EP2593574B1 - Low alloyed steel with high yield strength and high sulfide stress cracking resistance - Google Patents

Low alloyed steel with high yield strength and high sulfide stress cracking resistance Download PDF

Info

Publication number
EP2593574B1
EP2593574B1 EP11720496.6A EP11720496A EP2593574B1 EP 2593574 B1 EP2593574 B1 EP 2593574B1 EP 11720496 A EP11720496 A EP 11720496A EP 2593574 B1 EP2593574 B1 EP 2593574B1
Authority
EP
European Patent Office
Prior art keywords
content
steel
yield strength
ssc
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP11720496.6A
Other languages
German (de)
French (fr)
Other versions
EP2593574A1 (en
Inventor
Laurent Delattre
Hervé MARCHEBOIS
Michel Piette
Christoph Bosch
Michaela Hoerstemeier
Joachim Konrad
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vallourec Oil and Gas France SAS
Original Assignee
Vallourec Oil and Gas France SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vallourec Oil and Gas France SAS filed Critical Vallourec Oil and Gas France SAS
Publication of EP2593574A1 publication Critical patent/EP2593574A1/en
Application granted granted Critical
Publication of EP2593574B1 publication Critical patent/EP2593574B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium

Definitions

  • the invention relates to low alloy steels with high yield strength which have excellent resistance to stress cracking by sulphides.
  • the invention aims in particular to apply to tubular products for hydrocarbon wells containing hydrogen sulfide (H 2 S).
  • the pressures of the hydrocarbon reservoirs can also be very high, of the order of several hundred bars, and the presence of H 2 S, even at relatively low levels of the order of 10 to 100 ppm, generates partial pressures of the order of 0.001 to 0.1 bar, sufficient when the pH is low to generate if the tube material is not suitable for SSC phenomena.
  • the use of low-alloy steels combining a specified minimum yield strength of 862 MPa (125 ksi) or better of 965 MPa (140 ksi) with good SSC resistance would be particularly welcome in such columns. of tubes.
  • the patent application EP1862561 proposes a low alloyed steel with a high yield strength (greater than or equal to 862 MPa) and excellent SSC resistance by disclosing a chemical composition advantageously associated with bainitic isothermal transformation heat treatment in the 400-600 temperature range ° C.
  • the patent application EP 1 862 561 proposes to increase the C content (between 0.3 and 0.6%) associated with a sufficient addition in Mo and V (respectively greater than or equal to 0.5% and between 0.05 and 0.3%) to obtain a precipitation of carbides MC.
  • the patent application EP1862561 proposes an isothermal bainitic transformation heat treatment in the temperature range 400-600 ° C which makes it possible to avoid on the one hand the flaws during the quenching with water of steels with high carbon contents and on the other hand Mixed structures martensite-bainite considered harmful for the SSC in case of softer quenching, for example with oil.
  • the bainitic structure obtained (equivalent, according to the patent application EP1862561 the martensitic structure obtained by conventional thermal tempering + tempering treatments) then has a high yield strength (greater than or equal to 862 MPa or 125 ksi) associated with excellent resistance to SSC tested according to NACE TM0177 standards.
  • a and D National Association of Corrosion Engineers.
  • the remainder of the chemical composition of this steel consists of iron and the impurities or residues resulting from or required for the steel making and casting processes.
  • This element is essential to the improvement of the hardenability of the steel and allows obtaining the desired high mechanical characteristics.
  • the inventors have furthermore found that relatively high carbon contents provide better resistance to SSC, without such behavior being identified or its reason being known.
  • the heat treatment in particular the martensitic quenching in a medium less severe than water, becomes difficult to manage on tubes of great length (10 to 15 meters) and, on the other hand, the amount of carbides formed during the income becomes excessive and can lead to a deterioration of the resistance to the SSC.
  • a carbon content down the range indicated above to avoid quenching quenching: for example, a grade will be chosen. in carbon of between 0.32% and 0.38%.
  • a quenching system is available with a quenching fluid whose quenching severity is less than that of water (eg, quenching or quenching) added with polymers), it will be advantageous to choose a carbon content upward of the range indicated above: for example a carbon content of between 0.38% and 0.46% will be chosen, and preferably a carbon content of carbon between 0.40 and 0.45%.
  • SILICON 0.1% to 1%
  • Silicon is a deoxidizing element of liquid steel. A content of at least 0.1% allows such an effect. Silicon also opposes the softening of income and thus contributes to improving the resistance to SSC. Beyond 0.5% it is often written that this element leads to the deterioration of the resistance to the SSC. However, the inventors have found that the Si content can reach 1% without having an adverse effect on the resistance to SSC. This is why its content is set between 0.1% and 1%. A range of between 0.5 and 1% could even be interesting in combination with the other elements of the composition according to the invention.
  • PHOSPHORUS less than or equal to 0.03% (impurity)
  • Phosphorus is an impurity that degrades resistance to SSC by segregating it at grain boundaries. This is why its content is limited to 0.03%.
  • Sulfur is an impurity that forms inclusions that are detrimental to SSC resistance and that can also segregate at grain boundaries. The effect becomes sensitive beyond 0.005%. Therefore, its content is limited to 0.005% and preferably to an extremely low level such as 0.003%.
  • Chromium is a useful element for improving the hardenability and mechanical properties of steel and increasing its resistance to SSC. This is why its minimum content is at least 0.3%. However, a level of 1% should not be exceeded to avoid degradation of the SSC resistance.
  • MOLYBDENE 1% to 2%
  • Molybdenum is a useful element for improving the hardenability of steel and also increases the steel's tempering temperature.
  • the inventors have found a particularly favorable effect of Mo contents greater than or equal to 1%.
  • the content of this element exceeds 2%, it tends to favor the formation of coarse compounds after increased income at the expense of resistance to SSC. This is why its content is set between 1% and 2%.
  • the preferred range is between 1.2% and 1.8%, and most preferably between 1.3% and 1.7%.
  • TUNGSTEN 0.3% to 1%
  • tungsten is an element that improves the hardenability and strength of steel. This is an important element of the invention which allows not only to tolerate a significant content of Mo without causing the precipitation of large carbides M 23 C 6 and ksi carbides during a high income but on the contrary to promote a fine precipitation and homogeneous micro-carbides MC by limiting their magnification thanks to its low diffusion coefficient. By its effect, tungsten thus makes it possible to increase the molybdenum content to raise the tempering temperature and thus to lower the density of dislocations and to improve the resistance to SSC. A content of at least 0.3% is fixed for this purpose. Beyond 1% its effect does not evolve anymore. This is why the Mo content is set between 0.3% and 1%. The preferred lower and upper limits are 0.4% and 0.7%, respectively.
  • VANADIUM 0.03% to 0.25%
  • vanadium is a useful element for improving SSC resistance by forming fine micro-carbons TM that can be used to raise the tempering temperature of steel. It must be present at least 0.03% to express its effect. However too abundant precipitation of these carbides tends to weaken the steel. This is why its content is limited to 0.25%.
  • the inventors have found a joint influence of the elements Nb and V. When the content of Nb is relatively low (0.01% to 0.03%), the preferred range of V content is between 0.1 and 0.25 % and more preferably between 0.1 and 0.2%.
  • Niobium is an additive element that forms carbonitrides with carbon and nitrogen, the anchoring effect of which contributes effectively to grain refinement during austenitization.
  • carbonitrides are partially dissolved and niobium has a hardening (or retarding effect on softening) by precipitation of lower-yielding carbonitrides than vanadium.
  • the undissolved carbonitrides anchor the austenitic grain boundaries effectively during the austenitization and thus make it possible to obtain a very fine austenitic grain before quenching, which has a very favorable effect on the elastic limit and on the resistance to the SSC.
  • this refining effect of the austenitic grain is increased by a double quenching operation.
  • this element must be present at least 0.01%.
  • Nb carbonitrides are too abundant and relatively coarse, which is not favorable for the resistance to SSC.
  • the preferred range of Nb content is between 0.01% and 0.03%.
  • VANADIUM + 2xNIOBIUM optionally between 0.10 and 0.35%
  • the inventors have found a joint influence of the elements V and Nb on the income delay and therefore on the resistance to the SSC. More Niobium can be added when the V content is relatively low (around 0.04%) and vice versa (rocking effect between these elements).
  • the inventors have optionally introduced a limitation on the sum V + 2.Nb which can be between 0.10% and 0.35% and preferably between 0.12 and 0.30%. %.
  • ALUMINUM 0.01% to 0.1%
  • Aluminum is a powerful deoxidizer of steel and its presence also favors the desulfurization of steel. It is added at a content of at least 0.01% for this. However, at more than 0.1%, on the one hand, the deoxidation and desulphurization of steel is no longer significantly improved and, on the other hand, it tends to form coarse and harmful Al nitrides. This is why the upper limit of Al content is set at 0.1%. The preferred lower and upper limits are 0.01% and 0.05%, respectively.
  • Ti content greater than 0.01% promotes the precipitation of TiN titanium nitrides in the liquid phase of the steel and can lead to the formation of large TiN precipitates which are detrimental to SSC resistance.
  • Ti contents less than or equal to 0.01% may be impurities resulting from the preparation of the liquid steel and not result from a voluntary addition. Such low levels do not have any detrimental effect on the resistance to SSC for low nitrogen contents (less than or equal to 0.01%) according to the inventors.
  • the maximum content of impurity Ti is limited to 0.005%.
  • a nitrogen content greater than 0.01% is likely to decrease the SSC resistance of the steel. Its content is therefore preferably kept below 0.01%.
  • Boron micro-alloyed steels typically contain titanium to fix nitrogen as TiN compounds and leave boron available.
  • the inventors have found on the occasion of the present invention that, for very high yield strength steels to resist SSC, a boron addition was not necessary in the steel according to the invention, or even could to be harmful. Boron is therefore in the form of an impurity in the steel according to the invention.
  • Table 1 provides the chemical composition on product (rolled plate) of the three castings tested (all% are expressed by weight).
  • Table 1 landmark VS Yes mn P S Cr MB W V AT 0.43 0.79 0 0,010 0,003 0.50 1.46 0.64 0.20 B 0.34 0.36 0.39 0,011 0,003 0.49 1.29 0.52 0.10 VS* 0.33 0.37 0.38 0,011 0,003 0.98 1.50 0,008 * 0.05 landmark Nb V + 2Nb al NOT Ti B AT 0,019 0.24 0.03 0.0045 0,002 0.0005 B 0,021 0.14 0.02 0.0023 0,002 0.0005 VS* 0.081 0.21 0.02 0.0031 0,009 0.0012 * * comparative example
  • Castings A and B have a high V content and a low Nb content and casting C an opposite balance for these elements.
  • Casting B is a variant of casting A with a lower C and Si content.
  • Casting C does not contain W but contains an addition of Ti and boron.
  • the casting A was subjected to dilatometric tests for determining the transformation points at the Ac1 and Ac3 heating, the martensitic transformation Ms and Mf temperatures and the martensitic quenching critical speed.
  • Ac1 765 ° C.
  • Ac3 880 ° C.
  • MS 330 ° C.
  • Mw 200 ° C.
  • the point Ac1 is high and makes it possible to make an income at high temperature.
  • the structure obtained with a cooling rate of 20 ° C / s is entirely martensitic and has 15% of bainite for a cooling rate of 7 ° C / s.
  • the critical speed of martensitic quenching is thus close to 10 ° C./s.
  • Table 2 shows the values of yield strength Rp0.2 and mechanical strength at break Rm obtained on the plates of the various castings after heat treatment of double quenching and tempering.
  • Two tempering operations were carried out at temperatures in the region of 950 ° C. in order to better refine the size of the austenitic grains and a tempering between the two quenching operations in order to avoid generating quenching taps between these operations.
  • the final income was made between 680 ° C and 730 ° C according to marks A to C to obtain a yield strength value greater than or equal to 965 MPa (140 ksi).
  • Rm mechanical strength
  • ratio Rp0.2 / Rm close to 0.95 which is favorable to the resistance to the SSC. It is likely desirable that Rm be less than or equal to 1150 MPa and preferably 1120 or even 1100 MPa to promote resistance to SSC.
  • Table 4 presents the average values of three Rockwell hardness fingerprints (HRc) made on the samples treated according to Table 2 at three different locations: near each of the surfaces and at mid-thickness of the dishes.
  • HRc Rockwell hardness fingerprints
  • the maximum values of the table are close to 35 HRc and a maximum value of 36 HRc may appear desirable to promote the SSC.
  • Table 5 shows the average values of Charpy V resiliency test results at low temperature (-20 ° C and -40 ° C) on specimens taken longitudinally from the plates of casting A treated according to Table 2.
  • Table 5 landmark KV (J) at -40 ° C KV (J) at -20 ° C AT 30 39
  • the values obtained are all greater than 27 J (energy value corresponding to the criterion of the API 5CT specification) at -40 ° C.
  • Table 6 presents the results of the tests to evaluate the resistance to SSC according to method A of the NACE TM0177 specification.
  • test specimens are cylindrical tensile specimens taken from the tubes in the longitudinal direction at mid-thickness of the plates treated according to Table 2 and machined according to the NACE TM0177 Method A specification.
  • the test bath used is of type EFC 16 (European Corrosion Federation).
  • the aqueous solution is composed of 5% sodium chloride (NaCl) and 0.4% sodium acetate (CH3COONa) with continuous bubbling of the gas mixture 3% H 2 S / 97% CO2 at 24 ° C ( ⁇ 3 ° C) and adjusted to pH 3.5 with hydrochloric acid (HCl).
  • the loading stress is set at 85% of the specified minimum yield strength (SMYS), ie 85% of 965 MPa or 820 MPa. Three test pieces are tested under the same test conditions in view of the relative dispersion of this type of test.
  • STYS specified minimum yield strength
  • the resistance to the SSC is considered good (symbol O) in the absence of rupture of at least two test pieces after 720h and bad (symbol X) if there is a break before the 720h in the calibrated part of at minus two test pieces out of the three tested.
  • the tests on marker A have been doubled.
  • the steel according to the invention is particularly intended to apply to products intended for the exploration and production of hydrocarbon deposits such as, for example, casing tubes, production tubes (tubing ), tubes for underwater risers, drill pipes, heavy drill rods, drill collars or accessories for the previous products.
  • products intended for the exploration and production of hydrocarbon deposits such as, for example, casing tubes, production tubes (tubing ), tubes for underwater risers, drill pipes, heavy drill rods, drill collars or accessories for the previous products.

Description

L'invention concerne les aciers faiblement alliés à limite d'élasticité élevée qui possèdent une excellente tenue à la fissuration sous contrainte par les sulfures. L'invention vise à notamment à s'appliquer à des produits tubulaires pour les puits d'hydrocarbures contenant du sulfure d'hydrogène (H2S).The invention relates to low alloy steels with high yield strength which have excellent resistance to stress cracking by sulphides. The invention aims in particular to apply to tubular products for hydrocarbon wells containing hydrogen sulfide (H 2 S).

Avec l'exploration et le développement de puits d'hydrocarbures de plus en plus profonds soumis à des pressions de plus en plus fortes, à des températures de plus en plus élevées et à des milieux de plus en plus corrosifs chargés notamment en sulfure d'hydrogène, la nécessité d'utiliser des tubes en acier faiblement allié présentant à la fois une limite d'élasticité élevée et une haute résistance à la fissuration sous contrainte induite par les sulfures ne cesse d'augmenter.With the exploration and development of increasingly deep hydrocarbon wells subjected to increasingly high pressures, higher and higher temperatures and more and more corrosive environments loaded especially with sulfur sulphide. In the case of hydrogen, the need for low-alloy steel tubes with both high yield strength and high resistance to stress cracking induced by sulphides is steadily increasing.

En effet, la présence de sulfure d'hydrogène H2S est responsable d'une forme dangereuse de fissuration des aciers faiblement alliés à limite d'élasticité élevée connue sous le nom de fissuration sous contrainte par les sulfures ou SSC (Sulfide Stress Cracking) qui peut affecter aussi bien les tubes de cuvelage (casing) que ceux de production (tubing), les tubes pour colonnes montantes sous-marines (riser) ou les tiges de forage (drill pipe) et les produits associés. Le sulfure d'hydrogène est en outre un gaz mortel pour l'homme à des doses de quelques dizaines de parties par millions (ppm) et il est impératif qu'il ne puisse s'échapper suite à des fissurations ou à des ruptures des tubes. La résistance à la SSC est donc d'une importance toute particulière pour les compagnies pétrolières puisqu'elle met en jeu la sécurité des hommes et du matériel.Indeed, the presence of hydrogen sulphide H 2 S is responsible for a dangerous form of cracking of low alloy steels with high yield strength known as stress cracking by sulphides or SSC (Sulfide Stress Cracking) which can affect both casing and tubing tubes, underwater riser tubes or drill pipe and associated products. Hydrogen sulfide is also a lethal gas for humans at doses of a few tens of parts per million (ppm) and it is imperative that it can not escape due to cracking or rupture of the tubes. . Resistance to SSC is therefore of particular importance for oil companies since it involves the safety of people and equipment.

Les dernières décennies ont ainsi vu le développement successif d'aciers faiblement alliés résistants à l'H2S avec des limites d'élasticité minimum spécifiées de plus en plus élevées : 551 MPa (80 ksi), 620 MPa (90 ksi), 655 MPa (95 ksi) et plus récemment 758 MPa (110 ksi), voire 862 MPa (125 ksi).The last decades have seen the successive development of low-alloy H 2 S-resistant steels with specified minimum yield strengths of increasing highs: 551 MPa (80 ksi), 620 MPa (90 ksi), 655 MPa (95 ksi) and more recently 758 MPa (110 ksi) or 862 MPa (125 ksi).

Aujourd'hui, la profondeur des puits d'hydrocarbures atteint souvent plusieurs milliers de mètres et le poids des colonnes de tubes traités pour des niveaux standards de limite d'élasticité est alors très important. Les pressions des réservoirs d'hydrocarbures peuvent en outre être très élevées, de l'ordre de plusieurs centaines de bars et la présence d'H2S, même à des niveaux relativement faibles de l'ordre de 10 à 100 ppm, engendre des pressions partielles de l'ordre de 0,001 à 0,1 bar, suffisantes lorsque le pH est faible pour engendrer si le matériau de tubes n'est pas adapté des phénomènes de SSC. Aussi, l'utilisation d'aciers faiblement alliés combinant une limite d'élasticité minimum spécifiée de 862 MPa (125 ksi) ou mieux de 965 MPa (140 ksi) à une bonne résistance à la SSC serait-elle particulièrement bienvenue dans de telles colonnes de tubes.Today, the depth of the hydrocarbon wells often reaches several thousand meters and the weight of the columns of tubes treated for standard levels of elastic limit is then very important. The pressures of the hydrocarbon reservoirs can also be very high, of the order of several hundred bars, and the presence of H 2 S, even at relatively low levels of the order of 10 to 100 ppm, generates partial pressures of the order of 0.001 to 0.1 bar, sufficient when the pH is low to generate if the tube material is not suitable for SSC phenomena. Also, the use of low-alloy steels combining a specified minimum yield strength of 862 MPa (125 ksi) or better of 965 MPa (140 ksi) with good SSC resistance would be particularly welcome in such columns. of tubes.

C'est pourquoi on a cherché à obtenir un acier faiblement allié présentant à la fois une limite d'élasticité minimum spécifiée de 862 MPa (125 ksi) et préférentiellement de 965 MPa (140 ksi) et une bonne tenue à la SSC, ce qui est difficile car il est bien connu que la résistance à la SSC d'aciers faiblement alliés diminue lorsque leur limite d'élasticité augmente.This is why it was sought to obtain a low-alloy steel having both a specified minimum elasticity limit of 862 MPa (125 ksi) and preferably 965 MPa (140 ksi) and a good resistance to SSC, which is difficult because it is well known that the SSC resistance of low alloyed steels decreases as their yield strength increases.

La demande de brevet EP1862561 propose un acier faiblement allié avec une limite d'élasticité élevée (supérieure ou égale à 862 MPa) et une résistance à la SSC excellente en divulguant une composition chimique associée avantageusement à un traitement thermique de transformation isotherme bainitique dans la plage de température 400-600°C.The patent application EP1862561 proposes a low alloyed steel with a high yield strength (greater than or equal to 862 MPa) and excellent SSC resistance by disclosing a chemical composition advantageously associated with bainitic isothermal transformation heat treatment in the 400-600 temperature range ° C.

Pour obtenir un acier faiblement allié avec une limite d'élasticité élevée, il est bien connu de réaliser un traitement thermique de trempe et revenu à relativement basse température (inférieure à 700°C) sur un acier allié au Cr-Mo. Cependant, d'après la demande de brevet EP1862 561 , un revenu à basse température favorise une densité de dislocations élevée et la précipitation de gros carbures M23C6 aux joints de grains conduisant à une mauvaise tenue à la SSC. La demande de brevet EP 1892561 propose alors pour améliorer la résistance à la SSC d'augmenter la température de revenu pour diminuer la densité de dislocations et de limiter la précipitation de gros carbures aux joints de grains par une limitation de la teneur conjointe en (Cr+Mo) à une valeur comprise entre 1,5 et 3%. Mais la limite d'élasticité de l'acier risquant alors de diminuer du fait de la température élevée de revenu, la demande de brevet EP 1 862 561 propose d'augmenter la teneur en C (entre 0.3 et 0.6%) associée à une addition suffisante en Mo et V (respectivement supérieure ou égale à 0,5% et entre 0,05 et 0,3 %) pour obtenir une précipitation de fins carbures MC.In order to obtain a low-alloy steel with a high yield strength, it is well known to perform a quenching and tempering heat treatment at a relatively low temperature (below 700 ° C.) on a Cr-Mo alloy steel. However, according to the patent application EP1862 561 low temperature tempering promotes high dislocation density and precipitation of coarse grain M23C6 carbides leading to poor SSC performance. The patent application EP 1892561 proposes then to improve the resistance to the SSC to increase the temperature of income to decrease the density of dislocations and to limit the precipitation of large carbides to the grain boundaries by a limitation of the joint content in (Cr + Mo) to a value between 1.5 and 3%. But the yield strength of the steel may then decrease due to the high temperature of the income, the patent application EP 1 862 561 proposes to increase the C content (between 0.3 and 0.6%) associated with a sufficient addition in Mo and V (respectively greater than or equal to 0.5% and between 0.05 and 0.3%) to obtain a precipitation of carbides MC.

Cependant, une telle augmentation de la teneur en C risquant d'engendrer des tapures de trempe avec les traitements thermiques classiques appliqués (trempe eau + revenu), la demande de brevet EP1862561 propose un traitement thermique de transformation bainitique isotherme dans la plage de température 400-600°C qui permet d'éviter d'une part des tapures lors de la trempe à l'eau des aciers à teneurs en carbone élevées et d'autre part des structures mixtes martensite-bainite considérées comme néfastes pour la SSC en cas de trempe plus douce, par exemple à l'huile.However, such an increase in the C content may cause quenching quenching with the conventional heat treatments applied (quench water + income), the patent application EP1862561 proposes an isothermal bainitic transformation heat treatment in the temperature range 400-600 ° C which makes it possible to avoid on the one hand the flaws during the quenching with water of steels with high carbon contents and on the other hand Mixed structures martensite-bainite considered harmful for the SSC in case of softer quenching, for example with oil.

La structure bainitique obtenue (équivalente, d'après la demande de brevet EP1862561 , à la structure martensitique obtenue par les traitements thermiques classiques de trempe + revenu) présente alors une limite d'élasticité élevée (supérieure ou égale à 862 MPa ou 125 ksi) associée à une excellente tenue à la SSC testée selon les standards NACE TM0177 méthodes A et D (National Association of Corrosion Engineers).The bainitic structure obtained (equivalent, according to the patent application EP1862561 the martensitic structure obtained by conventional thermal tempering + tempering treatments) then has a high yield strength (greater than or equal to 862 MPa or 125 ksi) associated with excellent resistance to SSC tested according to NACE TM0177 standards. A and D (National Association of Corrosion Engineers).

Cependant la mise en oeuvre industrielle d'une telle transformation bainitique isotherme suppose une maîtrise très fine de la cinétique de traitement pour ne pas déclencher d'autres transformations (martensitique ou perlitique). De plus, en fonction de l'épaisseur du tube, la quantité d'eau utilisée pour la trempe varie, ce qui nécessite la mise en place d'un contrôle des vitesses de refroidissement des tubes pour obtenir une structure monophasée bainitique.However, the industrial implementation of such an isothermal bainitic transformation assumes a very fine control of the kinetics of treatment so as not to trigger other transformations (martensitic or pearlitic). In addition, depending on the thickness of the tube, the amount of water used for the quenching varies, which requires the establishment of a control of the cooling rates of the tubes to obtain a bainitic single-phase structure.

On a cherché par la présente invention à réaliser une composition d'acier faiblement allié :

  • apte à être traité thermiquement pour atteindre une limite d'élasticité supérieure ou égale à 862 MPa (125 ksi) et préférentiellement supérieure ou égale à 965 MPa (140 ksi),
  • dont la résistance à la SSC testée selon le standard NACE TM0177 méthode A mais avec des pressions partielles d'H2S de 0,03 bar est excellente pour les niveaux de limite d'élasticité indiqués ci-dessus,
  • et qui ne nécessite pas une installation industrielle de trempe isotherme bainitique, occasionnant ainsi un coût de production de tubes sans soudure inférieur à celui mise en oeuvre par le document EP1 862561 .
It has been sought by the present invention to produce a low alloy steel composition:
  • capable of being heat-treated to reach a yield strength greater than or equal to 862 MPa (125 ksi) and preferably greater than or equal to 965 MPa (140 ksi),
  • whose SSC resistance tested according to the NACE TM0177 method A standard but with partial H2S pressures of 0.03 bar is excellent for the yield strength levels indicated above,
  • and which does not require an industrial installation bainitic isothermal quenching, thus causing a cost of production seamless tubes less than that implemented by the document EP1 862561 .

Selon l'invention, l'acier contient en poids :

  • C : de 0,3 à 0,5%
  • Si: de 0,1 à 1%
  • Mn : inférieur ou égal à 1%
  • P : inférieur ou égal à 0,03%
  • S : inférieur ou égal à 0,005%
  • Cr : de 0,3 à 1%
  • Mo : de 1 à 2%
  • W : de 0,3 à 1%
  • V : de 0,03 à 0,25%
  • Nb: de 0,01 à 0,15%
  • Al : de 0,01 à 0,1%
According to the invention, the steel contains by weight:
  • C: 0.3 to 0.5%
  • If: from 0.1 to 1%
  • Mn: less than or equal to 1%
  • P: less than or equal to 0.03%
  • S: less than or equal to 0.005%
  • Cr: 0.3 to 1%
  • Mo: 1 to 2%
  • W: 0.3 to 1%
  • V: 0.03 to 0.25%
  • Nb: 0.01 to 0.15%
  • Al: 0.01 to 0.1%

Le reste de la composition chimique de cet acier est constituée de fer et des impuretés ou des résiduels résultants des ou nécessaires aux procédés d'élaboration et de coulée de l'acier.The remainder of the chemical composition of this steel consists of iron and the impurities or residues resulting from or required for the steel making and casting processes.

L'influence des éléments de la composition chimique sur les propriétés de l'acier est la suivante :The influence of the elements of the chemical composition on the properties of steel is as follows:

CARBONE : 0,3% à 0,5%CARBON: 0.3% to 0.5%

La présence de cet élément est indispensable à l'amélioration de la trempabilité de l'acier et permet l'obtention des caractéristiques mécaniques élevées recherchées. Les inventeurs ont en outre constaté que des teneurs relativement élevées en carbone procuraient une meilleure résistance à la SSC, sans qu'un tel comportement soit identifié ni que sa raison en soit connue. Une teneur inférieure à 0,3% ne permet d'atteindre la limite d'élasticité souhaitée (supérieure ou égale à 140 Ksi) que pour des températures relativement basses de revenu, ce qui n'est pas favorable pour garantir une résistance suffisante à la SSC. En revanche, si la teneur en carbone excède 0,5%, d'une part, le traitement thermique, notamment la trempe martensitique dans un milieu moins sévère que l'eau, devient difficile à gérer sur des tubes de grande longueur (10 à 15 mètres) et, d'autre part, la quantité de carbures formés lors du revenu devient excessive et peut conduire à une détérioration de la résistance à la SSC.The presence of this element is essential to the improvement of the hardenability of the steel and allows obtaining the desired high mechanical characteristics. The inventors have furthermore found that relatively high carbon contents provide better resistance to SSC, without such behavior being identified or its reason being known. A content of less than 0.3% to achieve the desired yield strength (greater than or equal to 140 Ksi) than for relatively low income temperatures, which is not favorable to ensure sufficient resistance to SSC. On the other hand, if the carbon content exceeds 0.5%, on the one hand, the heat treatment, in particular the martensitic quenching in a medium less severe than water, becomes difficult to manage on tubes of great length (10 to 15 meters) and, on the other hand, the amount of carbides formed during the income becomes excessive and can lead to a deterioration of the resistance to the SSC.

Si l'on ne dispose que d'une installation de trempe à l'eau, il sera préférable de choisir une teneur en carbone vers le bas de la fourchette indiquée ci-dessus pour éviter les tapures de trempe : par exemple on choisira une teneur en carbone comprise entre 0,32% et 0,38%.If only a water quenching facility is available, it will be preferable to choose a carbon content down the range indicated above to avoid quenching quenching: for example, a grade will be chosen. in carbon of between 0.32% and 0.38%.

Si l'on dispose d'une installation de trempe à l'aide d'un fluide de trempe dont la caractéristique de sévérité de trempe est inférieure à celle de l'eau (par exemple, trempe à l'huile ou trempe à l'eau additionnée de polymères), il sera avantageux de choisir une teneur en carbone vers le haut de fourchette indiquée ci-dessus : par exemple on choisira une teneur en carbone comprise entre 0,38% et 0,46% et de préférence une teneur en carbone comprise entre 0,40 et 0,45%.If a quenching system is available with a quenching fluid whose quenching severity is less than that of water (eg, quenching or quenching) added with polymers), it will be advantageous to choose a carbon content upward of the range indicated above: for example a carbon content of between 0.38% and 0.46% will be chosen, and preferably a carbon content of carbon between 0.40 and 0.45%.

SILICIUM : 0,1% à 1%SILICON: 0.1% to 1%

Le silicium est un élément désoxydant de l'acier liquide. Une teneur d'au moins 0,1% permet un tel effet. Le silicium s'oppose également à l'adoucissement au revenu et contribue de ce fait à améliorer la résistance à la SSC. Au delà de 0,5% il est souvent écrit que cet élément conduit à la détérioration de la résistance à la SSC. Cependant les inventeurs ont constaté que la teneur en Si pouvait atteindre 1% sans atteindre d'effet défavorable sur la résistance à la SSC. C'est pourquoi sa teneur est fixée entre 0,1% et 1%. Une fourchette comprise entre 0,5 et 1% a même pu se révéler intéressante en combinaison avec les autres éléments de la composition selon l'invention.Silicon is a deoxidizing element of liquid steel. A content of at least 0.1% allows such an effect. Silicon also opposes the softening of income and thus contributes to improving the resistance to SSC. Beyond 0.5% it is often written that this element leads to the deterioration of the resistance to the SSC. However, the inventors have found that the Si content can reach 1% without having an adverse effect on the resistance to SSC. This is why its content is set between 0.1% and 1%. A range of between 0.5 and 1% could even be interesting in combination with the other elements of the composition according to the invention.

MANGANESE : inférieur ou égal à 1% MANGANESE: less than or equal to 1%

Le manganèse est un élément qui améliore la forgeabilité de l'acier et qui favorise sa trempabilité. Au delà de 1%, il donne cependant lieu à des ségrégations néfastes à la résistance à la SSC. C'est pourquoi sa teneur maximale est fixée à 1% et préférablement à 0,5%.. Pour éviter les problèmes de forgeabilité (brûlure), sa teneur minimale est préférablement fixée à 0,2%.Manganese is an element that improves the forgeability of steel and promotes its hardenability. Beyond 1%, however, it gives rise to segregations that are harmful to the resistance to SSC. This is why its maximum content is set at 1% and preferably at 0.5%. To avoid forgeability (burn) problems, its minimum content is preferably set at 0.2%.

PHOSPHORE : inférieur ou égal à 0,03% (impureté) PHOSPHORUS: less than or equal to 0.03% (impurity)

Le phosphore est une impureté qui dégrade la résistance à la SSC par sa ségrégation aux joints de grains. C'est pourquoi sa teneur est limitée à 0,03%,.Phosphorus is an impurity that degrades resistance to SSC by segregating it at grain boundaries. This is why its content is limited to 0.03%.

SOUFRE : inférieur ou égal à 0,005% (impureté) SULFUR: less than or equal to 0.005% (impurity)

Le soufre est une impureté qui forme des inclusions néfastes à la résistance à la SSC et qui peut aussi ségréger aux joints de grains. L'effet devient sensible au-delà de 0,005%. C'est pourquoi sa teneur est limitée à 0,005% et de préférence à un niveau extrêmement bas tel que 0,003%.Sulfur is an impurity that forms inclusions that are detrimental to SSC resistance and that can also segregate at grain boundaries. The effect becomes sensitive beyond 0.005%. Therefore, its content is limited to 0.005% and preferably to an extremely low level such as 0.003%.

CHROME : 0,3% à 1%CHROME: 0.3% to 1%

Le chrome est un élément utile pour améliorer la trempabilité et les caractéristiques mécaniques de l'acier et augmenter sa résistance à la SSC. C'est pourquoi sa teneur minimale est fixée à au moins 0,3%. Il convient toutefois de ne pas dépasser une teneur de 1% pour éviter une dégradation de la résistance à la SSC.Chromium is a useful element for improving the hardenability and mechanical properties of steel and increasing its resistance to SSC. This is why its minimum content is at least 0.3%. However, a level of 1% should not be exceeded to avoid degradation of the SSC resistance.

C'est pourquoi sa teneur est fixée entre 0,3% et 1%. Les limites inférieure et supérieure préférées sont respectivement égales à 0,3% et 0,8% et très préférablement respectivement égales à 0,4 et 0,6%.This is why its content is set between 0.3% and 1%. The preferred lower and upper limits are respectively equal to 0.3% and 0.8% and most preferably equal to 0.4% and 0.6% respectively.

MOLYBDENE : 1% à 2%MOLYBDENE: 1% to 2%

Le molybdène est un élément utile pour améliorer la trempabilité de l'acier et permet également d'augmenter la température de revenu de l'acier. Les inventeurs ont constaté un effet particulièrement favorable de teneurs en Mo supérieures ou égales à 1%. En revanche si la teneur en cet élément excède 2%, il tend à favoriser la formation de composés grossiers après revenu poussé au détriment de la résistance à la SSC. C'est pourquoi sa teneur est fixée entre 1% et 2%. La plage préférentielle se situe entre 1,2% et 1,8%, et très préférentiellement entre 1,3% et 1,7%.Molybdenum is a useful element for improving the hardenability of steel and also increases the steel's tempering temperature. The inventors have found a particularly favorable effect of Mo contents greater than or equal to 1%. On the other hand, if the content of this element exceeds 2%, it tends to favor the formation of coarse compounds after increased income at the expense of resistance to SSC. This is why its content is set between 1% and 2%. The preferred range is between 1.2% and 1.8%, and most preferably between 1.3% and 1.7%.

TUNGSTENE : 0,3% à 1%TUNGSTEN: 0.3% to 1%

Tout comme le molybdène, le tungstène est un élément qui améliore la trempabilité et la résistance mécanique de l'acier. C'est un élément important de l'invention qui permet non seulement de tolérer une teneur notable en Mo sans entrainer la précipitation des gros carbures M23C6 et de carbures ksi lors d'un revenu poussé mais au contraire de favoriser une précipitation fine et homogène de micro-carbures MC en limitant leur grossissement grâce à son faible coefficient de diffusion. Par son effet, le tungstène permet ainsi d'augmenter la teneur en molybdène pour relever la température de revenu et donc de baisser la densité de dislocations et d'améliorer la résistance à la SSC. Une teneur d'au moins 0,3% est fixée à cet effet. Au-delà de 1% son effet n'évolue plus. C'est pourquoi la teneur en Mo est fixée entre 0,3% et 1%. Les limites inférieure et supérieure préférées sont respectivement égales à 0,4% et 0,7%.Like molybdenum, tungsten is an element that improves the hardenability and strength of steel. This is an important element of the invention which allows not only to tolerate a significant content of Mo without causing the precipitation of large carbides M 23 C 6 and ksi carbides during a high income but on the contrary to promote a fine precipitation and homogeneous micro-carbides MC by limiting their magnification thanks to its low diffusion coefficient. By its effect, tungsten thus makes it possible to increase the molybdenum content to raise the tempering temperature and thus to lower the density of dislocations and to improve the resistance to SSC. A content of at least 0.3% is fixed for this purpose. Beyond 1% its effect does not evolve anymore. This is why the Mo content is set between 0.3% and 1%. The preferred lower and upper limits are 0.4% and 0.7%, respectively.

VANADIUM : 0,03% à 0,25%VANADIUM: 0.03% to 0.25%

Comme le molybdène, le vanadium est un élément utile pour améliorer la résistance à la SSC en formant de fins micro-carbures MC qui permettent de relever la température de revenu de l'acier. Il doit être présent à au moins 0,03% pour exprimer son effet. Toutefois une précipitation trop abondante de ces carbures tend à fragiliser l'acier. C'est pourquoi sa teneur est limitée à 0,25%. Les inventeurs ont constaté une influence conjointe des éléments Nb et V. Lorsque la teneur en Nb est relativement faible (0,01% à 0,03%), la plage préférentielle de teneur en V se situe entre 0,1 et 0,25% et plus préférentiellement entre 0,1 et 0,2%..Like molybdenum, vanadium is a useful element for improving SSC resistance by forming fine micro-carbons ™ that can be used to raise the tempering temperature of steel. It must be present at least 0.03% to express its effect. However too abundant precipitation of these carbides tends to weaken the steel. This is why its content is limited to 0.25%. The inventors have found a joint influence of the elements Nb and V. When the content of Nb is relatively low (0.01% to 0.03%), the preferred range of V content is between 0.1 and 0.25 % and more preferably between 0.1 and 0.2%.

NIOBIUM : 0,01% à 0,15%NIOBIUM: 0.01% to 0.15%

Le niobium est un élément d'addition qui forme avec le carbone et l'azote des carbonitrures dont l'effet d'ancrage contribue efficacement à affiner le grain lors de l'austénitisation. Aux températures usuelles d'austénitisation, les carbonitrures sont partiellement dissous et le niobium a un effet durcissant (ou retardateur sur l'adoucissement) par précipitation de carbonitrures au revenu plus faible que le vanadium. Par contre les carbonitrures non dissous ancrent efficacement les joints de grains austénitiques lors de l'austénitisation et permettent ainsi d'obtenir un grain austénitique très fin avant trempe, ce qui a un effet très favorable sur la limite d'élasticité et sur la résistance à la SSC. Les inventeurs sont en outre d'avis que cet effet d'affinage du grain austénitique est augmenté par une double opération de trempe. Pour que l'effet du niobium s'exprime, cet élément doit être présent à au moins 0,01%. Cependant, à plus de 0,15% les carbonitrures de Nb sont trop abondants et relativement grossiers, ce qui n'est pas favorable pour la résistance à la SSC. Lorsque la teneur en V est relativement élevée (0,1 à 0,25%), la plage préférentielle de teneur en Nb se situe entre 0,01% et 0,03%.Niobium is an additive element that forms carbonitrides with carbon and nitrogen, the anchoring effect of which contributes effectively to grain refinement during austenitization. At standard austenitization temperatures, carbonitrides are partially dissolved and niobium has a hardening (or retarding effect on softening) by precipitation of lower-yielding carbonitrides than vanadium. On the other hand, the undissolved carbonitrides anchor the austenitic grain boundaries effectively during the austenitization and thus make it possible to obtain a very fine austenitic grain before quenching, which has a very favorable effect on the elastic limit and on the resistance to the SSC. The inventors are also of the opinion that this refining effect of the austenitic grain is increased by a double quenching operation. For the effect of niobium to be expressed, this element must be present at least 0.01%. However, at more than 0.15% Nb carbonitrides are too abundant and relatively coarse, which is not favorable for the resistance to SSC. When the V content is relatively high (0.1 to 0.25%), the preferred range of Nb content is between 0.01% and 0.03%.

VANADIUM + 2xNIOBIUM : optionnellement compris entre 0,10 et 0,35%VANADIUM + 2xNIOBIUM: optionally between 0.10 and 0.35%

Les inventeurs ont constaté une influence conjointe des éléments V et Nb sur le retard au revenu et donc sur la résistance à la SSC. On peut ajouter davantage de Niobium lorsque la teneur en V est relativement basse (autour de 0,04%) et réciproquement (effet de bascule entre ces éléments). Pour exprimer cette influence conjointe des éléments Nb et V, les inventeurs ont optionnellement introduit une limitation sur la somme V+2.Nb qui peut être comprise entre 0,10% et 0,35% et préférentiellement entre 0,12 et 0,30%.The inventors have found a joint influence of the elements V and Nb on the income delay and therefore on the resistance to the SSC. More Niobium can be added when the V content is relatively low (around 0.04%) and vice versa (rocking effect between these elements). To express this joint influence of the elements Nb and V, the inventors have optionally introduced a limitation on the sum V + 2.Nb which can be between 0.10% and 0.35% and preferably between 0.12 and 0.30%. %.

ALUMINIUM : 0,01% à 0,1%ALUMINUM: 0.01% to 0.1%

L'aluminium est un puissant désoxydant de l'acier et sa présence favorise également la désulfuration de l'acier. Il est ajouté à une teneur d'au moins 0,01% pour cela. Cependant, à plus de 0,1%, d'une part, on n'améliore plus sensiblement la désoxydation et la désulfuration de l'acier et, d'autre part, on tend à former des nitrures d'Al grossiers et néfastes. C'est pourquoi la limite supérieure de teneur en Al est fixée à 0,1%. Les limites inférieure et supérieure préférées sont respectivement égales à 0,01% et 0,05%.Aluminum is a powerful deoxidizer of steel and its presence also favors the desulfurization of steel. It is added at a content of at least 0.01% for this. However, at more than 0.1%, on the one hand, the deoxidation and desulphurization of steel is no longer significantly improved and, on the other hand, it tends to form coarse and harmful Al nitrides. This is why the upper limit of Al content is set at 0.1%. The preferred lower and upper limits are 0.01% and 0.05%, respectively.

TITANE : (impureté)TITANIUM: (impurity)

Une teneur en Ti supérieure à 0,01% favorise la précipitation de nitrures de titane TiN dans la phase liquide de l'acier et peut conduire à la formation de gros précipités TiN néfastes à la résistance à la SSC. Des teneurs en Ti inférieures ou égales à 0,01% peuvent être des impuretés issues de l'élaboration de l'acier liquide et non pas résulter d'une addition volontaire. Des teneurs aussi basses n'ont d'ailleurs pas d'effet néfaste sur la résistance à la SSC pour des teneurs en azote faibles (inférieures ou égales à 0,01%) d'après les inventeurs. De préférence la teneur maximale en impureté Ti est limitée à 0,005%.A Ti content greater than 0.01% promotes the precipitation of TiN titanium nitrides in the liquid phase of the steel and can lead to the formation of large TiN precipitates which are detrimental to SSC resistance. Ti contents less than or equal to 0.01% may be impurities resulting from the preparation of the liquid steel and not result from a voluntary addition. Such low levels do not have any detrimental effect on the resistance to SSC for low nitrogen contents (less than or equal to 0.01%) according to the inventors. Preferably the maximum content of impurity Ti is limited to 0.005%.

AZOTE : (impureté)NITROGEN: (impurity)

Une teneur en azote supérieure à 0,01% est susceptible de diminuer la résistance à la SSC de l'acier. Sa teneur est donc de préférence maintenue inférieure à 0,01%.A nitrogen content greater than 0.01% is likely to decrease the SSC resistance of the steel. Its content is therefore preferably kept below 0.01%.

BORE : impuretéBORE: impurity

Cet élément très avide d'azote améliore énormément la trempabilité lorsqu'il est dissous dans l'acierThis very hungry nitrogen element greatly improves the hardenability when dissolved in steel

Pour obtenir cet effet il est nécessaire d'ajouter du bore à des niveaux d'au moins 10 ppm (10-4%).To achieve this effect it is necessary to add boron at levels of at least 10 ppm (10 -4 %).

Les aciers micro-alliés au bore contiennent généralement du titane pour fixer l'azote sous forme de composés TiN et laisser le bore disponible.Boron micro-alloyed steels typically contain titanium to fix nitrogen as TiN compounds and leave boron available.

Les inventeurs ont trouvé à l'occasion de la présente invention que, pour des aciers à très haute limite d'élasticité devant résister à la SSC, une addition en bore n'était pas nécessaire dans l'acier selon l'invention, voire pouvait être nuisible. Le bore est donc sous forme d'une impureté dans l'acier selon l'invention.The inventors have found on the occasion of the present invention that, for very high yield strength steels to resist SSC, a boron addition was not necessary in the steel according to the invention, or even could to be harmful. Boron is therefore in the form of an impurity in the steel according to the invention.

EXEMPLE DE MODE DE REALISATIONEXAMPLE OF EMBODIMENT

Deux coulées de laboratoire de 100 Kg chacune repérées A et B en acier selon l'invention ont été élaborées puis façonnées par laminage à chaud en plats de largeur 160 mm et d'épaisseur 12 mm.Two laboratory flows of 100 kg each marked A and B steel according to the invention were developed and then hot-rolled into flat 160 mm wide and 12 mm thick.

A titre de comparaison, une coulée de laboratoire repérée C en dehors des fourchettes de composition de la présente invention a également été élaborée et transformée en. plats similaires à ceux des coulées A et B.For comparison, a laboratory run labeled C outside the composition ranges of the present invention was also developed and transformed into. dishes similar to those of castings A and B.

Le tableau 1 fournit la composition chimique sur produit (plat laminé) des trois coulées testées (tous les % sont exprimés en poids). Tableau 1 Repère C Si Mn P S Cr Mo W V A 0,43 0,79 0 0,010 0,003 0,50 1,46 0.64 0,20 B 0,34 0,36 0,39 0,011 0,003 0,49 1,29 0,52 0,10 C* 0,33 0,37 0,38 0,011 0,003 0,98 1,50 0,008* 0,05 Repère Nb V+2Nb Al N Ti B A 0,019 0,24 0,03 0,0045 0,002 0,0005 B 0,021 0,14 0,02 0,0023 0,002 0,0005 C* 0,081 0,21 0,02 0,0031 0,009 0,0012* * exemple comparatif Table 1 provides the chemical composition on product (rolled plate) of the three castings tested (all% are expressed by weight). Table 1 landmark VS Yes mn P S Cr MB W V AT 0.43 0.79 0 0,010 0,003 0.50 1.46 0.64 0.20 B 0.34 0.36 0.39 0,011 0,003 0.49 1.29 0.52 0.10 VS* 0.33 0.37 0.38 0,011 0,003 0.98 1.50 0,008 * 0.05 landmark Nb V + 2Nb al NOT Ti B AT 0,019 0.24 0.03 0.0045 0,002 0.0005 B 0,021 0.14 0.02 0.0023 0,002 0.0005 VS* 0.081 0.21 0.02 0.0031 0,009 0.0012 * * comparative example

Les coulées A et B présentent une forte teneur en V et une faible teneur en Nb et la coulée C une balance opposée pour ces éléments.Castings A and B have a high V content and a low Nb content and casting C an opposite balance for these elements.

La coulée B est une variante de la coulée A à plus basse teneur en C et Si.Casting B is a variant of casting A with a lower C and Si content.

La coulée C ne contient pas de W mais contient une addition de Ti et de bore.Casting C does not contain W but contains an addition of Ti and boron.

La coulée A a fait l'objet d'essais dilatométriques pour détermination des points de transformation au chauffage Ac1 et Ac3, des températures Ms et Mf de transformation martensitique et de la vitesse critique de trempe martensitique.
Ac1= 765°C Ac3=880°C Ms= 330°C Mf= 200°C
Le point Ac1 est élevé et permet d'effectuer un revenu à température élevée.
La structure obtenue avec une vitesse de refroidissement de 20°C/s est entièrement martensitique et présente 15% de bainite pour une vitesse de refroidissement de 7°C/s. La vitesse critique de trempe martensitique est ainsi voisine de 10°C/s.
The casting A was subjected to dilatometric tests for determining the transformation points at the Ac1 and Ac3 heating, the martensitic transformation Ms and Mf temperatures and the martensitic quenching critical speed.
Ac1 = 765 ° C. Ac3 = 880 ° C. MS = 330 ° C. Mw = 200 ° C.
The point Ac1 is high and makes it possible to make an income at high temperature.
The structure obtained with a cooling rate of 20 ° C / s is entirely martensitic and has 15% of bainite for a cooling rate of 7 ° C / s. The critical speed of martensitic quenching is thus close to 10 ° C./s.

Le tableau 2 indique les valeurs de limite d'élasticité Rp0,2 et résistance mécanique à la rupture Rm obtenues sur les plats des diverses coulées après traitement thermique de double trempe et revenu.Table 2 shows the values of yield strength Rp0.2 and mechanical strength at break Rm obtained on the plates of the various castings after heat treatment of double quenching and tempering.

On a effectué deux opérations de trempe à des températures voisines de 950°C pour tenter de mieux affiner la taille de grains austénitiques et un revenu entre les deux opérations de trempe pour éviter de générer des tapures de trempe entre ces opérations. Le revenu final a été effectué entre 680°C et 730°C selon les repères A à C pour obtenir une valeur de limite d'élasticité supérieure ou égale à 965 MPa (140 ksi). Tableau 2 Repère Produit / épaisseur (mm) Traitement thermique (**) Limite d'élasticité MPa (ksi) Résistance à la rupture MPa (ksi) Rp0,2/Rm A Plat laminé/12 mm TE+R+TE+R 1005 (146) 1051 (152) 0,96 B Plat laminé/12 mm TE+R+TE+R 1010(147) 1078(156) 0,94 C* Plat laminé/12 mm TE+R+TE+R 995 (144) 1066 (155) 0,93 * exemple comparatif
** TE = trempe eau ; R = revenu
Two tempering operations were carried out at temperatures in the region of 950 ° C. in order to better refine the size of the austenitic grains and a tempering between the two quenching operations in order to avoid generating quenching taps between these operations. The final income was made between 680 ° C and 730 ° C according to marks A to C to obtain a yield strength value greater than or equal to 965 MPa (140 ksi). Table 2 landmark Product / thickness (mm) Heat treatment (**) Yield strength MPa (ksi) Breaking strength MPa (ksi) Rp0.2 / Rm AT Flat rolled / 12 mm TE + R + TE + R 1005 (146) 1051 (152) 0.96 B Flat rolled / 12 mm TE + R + TE + R 1010 (147) 1078 (156) 0.94 VS* Flat rolled / 12 mm TE + R + TE + R 995 (144) 1066 (155) 0.93 * comparative example
** TE = water quenching; R = income

Les valeurs de résistance mécanique Rm sont très voisines de celles de limite d'élasticité (rapport Rp0,2/Rm voisin de 0,95), ce qui est favorable à la résistance à la SSC. Il est vraisemblablement souhaitable que Rm soit inférieur ou égal à 1150 MPa et préférablement à 1120 voire à 1100 MPa pour favoriser la résistance à la SSC.The values of mechanical strength Rm are very close to those of elastic limit (ratio Rp0.2 / Rm close to 0.95), which is favorable to the resistance to the SSC. It is likely desirable that Rm be less than or equal to 1150 MPa and preferably 1120 or even 1100 MPa to promote resistance to SSC.

La taille de grains austénitiques antérieurs à la seconde opération de trempe a été mesurée et le tableau 3 présente les résultats obtenus. Tableau 3 repère Taille de grains austénitique selon ASTM E112 A 11 B 13 C* 13 * exemple comparatif The size of austenitic grains prior to the second quenching operation was measured and Table 3 shows the results obtained. Table 3 landmark Austenitic grain size according to ASTM E112 AT 11 B 13 VS* 13 * comparative example

Dans tous les cas les grains sont très fins et cette taille de grains résulte probablement des effets bénéfiques d'une double trempe.In all cases the grains are very fine and this size of grains probably results from the beneficial effects of a double quenching.

Le tableau 4 présente les valeurs moyennes de trois empreintes de dureté Rockwell C (HRc) réalisées sur les échantillons traités selon tableau 2 à trois localisations différentes : près de chacune des surfaces et à mi-épaisseur des plats. Tableau 4 repère Dureté HRc surface 1 mi-épaisseur surface 2 A 34,2 34,5 34,5 B 33,9 34,9 34,1 C* 33,6 33,3 34,0 * exemple comparatif Table 4 presents the average values of three Rockwell hardness fingerprints (HRc) made on the samples treated according to Table 2 at three different locations: near each of the surfaces and at mid-thickness of the dishes. Table 4 landmark Hardness HRc surface 1 mid-thickness surface 2 AT 34.2 34.5 34.5 B 33.9 34.9 34.1 VS* 33.6 33.3 34.0 * comparative example

On note peu de variation de dureté dans l'épaisseur des plats (au plus 1 HRc) ce qui dénote une trempe martensitique de toute l'épaisseur des plats.There is little variation in hardness in the thickness of the dishes (at most 1 HRc) which indicates a martensitic quenching of the entire thickness of the dishes.

Les valeurs maximales du tableau sont voisines de l'ordre de 35 HRc et une valeur maximale de 36 HRc peut apparaître souhaitable pour favoriser la SSC.The maximum values of the table are close to 35 HRc and a maximum value of 36 HRc may appear desirable to promote the SSC.

Le tableau 5 présente les valeurs moyennes de résultats d'essais de résilience Charpy V à basse température (-20°C et -40°C) sur éprouvettes prélevées en sens longitudinal des plats de la coulée A traités selon tableau 2. Tableau 5 repère KV (J) à -40°C KV (J) à -20°C A 30 39 Table 5 shows the average values of Charpy V resiliency test results at low temperature (-20 ° C and -40 ° C) on specimens taken longitudinally from the plates of casting A treated according to Table 2. Table 5 landmark KV (J) at -40 ° C KV (J) at -20 ° C AT 30 39

Les valeurs obtenues sont toutes supérieures à 27 J (valeur d'énergie correspondant au critère de la spécification API 5CT) à -40°C.The values obtained are all greater than 27 J (energy value corresponding to the criterion of the API 5CT specification) at -40 ° C.

Le tableau 6 présente les résultats des essais pour évaluer la résistance à la SSC selon la méthode A de la spécification NACE TM0177.Table 6 presents the results of the tests to evaluate the resistance to SSC according to method A of the NACE TM0177 specification.

Les éprouvettes d'essai sont des éprouvettes cylindriques de traction prélevées sur les tubes en sens longitudinal à mi-épaisseur des plats traités selon tableau 2 et usinées selon la spécification NACE TM0177 méthode A.The test specimens are cylindrical tensile specimens taken from the tubes in the longitudinal direction at mid-thickness of the plates treated according to Table 2 and machined according to the NACE TM0177 Method A specification.

Le bain d'essai utilisé est de type EFC 16 (Fédération Européenne de Corrosion). La solution aqueuse est composée de 5% de chlorure de sodium (NaCl) et de 0.4% d'acétate de sodium (CH3COONa) avec un barbotage continu du mélange de gaz 3% H2S / 97% CO2 à 24°C (±3°C) et ajustée à un pH de 3.5 à l'aide d'acide chlorhydrique (HCl).The test bath used is of type EFC 16 (European Corrosion Federation). The aqueous solution is composed of 5% sodium chloride (NaCl) and 0.4% sodium acetate (CH3COONa) with continuous bubbling of the gas mixture 3% H 2 S / 97% CO2 at 24 ° C (± 3 ° C) and adjusted to pH 3.5 with hydrochloric acid (HCl).

La contrainte de chargement est fixée à 85% de la limite d'élasticité minimum spécifiée (SMYS), c'est-à-dire 85% de 965 MPa soit 820 MPa. Trois éprouvettes sont testées dans les mêmes conditions d'essais compte tenu de la relative dispersion de ce type d'essais.The loading stress is set at 85% of the specified minimum yield strength (SMYS), ie 85% of 965 MPa or 820 MPa. Three test pieces are tested under the same test conditions in view of the relative dispersion of this type of test.

La résistance à la SSC est jugée bonne (symbole O) en l'absence de rupture d'au moins deux éprouvettes au bout de 720h et mauvaise (symbole X) s'il y a rupture avant les 720h dans la partie calibrée d'au moins deux éprouvettes sur les trois testées. Les essais sur le repère A ont été doublés. Tableau 6 Repère Rp0,2 (MPa) Essais NACE Méthode A environnement contrainte appliquée résultat pH H2S (%) contrainte de chargement valeur en MPa (ksi) > 720h A** 1005 3,5 3 85% SMYS 820 (119) O O B 1010 3,5 3 85% SMYS 820 (119) X C* 995 3.5 3 85% SMYS 820 (119) X * exemple comparatif ** essais doublés The resistance to the SSC is considered good (symbol O) in the absence of rupture of at least two test pieces after 720h and bad (symbol X) if there is a break before the 720h in the calibrated part of at minus two test pieces out of the three tested. The tests on marker A have been doubled. Table 6 landmark Rp0.2 (MPa) NACE Tests Method A environment applied stress result pH H 2 S (%) loading stress value in MPa (ksi) > 720h AT** 1005 3.5 3 85% SMYS 820 (119) O O B 1010 3.5 3 85% SMYS 820 (119) X VS* 995 3.5 3 85% SMYS 820 (119) X * comparative example ** doubled tests

Les résultats obtenus sur les repères A et B en acier selon l'invention traité à des niveaux de 1005 et 1010 MPa passent les essais contrairement à ceux sur le repère C en acier comparatif traité à 995 MPa.The results obtained on the steel marks A and B according to the invention treated at levels of 1005 and 1010 MPa pass the tests unlike those on the benchmark C of comparative steel treated at 995 MPa.

L'acier selon l'invention vise particulièrement à s'appliquer à des produits destinés à l'exploration et à la production de gisements d'hydrocarbures tels que, par exemple, des tubes de cuvelage (casing), des tubes de production (tubing), des tubes pour colonnes montantes sous-marines (risers), des tiges de forage, des tiges lourdes de forage, des masse-tiges ou encore à des accessoires pour les produits précédents.The steel according to the invention is particularly intended to apply to products intended for the exploration and production of hydrocarbon deposits such as, for example, casing tubes, production tubes (tubing ), tubes for underwater risers, drill pipes, heavy drill rods, drill collars or accessories for the previous products.

Claims (12)

  1. A light alloy steel with a high yield strength and excellent sulphide stress cracking behaviour, characterized in that it contains, by weight:
    C: 0.3% to 0.5%;
    Si: 0.1% to 1%;
    Mn: 1% or less;
    P: 0.03% or less;
    S: 0.005% or less;
    Cr: 0.3% to 1%;
    Mo: 1% to 2%;
    W: 0.3% to 1%;
    V: 0.03% to 0.25%;
    Nb: 0.01 % to 0.15%;
    Al: 0.01% to 0.1%;
    the remainder of the chemical composition of said steel being constituted by Fe and impurities or residuals resulting from or necessary to steel production and casting processes.
  2. A steel according to claim 1, characterized in that its C content is in the range 0.32% to 0.38%.
  3. A steel according to claim 1, characterized in that its C content is in the range 0.40% to 0.45%.
  4. A steel according to one of the preceding claims, characterized in that its Mn content is in the range 0.2% to 0.5%.
  5. A steel according to one of the preceding claims, characterized in that its Cr content is in the range 0.3% to 0.8%.
  6. A steel according to claim 1, characterized in that its Mo content is in the range 1.2% to 1.8%.
  7. A steel according to one of the preceding claims, characterized in that its W content is in the range 0.4% to 0.7%.
  8. A steel according to one of the preceding claims, characterized in that its V content is in the range 0.1% to 0.25% and in that its Nb content is in the range 0.01% to 0.03%.
  9. A steel according to one of the preceding claims, characterized in that its V+2×Nb content is in the range 0.10% to 0.35%.
  10. A steel product according to one of the preceding claims, characterized in that it is quench and temper heat treated so that its yield strength is 862 MPa (125 ksi) or more.
  11. A steel product according to one of the preceding claims, characterized in that it is quench and temper heat treated so that its yield strength is 965 MPa (140 ksi) or more.
  12. A steel product according to claim 10 or claim 11, characterized in that its heat treatment comprises two quench operations.
EP11720496.6A 2010-06-04 2011-05-19 Low alloyed steel with high yield strength and high sulfide stress cracking resistance Not-in-force EP2593574B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1054418A FR2960883B1 (en) 2010-06-04 2010-06-04 LOW-ALLOY STEEL WITH HIGH ELASTICITY LIMIT AND HIGH STRENGTH RESISTANCE TO SULFIDE-CONTAMINATED CRACKING
PCT/EP2011/058134 WO2011151186A1 (en) 2010-06-04 2011-05-19 Low-alloy steel having a high yield strength and a high sulphide-induced stress cracking resistance

Publications (2)

Publication Number Publication Date
EP2593574A1 EP2593574A1 (en) 2013-05-22
EP2593574B1 true EP2593574B1 (en) 2017-03-22

Family

ID=43384551

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11720496.6A Not-in-force EP2593574B1 (en) 2010-06-04 2011-05-19 Low alloyed steel with high yield strength and high sulfide stress cracking resistance

Country Status (15)

Country Link
US (1) US9273383B2 (en)
EP (1) EP2593574B1 (en)
JP (1) JP5856608B2 (en)
CN (1) CN102939400B (en)
AR (1) AR081190A1 (en)
AU (1) AU2011260493B2 (en)
BR (1) BR112012030817A8 (en)
CA (1) CA2801012C (en)
EA (1) EA023196B1 (en)
FR (1) FR2960883B1 (en)
MX (1) MX347581B (en)
MY (1) MY161469A (en)
SA (1) SA111320502B1 (en)
UA (1) UA106660C2 (en)
WO (1) WO2011151186A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2847274B1 (en) * 2002-11-19 2005-08-19 Usinor SOLDERABLE CONSTRUCTION STEEL PIECE AND METHOD OF MANUFACTURE
EP2865775B1 (en) 2012-06-20 2018-08-08 Nippon Steel & Sumitomo Metal Corporation Steel for oil well pipe, oil well pipe, and method for producing same
RU2605033C1 (en) * 2012-11-05 2016-12-20 Ниппон Стил Энд Сумитомо Метал Корпорейшн Low alloyed steel for oilfield gage pipes having excellent resistance to sulphide stress cracking, and its manufacturing method
CN105874093B (en) * 2014-06-09 2017-06-13 新日铁住金株式会社 Low-alloy Oil Well Pipe
AR101200A1 (en) 2014-07-25 2016-11-30 Nippon Steel & Sumitomo Metal Corp LOW ALLOY STEEL TUBE FOR OIL WELL
CN104372247B (en) * 2014-11-04 2016-04-06 武钢集团昆明钢铁股份有限公司 A kind of 600MPa level high-strength quake-proof Screwbar muscle and preparation method thereof
WO2016093161A1 (en) 2014-12-12 2016-06-16 新日鐵住金株式会社 Low-alloy steel for oil well tubular, and method for manufacturing low-alloy steel oil well tubular
CN105177434B (en) * 2015-09-25 2017-06-20 天津钢管集团股份有限公司 The manufacture method of 125ksi grade of steel sulfurated hydrogen stress etching-resisting oil well pipes
JP6859835B2 (en) * 2017-05-01 2021-04-14 日本製鉄株式会社 Seamless steel pipe for steel materials and oil wells
EP3784811A1 (en) * 2018-04-27 2021-03-03 Vallourec Oil And Gas France Sulphide stress cracking resistant steel, tubular product made from said steel, process for manufacturing a tubular product and use thereof
CN110616366B (en) * 2018-06-20 2021-07-16 宝山钢铁股份有限公司 125ksi steel grade sulfur-resistant oil well pipe and manufacturing method thereof

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6164815A (en) * 1984-09-03 1986-04-03 Sumitomo Metal Ind Ltd Manufacture of high strength steel excellent in delay breakdown resistance
JPS61272351A (en) * 1985-05-29 1986-12-02 Kawasaki Steel Corp Steel pipe for oil well having high toughness as well as high strength
DE69617002D1 (en) * 1995-05-15 2001-12-20 Sumitomo Metal Ind METHOD FOR THE PRODUCTION OF HIGH-STRENGTH SEAMLESS STEEL TUBES WITH EXCELLENT SULFUR INDUCED TENSION crack cracking resistance
FR2748036B1 (en) * 1996-04-29 1998-05-22 Creusot Loire LOW ALLOYED STEEL FOR THE MANUFACTURE OF MOLDS FOR PLASTIC MATERIALS
CN1120247C (en) * 2000-02-02 2003-09-03 燕山大学 Nanometer grain low-alloy steel plate and its production method
TW567233B (en) * 2001-03-05 2003-12-21 Kiyohito Ishida Free-cutting tool steel
JP4609138B2 (en) * 2005-03-24 2011-01-12 住友金属工業株式会社 Manufacturing method of oil well pipe steel excellent in sulfide stress cracking resistance and oil well seamless steel pipe
JP4952425B2 (en) 2006-08-21 2012-06-13 ソニー株式会社 Liquid crystal device and electronic device
WO2008130054A1 (en) * 2007-04-18 2008-10-30 Nippon Steel Corporation Hot-worked steel material having excellent machinability and impact value
JP5380892B2 (en) 2007-05-29 2014-01-08 Jfeスチール株式会社 Wear-resistant steel plate with excellent workability and method for producing the same
FR2939449B1 (en) 2008-12-09 2011-03-18 Vallourec Mannesmann Oil & Gas France LOW-ALLOY STEEL WITH HIGH ELASTICITY LIMIT AND HIGH RESISTANCE TO CRUSHING UNDER SULFIDE STRESS.
JP5728836B2 (en) 2009-06-24 2015-06-03 Jfeスチール株式会社 Manufacturing method of high strength seamless steel pipe for oil wells with excellent resistance to sulfide stress cracking

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
AU2011260493A1 (en) 2013-01-10
AU2011260493B2 (en) 2015-07-30
BR112012030817A8 (en) 2018-03-27
EP2593574A1 (en) 2013-05-22
SA111320502B1 (en) 2014-09-10
MX2012014058A (en) 2012-12-17
EA201270785A1 (en) 2013-04-30
MX347581B (en) 2017-05-02
US20130061988A1 (en) 2013-03-14
CN102939400B (en) 2016-08-03
CA2801012C (en) 2018-05-01
JP2013534563A (en) 2013-09-05
AR081190A1 (en) 2012-07-04
UA106660C2 (en) 2014-09-25
JP5856608B2 (en) 2016-02-10
BR112012030817A2 (en) 2016-11-01
CA2801012A1 (en) 2011-12-08
CN102939400A (en) 2013-02-20
FR2960883B1 (en) 2012-07-13
US9273383B2 (en) 2016-03-01
EA023196B1 (en) 2016-05-31
WO2011151186A1 (en) 2011-12-08
MY161469A (en) 2017-04-14
FR2960883A1 (en) 2011-12-09

Similar Documents

Publication Publication Date Title
EP2593574B1 (en) Low alloyed steel with high yield strength and high sulfide stress cracking resistance
FR2942808A1 (en) LOW-ALLOY STEEL WITH HIGH ELASTICITY LIMIT AND HIGH RESISTANCE TO CRUSHING UNDER SULFIDE STRESS.
JP3262807B2 (en) Oil well pipe steel and seamless oil well pipe with excellent resistance to wet carbon dioxide gas and seawater corrosion
US6248187B1 (en) Corrosion resisting steel and corrosion resisting oil well pipe having high corrosion resistance to carbon dioxide gas
JPWO2007023805A1 (en) Seamless steel pipe for line pipe and its manufacturing method
KR102450006B1 (en) Microalloy steel and method for producing said steel
JP5181697B2 (en) High strength steel plate with excellent PWHT resistance and method for producing the same
FR2939449A1 (en) LOW-ALLOY STEEL WITH HIGH ELASTICITY LIMIT AND HIGH RESISTANCE TO CRUSHING UNDER SULFIDE STRESS.
JP6642715B2 (en) High strength seamless steel pipe and riser
FR2886314A1 (en) STEEL FOR SUBMARINE HULL WITH REINFORCED WELDABILITY
AU2019222820A1 (en) High strength micro alloyed steel seamless pipe for sour service and high toughness applications
OA16270A (en) Low alloy steel with high yield strength and high resistance to sulphide stress cracking
BR102019018917B1 (en) STEEL, SEAMLESS STEEL TUBE AND PROCESS FOR MANUFACTURING A SEAMLESS TUBE

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130319

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: VALLOUREC OIL AND GAS FRANCE

17Q First examination report despatched

Effective date: 20140714

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20161014

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 877853

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170415

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602011036193

Country of ref document: DE

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170623

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170622

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20170322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170722

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170724

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602011036193

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

26N No opposition filed

Effective date: 20180102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170519

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170519

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110519

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20190603

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

REG Reference to a national code

Ref country code: AT

Ref legal event code: UEP

Ref document number: 877853

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170322

REG Reference to a national code

Ref country code: NO

Ref legal event code: MMEP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200531

Ref country code: RO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200519

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200519

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200519

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20210421

Year of fee payment: 11

Ref country code: IT

Payment date: 20210422

Year of fee payment: 11

Ref country code: DE

Payment date: 20210421

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20210422

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602011036193

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 877853

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220519

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220519

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220519