relative to each other and to a sufficient attachment of the shells to each other.
[42] Eine symmetrische Ausbildung der Kreissegmentschalen ermöglicht es, diese Formteile für zwei gegenüberliegende, formschlüssig verbindbare Kreissegmentschalen zu verwenden. [42] A symmetrical design of the circular segment shells makes it possible to use these shaped parts for two opposite, form-fitting connectable circular segment shells.
[43] Die Ausbildung der Kreissegmentschale 3 ermöglicht darüber hinaus eine formschlüssige Verbindung zwischen zwei axial aneinander anliegenden Kreissegmentschalen. The formation of the circular segment shell 3 also allows a positive connection between two axially abutting circular segment shells.
[44] Hierzu ist an axial gegenüberliegenden Stirnseiten 12, 13 jeweils eine Abstufung 14, 15 bzw. 16, 17 vorgesehen, die es ermöglicht, das axial vorstehende Element 16, 17 in die Ausnehmung 14, 15 in der nächsten anliegenden Kreissegmentschale einzuschieben. For this purpose, a gradation 14, 15 and 16, 17 is provided on axially opposite end faces 12, 13, which makes it possible to insert the axially projecting element 16, 17 into the recess 14, 15 in the next adjacent circular segment shell.
[45] Die gezeigte Form ist nur ein Ausführungsbeispiel, das den prinzipiellen Aufbau eines Hüllelementes verdeutlicht. Für den Fachmann ist leicht ersichtlich, dass es verschiedene weitere Möglichkeiten gibt, im Rahmen der Erfindung Hüllelemente zu gestalten, die vorzugsweise formschlüssig, radial und gegebenenfalls auch axial miteinander zusammenwirken. Dadurch wird ein guter Schutz des Wärmetauscherrohres 1 erzielt. [45] The form shown is only one embodiment, which illustrates the basic structure of a Hüllelementes. It will be readily apparent to those skilled in the art that there are various other possibilities for designing enveloping elements within the scope of the invention which preferably cooperate with one another in a form-fitting, radial and possibly also axial manner. As a result, good protection of the heat exchanger tube 1 is achieved.
[46] Die Passung zwischen Wärmetauscherrohr 1 und Hüllelement 2 wird dabei so gewählt, dass die Ausdehnung des Wärmetauscherrohrs 1 relativ zum Hüllelement 2 nicht zur Zerstörung des Hüllelements 2 führt und andererseits der Abstand zwischen der inneren Oberfläche 4 des Hüllele- ments 3 und der äußeren Oberfläche 5 des Wärmerauscherrohres 1 minimal gewählt ist. Dies führt dazu, dass das Wärmetauscherrohr bei Betriebstemperatur fest an der faserverstärkten Keramik anliegt, ohne jedoch zu hohen Druck auf diese auszuüben. [47] In den Spalt, der zwischen der inneren Oberfläche 4 des Hüllelementes 3 und der äußeren Oberfläche 5 des Wärmetauscherrohres verbleibt, kann ein Material eingebracht werden, das den Wärmeübergang positiv beeinflusst. [46] The fit between the heat exchanger tube 1 and the cladding element 2 is chosen such that the expansion of the heat exchanger tube 1 relative to the cladding element 2 does not lead to the destruction of the cladding element 2 and, on the other hand, the distance between the inner surface 4 of the cladding element 2 ment 3 and the outer surface 5 of the heat exchanger tube 1 is minimally selected. This causes the heat exchanger tube at operating temperature firmly against the fiber-reinforced ceramic, but without exerting too high pressure on this. [47] In the gap, which remains between the inner surface 4 of the Hüllelementes 3 and the outer surface 5 of the heat exchanger tube, a material can be introduced, which positively influences the heat transfer.
[48] Der Spalt kann auch so dimensioniert sein, dass die faserverstärkte Keramik einfach über das Wärmetaucherrohr gezogen werden kann und die Innenfläche der Keramik so beschichtet ist, dass diese bei Erreichen einer speziellen Temperatur aufschäumt, um den Zwischenraum auszufüllen. Hierzu sind spezielle unter Wärmeeinfluss aufschäumende Materialien bekannt. [49] Bei der Installation der Hüllelemente kann auch ein Material auf die Kesselrohre aufgebracht werden, das bei der ersten Inbetriebnahme verschwindet (z.B. ausdampft) und so den Spalt für die Wärmeausdehnung freigibt. [48] The gap can also be dimensioned so that the fiber-reinforced ceramic can simply be pulled over the heat exchanger tube and the inner surface of the ceramic is coated so that it foams on reaching a specific temperature to fill the gap. For this purpose, special under the influence of heat foaming materials are known. [49] When installing the enveloping elements, it is also possible to apply a material to the boiler tubes that disappears (for example, evaporates) during initial start-up, thus releasing the gap for thermal expansion.
[50] Um eine Ausdehnung des Hüllelementes bei sich ausdehnendem Wärmetauscherrohr 1 zu ermöglichen, kann das Hüllelement 2 auch aus mehreren radial zusammengesetzten und axial geteilten Hüllelementen bestehen. [51] Insbesondere eine gestufte Stirnseite von Kreissegmentschalen eines Hüllelementes ermöglicht eine gewisse radiale Ausdehnung eines Hüllelements bei einer Wärmeausdehnung des Wärmetau scherrohres, ohne dass Partikel einen direkten Zugang zum Wärmetauscherrohr finden. [52] Durch spezielle Hinterschneidungen können Hüllelementteile, wie Kreissegmentschalen, radial ineinander gehängt werden und/oder axial aneinander gehängt werden, so dass ohne Verschraubungen allein durch Steckverbindungen ein Wärmetauscherrohr mit Hüllelementen umgeben werden kann. [53] Es versteht sich, dass in Bereichen, in denen ein Wärmetauscherrohr als Rohrbogen ausgebildet ist, auch die Hüllelemente entsprechend ange- passt ausgebildet sein müssen. [50] In order to allow an expansion of the Hüllelementes in expanding heat exchanger tube 1, the Hüllelement 2 may also consist of several radially assembled and axially divided Hüllelementen. [51] In particular, a stepped end of circular segment shells of a Hüllelementes allows some radial expansion of a Hüllelements at a thermal expansion of Wärmetau scherrohres without particles find a direct access to the heat exchanger tube. [52] By special undercuts Hüllelementteile, such as circular segment shells, are hung radially into each other and / or hung axially together, so that without screwing alone by plugging a heat exchanger tube can be surrounded with enveloping elements. [53] It is understood that in areas in which a heat exchanger tube is designed as a pipe bend, the Hüllelemente must be designed to match adjusted.
[54] Eine Variante zur Herstellung eines Hüllrohres des erfindungsgemäßen Verfahrens wird anschließend beispielhaft erläutert. [55] In einem ersten Schritt werden Faserbündel hergestellt, die im nachfolgenden Silizierungsprozess nicht abreagieren. Jeweils 50.000 nahezu parallele Einzelfilamente umfassende Carbonfaserstränge werden mit einem Phenolharz imprägniert, so dass ein Prepreg mit einem massebezogenen Harzgehalt von 35 % und einem Flächengewicht von 320 g/m2 ent- steht. Dieser Prepreg wird kontinuierlich mit einer Geschwindigkeit von 1 m/min bei einem Druck von 1 MPa auf einer Bandpresse bei einer Temperatur von 180 °C zu einer Gelegebahn mit einer Dicke von 200 μπι ver- dichtet und gleichzeitig soweit gehärtet, dass eine formstabile Gelegebahn erhalten wird. Die Gelegebahn wird nachfolgend in einzelne Bänder mit einer Breite von jeweils 50 mm aufgetrennt. Diese werden wie vorstehend beschrieben zu Segmenten mit einer Länge von 9,4 mm und einer Breite von 1 mm zerschnitten. 2400 g der Faserbündel werden in einen Taumelmischer überführt und mit 600 g Pulverharz überschüttet und 5 Minuten lang miteinander vermischt. [54] A variant for producing a cladding tube of the method according to the invention is then explained by way of example. [55] In a first step, fiber bundles are produced that do not react in the subsequent silicization process. Carbon fiber strands comprising 50,000 nearly parallel single filaments are impregnated with a phenolic resin to form a prepreg having a mass-based resin content of 35% and a basis weight of 320 g / m 2 . This prepreg is continuously kneaded at a speed of 1 m / min at a pressure of 1 MPa on a belt press at a temperature of 180 ° C. to form a fabric web having a thickness of 200 μm. seals and at the same time cured so far that a dimensionally stable fabric web is obtained. The gauze web is subsequently separated into individual bands with a width of 50 mm each. These are cut as described above to segments 9.4 mm long and 1 mm wide. 2400 g of the fiber bundles are transferred to a tumble mixer and coated with 600 g of powdered resin and mixed together for 5 minutes.
[56] Das Presswerkzeug wird mit der Pressmasse befüllt. Um eine bevorzugt tangentiale Ausrichtung der Faserbündel zu erzielen, wird ein Befüllgitter verwendet, das mehrere konzentrische Ringe umfasst, deren Abstand kleiner oder gleich der Länge der Faserbündel ist. Beim Einfüllen fällt die Formmasse mit den Faserbündeln durch die Zwischenräume zwischen den konzentrischen Ringen des Befüllgitters, und die Faserbündel nehmen im Wesentlichen tangentiale Anordnung an. Das befüllte Press- Werkzeug wird auf einer Warmfließpresse 30 Minuten einem Druck von 4,0 N/mm2 und einer Temperatur von 160 °C ausgesetzt und anschließend entformt. Während des Pressvorgangs härtet das Phenolharz aus. Es wird ein endkonturnaher Grünkörper in Form einer Ringscheibe erhalten, deren Innendurchmesser dem des späteren zu schützenden Rohres entspricht. Von diesen Scheiben werden 10 Stück mittels einem SiC-Pulver enthaltenden Phenolharzklebers bestrichen, in eine Klemmvorrichtung so gespannt, dass die einzelnen Scheiben genau über einander liegen und der Fügespalt kleiner 0,5 mm ist. Die eingespannten Scheiben werden mit Spannvorrichtung in einen Trockenschrank überführt und bei 180 °C 30 min ausgehär- tet. Anschließend wird der entstandene Zylinder, genannt Grünkörper, aus der Spannvorrichtung ausgebaut und carbonisiert. [56] The pressing tool is filled with the molding compound. In order to achieve a preferably tangential alignment of the fiber bundles, a filling grid is used which comprises a plurality of concentric rings whose spacing is less than or equal to the length of the fiber bundles. During filling, the molding compound with the fiber bundles falls through the spaces between the concentric rings of the filling grid, and the fiber bundles assume a substantially tangential arrangement. The filled press tool is exposed to a pressure of 4.0 N / mm 2 and a temperature of 160 ° C for 30 minutes on a hot extrusion press and then demoulded. During the pressing process, the phenolic resin cures. It is obtained a near net shape green body in the form of an annular disc whose inner diameter corresponds to that of the later to be protected pipe. Of these slices 10 pieces are coated by means of a phenolic resin adhesive containing SiC powder, clamped in a clamping device so that the individual slices lie exactly above each other and the joint gap is less than 0.5 mm. The clamped disks are transferred with a tensioning device into a drying cabinet and cured at 180 ° C. for 30 minutes. tet. Subsequently, the resulting cylinder, called green body, removed from the jig and carbonized.
[57] Der Grünkörper wird in einen Schutzgasofen unter Stickstoffatmo- sphäre mit einer Aufheizgeschwindigkeit von 1 K/min auf eine Temperatur von 900 °C erhitzt. Dabei werden die Phenolharze zu einem im Wesentlichen aus Kohlenstoff bestehenden Rückstand zersetzt. Diese Temperatur wird eine Stunde gehalten. Danach wird der carbonisierte Formkörper auf Raumtemperatur abgekühlt. Anschließend wird der entstandene poröse CFC Zylinder in einen Tiegel aus Graphit überführt und mit Silizium über- schüttet und in einem Ofen unter Vakuum auf Temperaturen von 1700 °C erhitzt. Hierbei tritt ab einer Temperatur von 1420 °C flüssiges Silizium in den porösen Vorkörper ein und wandelt den Matrixkohlenstoff in Siliziumcarbid um. Anschließend wird das gebildet C/SiC-Rohr im Außen und Innenbereich auf die gewünschte Endgeometrie geschliffen. [58] Die so gefertigten C/SiC-Formkörper besitzen eine Festigkeit von 50 - 300 MPa und einer Wärmeleitfähigkeit von 50 - 150 W/mK. Die Materialzusammensetzung der Formkörper kann abhängig vom Herstellungspro- zess wie folgt angegeben werden: 2 - 30 % Kohlenstoff, 50 - 70% Siliziumkarbid und 5 - 15% Silizium. Die Porosität des Materials ist mit < 2% sehr gering. [57] The green body is heated to a temperature of 900 ° C in a protective gas oven under a nitrogen atmosphere at a rate of 1 K / min. The phenolic resins are decomposed to a residue consisting essentially of carbon. This temperature is maintained for one hour. Thereafter, the carbonized molded body is cooled to room temperature. Subsequently, the resulting porous CFC cylinder is transferred to a crucible made of graphite and spilled with silicon and heated in an oven under vacuum to temperatures of 1700 ° C. In this case, liquid silicon enters the porous preform from a temperature of 1420 ° C. and converts the matrix carbon into silicon carbide. Subsequently, the formed C / SiC pipe in the outer and inner regions is ground to the desired final geometry. [58] The C / SiC moldings produced in this way have a strength of 50 - 300 MPa and a thermal conductivity of 50 - 150 W / mK. Depending on the manufacturing process, the material composition of the moldings may be given as follows: 2 - 30% carbon, 50 - 70% silicon carbide and 5 - 15% silicon. The porosity of the material is very low at <2%.

Claims

Patentansprüche: claims:
1. Verfahren zum Schutz von Wärmetauscherrohren in Dampfkesselanlagen, dadurch gekennzeichnet, dass Wärmetauscherrohre der Dampfkesselanlage zumindest teilweise mit Keramik umgeben werden. 1. A method for protecting heat exchanger tubes in steam boiler systems, characterized in that heat exchanger tubes of the steam boiler system are at least partially surrounded by ceramic.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Keramik faserverstärkt ist. 2. The method according to claim 1, characterized in that the ceramic is fiber-reinforced.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Keramik zumindest teilweise aus Silizium Carbid gebildet ist. 3. The method according to claim 1 or 2, characterized in that the ceramic is at least partially formed of silicon carbide.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass die Keramik zumindest teilweise gebildet ist durch Silizieren einer Gra- phit-oder Kohlenstofffolie, insbesondere einer Folie aus expandiertem Graphit. 4. The method according to claim 3, characterized in that the ceramic is at least partially formed by siliconizing a graphite or carbon film, in particular a sheet of expanded graphite.
5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Keramik relativ zum Wärmetauscherrohr (1) verschiebbar angeordnet wird. 5. The method according to any one of the preceding claims, characterized in that the ceramic relative to the heat exchanger tube (1) is arranged displaceably.
6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Keramik in Form von mehreren aneinander anliegenden Hüllelementen angeordnet wird. 6. The method according to any one of the preceding claims, characterized in that the ceramic is arranged in the form of a plurality of adjacent cladding elements.
7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Hüllelemente aus Kreissegmentschalen gebildet sind. 7. The method according to any one of the preceding claims, characterized in that the enveloping elements are formed from circular segment shells.
8. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass die Kreissegmentschalen axial und/oder radial formschlüssig miteinander verbunden sind. 8. The method according to claim 4, characterized in that the circular segment shells are axially and / or radially positively connected with each other.
9. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Keramik Kohlefasern aufweist. 9. The method according to any one of the preceding claims, characterized in that the ceramic comprises carbon fibers.
10. Verfahren nach einem der vorhergehenden Ansprüche, dadurch ge- kennzeichnet, dass die Keramik Temperaturen von über 400 °C ausgesetzt wird. 10. The method according to any one of the preceding claims, character- ized in that the ceramic is exposed to temperatures of about 400 ° C.
11. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Wärmetauscherrohre an ihrer Innenseite einem Druck von über 40 bar ausgesetzt werden. 11. The method according to any one of the preceding claims, characterized in that the heat exchanger tubes are exposed on their inside a pressure of about 40 bar.
12. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Keramik eine Dicke zwischen Innendurchmesser und Außendurchmesser von weniger als 10 Millimetern und vorzugsweise weniger als 5 Millimetern aufweist. 12. The method according to any one of the preceding claims, characterized in that the ceramic has a thickness between inner diameter and outer diameter of less than 10 millimeters and preferably less than 5 millimeters.
13. Verfahren nach einem der vorhergehenden Ansprüche, dadurch ge- kennzeichnet, dass die Keramik einen Innendurchmesser von mehr als 30 mm aufweist. 13. The method according to any one of the preceding claims, character- ized in that the ceramic has an inner diameter of more than 30 mm.
14. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Oberfläche der Keramik Strukturen zur Strömungsbeeinflussung und zur Beeinflussung des Abscheideverhaltens von Partikeln aufweist. 14. The method according to any one of the preceding claims, characterized in that the surface of the ceramic structures for influencing the flow and for influencing the deposition behavior of particles.
15. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Hüllelemente durch Konsolen oder Anschweißpunkte in ihrer Lage fixiert werden. 15. The method according to any one of the preceding claims, characterized in that the enveloping elements are fixed by brackets or welding points in their position.
16. Formkörper mit einer faserverstärkten Keramik zur Durchführung eines Verfahrens nach einem der vorhergehenden Ansprüche, der dazu geeignet ist ein Wärmetauscherrohr zu umhüllen. 16. molded body with a fiber-reinforced ceramic for performing a method according to any one of the preceding claims, which is adapted to envelop a heat exchanger tube.
17. Formkörper nach einem der vorhergehenden Ansprüche, dessen Oberfläche zur Vermeidung von Ablagerungen bzw. Anbackungen mit Nanopartikeln beschichtet ist. 17. Shaped body according to one of the preceding claims, whose surface is coated to prevent deposits or caking with nanoparticles.
18. Wärmetauscherrohr, das mit einem Formkörper nach Anspruch 9 umgeben ist. 18. Heat exchanger tube, which is surrounded by a shaped body according to claim 9.
19. Wärmetauscherrohr nach Anspruch 18, dadurch gekennzeichnet, dass zwischen Formkörper und Wärmetauscherrohr ein vorzugsweise ringförmiger Spalt angeordnet ist. 19. Heat exchanger tube according to claim 18, characterized in that a preferably annular gap is arranged between the shaped body and the heat exchanger tube.
20. Wärmetauscherrohr, das mit Fasermaterialien wie beispielsweise Faserkeramikmatten umgeben wird. Dampfkesselanlage, die Wännetauscherrohre nach einem der vorhergehenden Ansprüche aufweist. 20. Heat exchanger tube which is surrounded by fiber materials such as fiber ceramic mats. Steam boiler plant comprising heat exchanger pipes according to one of the preceding claims.
EP11782009.2A 2010-07-28 2011-07-08 Method for protecting heat exchanger pipes in steam boiler systems, molded body, heat exchanger pipe, and steam boiler system Withdrawn EP2598789A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010032612A DE102010032612A1 (en) 2010-07-28 2010-07-28 Process for protecting heat exchanger tubes in steam boiler plants, shaped bodies, heat exchanger tubes and steam boiler plants
PCT/DE2011/001435 WO2012028127A2 (en) 2010-07-28 2011-07-08 Method for protecting heat exchanger pipes in steam boiler systems, molded body, heat exchanger pipe, and steam boiler system

Publications (1)

Publication Number Publication Date
EP2598789A2 true EP2598789A2 (en) 2013-06-05

Family

ID=44946911

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11782009.2A Withdrawn EP2598789A2 (en) 2010-07-28 2011-07-08 Method for protecting heat exchanger pipes in steam boiler systems, molded body, heat exchanger pipe, and steam boiler system

Country Status (6)

Country Link
US (1) US20130118421A1 (en)
EP (1) EP2598789A2 (en)
JP (1) JP2013535647A (en)
CA (1) CA2806495A1 (en)
DE (2) DE102010032612A1 (en)
WO (1) WO2012028127A2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013000424A1 (en) 2013-01-14 2014-07-17 Martin GmbH für Umwelt- und Energietechnik Method and device for protecting heat exchanger tubes and ceramic component
ES2699192T3 (en) 2016-01-12 2019-02-07 Hitachi Zosen Inova Ag Procedure and device to generate superheated steam by means of the heat generated in the boiler of a combustion plant

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE356124B (en) * 1970-08-21 1973-05-14 K Oestbo
JPS62242705A (en) * 1986-04-11 1987-10-23 三山工機株式会社 Method of forming refractory layer to heat-receiving surfaceof tube for heat exchange in boiler
DE3823439C2 (en) * 1988-07-11 1996-06-13 Peter Dipl Ing Weinsheimer Shell-shaped protective element for pipes
JPH0492861A (en) * 1990-08-07 1992-03-25 Nippon Oil Co Ltd Production of ceramic material
US5107798A (en) * 1991-04-08 1992-04-28 Sage Of America Co. Composite studs, pulp mill recovery boiler including composite studs and method for protecting boiler tubes
JPH08334204A (en) * 1995-06-09 1996-12-17 Babcock Hitachi Kk External surface repairing method for heat exchanger tube of boiler
US5884695A (en) * 1996-04-30 1999-03-23 American Magotteaux Corporation Boiler tube shield
US6152087A (en) * 1996-12-12 2000-11-28 Ngk Insulators, Ltd. Boiler tube protector and a method for attaching such protector to a boiler tube
DE19717931C1 (en) * 1997-04-29 1998-10-22 Ecm Ingenieur Unternehmen Fuer Heat exchangers for areas of application at temperatures greater than 200 ° C. to 1,600 ° C. and / or corrosive media
JPH11316016A (en) * 1998-05-01 1999-11-16 Mitsui Eng & Shipbuild Co Ltd Exhaust gas dust removing device
FR2785664B1 (en) * 1998-11-05 2001-02-02 Snecma COMPOSITE MATERIAL HEAT EXCHANGER AND METHOD FOR THE PRODUCTION THEREOF
JP2001049379A (en) * 1999-08-12 2001-02-20 Nkk Corp Heat transfer tube for heat exchanger
JP2003227697A (en) * 2002-02-01 2003-08-15 Masaaki Fukuda Protecting pipe constituted of ceramic short pipe
JP3867632B2 (en) * 2002-07-22 2007-01-10 住友電気工業株式会社 Conduit for fluid flow path and heat exchanger provided with the conduit
DE202004018924U1 (en) * 2004-01-17 2005-05-25 Schmid, Christoph Ribbed heat exchanger comprises a pipe and a pluraity of connected ribs, with both the pipe and the ribs made of silicon carbide or some other ceramic material reinforced with silicon carbide or carbon fibers
EP1840264A1 (en) * 2006-03-31 2007-10-03 PTS (Papiertechnische Stiftung) München Paper enriched with carbon
DE102006038713A1 (en) * 2006-05-10 2007-11-29 Schunk Kohlenstofftechnik Gmbh Pressure-resistant fluid-loaded body
EP2118563A1 (en) * 2007-03-15 2009-11-18 Metso Power AB Tube shield and a method for attaching such shield to a boiler tube
DE202008006044U1 (en) 2008-05-02 2008-07-17 Imerys Kiln Furniture Hungary Ltd. Ceramic protective cover made of SiC
US20100038061A1 (en) * 2008-08-15 2010-02-18 Wessex Incorporated Tube shields having a thermal protective layer
DE102008051905A1 (en) * 2008-10-16 2010-07-15 Sgl Carbon Se Process for the production of heat exchanger tubes
DE102009024802B3 (en) * 2009-05-29 2010-07-08 Siemens Aktiengesellschaft Ceramic layer for applying on a condenser component for water steam, comprises particles of a first type, which are applied on the layer and form a part of the surface of the layer, and particles of second type

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2012028127A2 *

Also Published As

Publication number Publication date
CA2806495A1 (en) 2012-03-08
JP2013535647A (en) 2013-09-12
DE102010032612A1 (en) 2012-03-29
DE112011102512A5 (en) 2013-06-20
US20130118421A1 (en) 2013-05-16
WO2012028127A2 (en) 2012-03-08
WO2012028127A3 (en) 2012-04-26

Similar Documents

Publication Publication Date Title
WO2005043058A2 (en) Ceramic thermal shield with integrated reinforcing elements, especially for lining the wall of a gas turbine combustion chamber
EP2754961B2 (en) Method and device for protecting heat exchanger tubes and ceramic component
EP1869292B1 (en) Component of a steam turbine installation, steam turbine installation, use thereof and method for producing the same
EP1693618B1 (en) Porous Body for a Porous Burner, Method for Manufacturing a Porous Body for a Porous Burner and Porous Burner
EP2348205A2 (en) Tubular member and exhaust system
EP4041696A1 (en) Ceramic fiber composite components
EP2163377B1 (en) Corrosion protection cladding for use in environments with high chemical content at high temperatures
DE102008060918A1 (en) Steam generator for generating superheated steam in a waste incineration plant
WO2012028127A2 (en) Method for protecting heat exchanger pipes in steam boiler systems, molded body, heat exchanger pipe, and steam boiler system
AT409547B (en) COMPONENT AND METHOD FOR THE PRODUCTION THEREOF
DE8118849U1 (en) THERMAL INSULATING SHEATHING FOR LONG STRETCHED CONSTRUCTION PARTS
WO2016026986A1 (en) Pipeline for hot gases, and method for producing same
DE202008006044U1 (en) Ceramic protective cover made of SiC
EP1660833A2 (en) Thermal shielding brick for lining a combustion chamber wall, combustion chamber and a gas turbine
EP0851999A1 (en) Tubular heat exchanger for connection downstream of a thermal-cracking installation
EP3105197B1 (en) Method for producing a modular insulation element
DE4423319A1 (en) Material for high temperature firing systems
DE102015213862B3 (en) Combustion power plant with improved efficiency due to corrosion-resistant heat exchangers
EP2661541B1 (en) Method for producing a protective layer for a rotor blade
EP3594609B1 (en) Laser safety wall
EP2350547B1 (en) Use of a paste that self-cures to form a heat-insulating material
DE102017203802B4 (en) METAL MELTING TUBE FOR MELTED NON-ILLEGAL ALLOYING, ASSEMBLY OF METAL MELTING TUBES AND CASTING SYSTEM FOR NON-IRON ALLOYING
AT503345A1 (en) DEVICE FOR CARRYING AND LEAVING COMBUSTION GASES AND METHOD OF PRODUCTION
DE3249375C2 (en) Device for cooling the wall, especially in blast furnaces
EP1862738B1 (en) Method for dry-heating of a refractory lining and apparatus for carrying out the method

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130214

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

17Q First examination report despatched

Effective date: 20150615

18W Application withdrawn

Effective date: 20150703