EP2593944A2 - Generateur de champ magnetique et dispositif magnetocalorique comportant ledit generateur de champ magnetique - Google Patents

Generateur de champ magnetique et dispositif magnetocalorique comportant ledit generateur de champ magnetique

Info

Publication number
EP2593944A2
EP2593944A2 EP11745685.5A EP11745685A EP2593944A2 EP 2593944 A2 EP2593944 A2 EP 2593944A2 EP 11745685 A EP11745685 A EP 11745685A EP 2593944 A2 EP2593944 A2 EP 2593944A2
Authority
EP
European Patent Office
Prior art keywords
arms
symmetry
permanent magnets
magnetic field
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP11745685.5A
Other languages
German (de)
English (en)
Inventor
Osmann Sari
Nathanaël ALBER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Haute Ecole D'ingenierie Et De Gestion Du Canton De Vaud (heig-Vd)
Haute Ecole d Ingenierie et de Gestion du Canton de Vaud Heig VD
Original Assignee
Haute Ecole D'ingenierie Et De Gestion Du Canton De Vaud (heig-Vd)
Haute Ecole d Ingenierie et de Gestion du Canton de Vaud Heig VD
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Haute Ecole D'ingenierie Et De Gestion Du Canton De Vaud (heig-Vd), Haute Ecole d Ingenierie et de Gestion du Canton de Vaud Heig VD filed Critical Haute Ecole D'ingenierie Et De Gestion Du Canton De Vaud (heig-Vd)
Publication of EP2593944A2 publication Critical patent/EP2593944A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B21/00Machines, plants or systems, using electric or magnetic effects
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/02Permanent magnets [PM]
    • H01F7/0273Magnetic circuits with PM for magnetic field generation
    • H01F7/0278Magnetic circuits with PM for magnetic field generation for generating uniform fields, focusing, deflecting electrically charged particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2321/00Details of machines, plants or systems, using electric or magnetic effects
    • F25B2321/002Details of machines, plants or systems, using electric or magnetic effects by using magneto-caloric effects
    • F25B2321/0022Details of machines, plants or systems, using electric or magnetic effects by using magneto-caloric effects with a rotating or otherwise moving magnet
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Definitions

  • the present invention relates to a magnetic field generator comprising an assembly of anisotropic permanent magnets arranged to create a magnetic flux and defining air gaps within which said magnetic flux is concentrated, said permanent magnet assembly comprising a first element of assembly and a second connecting element arranged symmetrically with respect to a central axis of symmetry, each of said first and second assembly members having at least two permanent magnets, wherein said permanent magnet assembly comprises a central support, symmetrically symmetrical, with respect to said central axis of symmetry, said central support consisting of an upper part and a lower part symmetrical with respect to the other, the upper part comprising two branches, symmetrical with respect to said central axis of symmetry and carrying the magnets of said first and second assembly members the lower part having two branches symmetrical with respect to said central axis of symmetry and carrying the magnets of said first and second connecting elements, wherein the permanent magnets of each of said first and second connecting elements are arranged symmetrically two by two by relative to a median plane of said gaps.
  • It also relates to a magnetocaloric thermal device comprising at least one magnetocaloric element traversed by a heat transfer fluid, said magnetocaloric element being mounted on a rotary element alternately through said air gaps of a magnetic field generator.
  • magnetocaloric thermal generators it is essential to generate a uniform, intense magnetic field in an air gap corresponding to the volume of a magnetocaloric material or element so that the magnetic field created can successively activate and deactivate magnetically one or more magnetocaloric materials alternately introduced then removed from the air gap.
  • a magnetocaloric device comprising a support on which magnetocaloric elements are mounted and which moves alternately along a linear path in this gap.
  • Halbach's structure makes it possible to obtain high magnetic fields in the air gap of magnetic sources based on permanent magnets.
  • This configuration is used in particular in linear magnetic refrigeration systems (reciprocating) and difficult to exploit when it comes to rotating systems.
  • the current magnetic circuits In order to obtain a large magnetic field, the current magnetic circuits, with regard to rotating circuits, are constructed from magnets assembled on a U-shaped structure. However, the latter form does not make it possible to reach levels of magnetic inductions in the gap with dimensions, shapes, size and reasonable cost.
  • the patent application US 2005/0242912 A1 describes a magnetic assembly which comprises two superimposed blocks which delimit an open slot in which the magnetic field generated by said magnetic assembly is concentrated. Various geometries are described, but none has a symmetry with respect to a central axis with two closed air gaps symmetrical about this axis and arranged in the same plane perpendicular to this axis.
  • the patent application US 2005/0242912 A1 also describes a magnetic assembly similar to that of the patent application cited above. As before, the air gaps are open towards the outside of the permanent magnet block, so that there is leakage of magnetic flux and that the concentration of the magnetic field generated is not optimal in the gaps.
  • the present invention adapted to the rotary system, makes it possible to approach the Halbach structure and thus to close the magnetic circuit (magnetic flux) on itself and thus to guarantee magnetic inductions. higher for simpler geometric configurations, more compact and inexpensive.
  • the present invention aims at overcoming the disadvantages of the prior art by proposing a generator arranged to generate an intense and uniform magnetic field, easy to produce and having a low cost price in order to equip a compact and economical magnetocaloric device for the cold generation.
  • the invention relates to a magnetic field generator as defined in the preamble and characterized in that each of said assembly elements of the permanent magnet assembly comprises at least two permanent magnets, of opposite magnetic polarity, and one closing element of the magnetic circuits generated in the form of a block of ferromagnetic material and in that the air gaps of said first and second connecting elements, diametrically opposed with respect to said central axis of symmetry, are closed relative to the outside of said assembling magnets by said block of ferromagnetic material.
  • the support of the magnetic field generator comprises an upper part and a lower part, each of these parts comprising four identical branches arranged symmetrically with respect to the central axis of symmetry, these identical branches. each being composed of upper arms and identical lower arms, the axial planes of which form acute angles between them.
  • each of the parts of the support further comprises two intermediate arms disposed respectively between the upper arms and the lower arms of the support.
  • the acute angles that form between them said axial planes of said upper arms and said lower arms are substantially between 10 and 120 degrees, and preferably between 10 and 45 degrees.
  • the upper arms and the lower arms of the symmetrical portions of the support each carry two permanent magnets of opposite magnetic polarity, the intermediate arms each carry a permanent magnet, and the magnetic circuit generated in each of said arms is closed by an arched block made of a material ferromagnetic and mounted on the end faces of the corresponding permanent magnets.
  • the magnetocaloric thermal device as defined in the preamble is characterized in that said magnetic field generator comprises an assembly of anisotropic permanent magnets arranged to create a magnetic flux and defining air gaps inside which said magnetic flux is concentrated, said assembly permanent magnet assembly comprising a first connecting element and a second connecting element mounted symmetrically with respect to a central axis of symmetry and each of said first and second connecting elements comprising at least two permanent magnets of opposite magnetic polarity, in which said assembly of permanent magnets comprises a central support, symmetrical with respect to said central axis of symmetry, said central support consisting of an upper part and a lower part, each of these parts comprising four identical branches arranged symmetrically with respect to the central axis of symmetry, said identical branches being each composed of identical upper arms and lower arms, carrying the magnets of said first and second assembly elements, and whose axial planes form acute angles between them, in that each of the parts the support further comprises two intermediate arms respectively arranged between the upper arms and the lower arms of said support, in that the
  • FIG. 1 is a schematic view of a first embodiment 2 is a side elevational view of a second embodiment of a magnetic field generator according to the invention
  • FIGS. 3A and 3B are views of a magnetic field generator according to the invention
  • FIG. 4 shows the magnetic flux lines generated by the embodiment illustrated in FIGS. 2 and 3
  • FIG. 5 is a perspective view of a magnetocaloric device using the magnetic field generator of FIGS. 2 to 4
  • FIG. Figure 6 is a side elevational view of the device of Figure 5.
  • FIG. 1 represents an elementary embodiment of a magnetic field generator 10 according to the invention.
  • this magnetic field generator 10 is composed of an assembly of anisotropic permanent magnets arranged to create a magnetic flux and to define air gaps 40 inside which the magnetic flux is concentrated.
  • the permanent magnet assembly consists of two connecting elements 21 and 22 mounted on a support 50, symmetrically with respect to a central axis of symmetry AA, perpendicular to a median plane BB of the gaps 40.
  • the support 50 comprises two substantially identical parts, a part 50a, said upper part, and a part 50b, said lower part.
  • the upper part 50a consists of two identical branches 51a and 51b, symmetrical with respect to the axis of symmetry AA.
  • the lower part 50b consists of two identical branches 52a and 52b, symmetrical with respect to the axis of symmetry AA.
  • the ends of the identical branches 51a and 51b respectively carry two anisotropic permanent magnets 30 having the shape of parallelepiped or cubic blocks and, symmetrically, the ends of the identical branches 52a and 52b respectively bear two anisotropic permanent magnets 30 also having the shape of blocks. parallelepipedic or cubic.
  • a block of a ferromagnetic material 61, respectively 62 is mounted on the end faces two permanent magnets 30.
  • the two blocks of ferromagnetic material 61 and 62 are called closure blocks of the magnetic circuits and have the function of channeling the magnetic flux.
  • the magnetic field generator 100 comprises an assembly of anisotropic permanent magnets arranged to create a magnetic flux and to define air gaps 40 inside which the magnetic flux generated is concentrated.
  • the assembly of permanent magnets consists of two assembly elements 21 and 22, mounted on a support 50 and arranged symmetrically with respect to an axis of symmetry AA, perpendicular to the median plane BB of the gaps 40.
  • the support 50 comprises, as before, an upper part 50a and a lower part 50b, which are identical and symmetrically arranged with respect to the median plane BB of the air gaps 40, each of these parts comprising four identical branches 51a, 51 ', 51b , 51'b, for the upper part 50a, and 52a, 52'a, 52b, 52'b, for the lower part 50b, arranged symmetrically with respect to the axis of symmetry AA.
  • the four identical branches 51a, 51a and 51b, 51b of the upper part 50a and of the lower part 50b are arranged symmetrically with respect to the axis of symmetry AA and are angularly separated, said acute angles forming between them said axial planes being substantially between 10 and 120 degrees, and preferably between 10 and 45 degrees.
  • These identical branches 51 a, 51 'a and 51 b, 51' b respectively 52a, 52'a and 52b, 52'b are each terminated by an arm, 510a, 51a and 510b, 51b respectively 520a, 521a and 520b, 521b, arranged to carry the permanent magnets 30.
  • Each part of the support 50 is further provided with two intermediate arms 512a, 512b, respectively 522a, 522b, placed and secured by magnetic attraction of a support 20a, respectively 20b, in the shape of a circular arc of trapezoidal section.
  • These arms intermediates are angularly arranged equidistantly, that is to say, centered longitudinally on the axis BB, between the arms 510a and 51a, respectively 510b and 51b and between the arms 520a and 521a.
  • the magnetic circuits generated in each of the arms are closed by blocks of ferromagnetic materials to best prevent magnetic flux losses.
  • the arms 510a, 51a have branches 51a and 51a and the intermediate arm 512a of the upper part 50a are respectively connected to the corresponding arms 520a, 521a and 522a of the lower part 50b by arcuate blocks 610, 61 and 612 of ferromagnetic material, and the arms 510b, 51 1b of the branches 51b and 51'b as well as the intermediate arm 512b are respectively connected to the corresponding arms 520b, 521b and 522b of the lower part 50b by arcuate blocks 620 , 621 and 622 of ferromagnetic material.
  • intermediate arms 512a, 512b and the corresponding arms 522a and 522b of the lower part 50b are not essential, intermediate magnets can be maintained under the effect of magnetic attraction in the space delimited by the side arms and magnet blocks supported by these arms. These intermediate magnets, whether or not carried by intermediate arms, have the effect of reinforcing the power of the magnetic field in the air gaps, which improves the efficiency of the magnetocaloric device. Moreover the number of arms of each branch is limited only by dimensional and constructive reasons. Their number could be increased to reach higher powers.
  • FIG. 4 represents the magnetic flux lines generated by this embodiment as illustrated by FIG. 3 along line EE. The arrangement and orientation of the magnets are of great importance.
  • the upper portions 50a and 50b that serve to closing the magnetic field and the arcuate blocks 61 1 and 621 made of a ferromagnetic material make it possible to produce regular magnetic flux loops, concentrated only in the volume of the magnetic field generator, which are predominant and uniformly distributed in the gaps 40 This gives a generator capable of generating an intense field in its air gaps 40 despite the use of a reduced number of permanent magnets which have the advantage of having an easy and economical manufacturing structure.
  • the magnetic field generators 10 and 100 described above are in particular usable in a magnetocaloric thermal device comprising at least one magnetocaloric element.
  • This magnetocaloric element may be constituted by one or more magnetocaloric materials and is traversed by a circulating heat transfer fluid whose particular function is to evacuate the calories generated during the passage of the magnetocaloric elements in the air gaps 40.
  • the magnetocaloric device 200 illustrated in FIGS. 5 and 6 and using the magnetic field generator 100 according to the invention comprises a central shaft 70 corresponding to the axis of symmetry AA, on which is mounted a wheel 80 which serves as support for elements 81 in one or more magnetocaloric materials.
  • the elements 81 in magnetocaloric materials are located in the peripheral zone of the wheel 80, that is to say the one which passes through the air gaps 40 of the magnetic field generator 100 as described with reference to FIGS. 2 to 4.
  • the construction of this device is symmetrical.
  • the movement of the wheel 80 carrying the magnetocaloric elements 81 is a continuous rotation whose speed is determined in such a way that the heat exchange at a circulating heat transfer fluid, in a manner known per se in contact with said magnetocaloric elements 81, be optimal.
  • the calories produced during the passage of the magnetocaloric elements 81 are either used or eliminated. Possibilities of industrial application
  • the invention achieves the goals set, namely to propose a generator for generating a magnetic field whose realization is structurally simple and economical and which allows to obtain a large magnetic field with relatively few magnetic matter.
  • a generator can in particular find an industrial as well as domestic application when it is integrated in a magnetocaloric heat generator intended to be used in the field of heating, air conditioning, tempering, cooling or other, at competitive costs and with a small footprint.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

L'invention a pour objet un générateur (10) de champ magnétique comportant un assemblage d'aimants permanents anisotropes (30) définissant des entrefers (40) à l'intérieur desquels est concentré le flux magnétique. L'assemblage d'aimants permanents est constitué de deux éléments d'assemblage (21 et 22) montés sur un support (50), symétriquement par rapport à un axe de symétrie central (A-A), perpendiculaire à un plan médian (B-B) des entrefers (40).. Le support (50) comprend deux parties sensiblement identiques, une partie supérieure (50a) et une partie inférieure (50b). La partie supérieure (50a) est constituée de deux branches identiques (51a, 51b), symétriques par rapport à l'axe de symétrie central (A-A). La partie inférieure (50b) est constituée de deux branches identiques (52a, 52b), symétriques par rapport à l'axe de symétrie central (A-A). Les extrémités des branches identiques (51a, 51) portent respectivement deux aimants permanents anisotropes (30) ayant la forme de blocs parallélépipédiques ou cubiques. Le circuit magnétique généré dans chacun des bras est fermé par un bloc arqué (61, 62) réalisé en un matériau ferromagnétique et monté sur les faces d'extrémité des aimants permanents (30) correspondants.

Description

GENERATEUR DE CHAMP MAGNETIQUE ET DISPOSITIF MAGNETOCALORIQUE COMPORTANT LEDIT GENERATEUR DE CHAMP MAGNETIQUE Domaine technique
La présente invention concerne un générateur de champ magnétique comportant un assemblage d'aimants permanents anisotropes agencés pour créer un flux magnétique et définissant des entrefers à l'intérieur desquels est concentré ledit flux magnétique, ledit assemblage d'aimants permanents comportant un premier élément d'assemblage et un second élément d'assemblage disposés symétriquement par rapport à un axe de symétrie central, chacun desdits premier et second éléments d'assemblage comportant au moins deux aimants permanents, dans lequel ledit assemblage d'aimants permanents comporte un support central, symétrique par rapport audit axe de symétrie central, ledit support central étant constitué d'une partie supérieure et d'une partie inférieure symétriques l'une par rapport à l'autre, la partie supérieure comportant deux branches, symétriques par rapport audit axe de symétrie central et portant les aimants desdits premier et second éléments d'assemblage, la partie inférieure comportant deux branches symétriques par rapport audit axe de symétrie central et portant les aimants desdits premier et second éléments d'assemblage, dans lequel les aimants permanents de chacun desdits premier et second éléments d'assemblage sont disposés symétriquement deux à deux par rapport à un plan médian desdits entrefers. Elle a également pour objet un dispositif thermique magnétocalorique comportant au moins un élément magnétocalorique traversé par un fluide caloporteur, ledit élément magnétocalorique étant monté sur un élément rotatif traversant alternativement lesdits entrefers d'un générateur de champ magnétique. Technique antérieure
Afin d'obtenir de manière économique un champ magnétique important dans un espace délimité, il est connu de réaliser un assemblage d'aimants permanents. La littérature décrit de tels assemblages notamment pour une application dans le domaine de l'imagerie médicale par résonnance magnétique. Dans ce domaine, l'on réalise des couronnes d'aimants permanents que l'on dispose côte-à-côte. Les aimants permanents utilisés présentent toutefois une structure géométrique complexe difficile à réaliser, ce qui augmente le coût de revient de l'assemblage d'aimants.
La transposition de telles structures d'aimants n'est de ce fait pas envisageable dans le cadre d'applications à volume plus restreint, et en particulier dans le domaine des générateurs thermiques magnétocaloriques. En effet, dans ces appareils, il est indispensable de générer un champ magnétique uniforme, intense dans un entrefer correspondant au volume d'un matériau ou élément magnétocalorique afin que le champ magnétique créé puisse successivement activer et désactiver magnétiquement un ou plusieurs matériaux magnétocaloriques alternativement introduits puis retirés de l'entrefer. Afin d'obtenir un champ magnétique important dans un espace délimité, il est connu de réaliser un assemblage d'aimants permanents et de les disposer de telle manière que le flux magnétique soit concentré dans un entrefer de section réduite. On connaît un dispositif magnétocalorique comprenant support sur lequel sont montés des éléments magnétocaloriques et qui se déplace alternativement selon une trajectoire linéaire dans cet entrefer.
Cette construction présente plusieurs inconvénients, notamment en ce qui concerne le coût de fonctionnement. Le déplacement alternatif d'une partie est provoqué par un moteur linéaire, ce qui représente une solution coûteuse, tant d'un point de vue construction que du coté de l'utilisation. Afin d'obtenir un champ magnétique important dans un espace délimité, il est connu de réaliser un assemblage d'aimants permanents selon une structure d'Halbarch. La littérature, et particulièrement les publications "J. Lee, J.M. Kenkel and D.C. Jiles, Design of permanent-magnet field source for rotary- magnetic réfrigération Systems. IEEE Trans Magn 38 5 (2002), pp. 2991- 2993", "K.Halbach, Nucl.Instr.Methods, vol.169, p.1 , 1980", "K.Halbach, Nucl.Instr.Methods, vol.187, p.109, 1981 ", "F.BIoch, O.Gugat, JC.Toussaint and G. Meunier, IEEE Trans.Magn., vol.34, p.2465, 1998", "CERN Courier, vol.43, No3, p.7, 2002" et "S.J.Lee and D.C.Jiles, IEEE Trans.Magn., vol.36, No5, p.3105, 2000", décrit de tels assemblages notamment pour une application dans le domaine de l'imagerie médicale par résonance magnétique.
L'emploi judicieux de la structure d'Halbach permet d'obtenir des champs magnétiques élevés dans l'entrefer des sources magnétique basées sur des aimants permanents. Cette configuration est utilisée en particulier dans les systèmes de réfrigération magnétique linéaires (reciprocating) et difficilement exploitable lorsqu'il s'agit des systèmes rotatifs.
Afin d'obtenir un champ magnétique important, les circuits magnétiques actuels, en ce qui concerne des circuits rotatifs, sont construits à partir d'aimants assemblés sur une structure en forme U. Toutefois, cette dernière forme ne permet pas d'atteindre des forts niveaux d'inductions magnétiques dans l'entrefer avec des dimensions, formes, encombrement et coût raisonnables.
La demande de brevet US 2005/0242912 A1 décrit un assemblage magnétique qui comporte deux blocs superposés qui délimitent une fente ouverte dans laquelle est concentré le champ magnétique généré par ledit assemblage magnétique. Diverses géométries sont décrites, mais aucune ne présente une symétrie par rapport à un axe central avec deux entrefers fermés symétriques par rapport à cet axe et disposés dans un même plan perpendiculaire à cet axe. La demande de brevet US 2005/0242912 A1 décrit également un assemblage magnétique similaire à celui de la demande de brevet citée ci-dessus. Comme précédemment, les entrefers sont ouverts vers l'extérieur du bloc d'aimants permanents, de sorte qu'il y a des fuites de flux magnétique et que la concentration du champ magnétique généré n'est pas optimale deans les entrefers.
Afin de faire face à ce problème, la présente invention, adaptée au système rotatif, permet de s'approcher de la structure d'Halbach et ainsi de refermer le circuit magnétique (flux magnétique) sur lui-même et de garantir ainsi des inductions magnétiques plus élevées pour des configurations géométriques plus simples, plus compactes et peu coûteuses.
Exposé de l'invention
La présente invention vise à pallier les inconvénients de l'art antérieur en proposant un générateur agencé pour générer un champ magnétique intense et uniforme, facile à réaliser et ayant un faible coût de revient en vue d'équiper un dispositif magnétocalorique compact et économique pour la génération de froid.
Dans ce but, l'invention concerne un générateur de champ magnétique tel que défini en préambule et caractérisé en ce que chacun desdits éléments d'assemblage de l'assemblage d'aimants permanents comprend au moins deux aimants permanents, de polarité magnétique opposée et un élément de fermeture des circuits magnétiques générés sous la forme d'un bloc de matériau ferromagnétique et en ce que les entrefers desdits premier et second éléments d'assemblage, diamétralement opposés par rapport audit axe de symétrie central sont fermés par rapport à l'extérieur dudit assemblage d'aimants par lesdits bloc de matériau ferromagnétique. Selon une forme de réalisation préférée de l'invention, le support du générateur de champ magnétique comprend une partie supérieure et une partie inférieure, chacune de ces parties comportant quatre branches identiques disposées symétriquement par rapport à l'axe de symétrie central, ces branches identiques étant composées chacune de bras supérieurs et de bras inférieurs identiques, dont les plans axiaux forment entre eux des angles aigus.
Dans cette forme de réalisation, chacune des parties du support comporte en outre deux bras intermédiaires disposés respectivement entre les bras supérieurs et les bras inférieurs du support.
De façon avantageuse, les angles aigus que forment entre eux lesdits les plans axiaux desdits bras supérieurs et lesdits bras inférieurs sont sensiblement compris entre 10 et 120 degrés, et de préférence entre 10 et 45 degrés.
Les bras supérieurs et les bras inférieurs des parties symétriques du support portent chacun deux aimants permanents de polarité magnétique opposée, les bras intermédiaires portent chacun un aimant permanent, et le circuit magnétique généré dans chacun desdits bras est fermé par un bloc arqué réalisé en un matériau ferromagnétique et monté sur les faces d'extrémité des aimants permanents correspondants.
Le dispositif thermique magnétocalorique tel que défini en préambule est caractérisé en ce que ledit générateur de champ magnétique comporte un assemblage d'aimants permanents anisotropes agencés pour créer un flux magnétique et définissant des entrefers à l'intérieur duquel est concentré ledit flux magnétique, ledit assemblage d'aimants permanents comportant un premier élément d'assemblage et un second élément d'assemblage montés symétriquement par rapport à un axe de symétrie central et chacun desdits premier et second éléments d'assemblage comportant au moins deux aimants permanents de polarité magnétique opposée, dans lequel ledit assemblage d'aimants permanents comporte un support central, symétrique par rapport audit axe de symétrie central, ledit support central étant constitué d'une partie supérieure et d'une partie inférieure, chacune de ces parties comportant quatre branches identiques disposées symétriquement par rapport à l'axe de symétrie central, lesdites branches identiques étant composées chacune de bras supérieurs et de bras inférieurs identiques, portant les aimants desdits premier et second éléments d'assemblage, et dont les plans axiaux forment entre eux des angles aigus, en ce que chacune des parties du support comporte en outre deux bras intermédiaires disposés respectivement entre les bras supérieurs et les bras inférieurs dudit support, en ce que les entrefers desdits premier et second éléments d'assemblage sont diamétralement opposés par rapport audit axe de symétrie central, en ce que les aimants de chacun desdits premier et second éléments d'assemblage sont disposés symétriquement deux à deux par rapport à un plan médian desdits entrefers, et en ce que le circuit magnétique généré dans chacun desdits bras est fermé par un bloc arqué réalisé en un matériau ferromagnétique et monté sur les faces d'extrémité des aimants permanents correspondants.
Description sommaire des dessins
La présente invention et ses avantages apparaîtront mieux dans la description suivante d'un mode de réalisation donné à titre d'exemple non limitatif, en référence aux dessins annexés, dans lesquels: la figure 1 est une vue schématique d'une première forme de réalisation d'un générateur de champ magnétique selon l'invention, la figure 2 est une vue en élévation latérale d'une seconde forme de réalisation d'un générateur de champ magnétique selon l'invention, - les figures 3A et 3B sont des vues en plan respectivement de dessus et de dessous de la réalisation représentée par la figure 2, la figure 4 représente les lignes de flux magnétique générées par la forme de réalisation illustrée par les figures 2 et 3, la figure 5 est une vue en perspective d'un dispositif magnétocalorique utilisant le générateur de champ magnétique des figures 2 à 4, et la figure 6 est une vue en élévation latérale du dispositif de la figure 5.
Meilleures manières de réaliser l'invention
La figure 1 représente une forme de réalisation élémentaire d'un générateur de champ magnétique 10 selon l'invention. Ce générateur de champ magnétique 10 se compose dans ce cas d'un assemblage d'aimants permanents 30 anisotropes agencés pour créer un flux magnétique et pour définir des entrefers 40, à l'intérieur desquels est concentré le flux magnétique. L'assemblage d'aimants permanent est constitué de deux éléments d'assemblage 21 et 22 montés sur un support 50, symétriquement par rapport à un axe de symétrie central A-A, perpendiculaire à un plan médian B-B des entrefers 40. Dans cette réalisation, le support 50 comprend deux parties sensiblement identiques, une partie 50a, dite partie supérieure, et une partie 50b, dite partie inférieure. La partie supérieure 50a est constituée de deux branches identiques 51a et 51b, symétriques par rapport à l'axe de symétrie A-A. De façon similaire, la partie inférieure 50b est constituée de deux branches identiques 52a et 52b, symétriques par rapport à l'axe de symétrie A-A. Les extrémités des branches identiques 51a et 51b portent respectivement deux aimants permanents anisotropes 30 ayant la forme de blocs parallélépipédiques ou cubiques et, de façon symétrique, les extrémités des branches identiques 52a et 52b portent respectivement deux aimants permanents anisotropes 30 ayant également la forme de blocs parallélépipédiques ou cubiques. Pour fermer les circuits magnétiques des éléments d'assemblage 21 et 22, un bloc en un matériau ferromagnétique 61 , respectivement 62, est monté sur les faces d'extrémité des deux aimants permanents 30. Les deux blocs en matériau ferromagnétique 61 et 62 sont appelés blocs de fermeture des circuits magnétiques et ont pour fonction de canaliser les flux magnétiques. La réalisation du générateur selon l'invention illustrée par les figures 2, 3A et 3B est plus élaborée que celle de la figure 1 , mais met sensiblement en œuvre les mêmes principes. Comme précédemment, le générateur de champ magnétique 100 comporte un assemblage d'aimants permanents 30 anisotropes agencés pour créer un flux magnétique et pour définir des entrefers 40, à l'intérieur desquels est concentré le flux magnétique engendré. L'assemblage d'aimants permanents est constitué de deux éléments d'assemblage 21 et 22, montés sur un support 50 et disposés symétriquement par rapport à un axe de symétrie A-A, perpendiculaire au plan médian B-B des entrefers 40.
Le support 50 comprend, comme précédemment, une partie supérieure 50a et une partie inférieure 50b, qui sont identiques et symétriquement disposées par rapport au plan médian B-B des entrefers 40, chacune de ces parties comportant quatre branches identiques 51 a, 51 ', 51 b, 51'b, pour la partie supérieure 50a, et 52a, 52'a, 52b, 52'b, pour la partie inférieure 50b, disposées symétriquement par rapport à l'axe de symétrie A-A. Les quatre branches identiques 51 a, 51 'a et 51 b, 51 'b de la partie supérieure 50a et de la partie inférieure 50b sont disposées symétriquement par rapport à l'axe de symétrie A-A et sont angulairement séparées, lesdits angles aigus que forment entre eux lesdits plans axiaux étant sensiblement compris entre 10 et 120 degrés, et de préférence entre 10 et 45 degrés. Ces branches identiques 51 a, 51 'a, et 51 b, 51 'b respectivement 52a, 52'a et 52b, 52'b sont terminées chacune par un bras, 510a, 51 1 a et 510b, 51 1 b respectivement 520a, 521a et 520b, 521 b, agencé pour porter les aimants permanents 30. Chaque partie du support 50 est en outre pourvue de deux bras intermédiaires 512a, 512b, respectivement 522a, 522b, posés et solidaires par attraction magnétique d'un support 20a, respectivement 20b, en forme d'arc de cercle de section trapézoïdale. Ces bras intermédiaires sont disposés angulairement de façon équidistante, c'est-à-dire centrés longitudinalement sur l'axe B-B, entre les bras 510a et 51 1 a, respectivement 510b et 51 1 b et entre les bras 520a et 521 a. Les bras 510a, 510b, 51 1 a, 51 1 b, respectivement 520a, 521 a et 520b, 521 b, portent chacun deux aimants permanents 30 ayant la forme de blocs parallélépipédiques ou cubiques qui sont placés de manière que les champs magnétiques soient de polarité opposée, les bras intermédiaires 512a et 512b, respectivement 522b et 522b, ne portant eux qu'un seul aimant permanent. Les circuits magnétiques générés dans chacun des bras sont fermés par des blocs de matériaux ferromagnétiques pour éviter au mieux les pertes de flux magnétique. Les bras 510a, 51 1 a des branches 51a et 51 'a ainsi que le bras intermédiaire 512a de la partie supérieure 50a sont respectivement connectés aux bras correspondants 520a, 521 a et 522a de la partie inférieure 50b par des blocs arqués 610, 61 1 et 612 en matériau ferromagnétique, et les bras 510b, 51 1 b des branches 51 b et 51 'b ainsi que le bras intermédiaire 512b sont respectivement connectés aux bras correspondants 520b, 521 b et 522b de la partie inférieure 50b par des blocs arqués 620, 621 et 622 en matériau ferromagnétique.
On notera que les bras intermédiaires 512a, 512b ainsi que les bras correspondants 522a et 522b de la partie inférieure 50b ne sont pas indispensables, des aimants 30 intermédiaires pouvant être maintenus sous l'effet de l'attraction magnétique dans l'espace délimité par les bras latéraux et les blocs d'aimants supportés par ces bras. Ces aimants intermédiaires, portés ou non par des bras intermédiaires, ont pour effet de renforcer la puissance du champ magnétique dans les entrefers, ce qui améliore le rendement du dispositif magnétocalorique. Par ailleurs le nombre des bras de chacune des branches n'est limité que par des raisons dimensionnelles et constructives. Leur nombre pourrait être augmenté pour permettre d'atteindre des puissances supérieures. La figure 4 représente les lignes de flux magnétique générées par cette forme de réalisation telle qu'illustré par la figure 3 selon la ligne E-E. La disposition et l'orientation des aimants sont de grande importance. Elles permettent de fermer le champ magnétique sur lui-même et ainsi de concentrer le flux magnétique dans les entrefers 40. On peut ainsi constater que ces lignes de flux sont concentrées au niveau des entrefers 40. Les parties supérieure 50a et inférieure 50b qui servent à fermer le champ magnétique et les blocs arquées 61 1 et 621 réalisés en un matériau ferromagnétique permettent de réaliser des boucles de flux magnétique régulières, concentrées uniquement dans le volume du générateur de champ magnétique, qui sont prépondérantes et distribuées de manière uniforme dans les entrefers 40. L'on obtient ainsi un générateur susceptible de générer un champ intense dans ses entrefers 40 malgré l'utilisation d'un nombre réduit d'aimants permanents qui ont l'avantage de présenter une structure de fabrication aisée et économique.
Les générateurs de champ magnétique 10 et 100 décrits ci-dessus sont en particulier utilisables dans un dispositif thermique magnétocalorique comportant au moins un élément magnétocalorique. Cet élément magnétocalorique peut être constitué par un ou plusieurs matériaux magnétocaloriques et est traversé par un fluide caloporteur circulant ayant notamment pour fonction, d'évacuer les calories générées lors du passage des éléments magnétocaloriques dans les entrefers 40.
Le dispositif magnétocalorique 200 illustré par les figures 5 et 6 et utilisant le générateur de champ magnétique 100 selon l'invention comporte un arbre central 70 correspondant à l'axe de symétrie A-A, sur lequel est montée une roue 80 qui sert de support à des éléments 81 en un ou plusieurs matériaux magnétocaloriques. Les éléments 81 en matériaux magnétocaloriques sont localisés dans la zone périphérique de la roue 80, c'est-à-dire celle qui traverse les entrefers 40 du générateur de champ magnétique 100 tel que décrit en référence aux figures 2 à 4. La construction de ce dispositif est symétrique. Le mouvement de la roue 80 portant les éléments magnétocaloriques 81 est une rotation continue dont la vitesse est déterminée de telle manière que l'échange thermique au niveau d'un fluide caloporteur circulant, de façon connue en soi en contact avec lesdits éléments magnétocaloriques 81 , soit optimal. Selon que le dispositif 200 est utilisé dans un système de chauffage ou un générateur de froid, les calories produites lors du passage des éléments magnétocaloriques 81 sont soit utilisées ou éliminées. Possibilités d'application industrielle
Il ressort clairement de cette description que l'invention permet d'atteindre les buts fixés, à savoir proposer un générateur pour générer un champ magnétique dont la réalisation est structurellement simple et économique et qui permet d'obtenir un champ magnétique important avec relativement peu de matière aimantée. Un tel générateur peut notamment trouver une application aussi bien industrielle que domestique lorsqu'il est intégré dans un générateur thermique magnétocalorique destiné à être exploité dans le domaine du chauffage, de la climatisation, du tempérage, du refroidissement ou autres, à des coûts compétitifs et avec un faible encombrement.

Claims

Revendications
1. Générateur de champ magnétique (10) comportant un assemblage d'aimants permanents anisotropes agencés pour créer un flux magnétique et définissant des entrefers (40) à l'intérieur desquels est concentré ledit flux magnétique, ledit assemblage d'aimants permanents comportant un premier élément d'assemblage (21) et un second élément d'assemblage (22) disposés symétriquement par rapport à un axe de symétrie central (A-A), chacun desdits premier (21) et second (22) éléments d'assemblage comportant au moins deux aimants permanents (30), dans lequel ledit assemblage d'aimants permanents comporte un support central (50), symétrique par rapport audit axe de symétrie central (A-A), ledit support central étant constitué d'une partie supérieure (50a) et d'une partie inférieure (50b) symétriques l'une par rapport à l'autre, la partie supérieure (50a) comportant deux branches (51a, 51b), symétriques par rapport audit axe de symétrie central (A-A) et portant les aimants desdits premier (21) et second (22) éléments d'assemblage, la partie inférieure (50b) comportant deux branches (52a, 52b), symétriques par rapport audit axe de symétrie central (A-A) et portant les aimants desdits premier (21) et second (22) éléments d'assemblage, dans lequel les aimants permanents (30) de chacun desdits premier (21) et second (22) éléments d'assemblage sont disposés symétriquement deux à deux par rapport à un plan médian desdits entrefers (40), caractérisé en ce que chacun desdits éléments d'assemblage (21 , 22) de l'assemblage d'aimants permanents comprend au moins deux aimants permanents (30), de polarité magnétique opposée et un élément de fermeture des circuits magnétiques générés sous la forme d'un bloc de matériau ferromagnétique (61 , 62) et en ce que les entrefers (40) desdits premier (21) et second (22) éléments d'assemblage, diamétralement opposés par rapport audit axe de symétrie central (A-A) sont fermés par rapport à l'extérieur dudit assemblage d'aimants par lesdits bloc de matériau ferromagnétique.
Générateur de champ magnétique (100) selon la revendication 1 , caractérisé en ce que le support (50) comprend une partie supérieure (50a) et une partie inférieure (50b), chacune de ces parties comportant quatre branches identiques (51a, 51'a, 51b, 51 'b, 52a, 52'a, 52b, 52'b), disposées symétriquement par rapport à l'axe de symétrie central (A-A), ces branches identiques étant composées chacune de bras supérieurs (510a, 510b, 511a, 511b) et de bras inférieurs (520a, 520b; 521a, 521b) identiques, dont les plans axiaux forment entre eux des angles aigus.
Générateur de champ magnétique (100) selon la revendication 2, caractérisé en ce que chacune des parties du support (50) comporte en outre deux bras intermédiaires (512a, 512b, 522a, 522b) disposés respectivement entre les bras supérieurs (510a, 510b, 511a, 511 b) et les bras inférieurs (520a, 520b; 521a, 521b) dudit support (50),
Générateur de champ magnétique (100) selon la revendication 2, caractérisé en ce que lesdits angles aigus que forment entre eux lesdits les plans axiaux desdits bras supérieurs (510a, 510b, 511a, 511b) et lesdits bras inférieurs (520a, 520b, 521a, 521b) sont sensiblement compris entre 10 et 120 degrés, et de préférence entre 10 et 45 degrés.
Générateur de champ magnétique (100) selon les revendications 1 et 2, caractérisé en ce que lesdits bras supérieurs (510a, 510b, 511a, 511b) et lesdits bras inférieurs (520a, 520b, 521a, 521b) des parties symétriques (50a, 50b) du support (50), portent chacun deux aimants permanents (30), de polarité magnétique opposée, en ce que les bras intermédiaires (512a, 512b, 522a, 522b) portent chacun un aimant permanent (30), et en ce que le circuit magnétique généré dans chacun desdits bras est fermé par un bloc arqué (610, 611 , 612, 620, 621 , 622) réalisé en un matériau ferromagnétique et monté sur les faces d'extrémité des aimants permanents (30) correspondants.
6. Dispositif thermique magnétocalorique (200) comportant au moins un élément magnétocalorique (81) traversé par un fluide caloporteur, ledit élément magnétocalorique (81) étant monté sur un élément rotatif (80) traversant alternativement les entrefers d'un générateur de champ magnétique, caractérisé en ce que ledit générateur de champ magnétique (100) comporte un assemblage d'aimants permanents (30) anisotropes agencés pour créer un flux magnétique et définissant des entrefers (40) à l'intérieur duquel est concentré ledit flux magnétique, ledit assemblage d'aimants permanents comportant un premier élément d'assemblage (21) et un second élément d'assemblage (22) montés symétriquement par rapport à un axe de symétrie central (A-A) et chacun desdits premier (21) et second (22) éléments d'assemblage comportant au moins deux aimants permanents (30) de polarité magnétique opposée, dans lequel ledit assemblage d'aimants permanents comporte un support central (50), symétrique par rapport audit axe de symétrie (A-A), ledit support central étant constitué d'une partie supérieure (50a) et d'une partie inférieure (50b), chacune de ces parties comportant quatre branches identiques (51a, 51 'a, 51 b, 51'b, 52a, 52'a, 52b, 52'b) disposées symétriquement par rapport à l'axe de symétrie (A-A), lesdites branches identiques étant composées chacune de bras supérieurs (510a, 510b, 511a, 511 b) et de bras inférieurs (520a, 520b; 521a, 521b) identiques, portant les aimants desdits premier (21) et second (22) éléments d'assemblage, dont les plans axiaux forment entre eux des angles aigus, et en ce que chacune des parties du support (50) comporte en outre deux bras intermédiaires (512a, 512b, 522a, 522b) disposés respectivement entre les bras supérieurs (510a, 510b, 511a, 511 b) et les bras inférieurs (520a, 520b; 521a, 521 b) dudit support (50), en ce que les entrefers (40) desdits premier (21) et second (22) éléments d'assemblage sont diamétralement opposés par rapport audit axe de symétrie (A-A), en ce que les aimants de chacun desdits premier (21) et second (22) éléments d'assemblage sont disposés symétriquement deux à deux par rapport à un plan médian desdits entrefers (40), et en ce que le circuit magnétique généré dans chacun desdits bras est fermé par un bloc arqué (610, 611 , 612, 620, 621 ,
622) réalisé en un matériau ferromagnétique et monté sur les faces d'extrémité des aimants permanents (30) correspondants.
EP11745685.5A 2010-07-15 2011-07-13 Generateur de champ magnetique et dispositif magnetocalorique comportant ledit generateur de champ magnetique Withdrawn EP2593944A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH01149/10A CH703452A1 (fr) 2010-07-15 2010-07-15 Generateur de champ magnetique et dispositif magnetocalorique comportant ledit generateur de champ magnetique.
PCT/CH2011/000163 WO2012006752A2 (fr) 2010-07-15 2011-07-13 Generateur de champ magnetique et dispositif magnetocalorique comportant ledit generateur de champ magnetique

Publications (1)

Publication Number Publication Date
EP2593944A2 true EP2593944A2 (fr) 2013-05-22

Family

ID=43640014

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11745685.5A Withdrawn EP2593944A2 (fr) 2010-07-15 2011-07-13 Generateur de champ magnetique et dispositif magnetocalorique comportant ledit generateur de champ magnetique

Country Status (3)

Country Link
EP (1) EP2593944A2 (fr)
CH (1) CH703452A1 (fr)
WO (1) WO2012006752A2 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110631287A (zh) * 2019-09-09 2019-12-31 包头稀土研究院 旋转式室温磁制冷机用双c形磁场

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6946941B2 (en) * 2003-08-29 2005-09-20 Astronautics Corporation Of America Permanent magnet assembly
US7148777B2 (en) * 2004-02-03 2006-12-12 Astronautics Corporation Of America Permanent magnet assembly
JP4649389B2 (ja) * 2006-09-28 2011-03-09 株式会社東芝 磁気冷凍デバイスおよび磁気冷凍方法
EP2108904A1 (fr) * 2008-04-07 2009-10-14 Haute Ecole d'Ingénierie et de Gestion du Canton de Vaud (HEIG-VD) Dispositif magnétocalorique, en particulier réfrigérateur magnétique, pompe à chaleur ou générateur de puissance

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2012006752A2 *

Also Published As

Publication number Publication date
CH703452A1 (fr) 2012-01-31
WO2012006752A2 (fr) 2012-01-19
WO2012006752A3 (fr) 2012-03-08

Similar Documents

Publication Publication Date Title
EP2878000B1 (fr) Générateur de champ magnétique pour appareil thermique magnétocalorique et appareil thermique magnétocalorique équipé d'un tel générateur
FR3028927A1 (fr) Appareil thermique magnetocalorique
EP0201021B1 (fr) Moteur électrique synchrone à rotor en forme de disque
EP2438453A2 (fr) Generateur de champ magnetique et dispositif magnetocalorique comportant ledit generateur de champ magnetique
WO2013060946A1 (fr) Generateur thermique magnetocalorique
EP2283283A2 (fr) Dispositif de generation de flux thermique a materiau magnetocalorique
EP1969294A2 (fr) Dispositif de generation de froid et de chaleur par effet magneto-calorique
EP2820361B1 (fr) Générateur de champ magnétique pour appareil thermique magnétocalorioue
WO2017149434A1 (fr) Procede pour generer un champ magnetique et generateur de champ magnetique
FR2930692A1 (fr) Moteur electrique pourvu de moyens de refroidissement selectifs
WO2012006752A2 (fr) Generateur de champ magnetique et dispositif magnetocalorique comportant ledit generateur de champ magnetique
EP2606495B1 (fr) Generateur de champ magnetique pour appareil thermique magnetocalorioue
EP3120445B1 (fr) Machine electrique hybride
EP0312464B1 (fr) Machine électrique notamment à entrefers radiaux
FR2995743A1 (fr) Generateur torique a induction laterale
FR2679714A1 (fr) Transducteur electromagnetique polyphase a aimant permanent, notamment moteur d'entrainement.
FR2963824A1 (fr) Generateur de champ magnetique pour appareil thermique magnetocalorique et procede de montage d'un tel generateur
FR3053448B1 (fr) Appareil thermique magnetocalorique
EP2553693B1 (fr) Appareil thermique magnetocalorique comportant un generateur de champ magnetique
FR3111753A1 (fr) Machine de conversion d’énergie thermique en énergie électrique
FR2930679A1 (fr) Dispositif de generation de flux thermique a materiau magnetocalorique
FR2933537A1 (fr) Dispositif de generation de flux thermique a materiau magnetocalorique
FR2870402A1 (fr) Generateur de courant electrique

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130207

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20130910