EP1969294A2 - Dispositif de generation de froid et de chaleur par effet magneto-calorique - Google Patents

Dispositif de generation de froid et de chaleur par effet magneto-calorique

Info

Publication number
EP1969294A2
EP1969294A2 EP06817743A EP06817743A EP1969294A2 EP 1969294 A2 EP1969294 A2 EP 1969294A2 EP 06817743 A EP06817743 A EP 06817743A EP 06817743 A EP06817743 A EP 06817743A EP 1969294 A2 EP1969294 A2 EP 1969294A2
Authority
EP
European Patent Office
Prior art keywords
magnetic field
heat transfer
transfer fluid
bell
field generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP06817743A
Other languages
German (de)
English (en)
Inventor
Osmann Sari
Peter W. Egolf
Stefano Bozzini
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CLEAN COOLING SYSTEMS SA
Original Assignee
HEIG-VD
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HEIG-VD filed Critical HEIG-VD
Publication of EP1969294A2 publication Critical patent/EP1969294A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B21/00Machines, plants or systems, using electric or magnetic effects
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2321/00Details of machines, plants or systems, using electric or magnetic effects
    • F25B2321/002Details of machines, plants or systems, using electric or magnetic effects by using magneto-caloric effects
    • F25B2321/0021Details of machines, plants or systems, using electric or magnetic effects by using magneto-caloric effects with a static fixed magnet
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Definitions

  • the present invention relates to a device for generating cold and heat by magnetic effect, comprising at least one generator of a magnetic field disposed in at least one ring segment and defining an annular space traversed by a coaxial circular part, this part being provided with through radial cavities and containing at least one magneto-caloric material, said through radial cavities being arranged to conduct a coolant in contact with said magneto-caloric material.
  • Prior art cold generating devices usually include a compressor for compressing a coolant to raise its temperature and expansion means for decompressing the coolant to cool it. It turns out that the refrigerants commonly used are extremely polluting and that their use involves significant risks of air pollution. As a result, these refrigerants no longer meet the current requirements for environmental protection.
  • US Pat. No. 4,674,288 describes a device for liquefying helium comprising a magnetizable substance that is movable in a magnetic field generated by a coil and a reservoir containing helium in thermal conduction with said coil. The translational movement of the magnetizable substance generates cold which is transmitted to the helium via conductive elements.
  • the publication FR 2,525,748 relates to a magnetic refrigeration device comprising a magnetizable material, a system for generating a variable magnetic field, and means for transferring heat and cold including a chamber filled with a saturated liquid refrigerant. .
  • the magnetizable material generates cold in a position in which the cold transfer means extracts cold from the magnetizable material by condensing a coolant, and the magnetizable material generates heat in another position in which the heat transfer means heat extract heat from the magnetizable material by boiling another refrigerant.
  • the publication FR 2,586,793 relates to a device comprising a substance intended to produce heat when it is magnetized and to produce cold when demagnetized, a means of generating a variable magnetic field, said field generating means magnetic device comprising a superconducting coil and a reservoir containing an element to be cooled.
  • U.S. Patent No. 5,231,834 discloses a magnetic effect heating and cooling device in which a magnetic fluid is pumped through the system. The fluid passes through a magnetic field generated by superconducting or other magnets. When the fluid enters the magnetic field it is heated due to magnetization.
  • the international publications WO 2004/059221 and WO 2004/059222 relate to a method and a device for generating cold and heat by magneto-caloric effect.
  • the first publication describes a device comprising a rotary element traversed by a heat transfer fluid in a direction parallel to its axis of rotation. This construction is cumbersome and only makes it difficult to industrially produce compact devices, simple and economical construction and easy maintenance.
  • the publication FR 2 517 415 relates to a method and a refrigeration device in which a support bearing a paramagnetic substance is driven by a mechanical / magnetic system in a toroidal cryostat.
  • This support is subjected to a magnetic field induced either by electromagnets or by permanent magnets located on either side of the magnetic medium.
  • the magnetic circuit is open and the magnetic field lines close on the outside of the system, which leads to the need for a large magnetic induction requiring a large energy consumption in the case of use of electro -aimants.
  • the use of these electromagnets causes losses by Joule effect it is absolutely necessary to clear to ensure proper operation in Ia * Curie temperature of gadolinium.
  • the device described in the publication FR 2 861 454 is a magnetic flux generating device comprising a ring bearing radially magnetic means which rotates alternately on its axis. This configuration increases the energy absorbed by the system because it is necessary to movement a higher mass due to the rotation of the magnets. This disadvantage is not found in the device of the invention in which the mass of the magnets is fixed.
  • the present invention proposes to overcome the disadvantages of known systems by providing a cooling device that does not use fluids pollutant refrigerants and therefore does not have the disadvantages of previous systems.
  • the device of the present invention can be achieved by a simple and economical construction, capable of being industrialized and resulting in a compact, efficient and economical apparatus.
  • the device as defined in the preamble and characterized in that it further comprises means for bringing said heat transfer fluid in an axial direction into said coaxial circular part, means for introducing said heat transfer fluid in a radial direction. in said through radial cavities, said means for introducing said heat transfer fluid in an axial direction into said coaxial circular piece and said means for introducing said heat transfer fluid in a radial direction into said through radial cavities comprising at least one fluid circulator arranged to circulate said heat transfer fluid, at least a first collector arranged to collect said carrier fluid having passed through said radial cavities through an area comprising said magnetic field generator, and at least a second collector arranged to collect said heat transfer fluid having trave rsé said through radial cavities in an area outside said magnetic field generator.
  • the device comprises means arranged to form a unit arranged to be associated in series with an identical unit to form a device of greater power.
  • Said heat transfer fluid may be a gas and, in this case, said heat transfer fluid circulator is a fan. Said heat transfer fluid may also be a liquid and, in this case, said heat transfer fluid circulator is a pump.
  • said magnetic field generator is fixed and said coaxial circular piece having radial through cavities is rotatable about its axis by means of a drive motor coaxially mounted to said coaxial rotary circular part.
  • Said magnetic field generator advantageously has the shape of a semicircular ring and comprises a steel core having a U-shaped cross section in which permanent magnets are inlaid so as to form a closed magnetic field.
  • the device preferably comprises a mechanical support assembly comprising a fixed inner bell arranged coaxially inside a rotary outer bell coupled to the drive motor, the rotating coaxial part being integral with said rotary outer bell.
  • the inner fixed bell and the outer rotary bell are linked by means of ball bearings.
  • the fixed inner bell and rotatable outer bell form the connecting elements of two units.
  • the mechanical support assembly essentially comprises a plate, a belt, a fixed plate and the inner fixed bell.
  • the device preferably comprises a lower cylinder which defines with the belt and the fixed plate a lower space.
  • the lower space is divided mainly by three substantially radial partitions and forms said means for introducing said heat transfer fluid in an axial direction in said coaxial circular part.
  • Said magnetic field generator may be composed of an even number of magnetic elements of ring segments, the ring segments of each of said pairs of elements being arranged symmetrically with respect to the axis of said magnetic field generator.
  • the elements in the form of ring segments of the same pair respectively generate magnetic fields of reversed polarity.
  • FIG. 1 represents a schematic perspective view of a first embodiment of the device for generating cold and heat by magneto-caloric effect according to the invention
  • FIG. 2 represents an axial sectional view of the device of FIG. 1,
  • FIG. 3 represents a partial bottom view, in perspective, illustrating the structure of the heat transfer fluid supply means
  • FIG. 4 represents a perspective view of a second embodiment of the device for generating cold and heat by magneto-caloric effect according to the invention comprising two units similar to the the device of Figure 1, connected in series in order to increase the efficiency of the system,
  • FIGS. 5A and 5B show two schematic views illustrating a first form of use of the device according to the invention
  • FIGS. 6A and 6B show two schematic views illustrating a second form of use of the device according to the invention
  • FIGS. 7A and 7B show two schematic views illustrating a third form of use of the device according to the invention.
  • Figures 8A and 8B are schematic views illustrating an advantageous embodiment of the magnetic field generator of the device according to the invention, Figure 8B being a sectional view along the line A-A of Figure 8A.
  • this device 10 mainly comprises a coaxial circular piece 11 containing a magneto-caloric material, mounted on a mechanical support assembly 12 and driven in rotation about its axis through a magnetic field generated by a fixed magnetic field generator 13.
  • the fixed magnetic field generator 13 has, in the construction example shown, the shape of a semicircular ring which comprises a core 14 composed of a magnetizable steel block having a general U-shape and in which are embedded magnets 15, preferably permanent magnets of high power.
  • This construction could be modified by a symmetrical structure in which the magnetizable steel block in the form of a half crown is replaced by two magnetizable steel blocks corresponding to segments of a quarter circle and arranged two by two symmetrically. or segments corresponding in terms of dimensions to a sixth or an eighth of a circle and also arranged two by two symmetrically.
  • the core 14 has an air gap 16 in which is engaged the coaxial circular part 11 which in this embodiment is rotatable.
  • the space between the periphery of the coaxial circular piece 11 and the adjacent walls of the core 14 is very small and substantially constant. It should in principle not exceed 0.5 mm, which implies a very precise and very rigid construction of the rotating coaxial part 11 and the mechanical support assembly 12.
  • the magnetic field generator 13 is, in this case, fixed and mounted on a rigid plate 17 of the mechanical support assembly 12.
  • the rotating coaxial part 11 rotates outside a belt 18 mounted on a fixed plate 19 located at the base of a fixed internal bell 20 disposed coaxially inside a rotary outer bell 21 coupled to a motor. M training.
  • the fixed internal bell 20 and the rotatable outer bell 21 are connected by means of two ball bearings 22 and 23.
  • the mechanical support assembly 12 essentially comprises the plate 17, the belt 18, the fixed plate 19 and the bell fixed interior 20.
  • the drive motor M is mounted between the fixed plate 19 and the top of the outer rotary bell 21.
  • a lower cylinder 24 defines with the belt 18 and the fixed plate 19 a lower space 25 which is shown in more detail. 3 and communicates with the external environment through a central opening 26 in which is mounted a circulator 27.
  • the lower space 25 extends beyond the plate 17 of the mechanical support assembly 12 substantially to the fixed plate 19 and, as shown more precisely in Figure 2, a cylindrical side wall 28 which defines this chamber near the rotary coaxial part 11, and which is perfo a plurality of holes 29 facing passages 30 formed in the belt 18.
  • Figure 3 shows in greater detail the interior of the lower space 25 delimited by the cylindrical side wall 28.
  • This space is shared mainly by three substantially radial partitions 41, 42 and 43 intended to orient the air flows generated by the circulator 27.
  • the air which in the example shown, is the gas constituting the coolant necessary to transport calories and frigories generated by the magneto-caloric device of the invention is set in motion by a fan which constitutes the circulator.
  • This heat transfer fluid could also be a liquid which, in this case, could be set in motion by a pump forming the circulator.
  • the rotary coaxial part 11 is provided with a plurality of radial through-cavities 31 filled partially or totally with a magnetocaloric material, for example in the form of an accumulation of balls, these cavities opening through peripheral orifices 32 on the one hand, in a hot fluid manifold 33 which surrounds the semicircular ring of the magnetic field generator 13 and, on the other hand, in a cold fluid manifold 34 disposed in the zone in which the rotating coaxial part 11 turns off the gap 16 of the core 14 of the magnetic field generator 13.
  • the hot fluid manifold communicates with a hot fluid conduit 35 fixed to the plate 17 of the mechanical support assembly 12, through openings 36 arranged in this plate 17.
  • FIG. 4 shows two units 40 and 50 respectively similar to the device of Figures 1 and 2, these units being connected in series to increase the efficiency of the so-called two-stage device.
  • the components of this device similar to the components described and represented in FIG. 1, have the same reference numerals.
  • Each of the units 40 and 50 mainly comprises a rotary coaxial part 11 containing a magnetocaloric material, mounted on a mechanical support assembly 12 and driven in rotation about its axis through a magnetic field generated by a magnetic field generator 13.
  • the field generator In the construction example shown, the magnetic element 13 has the shape of a semicircular ring which comprises a core 14 composed of a magnetizable steel block having a general U-shape and in which a series of magnets is embedded. 15, preferably permanent magnets of high power.
  • the core 14 has an air gap 16 in which is engaged the rotary coaxial part 11.
  • the unit 50 is turned relative to the unit 40 so that the inner rotary bell 20 and the outer fixed bell 21, which contains the inner rotary bell 20, are common to both units.
  • the invention is not limited to a two-stage device.
  • Other complementary units could be mounted in series on the two units 40 and 50, such an assembly for the purpose of increasing the efficiency and power of the device.
  • the operation of the device illustrated in Figures 1, 2 and 3 will be described below with reference to Figures 5A and 5B for explaining the general principle of operation of this device in a first mode of use as a cold generator.
  • the air blown by the fan 27 enters a chamber A bounded by the partitions 41 and 42, at the rate of 2/3 of the volume blown and in a chamber B delimited by the partitions 42 and 43, at the rate of 1/3 of the insufflated volume.
  • the air volume of the inlet chamber A is injected into the through radial cavities 31 of the coaxial circular part 11, for example containing magneto-caloric material balls, packed so as to allow the passage to the air, and is released into the ambient air.
  • the air that has been blown into the coaxial circular piece 11 from the chamber B is collected at its outlet and is blown into the chamber C.
  • the air leaving the coaxial circular piece 11 from a first zone of chamber C in zone D is injected into the chamber B where it is mixed with the air blown by the fan 27.
  • the air coming from the coaxial circular part 11 from a second zone of the chamber C in the zone adjacent to the zone D constitutes the flow of cooled air Fx used by the device acting as a cold generator.
  • the fan 27 blows the air only in the chamber B.
  • the air having passed through the radial cavities through the coaxial circular part 11 is injected in equal parts into the chambers A and C.
  • the cooled air flow Fx leaving sector C is collected and blown into a chamber to be cooled (not shown).
  • a cold air flow out identical to the flow of air Fx entering the cold room, is taken and is injected in equal parts in the rooms B and D.
  • Half of this air is mixed with the ambient air blown by the fan 27 into the chamber B.
  • the other half of this air is mixed with the air of the chamber A. Part, in this case half of the air coming from the room A, is insufflated in room D.
  • FIGS. 7A and 7B show a third mode of use in which the device is provided with two fans 27a and 27b and with four tubes E, F, G and H.
  • the first fan 27a draws in the ambient air or the air of the sector A and pushes it back into the tube E.
  • the other fan 27b draws air from the cold room (not shown) and pushes it back into the tube
  • FIGS. 8A and 8B illustrate an embodiment of a magnetic field generator 130 which comprises four elements of ring segments 131, 132, 133 and 134 which are respectively separated by four elements 141, 142, 143 and 144 in which there are no magnetic field generating means.
  • a rotating circular piece 110 is mounted to pass alternately between the magnetic field zones and the magnetic field free zones.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Dynamo-Electric Clutches, Dynamo-Electric Brakes (AREA)
  • Hard Magnetic Materials (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

Le dispositif (10) pour générer en continu du froid et de la chaleur par effet magnétique comporte un générateur d'un champ magnétique (13) disposé selon au moins un segment de couronne et définissant un espace annulaire traversé par une pièce circulaire coaxiale (11) pourvue de cavités radiales traversantes (31) et contenant au moins un matériau magnéto-calorique. Il comporte en outre un circulateur (27) pour amener le fluide caloporteur selon une direction axiale dans les cavités radiale (31). Un premier collecteur (33) recueille le fluide caloporteur ayant traversé les cavités radiales (31) dans une zone comportant le générateur de champ magnétique (13), et un second collecteur (34) recueille le fluide caloporteur ayant traversé les cavités radiales traversantes (31) dans une zone située hors du générateur de champ magnétique (13).

Description

DISPOSITIF DE GENERATION DE FROID ET DE CHALEUR PAR EFFET MAGNETO-CALORIQUE
Domaine technique La présente invention concerne un dispositif pour générer du froid et de la chaleur par effet magnétique, comportant au mois un générateur d'un champ magnétique disposé selon au moins un segment de couronne et définissant un espace annulaire traversé par une pièce circulaire coaxiale, cette pièce étant pourvue de cavités radiales traversantes et contenant au moins un matériau magnéto-calorique, lesdites cavités radiales traversantes étant agencées pour conduire un fluide caloporteur en contact avec ledit matériau magnéto-calorique.
Technique antérieure Les dispositifs conventionnels de génération du froid comportent habituellement un compresseur pour comprimer un fluide réfrigérant afin d'élever sa température et des moyens de détente pour décompresser ce fluide réfrigérant afin de le refroidir. Il se trouve que les réfrigérants couramment utilisés sont extrêmement polluants et que leur utilisation comporte des risques de pollution atmosphérique importants. De ce fait, ces réfrigérants ne répondent plus aux exigences actuelles en matière de protection environnementale.
On connaît déjà des dispositifs utilisant l'effet magnéto-calorique pour générer du froid. En particulier, le brevet US 4 674 288 décrit un dispositif de liquéfaction de l'hélium comprenant une substance magnétisable mobile dans un champ magnétique généré par une bobine et un réservoir contenant de l'hélium en conduction thermique avec ladite bobine. Le mouvement de translation de la substance magnétisable génère du froid qui est transmis à l'hélium par l'intermédiaire d'éléments conducteurs. La publication FR 2 525 748 a pour objet un dispositif de réfrigération magnétique comprenant une matière magnétisable, un système de génération d'un champ magnétique variable et des moyens de transfert de la chaleur et du froid comportant une chambre remplie d'un réfrigérant liquide saturé. La matière magnétisable génère du froid dans une position dans laquelle les moyens de transfert de froid extraient le froid de la matière magnétisable par condensation d'un réfrigérant, et la matière magnétisable génère de la chaleur dans une autre position dans laquelle les moyens de transfert de chaleur extraient la chaleur de la matière magnétisable par ébullition d'un autre réfrigérant.
La publication FR 2 586 793 concerne un dispositif comportant une substance destinée à produire de la chaleur lorsqu'elle se magnétise et à produire du froid lorsqu'elle se démagnétise, un moyen de génération d'un champ magnétique variable, ledit moyen générateur de champ magnétique comportant une bobine supraconductrice et un réservoir contenant un élément à refroidir.
Le brevet US 5 231 834 décrit un dispositif de chauffage et de refroidissement par effet magnétique dans lequel un fluide magnétique est pompé à travers le système. Le fluide traverse un champ magnétique généré par des aimants supraconducteurs ou autres. Lorsque le fluide pénètre dans le champ magnétique il est chauffé en raison de la magnétisation.
De tels systèmes ont une efficacité extrêmement faible et ils ne peuvent pas s'appliquer à des utilisations domestiques. De ce fait, ils ne sont pas aptes à concurrencer les systèmes de réfrigération actuels.
Les publications internationales WO 2004/059221 et WO 2004/059222 concernent un procédé et un dispositif de génération de froid et de chaleur par effet magnéto-calorique. La première publication décrit un dispositif comportant un élément rotatif traversé par un fluide caloporteur dans une direction parallèle à son axe de rotation. Cette construction se révèle encombrante et ne permet que difficilement de réaliser industriellement des appareils compacts, de construction simple et économique et permettant une maintenance aisée.
La publication FR 2 517 415 a pour objet un procédé et un dispositif de réfrigération dans lequel un support portant une substance paramagnétique est entraîné par un système mécanique/magnétique dans un cryostat de forme torique. Ce support est soumis à un champ magnétique induit soit par des électro-aimants, soit par des aimants permanents situés de part et d'autre du support magnétique. Dans cette conception, le circuit magnétique est ouvert et les lignes de champ magnétique se referment à l'extérieur du système, ce qui conduit à la nécessité d'une induction magnétique importante demandant une importante consommation énergétique dans le cas d'utilisation d'électro-aimants. En outre, l'utilisation de ces électro-aimants provoque des pertes par effet de Joule qu'il est absolument nécessaire de dissiper pour garantir le bon fonctionnement à Ia température de Curie* du gadolinium. L'utilisation d'aimants permanents ne permet pas le fonctionnement de ce système car ils devraient avoir une puissance qui n'est actuellement pas disponible sur le marché. De plus, le fait que le circuit magnétique ne soit pas fermé sur lui-même, peut provoquer d'importantes fuites de la magnétisation et il faudrait prévoir une isolation magnétique qui augmenterait notablement le coût de réalisation du dispositif. Ceci n'est pas le cas avec le dispositif selon la présente invention dans lequel il n'y a aucune fuite du champ magnétique puisque le circuit magnétique est fermé sur lui- même et que tout le champ magnétique est concentré dans les matériaux magnéto-caloriques.
Le dispositif décrit dans la publication FR 2 861 454 est un dispositif de génération de flux magnétique comportant un anneau portant radialement les moyens magnétiques qui pivote alternativement sur son axe. Cette configuration augmente l'énergie absorbée par le système car il faut mettre en mouvement une masse plus élevée du fait de la rotation des aimants. Cet inconvénient ne se retrouve pas dans le dispositif de l'invention dans lequel la masse des aimants est fixe.
La publication internationale WO 03/050456 décrit un appareil de réfrigération magnétique utilisant deux aimants permanents animés d'un mouvement de rotation continue afin qu'ils balayent différents compartiments, contenant du gadolinium sous forme de poudre, d'une enceinte annulaire monobloc en les soumettant successivement à un champ magnétique non nul et nul. Pour fonctionner, ce dispositif nécessite une rotation synchrone très précise des aimants. C'est un système techniquement difficile à réaliser et coûteux qui, comme le dispositif décrit dans la publication précédente, demande une consommation énergétique élevée due à la rotation des masses des aimants plus lourds que la masse de gadolinium.
Dans le système proposé par le brevet US 4 727 721 les aimants disposés par une ou deux paires opposées engendrent des forces alternatives saccadées qui génèrent une consommation énergétique accrue pour assurer la rotation du système. Ces forces alternatives peuvent générer des vibrations, donc une usure plus rapide et un bruit. En outre, le fait de faire circuler deux fluides caloporteurs augmente la complexité du système donc son coût de fabrication et d'exploitation, avec des risques de pannes dus à l'éventuelle rupture des joints par l'usure. Dans le dispositif de l'invention, les logements sont disposés côte à côte ce qui engendre un mouvement ayant peu de vibrations car l'effort est pratiquement continu. De ce fait, la consommation énergétique est diminuée, l'usure est réduite et le bruit quasi inexistant. En outre, le fait qu'il n'y ait qu'un seul fluide caloporteur dispense de la présence d'un système d'étanchéité complexe.
Exposé de l'invention
La présente invention se propose de pallier les inconvénients des systèmes connus en offrant un dispositif de refroidissement qui n'utilise pas de fluides réfrigérants polluants et qui ne présente donc pas les inconvénients des systèmes antérieurs. En outre, le dispositif de la présente invention peut être réalisé par une construction simple et économique, susceptible d'être industrialisée et aboutissant à un appareil peu encombrant, efficace et économique.
Ce but est atteint par le dispositif tel que défini en préambule et caractérisé en ce qu'il comporte en outre des moyens pour amener ledit fluide caloporteur selon une direction axiale dans ladite pièce circulaire coaxiale, des moyens pour introduire ledit fluide caloporteur selon une direction radiale dans lesdites cavités radiales traversantes, lesdits moyens pour introduire ledit fluide caloporteur selon une direction axiale dans ladite pièce circulaire coaxiale et lesdits moyens pour introduire ledit fluide caloporteur selon une direction radiale dans lesdites cavités radiales traversantes comprenant au moins circulateur de fluide agencé pour faire circuler ledit fluide caloporteur, au moins un premier collecteur agencé pour recueillir ledit fluide caioporteur ayant traversé lesdites cavités radiales traversantes dans une zone comportant ledit générateur de champ magnétique, et au moins un second collecteur agencé pour recueillir ledit fluide caloporteur ayant traversé lesdites cavités radiales traversantes dans une zone située hors dudit générateur de champ magnétique.
De façon avantageuse, le dispositif comporte des moyens agencés pour former une unité agencée pour être associée en série à une unité identique afin de former un dispositif de plus grande puissance.
Ledit fluide caloporteur peut être un gaz et, dans ce cas, ledit circulateur de fluide caloporteur est un ventilateur. Ledit fluide caloporteur peut également être un liquide et, dans ce cas, ledit circulateur de fluide caloporteur est une pompe.
Selon un mode de réalisation préféré, ledit générateur de champ magnétique est fixe et ladite pièce circulaire coaxiale comportant les cavités radiales traversantes est rotative autour de son axe par l'intermédiaire d'un moteur d'entraînement monté coaxialement à ladite pièce circulaire rotative coaxiale.
Ledit générateur de champ magnétique a avantageusement une forme d'une couronne semi-circulaire et comporte un noyau en acier ayant une section transversale en forme de U dans lequel sont incrustés des aimants permanents de façon à former un champ magnétique fermé.
Le dispositif comporte de préférence un assemblage mécanique de support comprenant une cloche intérieure fixe, disposée coaxialement à l'intérieur d'une cloche extérieure rotative couplée au moteur d'entraînement, la pièce coaxiale rotative étant solidaire de ladite cloche extérieure rotative.
De façon avantageuse, la cloche intérieure fixe et la cloche extérieure rotative sont liées par l'intermédiaire de roulements à billes.
Dans la forme de réalisation préférée, la cloche intérieure fixe et cloche extérieure rotative forment les éléments de liaison de deux unités.
Dans toutes les formes de réalisation, l'assemblage mécanique de support comprend essentiellement une plaque, une ceinture, un plateau fixe et la cloche intérieure fixe.
Le dispositif comporte de façon préférentielle un cylindre inférieur qui définit avec la ceinture et le plateau fixe un espace inférieur. De façon avantageuse, l'espace inférieur est divisé principalement par trois cloisons sensiblement radiales et forme lesdits moyens pour introduire ledit fluide caloporteur selon une direction axiale dans ladite pièce circulaire coaxiale.
Ledit générateur de champ magnétique peut être composé d'un nombre pair d'éléments magnétiques de segments de couronne, les segments de couronne de chacune desdites paires d'éléments étant disposés symétriquement par rapport à l'axe dudit générateur de champ magnétique.
De préférence, les éléments sous la forme de segments de couronne d'une même paire génèrent respectivement des champs magnétiques de polarité inversée.
Description sommaire des dessins
La présente invention sera mieux comprise et ses avantages ressortiront mieux de la description suivante de différents modes de réalisations illustrés par les dessins annexés, dans lesquels :
la figure 1 représente une vue schématique en perspective d'une première forme de réalisation du dispositif pour générer du froid et de la chaleur par effet magnéto-calorique selon l'invention,
la figure 2 représente une vue en coupe axiale du dispositif de la figure 1 ,
la figure 3 représente une vue partielle de dessous, en perspective, illustrant la structure des moyens d'amenée du fluide caloporteur,
la figure 4 représente une vue en perspective d'une seconde forme de réalisation du dispositif pour générer du froid et de la chaleur par effet magnéto-calorique selon l'invention comportant deux unités similaires au dispositif de la figure 1, montées en série afin d'accroître l'efficacité du système,
les figures 5A et 5B représentent deux vues schématiques illustrant une première forme d'utilisation du dispositif selon l'invention,
les figures 6A et 6B représentent deux vues schématiques illustrant une deuxième forme d'utilisation du dispositif selon l'invention,
les figures 7A et 7B représentent deux vues schématiques illustrant une troisième forme d'utilisation du dispositif selon l'invention, et
les figures 8A et 8B représentent des vues schématiques illustrant une forme de réalisation avantageuse du générateur de champ magnétique du dispositif selon l'invention, la figure 8B étant une vue en coupe selon la ligne A-A de la figure 8A.
Manière(s) de réaliser l'invention
En référence aux figures 1 à 3, qui correspondent à une première forme de réalisation du dispositif selon l'invention, ce dispositif 10 comporte principalement une pièce circulaire coaxiale 11 contenant un matériau magnéto-calorique, monté sur un assemblage mécanique de support 12 et entraînée en rotation autour de son axe à travers un champ magnétique généré par un générateur de champ magnétique 13 fixe. Le générateur de champ magnétique 13 fixe a, dans l'exemple de construction représenté, la forme d'une couronne semi-circulaire qui comporte un noyau 14 composé d'un bloc en acier magnétisable ayant une forme générale de U et dans lequel sont incrustés des aimants 15, de préférence des aimants permanents de forte puissance. Cette construction pourrait être modifiée par une structure symétrique dans laquelle le bloc en acier magnétisable en forme de demi- couronne est remplacé par deux blocs en acier magnétisable correspondant à des segments d'un quart de cercle et disposés deux à deux symétriquement ou à des segments correspondant du point de vue des dimensions à un sixième ou à un huitième de cercle et disposés également deux à deux symétriquement. Une telle réalisation est représentée à titre d'exemple par les figures 8A et 8B. Le noyau 14 comporte un entrefer 16 dans lequel est engagée la pièce circulaire coaxiale 11 qui, dans cette réalisation est rotative. L'espace entre la périphérie de la pièce circulaire coaxiale 11 et les parois adjacentes du noyau 14 est très petit et sensiblement constant. Il ne doit en principe pas dépasser 0,5 mm, ce qui implique une construction très précise et très rigide de la pièce coaxiale rotative 11 et de l'assemblage mécanique de support 12. Le générateur de champ magnétique 13 est, dans ce cas, fixe et monté sur une plaque rigide 17 de l'assemblage mécanique de support 12.
La pièce coaxiale rotative 11 tourne à l'extérieur d'une ceinture 18 montée sur un plateau fixe 19 localisé à la base d'une cloche intérieure fixe 20 disposée coaxialement à l'intérieur d'une cloche extérieure rotative 21 couplée à un moteur d'entraînement M . La cloche intérieure fixe 20 et la cloche extérieure rotative 21 sont liées par l'intermédiaire de deux roulements à billes 22 et 23. L'assemblage mécanique de support 12 comprend essentiellement la plaque 17, la ceinture 18, le plateau fixe 19 et la cloche intérieure fixe 20. Le moteur d'entraînement M est monté entre le plateau fixe 19 et le sommet de la cloche extérieure rotative 21. Un cylindre inférieur 24 délimite avec la ceinture 18 et le plateau fixe 19 un espace inférieur 25 qui est représentée plus en détail par la figure 3 et communique avec l'environnement extérieur à travers une ouverture centrale 26 dans laquelle est monté un circulateur 27. L'espace inférieur 25 s'étend au-delà de la plaque 17 de l'assemblage mécanique de support 12 sensiblement jusqu'au plateau fixe 19 et, comme le montre plus précisément la figure 2, une paroi latérale 28 cylindrique qui délimite cette chambre à proximité de la pièce coaxiale rotative 11 , et qui est perforée d'une multitude de trous 29 en regard de passages 30 ménagés dans la ceinture 18. La figure 3 représente plus en détail l'intérieur de l'espace inférieur 25 délimitée par la paroi latérale 28 cylindrique. Cet espace est partagé principalement par trois cloisons 41 , 42 et 43 sensiblement radiales destinées à orienter les flux d'air générés par le circulateur 27. On notera que l'air, qui dans l'exemple représenté, est le gaz constituant le fluide caloporteur nécessaire pour transporter des calories et des frigories générées par le dispositif magnéto-calorique de l'invention est mis en mouvement par un ventilateur qui constitue le circulateur. Ce fluide caloporteur pourrait également être un liquide qui, dans ce cas, pourrait être mis en mouvement par une pompe formant le circulateur.
La pièce coaxiale rotative 11 est pourvue d'une multitude de cavités radiales traversantes 31 , remplies partiellement ou totalement d'un matériau magnéto- calorique, par exemple sous la forme d'une accumulation de billes, ces cavités débouchant à travers des orifices périphériques 32, d'une part, dans un collecteur de fluide chaud 33 qui entoure la couronne semi-circulaire du générateur de champ magnétique 13 et, d'autre part, dans un collecteur de fluide froid 34 disposé dans la zone dans laquelle la pièce coaxiale rotative 11 tourne hors de l'entrefer 16 du noyau 14 du générateur de champ magnétique 13. Le collecteur de fluide chaud communique avec un conduit de fluide chaud 35 fixé à la plaque 17 de l'assemblage mécanique de support 12, à travers des ouvertures 36 ménagées dans cette plaque 17.
La figure 4 représente deux unités 40 et 50 respectivement similaires au dispositif des figures 1 et 2, ces unités étant montées en série afin d'accroître l'efficacité du dispositif dit à deux étages. Les composants de ce dispositif, similaires à des composants décrits et représentés par la figure 1 portent les mêmes numéros de référence. Chacune des unités 40 et 50 comporte principalement une pièce coaxiale rotative 11 contenant un matériau magnéto-calorique, montée sur un assemblage mécanique de support 12 et entraînée en rotation autour de son axe à travers un champ magnétique généré par un générateur de champ magnétique 13. Le générateur de champ magnétique 13 a, dans l'exemple de construction représenté, la forme d'une couronne semi-circulaire qui comporte un noyau 14 composé d'un bloc en acier magnétisable ayant une forme générale de U et dans lequel est incrustée une série d'aimants 15, de préférence des aimants permanents de forte puissance. Le noyau 14 comporte un entrefer 16 dans lequel est engagée la pièce coaxiale rotative 11.
On notera que l'unité 50 est retournée par rapport à l'unité 40 de sorte que la cloche intérieure rotative 20 ainsi que la cloche extérieure fixe 21 , qui contient la cloche intérieure rotative 20, sont communes aux deux unités.
L'invention n'est pas limitée à un dispositif à deux étages. D'autres unités complémentaires pourraient être montées en série sur les deux unités 40 et 50, un tel montage ayant pour but d'augmenter l'efficacité et la puissance du dispositif.
Le fonctionnement du dispositif illustré par les figures 1 , 2 et 3 sera décrit ci- dessous en référence aux figures 5A et 5B destinées à expliquer le principe général de fonctionnement de ce dispositif dans un premier mode d'utilisation comme générateur de froid. L'air soufflé par le ventilateur 27 pénètre dans une chambre A délimitée par les cloisons 41 et 42, à raison de 2/3 du volume insufflé et dans une chambre B délimitée par les cloisons 42 et 43, à raison de 1/3 du volume insufflé. Le volume d'air de la chambre d'entrée A est injecté dans les cavités radiales traversantes 31 de la pièce circulaire coaxiale 11 , contenant par exemple des billes de matériau magnéto-calorique, entassées de manière à laisser le passage à l'air, et est rejeté dans l'air ambiant. Il s'agit de l'air ayant traversé la pièce circulaire coaxiale 11 et qui a été réchauffé par l'effet du champ magnétique sur le matériau magnéto- calorique. L'air qui a été insufflé dans la pièce circulaire coaxiale 11 en provenance de la chambre B est collecté à sa sortie et est insufflé dans Ia chambre C. L'air qui sort de la pièce circulaire coaxiale 11 en provenance d'une première zone de la chambre C dans la zone D est injecté dans la chambre B où il est mélangé à l'air soufflé par le ventilateur 27. L'air qui vient de la pièce circulaire coaxiale 11 en provenance d'une deuxième zone de la chambre C dans la zone adjacente à la zone D constitue le flux d'air refroidi Fx utilisé par le dispositif agissant comme générateur de froid.
Dans un deuxième mode d'utilisation illustré par les figures 6A et 6B, le ventilateur 27 souffle l'air uniquement dans la chambre B. L'air ayant traversé les cavités radiales traversantes de la pièce circulaire coaxiale 11 est injecté à parts égales dans les chambres A et C. Le flux d'air Fx refroidi sortant du secteur C est collecté et insufflé dans une chambre à refroidir (non représentée). De cette chambre froide (non représentée) un flux d'air froid sortant, identique au flux d'air Fx entrant dans cette chambre froide, est prélevé et est injecté à parts égales dans les chambres B et D. La moitié de cet air est mélangée à l'air ambiant insufflé par le ventilateur 27 dans la chambre B. L'autre moitié de cet air est mélangée à l'air de la chambre A. Une partie, en l'occurrence la moitié de l'air provenant de la chambre A, est insufflée dans la chambre D.
Les figures 7A et 7B représentent un troisième mode d'utilisation dans lequel le dispositif est pourvu de deux ventilateurs 27a et 27b ainsi que de quatre tubes E, F, G et H. Le premier ventilateur 27a aspire l'air ambiant ou l'air du secteur A et le refoule dans le tube E. L'autre ventilateur 27b aspire l'air en provenance de la chambre froide (non représentée) et le refoule dans le tube
G. L'air sortant des quatre tubes E, F, G et H est partagé de manière équivalente dans les quatre chambres A, B. C et D. Les tubes F et H sont alimentés par l'air respectivement en provenance des secteurs D et B. L'air sortant du secteur C est injecté dans la chambre froide. Les chambres B et D sont connectées et la température est idéalement la même dans ces chambres. En récupérant l'air du secteur A, le système devient totalement fermé. Les figures 8A et 8B illustrent une forme de réalisation d'un générateur de champ magnétique 130 qui comporte quatre éléments de segments de couronne 131 , 132, 133 et 134 qui sont séparés respectivement par quatre éléments 141 , 142, 143 et 144 dans lesquels ne sont disposés aucun moyen générateur de champ magnétique. Une pièce circulaire rotative 110 est montée de façon à traverser alternativement les zones de champ magnétique et les zones exemptes de champ magnétique. On peut avantageusement inverser les pôles magnétiques de deux éléments de segments, par exemple les éléments de segments 131 et 133 où le sens nord - sud des champs magnétique est opposé pour les deux champs générés par ces éléments. L'avantage de cette construction est que les effets d'attraction exercés sur la pièce circulaire rotative 110 s'équilibrent à tout moment, ce qui simplifie la construction du dispositif et réduit les contraintes sur les pièces en mouvement.

Claims

REVENDICATIONS
1. Dispositif (10) pour générer du froid et de la chaleur par effet magnétique, comportant au mois un générateur d'un champ magnétique (13; 130) disposé selon au moins un segment de couronne et définissant un espace annulaire traversé par une pièce circulaire coaxiale (11), cette pièce étant pourvue de cavités radiales traversantes (31) et contenant au moins un matériau magnéto-calorique, lesdites cavités radiales traversantes étant agencées pour conduire un fluide caloporteur en contact avec ledit matériau magnéto-calorique, caractérisé en ce qu'il comporte en outre des moyens pour amener ledit fluide caloporteur selon une direction axiale dans ladite pièce circulaire coaxiale (11), des moyens pour introduire ledit fluide caloporteur selon une direction radiale dans lesdites cavités radiales traversantes (31), lesdits moyens pour introduire ledit fluide caloporteur selon une direction axiale dans ladite pièce circulaire coaxiale (11) et lesdits moyens pour introduire ledit fluide caloporteur selon une direction radiale dans lesdites cavités radiales traversantes (31) comprenant au moins un circulateur de fluide (27, 27a, 27b) agencé pour faire circuler ledit fluide caloporteur, au moins un premier collecteur (33) agencé pour recueillir ledit fluide caloporteur ayant traversé lesdites cavités radiales traversantes (31) dans une zone comportant ledit générateur de champ magnétique (13), et au moins un second collecteur (34) agencé pour recueillir ledit fluide caloporteur ayant traversé lesdites cavités radiales traversantes (31) dans une zone située hors dudit générateur de champ magnétique (13).
2. Dispositif selon la revendication 1 , caractérisé en ce qu'il comporte des moyens agencés pour former une unité (40) agencée pour être associée en série à au moins une unité (50) identique afin de former un dispositif de plus grande puissance.
3. Dispositif selon la revendication 1 , caractérisé en ce que ledit fluide caloporteur est un gaz, et en ce que ledit circulateur de fluide caloporteur est un ventilateur.
4. Dispositif selon la revendication 1 , caractérisé en ce que ledit fluide caloporteur est un liquide, et en ce que ledit circulateur de fluide caloporteur est une pompe.
5. Dispositif selon la revendication 1 , caractérisé en ce que ledit générateur de champ magnétique (13; 130) est fixe, et en ce que ladite pièce circulaire coaxiale (11) comportant les cavités radiales traversantes (31) est rotative autour de son axe par l'intermédiaire d'un moteur d'entraînement (M) monté coaxialement à ladite pièce circulaire rotative coaxiale (11).
6. Dispositif selon la revendication 1 , caractérisé en ce que ledit générateur de champ magnétique (13) a la forme d'une couronne semi-circulaire et comporte un noyau (14) en acier ayant une section transversale en forme de C ou de U dans lequel sont incrustés des aimants permanents (15) de façon à former un champ magnétique fermé.
7. Dispositif selon la revendication 1, caractérisé en ce qu'il comporte un assemblage mécanique de support (12) comprenant une cloche intérieure fixe (20), disposée coaxialement à l'intérieur d'une cloche extérieure rotative (21) couplée au moteur d'entraînement (M), la pièce coaxiale rotative (11) étant solidaire de ladite cloche extérieure rotative (21).
8. Dispositif selon la revendication 7, caractérisé en ce que la cloche intérieure fixe (20) et la cloche extérieure rotative (21) sont liées par l'intermédiaire de roulements à billes (22 et 23).
9. Dispositif selon les revendications 2 et 7, caractérisé en ce la cloche intérieure fixe (20) et cloche extérieure rotative (21) forment les éléments de liaison des deux unités (40, 50).
10. Dispositif selon la revendication 7, caractérisé en ce que l'assemblage mécanique de support (12) comprend essentiellement une plaque (17), une ceinture (18), un plateau fixe (19) et la cloche intérieure fixe (20).
11. Dispositif selon la revendication 10, caractérisé en ce qu'il comporte un cylindre inférieur (24) qui délimite avec la ceinture (18) et le plateau fixe
(19) un espace inférieur (25).
12. Dispositif selon la revendication 11 , caractérisé en ce que l'espace inférieur (25) est divisé principalement par trois cloisons (41 , 42, 43) sensiblement radiales et forme lesdits moyens pour introduire ledit fluide caloporteur selon une direction axiale dans ladite pièce circulaire coaxiale (11).
13. Dispositif selon la revendication 1 , caractérisé en ce que ledit générateur de champ magnétique (130) est composé d'un nombre pair d'éléments magnétiques sous la forme de segments de couronne, ces éléments formant deux à deux des paires et les éléments d'une même paire étant opposés diamétralement par rapport à l'axe dudit générateur de champ magnétique.
14. Dispositif selon la revendication 13, caractérisé en ce que les éléments sous la forme de segments de couronne d'une même paire (131, 133; 132, 134) génèrent respectivement des champs magnétiques de polarité inversée.
EP06817743A 2005-12-13 2006-12-12 Dispositif de generation de froid et de chaleur par effet magneto-calorique Withdrawn EP1969294A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH01969/05A CH699375B1 (fr) 2005-12-13 2005-12-13 Dispositif de génération de froid et de chaleur par effet magneto-calorique.
PCT/CH2006/000691 WO2007068134A2 (fr) 2005-12-13 2006-12-12 Dispositif de generation de froid et de chaleur par effet magneto-calorique

Publications (1)

Publication Number Publication Date
EP1969294A2 true EP1969294A2 (fr) 2008-09-17

Family

ID=36646030

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06817743A Withdrawn EP1969294A2 (fr) 2005-12-13 2006-12-12 Dispositif de generation de froid et de chaleur par effet magneto-calorique

Country Status (6)

Country Link
US (1) US8191375B2 (fr)
EP (1) EP1969294A2 (fr)
JP (1) JP2009519427A (fr)
CA (1) CA2632429A1 (fr)
CH (1) CH699375B1 (fr)
WO (1) WO2007068134A2 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101799557A (zh) * 2010-04-12 2010-08-11 大港油田集团有限责任公司 能加载伪随机编码的可控信号接收仪

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006014596B4 (de) * 2006-03-29 2008-02-14 Webasto Ag Vorrichtung zum Kühlen von Luft unter Nutzung des magnetokalorischen Effekts
FR2924489B1 (fr) * 2007-12-04 2015-09-04 Cooltech Applications Generateur magnetocalorique
FR2951531B1 (fr) * 2009-10-20 2012-03-23 Amadeus Immobilier Et Environnement Dispositif d'echange par effet magnetothermique
US9702594B2 (en) * 2010-06-07 2017-07-11 Aip Management, Llc Magnetocaloric refrigerator
US9709303B1 (en) * 2011-11-30 2017-07-18 EMC IP Holding Company LLC Magneto-caloric cooling system
US9631842B1 (en) * 2011-11-30 2017-04-25 EMC IP Holding Company LLC Magneto-caloric cooling system
JP6136529B2 (ja) * 2013-04-24 2017-05-31 日産自動車株式会社 磁気冷暖房装置および冷暖房システム
US9568223B2 (en) * 2013-10-25 2017-02-14 The Johns Hopkins University Magnetocaloric materials for cryogenic liquification
US10299655B2 (en) 2016-05-16 2019-05-28 General Electric Company Caloric heat pump dishwasher appliance
US10281177B2 (en) 2016-07-19 2019-05-07 Haier Us Appliance Solutions, Inc. Caloric heat pump system
US9915448B2 (en) 2016-07-19 2018-03-13 Haier Us Appliance Solutions, Inc. Linearly-actuated magnetocaloric heat pump
US10006674B2 (en) 2016-07-19 2018-06-26 Haier Us Appliance Solutions, Inc. Linearly-actuated magnetocaloric heat pump
US10047979B2 (en) 2016-07-19 2018-08-14 Haier Us Appliance Solutions, Inc. Linearly-actuated magnetocaloric heat pump
US9869493B1 (en) 2016-07-19 2018-01-16 Haier Us Appliance Solutions, Inc. Linearly-actuated magnetocaloric heat pump
US10274231B2 (en) 2016-07-19 2019-04-30 Haier Us Appliance Solutions, Inc. Caloric heat pump system
US10006675B2 (en) * 2016-07-19 2018-06-26 Haier Us Appliance Solutions, Inc. Linearly-actuated magnetocaloric heat pump
US10006672B2 (en) 2016-07-19 2018-06-26 Haier Us Appliance Solutions, Inc. Linearly-actuated magnetocaloric heat pump
US10006673B2 (en) 2016-07-19 2018-06-26 Haier Us Appliance Solutions, Inc. Linearly-actuated magnetocaloric heat pump
US10047980B2 (en) 2016-07-19 2018-08-14 Haier Us Appliance Solutions, Inc. Linearly-actuated magnetocaloric heat pump
US10295227B2 (en) 2016-07-19 2019-05-21 Haier Us Appliance Solutions, Inc. Caloric heat pump system
US10222101B2 (en) 2016-07-19 2019-03-05 Haier Us Appliance Solutions, Inc. Linearly-actuated magnetocaloric heat pump
US10443585B2 (en) 2016-08-26 2019-10-15 Haier Us Appliance Solutions, Inc. Pump for a heat pump system
US9857105B1 (en) 2016-10-10 2018-01-02 Haier Us Appliance Solutions, Inc. Heat pump with a compliant seal
US9857106B1 (en) 2016-10-10 2018-01-02 Haier Us Appliance Solutions, Inc. Heat pump valve assembly
US10288326B2 (en) 2016-12-06 2019-05-14 Haier Us Appliance Solutions, Inc. Conduction heat pump
US10386096B2 (en) 2016-12-06 2019-08-20 Haier Us Appliance Solutions, Inc. Magnet assembly for a magneto-caloric heat pump
US10527325B2 (en) 2017-03-28 2020-01-07 Haier Us Appliance Solutions, Inc. Refrigerator appliance
US11009282B2 (en) 2017-03-28 2021-05-18 Haier Us Appliance Solutions, Inc. Refrigerator appliance with a caloric heat pump
US10451320B2 (en) 2017-05-25 2019-10-22 Haier Us Appliance Solutions, Inc. Refrigerator appliance with water condensing features
US10451322B2 (en) 2017-07-19 2019-10-22 Haier Us Appliance Solutions, Inc. Refrigerator appliance with a caloric heat pump
US10422555B2 (en) 2017-07-19 2019-09-24 Haier Us Appliance Solutions, Inc. Refrigerator appliance with a caloric heat pump
US10520229B2 (en) 2017-11-14 2019-12-31 Haier Us Appliance Solutions, Inc. Caloric heat pump for an appliance
US11022348B2 (en) 2017-12-12 2021-06-01 Haier Us Appliance Solutions, Inc. Caloric heat pump for an appliance
US10648704B2 (en) 2018-04-18 2020-05-12 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly
US10782051B2 (en) 2018-04-18 2020-09-22 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly
US10551095B2 (en) 2018-04-18 2020-02-04 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly
US10641539B2 (en) 2018-04-18 2020-05-05 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly
US10648706B2 (en) 2018-04-18 2020-05-12 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly with an axially pinned magneto-caloric cylinder
US10876770B2 (en) 2018-04-18 2020-12-29 Haier Us Appliance Solutions, Inc. Method for operating an elasto-caloric heat pump with variable pre-strain
US10557649B2 (en) 2018-04-18 2020-02-11 Haier Us Appliance Solutions, Inc. Variable temperature magneto-caloric thermal diode assembly
US10830506B2 (en) 2018-04-18 2020-11-10 Haier Us Appliance Solutions, Inc. Variable speed magneto-caloric thermal diode assembly
US10648705B2 (en) 2018-04-18 2020-05-12 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly
US11054176B2 (en) 2018-05-10 2021-07-06 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly with a modular magnet system
US10989449B2 (en) 2018-05-10 2021-04-27 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly with radial supports
US11015842B2 (en) 2018-05-10 2021-05-25 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly with radial polarity alignment
US10684044B2 (en) 2018-07-17 2020-06-16 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly with a rotating heat exchanger
US11092364B2 (en) 2018-07-17 2021-08-17 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly with a heat transfer fluid circuit
US11274860B2 (en) 2019-01-08 2022-03-15 Haier Us Appliance Solutions, Inc. Mechano-caloric stage with inner and outer sleeves
US11193697B2 (en) 2019-01-08 2021-12-07 Haier Us Appliance Solutions, Inc. Fan speed control method for caloric heat pump systems
US11168926B2 (en) 2019-01-08 2021-11-09 Haier Us Appliance Solutions, Inc. Leveraged mechano-caloric heat pump
US11149994B2 (en) 2019-01-08 2021-10-19 Haier Us Appliance Solutions, Inc. Uneven flow valve for a caloric regenerator
US11112146B2 (en) 2019-02-12 2021-09-07 Haier Us Appliance Solutions, Inc. Heat pump and cascaded caloric regenerator assembly
US11015843B2 (en) 2019-05-29 2021-05-25 Haier Us Appliance Solutions, Inc. Caloric heat pump hydraulic system

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4033734A (en) * 1976-09-17 1977-07-05 Steyert Jr William A Continuous, noncyclic magnetic refrigerator and method
US4107935A (en) * 1977-03-10 1978-08-22 The United States Of America As Represented By The United States Department Of Energy High temperature refrigerator
US4332135A (en) * 1981-01-27 1982-06-01 The United States Of America As Respresented By The United States Department Of Energy Active magnetic regenerator
FR2517415A1 (fr) * 1981-11-27 1983-06-03 Commissariat Energie Atomique Procede de refrigeration ou de pompage de chaleur et dispositif pour la mise en oeuvre de ce procede
JPS58184471A (ja) * 1982-04-23 1983-10-27 株式会社日立製作所 磁気冷凍機
JPS5941760A (ja) * 1982-08-31 1984-03-08 株式会社東芝 磁気冷凍装置
US4507927A (en) * 1983-05-26 1985-04-02 The United States Of America As Represented By The United States Department Of Energy Low-temperature magnetic refrigerator
JPS608673A (ja) 1983-06-29 1985-01-17 株式会社日立製作所 回転磁界型磁気冷凍機
JPS60223972A (ja) * 1984-04-20 1985-11-08 株式会社日立製作所 回転型磁気冷凍機
JP2513608B2 (ja) 1985-08-30 1996-07-03 株式会社東芝 磁気冷凍方法および装置
DE3539584C1 (de) * 1985-11-08 1986-12-18 Deutsche Forschungs- und Versuchsanstalt für Luft- und Raumfahrt e.V., 5300 Bonn Vorrichtung zur magnetokalorischen Kaelteerzeugung
US4727722A (en) * 1987-02-11 1988-03-01 The United States Of America As Represented By The United States Department Of Energy Rotary magnetic heat pump
US5024059A (en) * 1990-06-20 1991-06-18 Noble Jerry D Electronic force ionized gas air conditioning system compressor
US5231834A (en) * 1990-08-27 1993-08-03 Burnett James E Magnetic heating and cooling systems
US6250087B1 (en) 1999-10-01 2001-06-26 Abi Limited Super-quick freezing method and apparatus therefor
WO2001086218A2 (fr) * 2000-05-05 2001-11-15 University Of Victoria Innovation And Development Corporation Appareil et procedes de refroidissement et de liquefaction d'un fluide par refrigeration magnetique
ES2284683T3 (es) * 2000-08-09 2007-11-16 Astronautics Corporation Of America Aparato de refrigeracion magnetica de sustrato rotativo.
SE0102753D0 (sv) 2001-08-17 2001-08-17 Abb Ab A fluid handling system
KR101016125B1 (ko) * 2001-12-12 2011-02-17 애스트로노틱스 코포레이션 오브 아메리카 회전하는 자석 자기냉각장치
CH695836A5 (fr) 2002-12-24 2006-09-15 Ecole D Ingenieurs Du Canton D Procédé et dispositif pour générer en continu du froid et de la chaleur par effet magnetique.
CH695837A5 (fr) 2002-12-24 2006-09-15 Ecole D Ingenieurs Du Canton D Procéde et dispositif de génération de froid et de chaleur par effet magnétique.
FR2861454B1 (fr) * 2003-10-23 2006-09-01 Christian Muller Dispositif de generation de flux thermique a materiau magneto-calorique
JP4649389B2 (ja) * 2006-09-28 2011-03-09 株式会社東芝 磁気冷凍デバイスおよび磁気冷凍方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2007068134A2 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101799557A (zh) * 2010-04-12 2010-08-11 大港油田集团有限责任公司 能加载伪随机编码的可控信号接收仪
CN101799557B (zh) * 2010-04-12 2012-07-18 大港油田集团有限责任公司 能加载伪随机编码的可控信号接收仪

Also Published As

Publication number Publication date
WO2007068134A3 (fr) 2007-11-22
US8191375B2 (en) 2012-06-05
WO2007068134A2 (fr) 2007-06-21
CH699375B1 (fr) 2010-02-26
CA2632429A1 (fr) 2007-06-21
JP2009519427A (ja) 2009-05-14
US20090151363A1 (en) 2009-06-18

Similar Documents

Publication Publication Date Title
EP1969294A2 (fr) Dispositif de generation de froid et de chaleur par effet magneto-calorique
CA2543123C (fr) Dispositif de generation de flux thermique a materiau magneto-calorique
CA2511541A1 (fr) Procede et dispositif pour generer en continu du froid et de la chaleur par effet magneto-calorique
EP1730454B8 (fr) Generateur thermique a materiau magneto-calorique et procede de generation de thermies
CA2616489C (fr) Generateur thermique a materiau magnetocalorique
EP2215410B1 (fr) Generateur thermique a materiau magnetocalorique
EP2129976B1 (fr) Procede et dispositif pour accroitre le gradient de temperature dans un generateur thermique magnetocalorique
EP2345093A1 (fr) Generateur thermique a materiau magnetocalorioue
CA2511543A1 (fr) Procede et dispositif de generation de froid et de chaleur par effet magneto-calorique
FR2942305A1 (fr) Generateur thermique magnetocalorique
EP0279739B1 (fr) Réfrigérateur, notamment à cycle de Vuilleumier, comportant des pistons suspendus par des paliers à gaz
EP3087329B1 (fr) Générateur thermique magnetocalorique et son procédé de refroidissement
EP2603747A1 (fr) Generateur thermique a materiau magnetocalorique
EP2318784B1 (fr) Generateur thermique a materiau magnetocalorique
FR2875895A1 (fr) Dispositif de production d'energie thermique a materiau magneto-calorifique a moyens internes de commutation et synchronisation automatique des circuits de fluides caloporteurs
FR2930679A1 (fr) Dispositif de generation de flux thermique a materiau magnetocalorique
FR3053448A1 (fr) Appareil thermique magnetocalorique
EP2368279B1 (fr) Procede d'etablissement accelere d'un gradient de temperature dans un element magnetocalorioue et generateur thermique magnetocalorioue mettant en ouvre ledit procede
FR2933537A1 (fr) Dispositif de generation de flux thermique a materiau magnetocalorique

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080707

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: EGOLF, PETER, W.

Inventor name: SARI, OSMANN

Inventor name: BOZZINI, STEFANO

17Q First examination report despatched

Effective date: 20091026

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CLEAN COOLING SYSTEMS SA

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20130702