EP2592355A1 - Cooking hob, household appliance and method of operating an cooking hob - Google Patents

Cooking hob, household appliance and method of operating an cooking hob Download PDF

Info

Publication number
EP2592355A1
EP2592355A1 EP11188436.7A EP11188436A EP2592355A1 EP 2592355 A1 EP2592355 A1 EP 2592355A1 EP 11188436 A EP11188436 A EP 11188436A EP 2592355 A1 EP2592355 A1 EP 2592355A1
Authority
EP
European Patent Office
Prior art keywords
heating element
cooking
heating
heating elements
turntable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP11188436.7A
Other languages
German (de)
French (fr)
Other versions
EP2592355B1 (en
Inventor
Filippo Zanetti
Filippo Tisselli
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electrolux Home Products Corp NV
Original Assignee
Electrolux Home Products Corp NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to EP11188436.7A priority Critical patent/EP2592355B1/en
Application filed by Electrolux Home Products Corp NV filed Critical Electrolux Home Products Corp NV
Priority to ES11188436T priority patent/ES2726769T3/en
Priority to BR112014008013A priority patent/BR112014008013A2/en
Priority to PCT/EP2012/069815 priority patent/WO2013068186A1/en
Priority to US14/347,478 priority patent/US20140231413A1/en
Priority to CN201280049660.8A priority patent/CN103857963B/en
Priority to AU2012334330A priority patent/AU2012334330B2/en
Priority to RU2014112930/03A priority patent/RU2014112930A/en
Publication of EP2592355A1 publication Critical patent/EP2592355A1/en
Application granted granted Critical
Publication of EP2592355B1 publication Critical patent/EP2592355B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24CDOMESTIC STOVES OR RANGES ; DETAILS OF DOMESTIC STOVES OR RANGES, OF GENERAL APPLICATION
    • F24C15/00Details
    • F24C15/10Tops, e.g. hot plates; Rings
    • F24C15/102Tops, e.g. hot plates; Rings electrically heated
    • F24C15/103Tops, e.g. hot plates; Rings electrically heated being movable or rotatable
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24CDOMESTIC STOVES OR RANGES ; DETAILS OF DOMESTIC STOVES OR RANGES, OF GENERAL APPLICATION
    • F24C3/00Stoves or ranges for gaseous fuels
    • F24C3/08Arrangement or mounting of burners
    • F24C3/085Arrangement or mounting of burners on ranges

Definitions

  • the invention is directed to a cooking hob, a household appliance and a method of operating a cooking hob.
  • Cooking hobs are known in many configurations. Traditionally, heating elements of cooking hobs are positioned in a fixed arrangement.
  • a cooking appliance and a method of operating a cooking hob shall be provided.
  • a cooking hob which comprises a cooking face with at least two heating elements respectively adapted to heat cookware.
  • cooking face shall be understood to comprise areas, panes or plates of generally flat or planar configuration, on, below or to which heating elements, in particular gas hobs, i. e. gas cooking hobs, are mounted to.
  • a cooking face may be or constitute a top part of a household oven.
  • respective cookware i. e. cooking utensils, such as pans, pots, roasting trays and the like, may be placed on top of at least one heating element to be heated up.
  • heating element heat or electromagnetic fields dissipating from a heating element impinge on the lower surface of the cookware which as a result heats up.
  • a heating element in the sense of the present invention may be one of a inductive heating element comprising induction coils, radiation heating element, electrical resistance heating element and in particular a gas burner.
  • heating elements are of the same type, albeit it is conceivable that heating elements of different types are provided.
  • Heating elements such as inductive heating elements and radiation heating elements may be mounted below the cooking face.
  • Heating elements such as electrical resistance heating elements and gas burners may be, at least partially, mounted above the cooking face.
  • the cooking hob further comprises at least one motion unit coupled to at least one a first heating element of the at least two heating elements.
  • the motion unit is adapted and designed such that the first heating element is moveable along at least one trajectory of at least one of linear and curved type.
  • trajectory shall be understood to comprise a single trajectory or multiple different trajectories, in particular an array of different trajectories. Note that different trajectories may at least in sections be identical.
  • trajectory shall be understood to be a path that can be followed by the first heating element within the boundaries defined by the motion unit.
  • a trajectory may comprise linear sections and/or curved sections of arbitrary curvature.
  • Curved sections in particular shall comprise circular, elliptical and parabolic shapes.
  • movable along in particular shall mean that the center point, center of rotation, mass center and/or top surface center of the first heating element can follow the trajectory.
  • the motion unit provides certain motional degrees of freedom, in particular translational and/or rotational degrees of freedom. Moving the first heating element within the boundaries given by the motional degrees of freedom leads to all possible trajectories, i. e. a respective array of trajectories. Note that a motion unit may be provided for selected heating elements, in particular also for each heating element provided within the cooking face.
  • At least one second heating element of the at least two heating elements and different from the first heating element is positioned or can be positioned relative to the at least one trajectory such that in at least one trajectile position along the at least one trajectory, the first heating element and the at least one second heating element are so close to each other to establish a unique cooking zone.
  • trajectile position in particular shall include single points on a trajectory and/or ranges or segments of a trajectory.
  • trajectile position shall mean a position or point on the trajectory.
  • the trajectile position may in particular be an end position of a trajectory or any intermediate point thereof.
  • the first heating element, and in particular also the at least one second heating element are operable in single mode, i. e. no common cooking zone between the first and a second heating element is established.
  • Providing at least one second heating element along, i. e. near or nearby the at least one trajectory shall mean, that either one or several respective second heating elements may be provided that respectively can be used to establish unique cooking zones at respective trajectile positions.
  • any one or even all of the second heating elements may be implemented with a motion unit, i. e. may be implemented as a "first" heating element in the sense of claim 1.
  • triple, quadruple etc. pair unique cooking zone can be established.
  • triple, quadruple etc. unique cooking zones may also be implemented in cases where more than one first heating element, i. e. more than one movable heating element is provided.
  • the term "at least one motion unit” shall imply, that more than one motion unit may be provided, respectively coupled to a respective further first heating element, or even a second heating element.
  • the above and below discussion related to the first heating element shall apply mutatis mutandis to the further first heating element and second heating element. It shall be explicitly pointed out, that such a further first heating element may constitute a second heating element in the sense of the claims. This in particular means that not only the first heating element is moveable but also the second heating element is moveable along one or an array of second trajectories, in particular in such a way that unique heating zones can be established.
  • the second heating element In case that also the second heating element is moveable, it can be placed, i. e. moved to a respective trajectile position along the second trajectory or trajectories, and relative to the trajectile position of the first heating element such that the condition for establishing a unique cooking zone is fulfilled when the first heating element is in its trajectile position.
  • the motion unit may comprise guides, rails, turntables, platforms and other elements coupled to the first heating element and allowing movement thereof.
  • the respective elements may be positioned on, within and/or below the cooking face. Below the cooking face in particular shall mean that the heating element, in particular together with the motion unit, may be positioned below a pane or top, for example made from glass or ceramic.
  • platform shall be understood broadly and in particular shall mean any element or component system provided to enable linear and/or rotational movements.
  • One particular embodiment of a platform is a turntable to which the heating element is mounted to. .
  • the proposed cooking hob is comparatively flexible in establishing unique cooking zones adapted to different footprint sizes of cookware.
  • the at least one trajectory is composed of at least one of a one-dimensional linear movement, two-dimensional movement, one-dimensional circular movement and two-dimensional circular movement.
  • a two-dimensional movement shall mean that the heating element is moveable within a two-dimensional area or plane parallel to the cooking face. It shall be noted that under certain instances the motion unit may be designed such that the first heating element is moveable in three-dimensions. This in particular would be the case if the first heating element is movable along at least one trajectory within a plane parallel to the cooking face and further is movable, at least in sections of the trajectory, in a direction perpendicular to the cooking face. Moving the first heating element perpendicular to the cooking face may for example be an option if the first heating element shall be adapted to be lowered or raised with respect to the cooking face.
  • a one-dimensional circular movement may be obtained if for example a first turntable, which is mounted rotatable about an inner axis, e. g. a center axis or an off-center axis, thereof within the cooking face, is provided, and the first heating element is mounted in a position displaced from the respective inner axis on or to the turntable. If a center axis of the turntable is used as a rotational axis, the first heating element is placed off-center to the rotation axis.
  • an inner axis e. g. a center axis or an off-center axis
  • the first heating element and one of the second heating elements mounted off the turntable of the first heating element are so close to each other to establish the unique cooking zone.
  • turntables may be provided respectively carrying a first heating element and which are adapted such that the first heating element establishes a unique cooking zone with a second heating element in a respective rotational position.
  • the number of turntables can be as much as heating elements are provided within the cooking face.
  • unique cooking zones may arbitrarily be established with a second heating element which may be positioned fixedly, i. e. non-moveable, within the cooking face, or which may be positioned on a movable platform on within or below the cooking face.
  • At least one of the second heating elements may be mounted on a respective further turntable implemented in a similar manner than the turntable described above.
  • a two-dimensional circular movement may be obtained if the heating element is rotatably placed or mounted to or on a primary, smaller turntable at a location off a respective rotation axis, and the smaller turntable in turn is rotatably placed on a secondary, larger turntable off its rotation axis.
  • Rotational axes of the primary and secondary turntable in this case are offset from each other.
  • the motion unit may comprise a one-dimensional or two-dimensional linear guiding system, in particular rail system, along which the first heating element, preferably a platform to which the first heating element is mounted to, can be moved.
  • the rail system or platform is coupled with a respective turntable, trajectories with linear and/or circular sections can be obtained.
  • the first, and where applicable a second, turntable is preferably implemented as a circular, preferably flat, disk.
  • the turntable may be mounted to a rotary mount which itself may be fixed to the cooking hob or a supporting element or frame thereof.
  • the motion unit in particular linear guiding elements, in particular respective platforms, and/or turntables are preferably mounted, in particular arranged and positioned, within the cooking face.
  • the term within shall in particular relate to the lateral extension of the cooking face, which in general is aligned horizontally, i. e. without inclination, during normal operation.
  • a turntable and/or platform may project from the cooking face in a direction essentially perpendicular to the cooking face.
  • the turntable and/or platform is essentially in plane with the cooking face, which shall mean that it is level with a respective section accommodating the turntable or platform.
  • the turntable and/or platform may be positioned above the cooking face, which shall mean that at least outer sections of the turntable and/or platform overlap with the cooking face.
  • the cooking face or a respective platform to which the turntable is mounted to may have a recess adapted in its geometry to the outer dimensions of the turntable.
  • the cooking face may comprise a circular recess accommodating therein at least a section of the turntable.
  • a type of seal having adequate heat resistance, is provided in a remaining gap between the recess and the turntable.
  • a seal may also be provided in situations in which the turntable or moveable platform is mounted on and overlaps the cooking face.
  • a turntable or platform to which a turntable is mounted to may be connected to a guiding system arranged below the cooking face.
  • slots in particular guiding gates, may be provided in the cooking face, adapted to receive and guide mechanical connector elements between guiding system and respective turntable and/or platform.
  • the slots or guiding gates may be provided with seals at least preventing dust, soil and/or overflowing foodstuff from penetrating through the cooking face.
  • At least one first heating element in particular gas burner, may be mounted off-center on or to the first turntable.
  • Off-center shall mean that a vertical center axis of the heating element is offset from the vertical center axis of the turntable. This means, that upon rotating the turntable, the heating element, or in more general terms its center axis, rotates around the center axis of the turntable.
  • the cooking hob and its components advantageously are implemented such that at least in one rotational position of the first turntable the first heating element and one of at least one second heating elements mounted outside the first turntable are so close to each other so that a unique cooking zone is established.
  • unique cooking zone shall in particular mean, that the individual cooking zones of the first and second heating elements merge together to make up a single, i. e. unique, cooking zone, having optimized, in particular almost uniform, heat output over their combined heating area.
  • the unique cooking zone is enlarged, as compared to an individual cooking zone of a single heating element.
  • Gas burners establishing a unique cooking zone may be positioned such that a minimum distance between is zero. In case of circular heating elements, the minimum distance may range from 0 (zero) to 2.5 times the diameter of the larger heating element. In particular with gas burners, the gas burners establishing a unique cooking zone may face in correspondence of sparkplugs.
  • motion unit in particular guiding system, turntable and/or platform mentioned and described above may, if applicable, apply mutatis mutandis to other motion units, in particular guiding systems, turntables and/or platforms mounted on or to the cooking face.
  • the cooking hob as described above has the advantage, that the at least one first heating element can be moved relative to the cooking face in a comparatively simple way to obtain modified arrangements and cooking zones, in particular unique cooking zones. Further, using a guiding system, turntable and/or platform to obtain respective trajectories greatly simplifies constructional effort to implement a moveable heating element.
  • the special configuration of the cooking hob makes it possible to merge two individual cooking zones of single heating elements to establish a unique cooking zone optimized for cooking utensils having comparatively large and/or special geometry footprints.
  • Such cooking utensils may for example be elongated frying pans, roasting trays and the like, having oval footprints for example.
  • Establishing the unique cooking zone is advantageous if cooking utensils have to be heated which have footprints larger, in particular considerably larger, than single cooking zones of the individual heating elements. Using the unique cooking zone, leads to optimized heating and heating efficiency.
  • the first and respective second heating element advantageously form a type of twin-type or twin-mode configuration.
  • the heating excellence of a respective first and second heating element in particular exceeds the sum of heating excellence of respective single heating elements.
  • a further turntable and/or platform may be positioned or mounted next to the turntable and/or platform of the first heating element.
  • the term next to in particular shall mean that the first and second turntable and/or platform are arranged in immediate neighborhood of each other.
  • immediate neighborhood shall in particular mean that peripheral edges of the first and second turntable and/or platform at one point are as close, in particular as close as possible, to each other.
  • the first and second heating elements preferably lie approximately on the connection line between the center axes of the respective turntables. This in particular means that the distance between the first and second heating element, in particular the distance between respective center axes, is minimal or lies within a certain minimal range with respect to all possible positional configurations of the turntables.
  • Unique cooking zones established by using turntables may be obtained if a first heating element is mounted on a turntable and a second heating element is fixedly positioned within the cooking face.
  • the second heating element may also be mounted moveably on a platform, in particular turntable.
  • One further advantage of providing two turntables and/or platforms is that a heating element mounted on one of the turntables and/or platforms can be combined with several, distinct heating elements of the other turntable and/or platform.
  • a heating element mounted on one of the turntables and/or platforms can be combined with several, distinct heating elements of the other turntable and/or platform.
  • it is possible to obtain a more varied combination of different types of heating elements in particular if heating elements mounted to the first and second turntable and/or platform, respectively, have different characteristics, for example with respect to heating power.
  • a greater variety of geometrical configurations, such as in-line configurations or square configurations, of the heating elements can be obtained.
  • the cooking hob comprises at least three heating elements, and the at least one motion unit is adapted such that in at least one second position of the first heating element along the trajectory all of the heating elements are aligned along a common line.
  • the at least one motion unit is adapted such that in at least one second position of the first heating element along the trajectory all of the heating elements are aligned along a common line.
  • one first and two second heating elements may be provided.
  • At least two second heating elements may be positioned circumferentially to the turntable of the first heating element.
  • the at least two second heating elements may be arranged and positioned such that at respective circumferential rotational positions of the turntable of the first heating element, the first and a respective second heating elements establish respective unique cooking zones.
  • the at least one second heating element may be fixed on or to he cooking face.
  • the second heating element can be considered as a stationary burner, whereas the first heating element can be considered a rotary heating element.
  • the second heating elements preferably are positioned sufficiently close to the turntable of the first heating element such that the conditions mentioned further above relating to the unique cooking zone can be fulfilled.
  • the distance between heating elements establishing a unique cooking zone may be selected from a range of distances suitable for establishing the unique cooking zone.
  • the distance between cooking zones may range from 0 (zero) to 2.5 times the diameter of the larger heating element.
  • the second heating elements may be distributed on or over the cooking zone such that, with particular respect to the inner axis, in particular center-axis, of the turntable of the first heating element, a rotation angle of a turntable between a pair of subsequent second heating elements arranged in circumferential direction of the turntable is smaller than 180 degrees.
  • an angle between subsequent heating elements is 90 degrees.
  • the heating elements may be operable in non-twin mode, i. e. single mode, only.
  • first heating elements can be of different type.
  • the motion unit preferably is adapted and the first and second heating elements preferably are positioned such that in an in-line configuration, in particular an in-line rotational configuration of the turntable or turntables, all heating elements are positioned essentially along a common line.
  • the common line preferably runs parallel to one of the side edges of the cooking face.
  • an in-line configuration may result in an advantageous, in particular low, surface occupancy of the cooking face.
  • a low surface occupancy configuration of the heating elements larger free surface areas, i. e. areas not occupied by heating elements, can be obtained.
  • the free surface areas may provide additional free worktop or placement areas to a user of the cooking hob, to be used in particular for placing cooking utensils and other objects used or required during cooking.
  • the motion unit is adapted such that the at least one first heating element is rotatable in clockwise and/or counterclockwise direction at least one of at least or exactly about 90°, 180°, 270° and 360°.
  • the at least one first heating element is rotatable in clockwise and/or counterclockwise direction at least one of at least or exactly about 90°, 180°, 270° and 360°.
  • respective turntables are rotatable in clockwise and/or counter-clockwise direction at least one of at least or exactly about 90°, 180°, 270° and 360°.
  • any intermediate angles such for example 70 degrees, may be used.
  • the turntables are adapted to be turned in endless rotation.
  • the at least one motion unit comprises at least one latching mechanism adapted to latch the first heating element in at least one predefined position along a trajectory.
  • the latching mechanism preferably is provided to latch the first and second heating elements in positions making up a unique cooking zone or in positions making up single cooking zones.
  • Latching elements may be implemented as a stop restricting translational and/or rotational movement.
  • Latching elements and/or rotation stops may be used to latch the motion unit, in particular respective turntables and/or platforms, at respective positions along a trajectory, or to restrict movement thereof.
  • Latching elements and/or rotational stops may in particular be provided in one or more circumferential positions of a turntable, in general at respective positions along a trajectory or path, in which positions unique cooking zone, i. e. twin-mode configurations, an in-line configuration or other configurations.
  • a latching element or mechanism may also provide latched positions along the at least one trajectory such that all the heating elements can be best operated in single mode.
  • latching elements and/or rotation stops may in particular be used to restrict the rotational range of respective turntables to maximal allowed rotation angles, for example of about ⁇ 90 degrees, ⁇ 180 degrees, ⁇ 270 degrees or about ⁇ 360 degrees.
  • the at least one motion unit may comprise a platform, in particular movable platform to which the first heating element is mounted or coupled to. Note that if a turntable is used, it may be mounted to the platform.
  • the platform may be mounted movably to the cooking face, in particular via a guiding unit or system positioned at least one of on, within or below the cooking face.
  • the moveable platform may comprise a turntable rotatable around an inner rotation axis thereof, wherein the first heating element is mounted to the turntable.
  • the first heating element is mounted to the turntable.
  • the cooking hob comprises a control system having control elements, i. e. at least one knob and/or a user interface, cooperating with an electronic controller unit, adapted to operate a respective one of the heating elements, and where applicable motors and/or actuators for moving, in particular translating and/or rotating the first and/or second heating element.
  • control elements i. e. at least one knob and/or a user interface
  • an electronic controller unit adapted to operate a respective one of the heating elements, and where applicable motors and/or actuators for moving, in particular translating and/or rotating the first and/or second heating element.
  • the control system may in particular be adapted to control single mode operation of each of the heating elements.
  • a separate control element for each of the heating elements may be provided.
  • control system is adapted such that a pair of first and second heating elements establishing a unique cooking zone is controllable by one common, i. e. in particular one single, control element.
  • twin-mode control element Such a common or single control element may be designated a twin-mode control element.
  • the twin-mode control element may be selected from one of the control elements of heating elements establishing the unique cooking zone. It is also possible, that a separate twin-mode control element for twin-mode operation, in particular for twin-mode operation of any twin-mode pair is provided.
  • the control element may comprise a screen-like touch-sensitive and/or an acoustic-sensitive and/or remote controllable user interface, in particular for setting or resetting the twin-mode operational configuration.
  • the common control element is adapted to be activated in dependence of at least one of the trajectile position of the first and, where applicable, second heating element/s, in particular trajectile positions of the turntable and/or platform.
  • the common control element may be one of the single-mode control elements of respective heating elements, or the common control element may be an extra control element, in particular provided for twin-mode operation.
  • activation of a common control element goes along with establishing a unique cooking zone.
  • Activation of the common control element may depend on the trajectile position, in particular rotational angle, of respective heating element, in particular platform and/or turntable. If the rotational position corresponds to, or is close to a unique cooking zone, the common control element may be activated. At the same time, any other control element provided for single-mode operation of respective heating elements may be deactivated.
  • the common control element may be deactivated and respective single mode control elements may be activated again.
  • Activation and/or deactivation of single-mode and/or twin-mode control elements may be indicated or highlighted by, for example, visual, in particular luminous, and further acoustic and/or haptic means.
  • a further embodiment addresses moving, in particular translating and/or turning, i. e. rotating, the first and/or second heating element, in particular respective turntables and/or platforms.
  • the first and/or second heating element, in particular turntable and/or platform may be moved, in particular turned, i. e. rotated, for example by an actuator, in particular motor, to respective trajectile, in particular, angular positions.
  • Trajectile, in particular linear and/or angular positions of the first and, where applicable, second heating element may be selected automatically and/or according to individual user settings.
  • Angular positions may be, in particular automatically, selected from a predefined list of angular positions, such as ⁇ 90 degrees, ⁇ 180 degrees, ⁇ 270 degrees or about ⁇ 360 degrees or any other value in between.
  • the predefined or selected angular settings may correspond to angular positions in which unique cooking zones, an in-line configuration and the like can be established.
  • the trajectile, particularly linear and/or angular position, of the first and/or second heating element, in particular platform and/or turntable can be freely selected.
  • the geometrical arrangement of the heating elements, in particular rotatable heating elements can be adapted and optimized to respective sizes and geometries of cooking vessel placed or to be placed on the cooking hob.
  • An electronic control unit may be provided to control a motor and/or an actuator used or provided for moving the first and/or second heating element.
  • At least one motion control may be provided, which is adapted and configured to move the first heating element, in particular in automated manner, along the at least one trajectory.
  • a motion control can greatly simplify movement of heating elements, in particular establishing unique cooking zones.
  • a method of operating a cooking hob is provided.
  • the cooking hob is essentially constructed and designed according to any configuration and embodiment described further above and further below.
  • the first and second heating elements are operable by a common control element, whilst in any non-twin mode configuration, the first and second heating elements are operable by a respective individual control elements.
  • a twin-mode configuration of the first heating element and the second gas heating element mounted outside the first turntable may be obtained in a specific twin-mode rotary position of the turntable.
  • the first and second heating elements establish a unique cooking zone.
  • the comments, description and definitions given further above apply mutatis mutandis.
  • the control element may be a knob or similar.
  • the control element may be a user interface, in particular of touch-display type, allowing in non-twin-mode configuration to independently control single heating elements.
  • the twin-mode heating elements may be operated by a separate control element, including but not restricted to knobs, touch-sensitive elements, menus or task-menus of a touch-sensitive type control element and the like.
  • twin-mode configuration one of the individual control elements is used as a common control element. The other one or other ones in this case may be deactivated.
  • Control elements adapted to control single heating elements in non-twin-mode configuration may be activated upon leaving the twin-mode configuration.
  • a respective one, or in case of a separate twin-mode control element even both or all control elements can be deactivated, whilst the twin-mode control element is activated.
  • Activation and deactivation may be conducted automatically by an electronic control unit.
  • the common control element is activated and deactivated in dependence of at least one twin-mode trajectile position along the at least one trajectory.
  • a twin-mode trajectile position shall mean a position on one of the at least one trajectory, in which the first heating element and the second heating element establish a common cooking zone.
  • the twin mode trajectile position i. e. the fact that the first heating element arrives at a twin-mode trajectile position, may be sensed or detected by sensor elements, in particular adapted to sense linear and/or rotational movements.
  • the actual position of the first heating element, and where applicable the second heating element may be sensed or detected continuously or selectively, e. g. at predefined time intervals.
  • the first heating element may be automatically moved along a trajectory according to a setting of a user or program for automatically or semiautomatically operating the cooking hob.
  • the user setting may be inputted via a user interface.
  • the user setting may comprise a type of command such as "set twin-mode configuration" or “set non-twin-mode configuration", or similar.
  • the first heating element, and where applicable the second heating element may be automatically moved along the at least trajectory, such that the twin-mode or non-twin-mode configuration is established.
  • a safety mechanism or routine may be provided.
  • the safety mechanism may for example block automatic movement in instances where objects, in particular cookware, are placed on the cooking hob, cooking face and/or heating elements. Movement of the heating element may cause objects placed on the cooking hob and the like to overturn or be pushed from the cooking hob and the like, which may result in dangerous situations or even physical injuries to users or persons near the cooking hob.
  • the safety mechanism and/or routine may comprise sensors for sensing objects placed on the cooking hob, cooking face and/or heating elements.
  • the twin-mode configuration may be indicated by visual, acoustic and/or haptic means, i. e. special signs, on a user interface.
  • the non-twin-mode configuration may be indicated by similar means.
  • control element or control elements can be indicated by visual means.
  • status in this connection in particular shall cover activation or deactivation for twin-mode and/or non-twin-mode, i. e. single mode, operation.
  • a household appliance which comprises at least one cooking hob according to any of the above described configurations and embodiments.
  • an electronic control unit may be provided which is adapted and configured to operate the household appliance according to the proposed method or any embodiments thereof.
  • the proposed cooking hob, household appliance and method are well suitable for handling cooking vessels of different footprint geometries. Adaptation to different footprint geometries allows energy optimized heating.
  • One further advantage is that respective cooking vessels can be heated according to respective needs. In particular cooking vessels can be heated more uniformly, thereby avoiding local overheating and/or burnt food.
  • Fig. 1 shows a schematic top view of a cooking hob 1 of a first configuration.
  • the cooking hob comprises a cooking face 2.
  • On or to the cooking face 2 there is mounted a first turntable 3, which is part of a moving unit of the cooking hob 1.
  • the first turntable 3 is mounted rotatably around its center axis 4 and within the cooking face 2.
  • the first turntable 3 is integrated into the cooking face 2 in a rotatable manner such that it can pivot around the center axis 4 running in vertical direction during normal operation of the cooking hob 1.
  • One first heating element 5 is mounted on the first turntable 3 in an off-center position.
  • the first heating element 5 is of circular design, which is a general, but not mandatory characteristic of heating elements used for household cooking hobs.
  • the heating elements may for example have elongated, in particular oval, shapes instead.
  • the off-center position in the present case is such that the outer the edge of the first heating element 5 is close to the outer rim of the first turntable 3.
  • the radius of the first turntable 3 is larger than the diameter of the first heating element 5. In other embodiments, this situation may be different. In particular it is possible that the diameter of the first heating element 5 equals or even is larger than the radius of the first turntable 3.
  • second heating elements 6 within the cooking face 2 and outside the first turntable 3 there are provided second heating elements 6.
  • the second heating elements 6 in the present case also are of circular design. Further, the second heating elements 6 have different sizes, which in the present case shall indicate that they have different heating powers.
  • the second heating elements 6 are distributed circumferentially to the first turntable 3 and positioned close to the outer rim of the first turntable 3.
  • the second heating elements 6 are spaced from each other by 180 and 90 degrees, respectively.
  • the first heating element 5 is represented by solid lines
  • the first heating element 5 is so close to the left-hand side second heating element 6, such that they establish a unique cooking zone 7.
  • a unique cooking zone 7 in particular shall be defined by the fact that in and over a unique cooking zone 7 a comparatively unique heat distribution and emission is obtained.
  • the unique cooking zone itself in general is larger than the sum of respective individual cooking zones. This in turn means that a cooking vessel of elongated shape can be heated more efficiently, in particular more uniformly, in particular as far as the footprint area of the cooking vessel is concerned.
  • the first turntable 3 as shown in Fig. 1 may be rotated clockwise and counterclockwise by at least 270 degrees, which is indicated by a respective double arrow.
  • the first heating element 5 ⁇ represents a single heating element to be operated in single mode only.
  • the first heating element 5 ⁇ again is close to respective second heating element 6 such that respective further unique cooking zones can be established.
  • the further unique cooking zones are not indicated in Fig. 1 .
  • the further unique cooking zones differ from the unique cooking zone 7 in their size and heating power, as the first heating element 5 is combined with different types of second heating element 6 differing from each other for example in size and heating power.
  • the configurations in which the first heating element 5, 5 ⁇ establishes a unique cooking zone with respective second heating element 6 can be designated as twin-mode configurations.
  • the configuration in which the first heating element 5 is not quite close to a second heating element 6, i. e. the top position in Fig. 1 can be designated as a non-twin mode or single mode configuration.
  • Fig. 2 shows a schematic top view of a cooking hob 1 of a second configuration.
  • the second configuration differs from the first configuration shown in Fig. 1 in that the first turntable 3 carries two first heating elements 5 and that only two second heating elements 6 are provided.
  • the second heating elements are positioned on left-hand and right-hand sides of the first turntable 3, respectively.
  • the two first heating elements 5 are positioned off-center on the first turntable 3 and as close as possible to the outer rim of the first turntable 3. Further, the first heating elements 5, more specifically their center axes, lie on a line passing through the center axis 4 of the first turntable.
  • first heating elements 5 are so close to the left-hand and right-hand second heating elements 6, respectively, so that respective two unique cooking zones can be established.
  • Respective pairs of first 5 and second heating elements 6 may be operated in twin-mode.
  • only one unique cooking zone 7 is explicitly shown in Fig. 2 .
  • all of the heating elements i. e. the two first heating elements 5 ⁇ and the two second heating elements 6, are operable in single mode, i. e. non-twin mode.
  • Fig. 3 shows a schematic top view of a cooking hob of a third configuration. Similarly to the second configuration, a first turntable 3 with two first heating elements 5 is provided.
  • a second turntable 8 is provided on which two second heating elements 6 are mounted.
  • the two first heating elements 5 and the two second heating elements 6 are positioned on lines running through respective center axes 4 of the first 3 and second turntable 8.
  • respective first heating elements 5 and respective second heating elements 6 are positioned offset by 180 degrees on the first 3 and second turntable 8, respectively. Note, that more that two turntables may be provided, in particular, a turntable may be provided for each of the heating elements 5.
  • the first 3 and second turntable 8 can be rotated by 360 degrees about respective center axes 4.
  • Unique cooking zones such as the unique cooking zone 7 indicated in Fig. 3 , can be obtained if the first 5 and second heating elements 6 are in in-line configuration.
  • the unique cooking zone 7 in all instances lies between the center axes 4 of the first 3 and second turntable 8.
  • Different unique cooking zones may be established, which may differ from each other in size, shape and/or heating power depending on the mating of respective first 5 and second heating elements 6.
  • Fig. 3 allows the establishment of four different unique cooking zones according to all possible combinatory combinations of the first 5 and second heating elements 6. Note that the number of combinatory combinations is dependent on at least on the size and heating power of first 5 and second heating elements 6 mounted to the first 3 and second turntable 8. Note that it is not mandatory that unique cooking zones are established in all possible combinatory combinations.
  • first 3 and second turntable 8 By turning the first 3 and second turntable 8 such that no pair of first 5 and second heating elements 6 establish a unique cooking zone 7, respective non-twin mode configurations can be obtained.
  • a great variety of possible arrangements of the first 5 and second heating elements 6 is possible. This in turn allows for flexible adaptation of the arrangement of the first 5 and second heating elements 6 to respective cooking vessel sizes placed or to be placed on the cooking hob 1.
  • the cooking hob may be adapted such that non-twin mode configurations can be obtained only at predefined rotational positions of the first 3 and/or second turntable 8.
  • non-twin mode configurations can be obtained only at predefined rotational positions of the first 3 and/or second turntable 8.
  • the configuration shown in Fig. 3 only one single non-twin mode configuration may be provided, in which the first 3 and second turntable 8 are rotated by 90 degrees with respect to their in-line configuration.
  • a control system may be provided which is adapted to control twin-mode and non-twin mode operation of first 5 and second heating elements 6.
  • the control system may be adapted such that first 5 and second heating elements 6 establishing a unique cooking zone 7 are controllable by a single, common control element. Such a configuration greatly enhances ease of operation of the cooking hob 1.
  • Controlling first 5 and second heating elements 6 by a common control element may be accompanied with activation and/or deactivation of control elements.
  • single-mode control elements e. g. control knobs
  • a control element for twin-mode operation may be one of the control elements provided for non-twin mode, i. e. single-mode, operation.
  • a separate control element for twin-mode operation may be provided.
  • the first turntable 3 and, where applicable, second turntable 8 may be rotated manually. However, in particular in terms of ease of use, rotation of the first turntable 3 and, where applicable, second turntable 8 may be conducted automatically.
  • a controller and respective motors and/or actuators may be provided.
  • Fig. 4 shows a schematic top view of a cooking hob 1 of a fourth configuration.
  • the cooking hob 1 differs from that of Fig. 1 to 3 in that also linear translational movements of the first heating element 5 are possible.
  • the first heating element 5 is rotated in a position in which a unique cooking zone 7 is established with the bottom right second heating element 6. Rotating the first heating element 5 by 180° into position 5' will lead to a configuration in which the heating elements are positioned in the corners of a rectangle and operable in single mode.
  • the turntable 3 of the embodiment shown in Fig. 4 is coupled to rail system of linear type, schematically indicated by two arrows.
  • the rail system is adapted and designed such that a linear movement of the turntable 3 as such is possible.
  • the rail system provides movement in two, mutually perpendicular, linear directions.
  • the first heating element 5 can be moved along a trajectory of linear and/or circular shape.
  • the turntable may be rotated by -90° (or 270°) and then be moved to the left about a distance indicated by a respective arrow.
  • the linear and/or rotational movements can be conducted in arbitrary sequence, in particular concurrently.
  • the first heating element 5 may be moved along trajectories of an array of trajectories.
  • the turntable can be moved downwards along the linear rail or guiding system and be rotated such that the first heating element 5 is in twin-mode configuration with the bottom left second heating element 6.
  • One possible trajectory 12 along which the first heating element 5 may be moved is indicated in Fig. 4 by a dashed line.
  • the trajectory 12 shown in Fig. 4 may have a different course or geometry, in particular depending on the starting position.
  • the succession of rotational movements and translational movements may be different. In particular it is possible that rotational movements and translational movements are conducted not only successively but also concurrently.
  • Fig. 5 shows a further schematic top view of a cooking hob 1 in a fifth configuration.
  • this configuration there are provided two first heating elements 5, presently the top right and bottom left heating elements.
  • the first heating elements 5 are not arranged on a turntable.
  • the first heating elements are moveable along liner trajectories only.
  • double arrows show how the first heating elements 5 may be moved via motion units to which the first heating elements are respectively coupled.
  • the motion unit may comprise a rail system and the like for example.
  • Fig. 5 allows movements which are essentially parallel to the short and long sides of the cooking face 2. It shall be noted, that other linear movements may be used, such as for example linear movements running diagonally to the cooking face 2.
  • Fig. 5 one possibility of diagonal movement is exemplarily shown by a dashed double arrow, indicating that the top right first heating element 5 may be moved in diagonal direction of the cooking face 2.
  • all the heating elements of the cooking face 2 are moveable in at least one of a linear and curved, in particular circular, movement.
  • Fig. 6 shows a household appliance 9 comprising a cooking hob 1 in a configuration according to the first configuration shown and described in connection with Fig. 1 .
  • the cooking hob 1 may be of any other configuration described further above.
  • the appliance 9 comprises a first control knob 10 adapted in particular for controlling the first heating element 5 mounted to the turntable 3. Further, the appliance comprises second control knobs 11 adapted for controlling respective second heating elements 6.
  • the control knob 11 of the second heating element 6 establishing the unique cooking zone together with the first heating element 5 is deactivated whilst the first control knob 10 is switched to twin-mode operation in which the first 5 and second heating element 6 establishing the unique cooking zone can be operated together. If all heating elements are in non-twin mode operation, all control knobs are in non-twin mode operational mode, in which each of the heating elements can be operated in single mode.
  • the method of operating the cooking hob 1 easily can be derived from the description above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Baking, Grill, Roasting (AREA)
  • Electric Stoves And Ranges (AREA)
  • Induction Heating Cooking Devices (AREA)

Abstract

The invention is in particular directed to a cooking hob (1) having at least two heating elements (5, 6) and a motion unit adapted to move at least one first heating element (5) along a trajectory (12), such that in at least one trajectile position along at least one trajectory (12), the first heating element (5) and a second heating element (6) are so close to each other to establish a unique cooking zone (7).

Description

  • The invention is directed to a cooking hob, a household appliance and a method of operating a cooking hob.
  • Cooking hobs are known in many configurations. Traditionally, heating elements of cooking hobs are positioned in a fixed arrangement.
  • In order to cope with different shaped cooking utensils, in particular with different footprints of cooking utensils, it has been proposed to provide moveable heating elements. In US 6,017221 , US 5,960,781 and KR 20100012627 cooking hobs are described which, to some extent, propose solutions adapted to varying cooking vessel dimensions.
  • However, there is still room for improvements, in particular with respect to heating cooking vessels of different footprints.
  • It is therefore an object of the invention to provide an alternative cooking hob, in particular adapted to cope with cooking vessels of different footprint geometries.
  • Further, under similar considerations, a cooking appliance and a method of operating a cooking hob shall be provided.
  • These objects in particular are solved by claims 1, 12 and 16. Further embodiments result from respective dependent claims.
  • According to claim 1, a cooking hob is provided which comprises a cooking face with at least two heating elements respectively adapted to heat cookware. The term "at least two" in particular shall comprise two, three or for heating elements.
  • The term cooking face shall be understood to comprise areas, panes or plates of generally flat or planar configuration, on, below or to which heating elements, in particular gas hobs, i. e. gas cooking hobs, are mounted to. A cooking face may be or constitute a top part of a household oven.
  • In order to heat respective cookware, i. e. cooking utensils, such as pans, pots, roasting trays and the like, may be placed on top of at least one heating element to be heated up. Depending on the type of heating element heat or electromagnetic fields dissipating from a heating element impinge on the lower surface of the cookware which as a result heats up.
  • A heating element in the sense of the present invention may be one of a inductive heating element comprising induction coils, radiation heating element, electrical resistance heating element and in particular a gas burner.
  • Preferably, all of the heating elements are of the same type, albeit it is conceivable that heating elements of different types are provided. Heating elements such as inductive heating elements and radiation heating elements may be mounted below the cooking face. Heating elements such as electrical resistance heating elements and gas burners may be, at least partially, mounted above the cooking face.
  • The cooking hob further comprises at least one motion unit coupled to at least one a first heating element of the at least two heating elements.
  • The motion unit is adapted and designed such that the first heating element is moveable along at least one trajectory of at least one of linear and curved type.
  • The term "at least one trajectory" shall be understood to comprise a single trajectory or multiple different trajectories, in particular an array of different trajectories. Note that different trajectories may at least in sections be identical. The term trajectory shall be understood to be a path that can be followed by the first heating element within the boundaries defined by the motion unit.
  • The term "of at least one of linear and curved type" in particular shall mean that a trajectory may comprise linear sections and/or curved sections of arbitrary curvature. Curved sections in particular shall comprise circular, elliptical and parabolic shapes.
  • The term "movable along" in particular shall mean that the center point, center of rotation, mass center and/or top surface center of the first heating element can follow the trajectory.
  • From a different but analog point of view or approach, the motion unit provides certain motional degrees of freedom, in particular translational and/or rotational degrees of freedom. Moving the first heating element within the boundaries given by the motional degrees of freedom leads to all possible trajectories, i. e. a respective array of trajectories. Note that a motion unit may be provided for selected heating elements, in particular also for each heating element provided within the cooking face.
  • With the proposed cooking hob, at least one second heating element of the at least two heating elements and different from the first heating element, is positioned or can be positioned relative to the at least one trajectory such that in at least one trajectile position along the at least one trajectory, the first heating element and the at least one second heating element are so close to each other to establish a unique cooking zone.
  • The term "at least one trajectile position" in particular shall include single points on a trajectory and/or ranges or segments of a trajectory. The term "trajectile position" shall mean a position or point on the trajectory. The trajectile position may in particular be an end position of a trajectory or any intermediate point thereof.
  • In a different trajectile position, the first heating element, and in particular also the at least one second heating element, are operable in single mode, i. e. no common cooking zone between the first and a second heating element is established.
  • Providing at least one second heating element along, i. e. near or nearby the at least one trajectory shall mean, that either one or several respective second heating elements may be provided that respectively can be used to establish unique cooking zones at respective trajectile positions. Note that any one or even all of the second heating elements may be implemented with a motion unit, i. e. may be implemented as a "first" heating element in the sense of claim 1.
  • In the case of having several, for example two or three, second heating elements establishing unique cooking zone with the first heating element in a single trajectile position, a triple, quadruple etc. pair unique cooking zone can be established. Here it shall be mentioned, that triple, quadruple etc. unique cooking zones may also be implemented in cases where more than one first heating element, i. e. more than one movable heating element is provided.
  • The term "at least one motion unit" shall imply, that more than one motion unit may be provided, respectively coupled to a respective further first heating element, or even a second heating element. The above and below discussion related to the first heating element shall apply mutatis mutandis to the further first heating element and second heating element. It shall be explicitly pointed out, that such a further first heating element may constitute a second heating element in the sense of the claims. This in particular means that not only the first heating element is moveable but also the second heating element is moveable along one or an array of second trajectories, in particular in such a way that unique heating zones can be established.
  • In case that also the second heating element is moveable, it can be placed, i. e. moved to a respective trajectile position along the second trajectory or trajectories, and relative to the trajectile position of the first heating element such that the condition for establishing a unique cooking zone is fulfilled when the first heating element is in its trajectile position.
  • The motion unit may comprise guides, rails, turntables, platforms and other elements coupled to the first heating element and allowing movement thereof. The respective elements may be positioned on, within and/or below the cooking face. Below the cooking face in particular shall mean that the heating element, in particular together with the motion unit, may be positioned below a pane or top, for example made from glass or ceramic.
  • The term platform shall be understood broadly and in particular shall mean any element or component system provided to enable linear and/or rotational movements. One particular embodiment of a platform is a turntable to which the heating element is mounted to. .
  • As can be seen, the proposed cooking hob is comparatively flexible in establishing unique cooking zones adapted to different footprint sizes of cookware.
  • In an embodiment, the at least one trajectory is composed of at least one of a one-dimensional linear movement, two-dimensional movement, one-dimensional circular movement and two-dimensional circular movement.
  • A two-dimensional movement shall mean that the heating element is moveable within a two-dimensional area or plane parallel to the cooking face. It shall be noted that under certain instances the motion unit may be designed such that the first heating element is moveable in three-dimensions. This in particular would be the case if the first heating element is movable along at least one trajectory within a plane parallel to the cooking face and further is movable, at least in sections of the trajectory, in a direction perpendicular to the cooking face. Moving the first heating element perpendicular to the cooking face may for example be an option if the first heating element shall be adapted to be lowered or raised with respect to the cooking face.
  • A one-dimensional circular movement may be obtained if for example a first turntable, which is mounted rotatable about an inner axis, e. g. a center axis or an off-center axis, thereof within the cooking face, is provided, and the first heating element is mounted in a position displaced from the respective inner axis on or to the turntable. If a center axis of the turntable is used as a rotational axis, the first heating element is placed off-center to the rotation axis.
  • When using turntables, it is preferred that in at least one rotational position of the turntable the first heating element and one of the second heating elements mounted off the turntable of the first heating element are so close to each other to establish the unique cooking zone.
  • Note that several turntables may be provided respectively carrying a first heating element and which are adapted such that the first heating element establishes a unique cooking zone with a second heating element in a respective rotational position.
  • It shall be explicitly pointed out, that the number of turntables can be as much as heating elements are provided within the cooking face.
  • It also shall be noted that unique cooking zones may arbitrarily be established with a second heating element which may be positioned fixedly, i. e. non-moveable, within the cooking face, or which may be positioned on a movable platform on within or below the cooking face.
  • It shall be mentioned, that also at least one of the second heating elements may be mounted on a respective further turntable implemented in a similar manner than the turntable described above.
  • A two-dimensional circular movement may be obtained if the heating element is rotatably placed or mounted to or on a primary, smaller turntable at a location off a respective rotation axis, and the smaller turntable in turn is rotatably placed on a secondary, larger turntable off its rotation axis. Rotational axes of the primary and secondary turntable in this case are offset from each other.
  • In order to establish a linear, in particular one-dimensional or two-dimensional, movement, the motion unit may comprise a one-dimensional or two-dimensional linear guiding system, in particular rail system, along which the first heating element, preferably a platform to which the first heating element is mounted to, can be moved. In particular, if the rail system or platform is coupled with a respective turntable, trajectories with linear and/or circular sections can be obtained.
  • The first, and where applicable a second, turntable is preferably implemented as a circular, preferably flat, disk. The turntable may be mounted to a rotary mount which itself may be fixed to the cooking hob or a supporting element or frame thereof.
  • The motion unit, in particular linear guiding elements, in particular respective platforms, and/or turntables are preferably mounted, in particular arranged and positioned, within the cooking face. The term within shall in particular relate to the lateral extension of the cooking face, which in general is aligned horizontally, i. e. without inclination, during normal operation.
  • A turntable and/or platform, at least a section thereof, may project from the cooking face in a direction essentially perpendicular to the cooking face. However, it is preferred that the turntable and/or platform is essentially in plane with the cooking face, which shall mean that it is level with a respective section accommodating the turntable or platform. However, the turntable and/or platform may be positioned above the cooking face, which shall mean that at least outer sections of the turntable and/or platform overlap with the cooking face.
  • In particular with turntables, the cooking face or a respective platform to which the turntable is mounted to may have a recess adapted in its geometry to the outer dimensions of the turntable. For example, the cooking face may comprise a circular recess accommodating therein at least a section of the turntable. Preferably a type of seal, having adequate heat resistance, is provided in a remaining gap between the recess and the turntable. A seal may also be provided in situations in which the turntable or moveable platform is mounted on and overlaps the cooking face.
  • A turntable or platform to which a turntable is mounted to may be connected to a guiding system arranged below the cooking face. In this case, slots, in particular guiding gates, may be provided in the cooking face, adapted to receive and guide mechanical connector elements between guiding system and respective turntable and/or platform. The slots or guiding gates may be provided with seals at least preventing dust, soil and/or overflowing foodstuff from penetrating through the cooking face.
  • With the proposed cooking hob, at least one first heating element, in particular gas burner, may be mounted off-center on or to the first turntable. Off-center shall mean that a vertical center axis of the heating element is offset from the vertical center axis of the turntable. This means, that upon rotating the turntable, the heating element, or in more general terms its center axis, rotates around the center axis of the turntable.
  • In an embodiment using primarily turntables, the cooking hob and its components advantageously are implemented such that at least in one rotational position of the first turntable the first heating element and one of at least one second heating elements mounted outside the first turntable are so close to each other so that a unique cooking zone is established.
  • The term "establish" shall in particular be understood in the sense of make up, define and/or implement.
  • The term "unique cooking zone" shall in particular mean, that the individual cooking zones of the first and second heating elements merge together to make up a single, i. e. unique, cooking zone, having optimized, in particular almost uniform, heat output over their combined heating area. The unique cooking zone is enlarged, as compared to an individual cooking zone of a single heating element.
  • Gas burners establishing a unique cooking zone may be positioned such that a minimum distance between is zero. In case of circular heating elements, the minimum distance may range from 0 (zero) to 2.5 times the diameter of the larger heating element. In particular with gas burners, the gas burners establishing a unique cooking zone may face in correspondence of sparkplugs.
  • Note that properties and characteristics of the motion unit, in particular guiding system, turntable and/or platform mentioned and described above may, if applicable, apply mutatis mutandis to other motion units, in particular guiding systems, turntables and/or platforms mounted on or to the cooking face.
  • The cooking hob as described above has the advantage, that the at least one first heating element can be moved relative to the cooking face in a comparatively simple way to obtain modified arrangements and cooking zones, in particular unique cooking zones. Further, using a guiding system, turntable and/or platform to obtain respective trajectories greatly simplifies constructional effort to implement a moveable heating element.
  • The special configuration of the cooking hob makes it possible to merge two individual cooking zones of single heating elements to establish a unique cooking zone optimized for cooking utensils having comparatively large and/or special geometry footprints. Such cooking utensils may for example be elongated frying pans, roasting trays and the like, having oval footprints for example.
  • Establishing the unique cooking zone is advantageous if cooking utensils have to be heated which have footprints larger, in particular considerably larger, than single cooking zones of the individual heating elements. Using the unique cooking zone, leads to optimized heating and heating efficiency.
  • It shall be noted, that in the configuration in which the first and respective second heating elements establish the unique cooking zone, the first and respective second heating element advantageously form a type of twin-type or twin-mode configuration. In a twin-type or twin-mode configuration, the heating excellence of a respective first and second heating element in particular exceeds the sum of heating excellence of respective single heating elements.
  • It shall be mentioned that a further turntable and/or platform may be positioned or mounted next to the turntable and/or platform of the first heating element. The term next to in particular shall mean that the first and second turntable and/or platform are arranged in immediate neighborhood of each other. In immediate neighborhood shall in particular mean that peripheral edges of the first and second turntable and/or platform at one point are as close, in particular as close as possible, to each other.
  • Further, in establishing the unique cooking zone by using turntables, the first and second heating elements preferably lie approximately on the connection line between the center axes of the respective turntables. This in particular means that the distance between the first and second heating element, in particular the distance between respective center axes, is minimal or lies within a certain minimal range with respect to all possible positional configurations of the turntables.
  • Unique cooking zones established by using turntables may be obtained if a first heating element is mounted on a turntable and a second heating element is fixedly positioned within the cooking face. However, the second heating element may also be mounted moveably on a platform, in particular turntable.
  • In providing a two turntables and/or platforms movable in one or two dimensions, it is possible to flexibly adjust the alignment and/or orientation of the unique cooking zone. To a certain extent it is also possible to flexibly adjust the positional arrangement of individual cooking zones of respective first and second heating elements.
  • One further advantage of providing two turntables and/or platforms is that a heating element mounted on one of the turntables and/or platforms can be combined with several, distinct heating elements of the other turntable and/or platform. In particular, it is possible to obtain a more varied combination of different types of heating elements, in particular if heating elements mounted to the first and second turntable and/or platform, respectively, have different characteristics, for example with respect to heating power. In addition, a greater variety of geometrical configurations, such as in-line configurations or square configurations, of the heating elements can be obtained.
  • In an embodiment, the cooking hob comprises at least three heating elements, and the at least one motion unit is adapted such that in at least one second position of the first heating element along the trajectory all of the heating elements are aligned along a common line. For example, one first and two second heating elements may be provided.
  • If turntables are used, at least two second heating elements may be positioned circumferentially to the turntable of the first heating element. The at least two second heating elements may be arranged and positioned such that at respective circumferential rotational positions of the turntable of the first heating element, the first and a respective second heating elements establish respective unique cooking zones.
  • Here, the at least one second heating element may be fixed on or to he cooking face. In this case, the second heating element can be considered as a stationary burner, whereas the first heating element can be considered a rotary heating element.
  • In order to establish unique cooking zones, the second heating elements preferably are positioned sufficiently close to the turntable of the first heating element such that the conditions mentioned further above relating to the unique cooking zone can be fulfilled.
  • The distance between heating elements establishing a unique cooking zone may be selected from a range of distances suitable for establishing the unique cooking zone. In particular in case of circular heating elements, the distance between cooking zones may range from 0 (zero) to 2.5 times the diameter of the larger heating element.
  • The second heating elements may be distributed on or over the cooking zone such that, with particular respect to the inner axis, in particular center-axis, of the turntable of the first heating element, a rotation angle of a turntable between a pair of subsequent second heating elements arranged in circumferential direction of the turntable is smaller than 180 degrees. Preferably, an angle between subsequent heating elements is 90 degrees.
  • If three second heating elements are provided circumferentially to the turntable and an angle between subsequent heating elements is 90 degrees and one first heating element is positioned on a respective turntable, in a certain rotational position a rectangular type of arrangement of the first and second heating elements can be obtained. In this rectangular arrangement the heating elements may be operable in non-twin mode, i. e. single mode, only.
  • Different types of second heating elements may be used. The term "type" of heating elements in particular shall relate to at least one of size and heating power of a heating element. Using different types of heating elements is not restricted to the aforementioned embodiment, but also applies to the embodiments mentioned further above and further below. Note that if several first heating elements are provided, they can be of different type.
  • In particular in providing different types of heating elements and, as the case may be, allowing different distances between first and second heating elements establishing a unique cooking zone, different types of unique cooking zones can be obtained, which may differ from each other in particular in at least one of the overall size, geometry and overall heating power. Providing the possibility of establishing different types of unique cooking zones, a broader range of different sized cooking utensils can be covered.
  • In particular, if the heating elements are positioned or mounted on respective turntables but also in any other configurations, the motion unit preferably is adapted and the first and second heating elements preferably are positioned such that in an in-line configuration, in particular an in-line rotational configuration of the turntable or turntables, all heating elements are positioned essentially along a common line.
  • With respect to the cooking face, which may be rectangular, the common line preferably runs parallel to one of the side edges of the cooking face.
  • Beyond providing an advantageous arrangement of the heating elements with respect to design issues, an in-line configuration may result in an advantageous, in particular low, surface occupancy of the cooking face. In a low surface occupancy configuration of the heating elements, larger free surface areas, i. e. areas not occupied by heating elements, can be obtained. The free surface areas may provide additional free worktop or placement areas to a user of the cooking hob, to be used in particular for placing cooking utensils and other objects used or required during cooking.
  • In a yet further embodiment, the motion unit is adapted such that the at least one first heating element is rotatable in clockwise and/or counterclockwise direction at least one of at least or exactly about 90°, 180°, 270° and 360°. This may for example be implemented such that respective turntables are rotatable in clockwise and/or counter-clockwise direction at least one of at least or exactly about 90°, 180°, 270° and 360°. Note that any intermediate angles, such for example 70 degrees, may be used. Further, it is also possible that the turntables are adapted to be turned in endless rotation.
  • In one embodiment, the at least one motion unit comprises at least one latching mechanism adapted to latch the first heating element in at least one predefined position along a trajectory. The latching mechanism preferably is provided to latch the first and second heating elements in positions making up a unique cooking zone or in positions making up single cooking zones.
  • Latching elements may be implemented as a stop restricting translational and/or rotational movement. Latching elements and/or rotation stops may be used to latch the motion unit, in particular respective turntables and/or platforms, at respective positions along a trajectory, or to restrict movement thereof. Latching elements and/or rotational stops may in particular be provided in one or more circumferential positions of a turntable, in general at respective positions along a trajectory or path, in which positions unique cooking zone, i. e. twin-mode configurations, an in-line configuration or other configurations. A latching element or mechanism may also provide latched positions along the at least one trajectory such that all the heating elements can be best operated in single mode. Further, latching elements and/or rotation stops may in particular be used to restrict the rotational range of respective turntables to maximal allowed rotation angles, for example of about ± 90 degrees, ± 180 degrees, ± 270 degrees or about ± 360 degrees.
  • As already indicated further above, in certain preferred embodiments the at least one motion unit may comprise a platform, in particular movable platform to which the first heating element is mounted or coupled to. Note that if a turntable is used, it may be mounted to the platform. The platform may be mounted movably to the cooking face, in particular via a guiding unit or system positioned at least one of on, within or below the cooking face.
  • As has been already indicated, the moveable platform may comprise a turntable rotatable around an inner rotation axis thereof, wherein the first heating element is mounted to the turntable. Here a great variety of different trajectories may be obtained.
  • In a further preferred embodiment, the cooking hob comprises a control system having control elements, i. e. at least one knob and/or a user interface, cooperating with an electronic controller unit, adapted to operate a respective one of the heating elements, and where applicable motors and/or actuators for moving, in particular translating and/or rotating the first and/or second heating element.
  • The control system may in particular be adapted to control single mode operation of each of the heating elements. Here, a separate control element for each of the heating elements may be provided.
  • With a special embodiment, however, the control system is adapted such that a pair of first and second heating elements establishing a unique cooking zone is controllable by one common, i. e. in particular one single, control element.
  • Such a common or single control element may be designated a twin-mode control element. The twin-mode control element may be selected from one of the control elements of heating elements establishing the unique cooking zone. It is also possible, that a separate twin-mode control element for twin-mode operation, in particular for twin-mode operation of any twin-mode pair is provided. The control element may comprise a screen-like touch-sensitive and/or an acoustic-sensitive and/or remote controllable user interface, in particular for setting or resetting the twin-mode operational configuration.
  • In one further embodiment, the common control element is adapted to be activated in dependence of at least one of the trajectile position of the first and, where applicable, second heating element/s, in particular trajectile positions of the turntable and/or platform. As already stated, the common control element may be one of the single-mode control elements of respective heating elements, or the common control element may be an extra control element, in particular provided for twin-mode operation.
  • The more general idea behind this is that activation of a common control element goes along with establishing a unique cooking zone. Activation of the common control element may depend on the trajectile position, in particular rotational angle, of respective heating element, in particular platform and/or turntable. If the rotational position corresponds to, or is close to a unique cooking zone, the common control element may be activated. At the same time, any other control element provided for single-mode operation of respective heating elements may be deactivated.
  • Inversely, if the rotational position leaves the twin-mode position or twin-mode range of positions, the common control element may be deactivated and respective single mode control elements may be activated again.
  • Proper activation and deactivation of control elements in particular shall ensure that control of the heating elements is well defined at any instance.
  • Activation and/or deactivation of single-mode and/or twin-mode control elements may be indicated or highlighted by, for example, visual, in particular luminous, and further acoustic and/or haptic means.
  • A further embodiment addresses moving, in particular translating and/or turning, i. e. rotating, the first and/or second heating element, in particular respective turntables and/or platforms. The first and/or second heating element, in particular turntable and/or platform, may be moved, in particular turned, i. e. rotated, for example by an actuator, in particular motor, to respective trajectile, in particular, angular positions. Trajectile, in particular linear and/or angular positions of the first and, where applicable, second heating element may be selected automatically and/or according to individual user settings.
  • Angular positions may be, in particular automatically, selected from a predefined list of angular positions, such as ± 90 degrees, ± 180 degrees, ± 270 degrees or about ± 360 degrees or any other value in between. The predefined or selected angular settings may correspond to angular positions in which unique cooking zones, an in-line configuration and the like can be established.
  • In particular, is possible that the trajectile, particularly linear and/or angular position, of the first and/or second heating element, in particular platform and/or turntable, can be freely selected. Here, beyond establishing unique cooking zones and so on, the geometrical arrangement of the heating elements, in particular rotatable heating elements, can be adapted and optimized to respective sizes and geometries of cooking vessel placed or to be placed on the cooking hob.
  • An electronic control unit may be provided to control a motor and/or an actuator used or provided for moving the first and/or second heating element.
  • In one embodiment, at least one motion control may be provided, which is adapted and configured to move the first heating element, in particular in automated manner, along the at least one trajectory. A motion control can greatly simplify movement of heating elements, in particular establishing unique cooking zones.
  • According to claim 11, a method of operating a cooking hob is provided. The cooking hob is essentially constructed and designed according to any configuration and embodiment described further above and further below.
  • With the proposed method it is provided that in a twin-mode configuration of the first heating element and a second heating element, in which twin-mode configuration the first and second heating elements establish a unique cooking zone, the first and second heating elements are operable by a common control element, whilst in any non-twin mode configuration, the first and second heating elements are operable by a respective individual control elements.
  • In the case of using turntables for moving the first heating element, a twin-mode configuration of the first heating element and the second gas heating element mounted outside the first turntable, may be obtained in a specific twin-mode rotary position of the turntable.
  • Note that the proposed method and embodiments thereof may be applied to embodiments and configurations of cooking hobs, as described further above and further below.
  • It shall be noted, that in the twin-mode configuration, the first and second heating elements establish a unique cooking zone. With respect to the twin-mode and to the unique cooking zone, the comments, description and definitions given further above apply mutatis mutandis.
  • The control element may be a knob or similar. In more general, the control element may be a user interface, in particular of touch-display type, allowing in non-twin-mode configuration to independently control single heating elements. Upon establishing the unique cooking zone, the twin-mode heating elements may be operated by a separate control element, including but not restricted to knobs, touch-sensitive elements, menus or task-menus of a touch-sensitive type control element and the like. However it is also possible that in twin-mode configuration, one of the individual control elements is used as a common control element. The other one or other ones in this case may be deactivated.
  • Control elements adapted to control single heating elements in non-twin-mode configuration may be activated upon leaving the twin-mode configuration. Upon entering a twin-mode configuration a respective one, or in case of a separate twin-mode control element, even both or all control elements can be deactivated, whilst the twin-mode control element is activated. Activation and deactivation may be conducted automatically by an electronic control unit.
  • In an embodiment of the method, the common control element is activated and deactivated in dependence of at least one twin-mode trajectile position along the at least one trajectory. Here a twin-mode trajectile position shall mean a position on one of the at least one trajectory, in which the first heating element and the second heating element establish a common cooking zone. The twin mode trajectile position, i. e. the fact that the first heating element arrives at a twin-mode trajectile position, may be sensed or detected by sensor elements, in particular adapted to sense linear and/or rotational movements. The actual position of the first heating element, and where applicable the second heating element, may be sensed or detected continuously or selectively, e. g. at predefined time intervals.
  • In a further embodiment, the first heating element may be automatically moved along a trajectory according to a setting of a user or program for automatically or semiautomatically operating the cooking hob.
  • The user setting may be inputted via a user interface. For example the user setting may comprise a type of command such as "set twin-mode configuration" or "set non-twin-mode configuration", or similar. After inputting the user setting, and preferably after confirmation, the first heating element, and where applicable the second heating element, may be automatically moved along the at least trajectory, such that the twin-mode or non-twin-mode configuration is established.
  • In the embodiment allowing automatic movement, a safety mechanism or routine may be provided. The safety mechanism may for example block automatic movement in instances where objects, in particular cookware, are placed on the cooking hob, cooking face and/or heating elements. Movement of the heating element may cause objects placed on the cooking hob and the like to overturn or be pushed from the cooking hob and the like, which may result in dangerous situations or even physical injuries to users or persons near the cooking hob. The safety mechanism and/or routine may comprise sensors for sensing objects placed on the cooking hob, cooking face and/or heating elements.
  • In a yet further embodiment of the method, the twin-mode configuration may be indicated by visual, acoustic and/or haptic means, i. e. special signs, on a user interface. The non-twin-mode configuration may be indicated by similar means.
  • In addition, it shall be mentioned, that the status of the control element or control elements can be indicated by visual means. The term status in this connection in particular shall cover activation or deactivation for twin-mode and/or non-twin-mode, i. e. single mode, operation.
  • According to claim 15, a household appliance is provided, which comprises at least one cooking hob according to any of the above described configurations and embodiments.
  • In an embodiment of the household appliance, an electronic control unit may be provided which is adapted and configured to operate the household appliance according to the proposed method or any embodiments thereof.
  • For advantages and advantageous effects applying to the household appliance reference is made to the description above.
  • In all, it can be seen that the proposed cooking hob, household appliance and method are well suitable for handling cooking vessels of different footprint geometries. Adaptation to different footprint geometries allows energy optimized heating. One further advantage is that respective cooking vessels can be heated according to respective needs. In particular cooking vessels can be heated more uniformly, thereby avoiding local overheating and/or burnt food.
  • Exemplary and selected embodiments will now be described in connection with the annexed figures, in which:
  • Fig. 1
    shows a schematic top view of a cooking hob of a first configuration;
    Fig. 2
    shows a schematic top view of a cooking hob of a second configuration;
    Fig. 3
    shows a schematic top view of a cooking hob of a third configuration;
    Fig. 4
    shows a schematic top view of a cooking hob of a fourth configuration;
    Fig. 5
    shows a schematic top view of a cooking hob of a fifth configuration; and
    Fig. 6
    shows a schematic perspective view of a house-hold appliance.
  • In the figures, like elements are designated by like reference signs.
  • Fig. 1 shows a schematic top view of a cooking hob 1 of a first configuration. The cooking hob comprises a cooking face 2. On or to the cooking face 2 there is mounted a first turntable 3, which is part of a moving unit of the cooking hob 1. The first turntable 3 is mounted rotatably around its center axis 4 and within the cooking face 2. In other words, the first turntable 3 is integrated into the cooking face 2 in a rotatable manner such that it can pivot around the center axis 4 running in vertical direction during normal operation of the cooking hob 1.
  • One first heating element 5 is mounted on the first turntable 3 in an off-center position. The first heating element 5 is of circular design, which is a general, but not mandatory characteristic of heating elements used for household cooking hobs. The heating elements may for example have elongated, in particular oval, shapes instead.
  • The off-center position in the present case is such that the outer the edge of the first heating element 5 is close to the outer rim of the first turntable 3.
  • With the shown embodiment, the radius of the first turntable 3 is larger than the diameter of the first heating element 5. In other embodiments, this situation may be different. In particular it is possible that the diameter of the first heating element 5 equals or even is larger than the radius of the first turntable 3.
  • Within the cooking face 2 and outside the first turntable 3 there are provided second heating elements 6. The second heating elements 6 in the present case also are of circular design. Further, the second heating elements 6 have different sizes, which in the present case shall indicate that they have different heating powers.
  • The second heating elements 6 are distributed circumferentially to the first turntable 3 and positioned close to the outer rim of the first turntable 3. The second heating elements 6 are spaced from each other by 180 and 90 degrees, respectively.
  • In the configuration shown in Fig. 1, in which the first heating element 5 is represented by solid lines, the first heating element 5 is so close to the left-hand side second heating element 6, such that they establish a unique cooking zone 7.
  • A unique cooking zone 7 in particular shall be defined by the fact that in and over a unique cooking zone 7 a comparatively unique heat distribution and emission is obtained. The unique cooking zone itself in general is larger than the sum of respective individual cooking zones. This in turn means that a cooking vessel of elongated shape can be heated more efficiently, in particular more uniformly, in particular as far as the footprint area of the cooking vessel is concerned.
  • The first turntable 3 as shown in Fig. 1 may be rotated clockwise and counterclockwise by at least 270 degrees, which is indicated by a respective double arrow. Rotating the first heating element 5 to other positions, represented in Fig. 1 by grey-shaded first heating element 5´ positioned in a top, bottom and right-hand position, leads to different heating element layouts and, as the case may be, different unique cooking zones.
  • In the top-position, the first heating element 5´ represents a single heating element to be operated in single mode only. In the bottom and right-hand position, the first heating element 5´ again is close to respective second heating element 6 such that respective further unique cooking zones can be established. For the sake of clarity, the further unique cooking zones are not indicated in Fig. 1. The further unique cooking zones differ from the unique cooking zone 7 in their size and heating power, as the first heating element 5 is combined with different types of second heating element 6 differing from each other for example in size and heating power.
  • The configurations in which the first heating element 5, 5´ establishes a unique cooking zone with respective second heating element 6 can be designated as twin-mode configurations. The configuration in which the first heating element 5 is not quite close to a second heating element 6, i. e. the top position in Fig. 1, can be designated as a non-twin mode or single mode configuration.
  • Fig. 2 shows a schematic top view of a cooking hob 1 of a second configuration.
  • The second configuration differs from the first configuration shown in Fig. 1 in that the first turntable 3 carries two first heating elements 5 and that only two second heating elements 6 are provided. The second heating elements are positioned on left-hand and right-hand sides of the first turntable 3, respectively.
  • The two first heating elements 5 are positioned off-center on the first turntable 3 and as close as possible to the outer rim of the first turntable 3. Further, the first heating elements 5, more specifically their center axes, lie on a line passing through the center axis 4 of the first turntable.
  • In the configuration depicted by solid-lines, the two first heating elements 5 are so close to the left-hand and right-hand second heating elements 6, respectively, so that respective two unique cooking zones can be established. Respective pairs of first 5 and second heating elements 6 may be operated in twin-mode. For the sake of clarity, only one unique cooking zone 7 is explicitly shown in Fig. 2.
  • In the configuration depicted in a grey-shade, in which the first heating elements 5´ are rotated by 90 degrees as compared to the solid-line configuration, all of the heating elements, i. e. the two first heating elements 5´ and the two second heating elements 6, are operable in single mode, i. e. non-twin mode.
  • In the solid-line configuration in Fig. 2, in which two unique cooking zones 7 can be simultaneously established, all of the first heating elements 5 and second heating elements 6, in more detail their center axes, are positioned on a common line. This configuration represents an in-line configuration which may be advantageous for cooking hob design aspects. In addition, an in-line configuration may lead to an advantageous arrangement of the heating elements, in which a comparatively large free area or space is obtained which can be used as additional workspace for placing different kinds of objects, e. g. cooking utensils and the like.
  • Fig. 3 shows a schematic top view of a cooking hob of a third configuration. Similarly to the second configuration, a first turntable 3 with two first heating elements 5 is provided.
  • Further, and in contrast to the first and second configuration, a second turntable 8 is provided on which two second heating elements 6 are mounted. The two first heating elements 5 and the two second heating elements 6 are positioned on lines running through respective center axes 4 of the first 3 and second turntable 8. As can be seen, respective first heating elements 5 and respective second heating elements 6 are positioned offset by 180 degrees on the first 3 and second turntable 8, respectively. Note, that more that two turntables may be provided, in particular, a turntable may be provided for each of the heating elements 5.
  • In the configuration shown in Fig. 3, the first 3 and second turntable 8 can be rotated by 360 degrees about respective center axes 4. Unique cooking zones, such as the unique cooking zone 7 indicated in Fig. 3, can be obtained if the first 5 and second heating elements 6 are in in-line configuration. Considering the third embodiment, the unique cooking zone 7 in all instances lies between the center axes 4 of the first 3 and second turntable 8. Different unique cooking zones may be established, which may differ from each other in size, shape and/or heating power depending on the mating of respective first 5 and second heating elements 6.
  • The configuration shown in Fig. 3 allows the establishment of four different unique cooking zones according to all possible combinatory combinations of the first 5 and second heating elements 6. Note that the number of combinatory combinations is dependent on at least on the size and heating power of first 5 and second heating elements 6 mounted to the first 3 and second turntable 8. Note that it is not mandatory that unique cooking zones are established in all possible combinatory combinations.
  • By turning the first 3 and second turntable 8 such that no pair of first 5 and second heating elements 6 establish a unique cooking zone 7, respective non-twin mode configurations can be obtained. In principle, it is possible to allow any rotational positions of the first 3 and second turntables 8 for establishing non-twin mode configurations. In this case, a great variety of possible arrangements of the first 5 and second heating elements 6 is possible. This in turn allows for flexible adaptation of the arrangement of the first 5 and second heating elements 6 to respective cooking vessel sizes placed or to be placed on the cooking hob 1.
  • It shall be mentioned, that the cooking hob may be adapted such that non-twin mode configurations can be obtained only at predefined rotational positions of the first 3 and/or second turntable 8. As an example, in the configuration shown in Fig. 3 only one single non-twin mode configuration may be provided, in which the first 3 and second turntable 8 are rotated by 90 degrees with respect to their in-line configuration.
  • One feature pertaining to any of the configurations shown and described in connection with Fig. 1 to 3 is that a control system may be provided which is adapted to control twin-mode and non-twin mode operation of first 5 and second heating elements 6. The control system may be adapted such that first 5 and second heating elements 6 establishing a unique cooking zone 7 are controllable by a single, common control element. Such a configuration greatly enhances ease of operation of the cooking hob 1.
  • Controlling first 5 and second heating elements 6 by a common control element may be accompanied with activation and/or deactivation of control elements. In more detail, single-mode control elements, e. g. control knobs, of respective heating elements establishing a unique cooking zone may be deactivated whilst a control element for twin-mode operation is activated, and vice versa. Note that a control element for twin-mode operation may be one of the control elements provided for non-twin mode, i. e. single-mode, operation. In the alternative, a separate control element for twin-mode operation may be provided.
  • The first turntable 3 and, where applicable, second turntable 8 may be rotated manually. However, in particular in terms of ease of use, rotation of the first turntable 3 and, where applicable, second turntable 8 may be conducted automatically. Here a controller and respective motors and/or actuators may be provided.
  • Fig. 4 shows a schematic top view of a cooking hob 1 of a fourth configuration. The cooking hob 1 differs from that of Fig. 1 to 3 in that also linear translational movements of the first heating element 5 are possible.
  • In the situation shown in Fig. 4, the first heating element 5 is rotated in a position in which a unique cooking zone 7 is established with the bottom right second heating element 6. Rotating the first heating element 5 by 180° into position 5' will lead to a configuration in which the heating elements are positioned in the corners of a rectangle and operable in single mode.
  • The turntable 3 of the embodiment shown in Fig. 4 is coupled to rail system of linear type, schematically indicated by two arrows. The rail system is adapted and designed such that a linear movement of the turntable 3 as such is possible. Presently, the rail system provides movement in two, mutually perpendicular, linear directions.
  • It can be readily recognized, that the first heating element 5 can be moved along a trajectory of linear and/or circular shape. For example, in order to establish a twin-burner configuration between the first heating element 5 and the second heating element 6 positioned top left, the turntable may be rotated by -90° (or 270°) and then be moved to the left about a distance indicated by a respective arrow. Note that the linear and/or rotational movements can be conducted in arbitrary sequence, in particular concurrently. Hence, the first heating element 5 may be moved along trajectories of an array of trajectories.
  • For establishing a twin-mode between the first heating element 5 and the second heating element 6 arranged bottom left, the turntable can be moved downwards along the linear rail or guiding system and be rotated such that the first heating element 5 is in twin-mode configuration with the bottom left second heating element 6.
  • One possible trajectory 12 along which the first heating element 5 may be moved is indicated in Fig. 4 by a dashed line. Note, that the trajectory 12 shown in Fig. 4 may have a different course or geometry, in particular depending on the starting position. Further it shall be noted, that the succession of rotational movements and translational movements may be different. In particular it is possible that rotational movements and translational movements are conducted not only successively but also concurrently.
  • Fig. 5 shows a further schematic top view of a cooking hob 1 in a fifth configuration. In this configuration there are provided two first heating elements 5, presently the top right and bottom left heating elements. In contrast to the previous embodiments, the first heating elements 5 are not arranged on a turntable. In the present case, the first heating elements are moveable along liner trajectories only. Exemplarily, double arrows show how the first heating elements 5 may be moved via motion units to which the first heating elements are respectively coupled. The motion unit may comprise a rail system and the like for example.
  • The configuration in Fig. 5 allows movements which are essentially parallel to the short and long sides of the cooking face 2. It shall be noted, that other linear movements may be used, such as for example linear movements running diagonally to the cooking face 2. In Fig. 5, one possibility of diagonal movement is exemplarily shown by a dashed double arrow, indicating that the top right first heating element 5 may be moved in diagonal direction of the cooking face 2.
  • It shall further be noted, that it lies within the scope of the invention if all the heating elements of the cooking face 2 are moveable in at least one of a linear and curved, in particular circular, movement.
  • Fig. 6 shows a household appliance 9 comprising a cooking hob 1 in a configuration according to the first configuration shown and described in connection with Fig. 1. Note that the cooking hob 1 may be of any other configuration described further above.
  • The appliance 9 comprises a first control knob 10 adapted in particular for controlling the first heating element 5 mounted to the turntable 3. Further, the appliance comprises second control knobs 11 adapted for controlling respective second heating elements 6. In a twin-mode configuration, as for example shown in Fig. 4, the control knob 11 of the second heating element 6 establishing the unique cooking zone together with the first heating element 5 is deactivated whilst the first control knob 10 is switched to twin-mode operation in which the first 5 and second heating element 6 establishing the unique cooking zone can be operated together. If all heating elements are in non-twin mode operation, all control knobs are in non-twin mode operational mode, in which each of the heating elements can be operated in single mode.
  • The method of operating the cooking hob 1 easily can be derived from the description above. In particular, it may be provided that in a twin-mode configuration in which the first 5 and second heating elements 6 establish a unique cooking zone 7, the first 5 and second heating elements 6 are operable by a common control element 10, whilst in an any non twin-mode configuration, the first 5 and second heating elements 6 are operable by respective individual control elements. Further reference is made to the description above and further above.
  • List of reference numerals
  • 1
    cooking hob
    2
    cooking face
    3
    first turntable
    4
    center axis
    5
    first heating element
    first heating element
    6
    second heating element
    7
    unique cooking zone
    8
    second turntable
    9
    household appliance
    10
    first control knob
    11
    second control knob

Claims (17)

  1. Cooking hob (1) comprising a cooking face (2) having at least two heating elements (5, 6) adapted to heating cookware, and further comprising at least one motion unit coupled to at least one first heating element (5) of the at least two heating elements, wherein the motion unit is adapted and designed such that the first heating element (5) is moveable along at least one trajectory (12) of at least one of linear and curved type, wherein at least one second heating element (6) of the at least two heating elements is positioned relative to the trajectory (12) such that in at least one trajectile position along the at least one trajectory (12), the first heating element (5) and the at least one second heating element (6) are so close to each other to establish a unique cooking zone (7).
  2. Cooking hob (1) according to claim 1, wherein the at least one trajectory (12) is composed of at least one of a one-dimensional linear movement, two-dimensional movement, one-dimensional circular movement and two-dimensional circular movement.
  3. Cooking hob (1) according to at least one of claims 1 and 2, comprising at least three heating elements, wherein the at least one motion unit is adapted such that in at least one second position of the first heating element (5) along the trajectory all of the heating elements are aligned along a common line.
  4. Cooking hob (1) according to at least one of claims 1 to 3, wherein the motion unit is adapted such that the at least one first heating element is rotatable in clockwise and/or counter-clockwise direction at least one of at least 90°, 180°, 270° and 360°.
  5. Cooking hob (1) according to at least one of claims 1 to 4, wherein the at least one motion unit comprises at least one latching mechanism adapted to latch the first heating element (5) in at least one predefined position along a trajectory (12).
  6. Cooking hob (1) according to at least one of claims 1 to 5, wherein the at least one motion unit comprises a moveable platform to which the first heating element is mounted to.
  7. Cooking hob according to claim 6, wherein the moveable platform comprises a turntable (3) rotatable around an inner rotation axis, wherein the first heating element (5) is mounted to the turntable (3).
  8. Cooking hob (1) according to any of claims 1 to 7, further comprising a control system having control elements (10, 11) adapted to operate a respective one of the heating elements (5, 6), wherein the control system is adapted such that a pair of first (5) and second heating elements (6) establishing a unique cooking zone (7) is controllable by one common control element (10).
  9. Cooking hob (1) according to claim 8, wherein the common control element (10) is activated in dependence of at least one of the trajectile positions of the first heating element (5), and where applicable the at least one second heating element (6).
  10. Cooking hob (1) according to any of claims 1 to 9, further comprising at least one motion control adapted and configured to move the first heating element along the at least one trajectory (12).
  11. Cooking hob (1) according to any of claims 1 to 10, wherein the at least one first and/or second heating element is selected from the group comprising gas burners, inductive heating elements, radiation heating elements, electrical resistance heating elements.
  12. Method of operating a cooking hob (1) according to at least one of claims 1 to 10 (1), wherein in a twin-mode configuration of the first heating element (5) and a second heating element (6), in which the first (5) and second heating element (6) establish a unique cooking zone (7), the first (5) and second heating elements(6) are operable by a common control element (10), whilst in an any non twin-mode configuration, the first (5) and second heating elements (6) are operable by respective individual control elements (10, 11).
  13. Method according to claim 12, wherein the common control element (10) is activated and deactivated in dependence of at least one twin-mode trajectile position along the at least one trajectory (12).
  14. Method according to any of claims 12 and 13, wherein the first heating element (5) is automatically moved along a trajectory (12) according to a setting of a user or program.
  15. Method according to any of claims 12 to 14, wherein a twin-mode configuration is indicated by visual, acoustic and/or haptic means on a user interface.
  16. Household appliance (9) comprising at least one cooking hob (1) according to at least one of claims 1 to 11.
  17. Household appliance according to claim 16, further comprising an electronic control unit adapted and configured to operate the household appliance according to a method of at least one of claims 12 to 15.
EP11188436.7A 2011-11-09 2011-11-09 Method of operating a cooking hob and household appliance Not-in-force EP2592355B1 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
ES11188436T ES2726769T3 (en) 2011-11-09 2011-11-09 Method of operation of a cooktop and appliance
EP11188436.7A EP2592355B1 (en) 2011-11-09 2011-11-09 Method of operating a cooking hob and household appliance
PCT/EP2012/069815 WO2013068186A1 (en) 2011-11-09 2012-10-08 Cooking hob, household appliance and method of operating an cooking hob
US14/347,478 US20140231413A1 (en) 2011-11-09 2012-10-08 Cooking hob, household appliance and method of operating an cooking hob
BR112014008013A BR112014008013A2 (en) 2011-11-09 2012-10-08 hob, method of operating a hob and household appliance
CN201280049660.8A CN103857963B (en) 2011-11-09 2012-10-08 Culinary art stone or metal plate for standing a stove on as a precaution against fire, home appliances and the method running culinary art stone or metal plate for standing a stove on as a precaution against fire
AU2012334330A AU2012334330B2 (en) 2011-11-09 2012-10-08 Cooking hob, household appliance and method of operating an cooking hob
RU2014112930/03A RU2014112930A (en) 2011-11-09 2012-10-08 KITCHEN COOKING PANEL, HOUSEHOLD APPLIANCE AND METHOD OF OPERATION OF THE KITCHEN COOKING PANEL

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP11188436.7A EP2592355B1 (en) 2011-11-09 2011-11-09 Method of operating a cooking hob and household appliance

Publications (2)

Publication Number Publication Date
EP2592355A1 true EP2592355A1 (en) 2013-05-15
EP2592355B1 EP2592355B1 (en) 2019-02-27

Family

ID=47019000

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11188436.7A Not-in-force EP2592355B1 (en) 2011-11-09 2011-11-09 Method of operating a cooking hob and household appliance

Country Status (8)

Country Link
US (1) US20140231413A1 (en)
EP (1) EP2592355B1 (en)
CN (1) CN103857963B (en)
AU (1) AU2012334330B2 (en)
BR (1) BR112014008013A2 (en)
ES (1) ES2726769T3 (en)
RU (1) RU2014112930A (en)
WO (1) WO2013068186A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2811230A1 (en) * 2013-06-05 2014-12-10 Electrolux Appliances Aktiebolag Gas cooktop and gas stove
EP2857752A1 (en) * 2013-09-19 2015-04-08 E.G.O. Elektro-Gerätebau GmbH Assembly of gas burners
EP2896887A1 (en) * 2014-01-16 2015-07-22 Electrolux Appliances Aktiebolag Gas heating arrangement and method for operating a gas heating arrangement
EP2896886A1 (en) * 2014-01-16 2015-07-22 Electrolux Appliances Aktiebolag Gas cooktop and appliance comprising such a gas cooktop
DE102016218269A1 (en) * 2016-09-22 2018-03-22 E.G.O. Elektro-Gerätebau GmbH Hob and method for positioning a heater on a hob
WO2019185341A1 (en) 2018-03-26 2019-10-03 Electrolux Appliances Aktiebolag Gas cooking assembly and a hob comprising the same

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2606146C2 (en) * 2014-06-19 2017-01-10 Сер Даяныклы Тюкетим Маллары Ич Ве Диш Тиджарет Санайи Аноним Ширкети Kitchen stove
ES2568748B1 (en) * 2014-11-03 2017-02-08 BSH Electrodomésticos España S.A. Cooking Field Device
CN108720583B (en) * 2017-04-17 2021-09-24 浙江绍兴苏泊尔生活电器有限公司 Cooking appliance and control method thereof
ES2713379A1 (en) * 2017-11-20 2019-05-21 Bsh Electrodomesticos Espana Sa PROCEDURE FOR ASSEMBLY OF A COOKING SYSTEM (Machine-translation by Google Translate, not legally binding)
US10739009B2 (en) * 2017-12-14 2020-08-11 Midea Group Co., Ltd. Method and apparatus for distributing heat from a burner
US10724735B2 (en) * 2017-12-14 2020-07-28 Midea Group Co., Ltd. Method and apparatus for distributing heat from a burner
DE102018214939B4 (en) * 2018-09-03 2020-06-10 E.G.O. Elektro-Gerätebau GmbH Cooking device with a cover plate and method for operating such a cooking device
US11209171B1 (en) 2020-06-30 2021-12-28 Midea Group Co., Ltd. Gas burner lighting via rotation

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5960781A (en) 1997-02-20 1999-10-05 Gaz De France (G. D. F.) Service National Oven equipped with a movable heat generating means
US6017221A (en) 1995-12-04 2000-01-25 Flamm; Daniel L. Process depending on plasma discharges sustained by inductive coupling
WO2008101766A1 (en) * 2007-02-21 2008-08-28 BSH Bosch und Siemens Hausgeräte GmbH Hob with a movable heating element
KR20100012627A (en) 2008-07-29 2010-02-08 엘지전자 주식회사 A cooker

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5225650A (en) * 1989-07-14 1993-07-06 Maho Aktiengesellschaft Process and device for the manufacture of cavities in workpieces through laser beams
US5751436A (en) * 1996-12-23 1998-05-12 Rocky Mountain Instrument Company Method and apparatus for cylindrical coordinate laser engraving
US6146677A (en) * 1998-05-01 2000-11-14 Remco Techologies, Inc. High efficiency infrared oven
DE19907596A1 (en) * 1999-02-22 2000-08-24 Patrick Leidenberger Device which detects position of cooking vessel and guarantees that cooking vessel and heating element automatically agree has heating element slid under cooking vessel or cooking vessel
DE10045655A1 (en) * 2000-09-15 2002-04-18 Aeg Hausgeraete Gmbh Fitted hob
JP2003297539A (en) * 2002-03-29 2003-10-17 Hitachi Hometec Ltd Heating cooker
US6998582B1 (en) * 2005-03-14 2006-02-14 Hickory Industries, Inc. Cooking apparatus
DE102007057076B4 (en) * 2007-11-21 2012-03-29 E.G.O. Elektro-Gerätebau GmbH Hob and method for operating a hob
ES2336877B1 (en) * 2007-11-28 2011-02-10 Bsh Electrodomesticos España, S.A. DOMESTIC DEVICE WITH A USER INTERFACE THAT INCLUDES AN ADJUSTMENT ELEMENT.

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6017221A (en) 1995-12-04 2000-01-25 Flamm; Daniel L. Process depending on plasma discharges sustained by inductive coupling
US5960781A (en) 1997-02-20 1999-10-05 Gaz De France (G. D. F.) Service National Oven equipped with a movable heat generating means
WO2008101766A1 (en) * 2007-02-21 2008-08-28 BSH Bosch und Siemens Hausgeräte GmbH Hob with a movable heating element
KR20100012627A (en) 2008-07-29 2010-02-08 엘지전자 주식회사 A cooker

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2811230A1 (en) * 2013-06-05 2014-12-10 Electrolux Appliances Aktiebolag Gas cooktop and gas stove
WO2014195067A1 (en) * 2013-06-05 2014-12-11 Electrolux Appliances Aktiebolag Gas cooktop and gas stove
EP2857752A1 (en) * 2013-09-19 2015-04-08 E.G.O. Elektro-Gerätebau GmbH Assembly of gas burners
WO2015106920A1 (en) * 2014-01-16 2015-07-23 Electrolux Appliances Aktiebolag Gas cooktop and appliance comprising such a gas cooktop
EP2896886A1 (en) * 2014-01-16 2015-07-22 Electrolux Appliances Aktiebolag Gas cooktop and appliance comprising such a gas cooktop
WO2015106919A1 (en) * 2014-01-16 2015-07-23 Electrolux Appliances Aktiebolag Gas heating arrangement and method for operating a gas heating arrangement
EP2896887A1 (en) * 2014-01-16 2015-07-22 Electrolux Appliances Aktiebolag Gas heating arrangement and method for operating a gas heating arrangement
CN105849466A (en) * 2014-01-16 2016-08-10 伊莱克斯家用电器股份公司 Gas cooktop and appliance comprising such a gas cooktop
US10077901B2 (en) 2014-01-16 2018-09-18 Electrolux Appliances Aktiebolag Gas cooktop and appliance comprising such a gas cooktop
US10082295B2 (en) 2014-01-16 2018-09-25 Electrolux Appliances Aktibolag Gas heating arrangement and method for operating a gas heating arrangement
AU2014377393B2 (en) * 2014-01-16 2018-11-08 Electrolux Appliances Aktiebolag Gas cooktop and appliance comprising such a gas cooktop
AU2014377392B2 (en) * 2014-01-16 2018-11-08 Electrolux Appliances Aktiebolag Gas heating arrangement and method for operating a gas heating arrangement
DE102016218269A1 (en) * 2016-09-22 2018-03-22 E.G.O. Elektro-Gerätebau GmbH Hob and method for positioning a heater on a hob
WO2019185341A1 (en) 2018-03-26 2019-10-03 Electrolux Appliances Aktiebolag Gas cooking assembly and a hob comprising the same
US11512854B2 (en) 2018-03-26 2022-11-29 Electrolux Appliances Aktiebolag Gas cooking assembly and a hob comprising the same

Also Published As

Publication number Publication date
ES2726769T3 (en) 2019-10-09
RU2014112930A (en) 2015-10-10
BR112014008013A2 (en) 2017-04-11
AU2012334330B2 (en) 2016-09-29
CN103857963B (en) 2016-08-17
AU2012334330A1 (en) 2014-03-20
WO2013068186A1 (en) 2013-05-16
CN103857963A (en) 2014-06-11
US20140231413A1 (en) 2014-08-21
EP2592355B1 (en) 2019-02-27

Similar Documents

Publication Publication Date Title
EP2592355B1 (en) Method of operating a cooking hob and household appliance
US10536995B2 (en) Induction heating arrangement and induction hob
CN113163983B (en) Cooking utensil
WO2021197022A1 (en) Turntable oscillation during cooking appliance meal cook cycle
US10082295B2 (en) Gas heating arrangement and method for operating a gas heating arrangement
EP1083773A2 (en) Radiant electric heater for a microwave oven
KR20100010249A (en) Cooker
US10584883B2 (en) Locator cover for a cooktop appliance
WO2021197131A1 (en) Stackable pans for cooking appliance
EP2991446B1 (en) Induction heating arrangement and induction hob
CN100513889C (en) Rotating tray of microwave oven
WO2021197129A1 (en) Cooking appliance meal cook cycle
US11696373B2 (en) Turntable positioning for cooking appliance meal cook cycle
US20220030678A1 (en) Turntable speed profiling during cooking appliance meal cook cycle
US11523475B2 (en) Lamp synchronization for cooking appliance meal cook cycle
CN116941979A (en) Preparation method of cooking equipment with graphene heating function
WO2013097986A1 (en) A cooker
CN115654540A (en) Electric heating stove and working method
CN116941976A (en) Combined cooking device comprising graphene heating
CN116941977A (en) Carrier type cooking equipment with graphene heating function
JPH06338382A (en) Electromagnetic induction type heating cooler
JP2019126658A (en) Pottery plate for stove
GB2369024A (en) Sector-shaped heater for an oven

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20131022

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20170705

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602011056559

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: F24C0015100000

Ipc: F24C0003080000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180921

RIC1 Information provided on ipc code assigned before grant

Ipc: F24C 3/08 20060101AFI20180907BHEP

Ipc: F24C 15/10 20060101ALI20180907BHEP

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602011056559

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1101910

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190315

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190227

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190527

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190627

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190528

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190627

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190527

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1101910

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190227

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2726769

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20191009

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602011056559

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20191128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602011056559

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191130

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191109

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20191130

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20191109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191109

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191109

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191130

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191109

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191130

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20210528

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20111109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227