EP2590035B1 - Circuit for self-regulating the oscillation frequency of an oscillating mechanical system and device including same - Google Patents

Circuit for self-regulating the oscillation frequency of an oscillating mechanical system and device including same Download PDF

Info

Publication number
EP2590035B1
EP2590035B1 EP11187360.0A EP11187360A EP2590035B1 EP 2590035 B1 EP2590035 B1 EP 2590035B1 EP 11187360 A EP11187360 A EP 11187360A EP 2590035 B1 EP2590035 B1 EP 2590035B1
Authority
EP
European Patent Office
Prior art keywords
piezoelectric
frequency
circuit
electroactive polymer
autoregulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11187360.0A
Other languages
German (de)
French (fr)
Other versions
EP2590035A1 (en
Inventor
Michel Willemin
Jean-Claude Martin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Swatch Group Research and Development SA
Original Assignee
Swatch Group Research and Development SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Swatch Group Research and Development SA filed Critical Swatch Group Research and Development SA
Priority to EP11187360.0A priority Critical patent/EP2590035B1/en
Publication of EP2590035A1 publication Critical patent/EP2590035A1/en
Application granted granted Critical
Publication of EP2590035B1 publication Critical patent/EP2590035B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04CELECTROMECHANICAL CLOCKS OR WATCHES
    • G04C3/00Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means
    • G04C3/04Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means wherein movement is regulated by a balance
    • GPHYSICS
    • G04HOROLOGY
    • G04CELECTROMECHANICAL CLOCKS OR WATCHES
    • G04C3/00Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means
    • G04C3/04Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means wherein movement is regulated by a balance
    • G04C3/06Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means wherein movement is regulated by a balance using electromagnetic coupling between electric power source and balance
    • G04C3/065Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means wherein movement is regulated by a balance using electromagnetic coupling between electric power source and balance the balance controlling gear-train by means of static switches, e.g. transistor circuits

Definitions

  • the invention relates to a circuit for self-regulating the frequency of oscillation of an oscillating mechanical system.
  • the invention also relates to a device comprising the oscillating mechanical system and the self-regulating circuit of the oscillation frequency of the oscillating mechanical system.
  • the mechanical oscillating system may be a balance on which is mounted a spiral spring, one end of which is fixed to the axis of rotation of the balance and the other end is fixed to a fixed element of a turntable.
  • the mechanical system is kept in oscillation by means of a generally mechanical energy source.
  • This energy source may for example be a barrel driving a gear train with an escape wheel cooperating with an anchor.
  • This rotary anchor actuates, for example, an anchor fixed near the axis of rotation of the balance.
  • the balance with the spiral spring can thus form a regulating member of a clockwork movement. This oscillating regulating member determines the driving speed of the gear train with the escape wheel leading to the time indicating hands.
  • the aforementioned electric generator comprises rotating permanent magnets and a coil facing the magnets, capable of supplying an induced alternating voltage.
  • the realization of such a generator and the regulation circuit can prove to be complicated. A large number of elements must also be provided to design said generator with the regulation circuit.
  • the magnetic field of the rotating magnets can induce parasitic effects on certain neighboring ferromagnetic parts. This therefore constitutes several drawbacks.
  • the adjustment of the oscillation frequency of a balance wheel combined with a piezoelectric spiral spring as an alternating voltage generator is known from the demand of patent JP 2002-228774 .
  • the alternating voltage is rectified in a rectifier which comprises at least two diodes and FET transistors controlled by the electronic regulation circuit.
  • the rectified voltage is stored on at least one supply voltage storage capacitor.
  • the electronic circuit can be supplied directly by the alternating voltage of the generator, which has been rectified and stored on the capacitor.
  • the piezoelectric generator is of the bimetal type (PZT).
  • PZT bimetal type
  • For the adjustment of the oscillation frequency a comparison is made between a reference frequency signal supplied by a crystal oscillator circuit, and the alternating signal of the generator.
  • the proposed electronic circuit does not make it possible to design a mechanical system oscillating with the regulation circuit in a very compact and easy to produce manner, which constitutes a drawback.
  • the object of the invention is therefore to provide a compact self-regulation circuit in order to be able to precisely regulate the oscillation frequency of an oscillating mechanical system, with a small number of components and to overcome the aforementioned drawbacks of the state of the art. .
  • the invention relates to a circuit for self-regulating the oscillation frequency of an oscillating mechanical system, which comprises the features mentioned in independent claim 1.
  • An advantage of such a self-regulation circuit according to the invention lies in the fact that it can be produced in the form of a single electronic module, which can be connected directly or by means of two electric wires to the piezoelectric or electroactive polymer element disposed on the oscillating mechanical system.
  • This oscillating mechanical system may preferably be a balance on which is disposed a spiral spring, which comprises the piezoelectric or electroactive polymer element.
  • the self-regulation circuit comprises an oscillator stage connected to a resonator of the MEMS type, which can be placed or produced on, next to or in the same integration substrate of the other components of said self-regulation circuit.
  • the self-regulating circuit with all these components constitutes a single compact component. This makes it possible to considerably reduce the size of the oscillating mechanical system with its self-regulating circuit of the oscillation frequency, in order to be able to mount it advantageously in a mechanical wristwatch.
  • the self-regulation circuit makes it possible to apply an adaptation voltage to generate a continuous compression or extension force or by determined time periods to the piezoelectric element or to the electroactive polymer.
  • This makes it possible to regulate the oscillation frequency of the oscillating mechanical system.
  • a comparison between a frequency of a reference signal generated through the oscillator stage and the frequency of the alternating voltage generated by the piezoelectric element or by the electroactive polymer element is performed. .
  • the invention also relates to a device comprising the oscillating mechanical system and the frequency self-regulation circuit. of the oscillating mechanical system, which comprises the characteristics defined in independent claim 9.
  • the self-regulation circuit is mainly used to regulate the oscillation frequency of a balance on which is mounted a spiral spring with a piezoelectric element or with an electroactive polymer.
  • other oscillating mechanical systems can also be considered, for example an acoustic system such as a tuning fork, but in the remainder of the description, reference will only be made to an oscillating mechanical system. in the form of a balance wheel with the piezoelectric element or electroactive polymer element (EAP) spiral spring.
  • EAP electroactive polymer element
  • the figure 1 shows a device 1, which comprises an oscillating mechanical system 2, 3 and a self-regulating circuit 10 of the oscillation frequency fosc of the mechanical oscillating system.
  • the oscillating mechanical system may comprise a balance 2, which is formed of a metal ring connected for example by three arms 5 to an axis of rotation 6, and a spiral spring 3, on which is arranged a piezoelectric element. or an electroactive polymer element explained briefly below.
  • a first end 3a of the spiral spring 3 is held fixed by a pin 4 of a balance bridge (not shown). This balance bridge is fixed to the plate (not shown) of the watch movement.
  • a second end 3b of the spiral spring 3 is fixed directly to the axis of rotation 6 of the balance.
  • the balance 2 with its spiral spring 3 is kept in oscillation by means of an energy source (not shown), which can be electrical, but preferably mechanical.
  • This source of mechanical energy can be a barrel, which traditionally drives a gear train with an escape wheel cooperating with an anchor.
  • This rotary anchor actuates, for example, an ankle fixed near the axis of rotation of the balance.
  • the balance with the spiral spring can thus form a regulating member of a clockwork movement.
  • the spiral spring 3 is produced in a known manner by means of a metal wire or strip of thickness generally less than 0.3 mm, for example of the order of 0.025 to 0.045 mm.
  • a metal wire or strip of thickness generally less than 0.3 mm, for example of the order of 0.025 to 0.045 mm.
  • at least one piezoelectric or electro-active polymer layer 23 is deposited on one of the faces of the coil.
  • This piezoelectric layer may be composed for example of titanium oxide with a thickness preferably less than 0.1 mm.
  • first piezoelectric or electroactive polymer layer 23 on a face designated the outer face and a second piezoelectric or electroactive polymer layer 23 'on another face designated the inner face.
  • the inner face is that facing the axis of rotation of the balance, while the outer face is opposite the inner face .
  • the piezoelectric or electroactive polymer layers 23, 23 ' are deposited over the entire length of the metal strip 24, but it can also be envisaged that only a portion of the strip is covered by one or more piezoelectric layers or electroactive polymers. It can even also be envisaged that the strip is made entirely from a piezoelectric material or from an electroactive polymer material, for example of circular or rectangular cross section.
  • the self-regulation circuit 10 is therefore electrically connected to the two electro-active piezoelectric or polymer layers to receive this alternating voltage.
  • This self-regulation circuit can be connected directly or by means of two metal wires to two terminals of the piezoelectric or electroactive polymer layers.
  • the figure 3 represents the different electronic elements of the self-regulation circuit 10 in order to be able to regulate the oscillation frequency of the oscillating mechanical system.
  • the self-regulating circuit 10 is connected to two terminals of the piezoelectric element or the electroactive polymer element 23, which is placed on the spiral spring of the oscillating mechanical system, such as the balance.
  • the self-regulation circuit 10 is able to rectify the alternating voltage Vp received from the piezoelectric or electroactive polymer element 23 via a traditional rectifier 11.
  • the rectified voltage of the alternating voltage Vp is stored on a capacitor Cc. This rectified voltage between the terminals V DD and V SS of the capacitor Cc can be sufficient to supply all the electronic elements of the self-regulation circuit without the aid of an additional voltage source such as a battery.
  • the self-regulation circuit 10 comprises an oscillator stage 15 connected to a resonator of the MEMS type 16.
  • the oscillator circuit of the oscillator stage with the MEMS resonator supplies an oscillating signal, which may be of a frequency less than 500 kHz, by example of the order of 200 kHz.
  • the oscillator stage 15 can preferably supply a reference signal V R , the frequency of which can be equal to the frequency of the oscillating signal of the oscillator circuit.
  • the oscillator stage comprises at least one frequency divider for dividing the frequency of the oscillating signal, in order to provide a reference signal V R at a frequency divided with respect to the frequency of the oscillating signal.
  • the frequency of the reference signal V R can be of the order of the frequency of the alternating voltage Vp generated by the piezoelectric or electroactive polymer element.
  • the MEMS resonator can be made in a thick monolithic silicon substrate of the SOI type. This same substrate can also be used to integrate all the other components of the self-regulation circuit 10. To do this, it can be deposited on the thick SOI substrate, another thin SOI layer to integrate the other electronic components.
  • the self-regulation circuit can constitute a single compact electronic module for regulating the oscillation frequency of the oscillating mechanical system.
  • the self-regulation circuit produced can also be encapsulated in the traditional way in an opaque plastic material. This helps reduce interconnections with other external elements and also reduce power consumption.
  • the MEMS resonator in a first monolithic silicon substrate.
  • the MEMS resonator can be placed on or next to a second monolithic silicon substrate for integrating other components of the self-regulation circuit.
  • the two substrates are encapsulated in a traditional opaque plastic material to form a single compact module.
  • the self-regulation circuit 10 comprises comparison means 12, 13, 14, 17 for comparing the frequency of the alternating voltage Vp with the frequency of the reference signal V R.
  • the comparison means must be designed to in such a way as to take account of the large frequency difference between the alternating voltage Vp and the reference signal V R.
  • the comparison means consist first of all of a first half-wave counter 12, which receives as input the alternating voltage Vp of the piezoelectric or electroactive polymer element, and which supplies a first counting signal Np to a processor processing unit 17.
  • the comparison means further comprise a second half-wave counter 14, which receives the reference signal V R as input, and which supplies a second counting signal N R to the processing unit at processor 17.
  • a measurement window 13 arranged between the first half-wave counter 12 and the second half-wave counter 14. This measuring window 13 determines the time of the second half-wave counter 14.
  • the processor processing unit 17 supplies configuration parameters to the measurement window 13 to determine the counting time for the second half-wave counter. These configuration parameters are stored in a memory not shown in the processor processing unit. These configuration parameters may be different depending on whether it is a ladies' watch or a men's watch.
  • the various operations processed in the processor processing unit 17 can be controlled by a clock signal supplied for example by the oscillating circuit of the oscillator stage 15.
  • the counting time of the second half-wave counter 14 is adapted proportionally to the counting time of a certain determined number of half-waves counted by the first half-wave counter in the first counting signal Np.
  • the processor-based processing unit can optionally also control the first half-wave counter 12 to define the start and the end of a counting period.
  • the first half-wave counter 12 provides information on the start and end of a determined number of counted half-waves to the processor-based processing unit. If it is planned to count for example 200 vibrations in the first half-wave counter, the measurement window 13 is configured so that the second half-wave counter 14 counts a number of half-waves of the reference signal V R for a period roughly 5,000 times less. This duration can also be dependent on the counting time, for example, of the 200 vibrations of the first half-wave counter. This makes it possible to reduce the electrical consumption of the self-regulation circuit.
  • the start of counting controlled by the measurement window 13 can be determined by the first half-wave counter 12, but can also preferably be directly controlled by the processor processing unit 17.
  • the processor processing unit can receive first of all the first count signal Np relating to a first number determined of counted alternations of the alternating voltage Vp in a first time interval. This first count signal is stored for example in a register of the processor-based processing unit. Subsequently, the processor-based processing unit can receive the second count signal N R relating to a second number of half-waves counted in the second half-wave counter 14 in a second time interval controlled by the measurement window 13 This second counting signal N R can also be stored in another register of the processor-based processing unit. Finally a comparison of the two count signals is performed in the processor processing unit to determine whether the frequency of the alternating voltage Vp is too high or too low relative to the frequency of the reference signal.
  • said processor processing unit controls a frequency adaptation unit 18, the output of which is connected to the terminals of the piezoelectric or electroactive polymer element 23.
  • This frequency adaptation unit 18 can be provided to supply a frequency adaptation signal, which is a direct voltage V A , the level of which depends on the difference between the two count signals communicated by the processor processing unit.
  • a switchable network of capacitors or resistors can be provided for this purpose.
  • a DC voltage value can be supplied through a voltage follower of the matching unit 18 to one of the terminals of the piezoelectric or electro-active polymer element 23 or to the other terminal of the piezoelectric or electroactive polymer element. This thus makes it possible to induce a certain force on the piezoelectric or electroactive polymer element to slow down or accelerate the oscillation of the oscillating mechanical system as a function of the comparison of the two count signals.
  • the direct voltage of a certain value V A can be supplied by the frequency adaptation unit 18 by determined time periods, which can be programmed into the processor-based processing unit. Provision can also be made for several electronic components of the self-regulation circuit to be switched on only in time intervals determined by energy saving. For example, the measurement window 13, the second half-wave counter 14, the oscillator stage 15 connected to the MEMS resonator 16 and part of the processor processing unit 17 can be left in an idle mode and switched on by time intervals determined to effect the regulation of the oscillation frequency.
  • the first half-wave counter 12 which operates at very low frequency, can on the other hand be switched on continuously and be used to control the switching on of the other parts of the self-regulation circuit 10 after a certain number of counted half-waves of the alternating voltage Vp .
  • the oscillation frequency of the oscillating mechanical system has been adapted, provision may be made to extend the resting time, in particular of the oscillator stage 15. Most of the electronic components at rest of the self-regulation circuit can under these conditions. be switched on for example every minute, which greatly reduces the electrical consumption of the self-regulation circuit. Under these conditions, the capacitor Cc, which stores a rectified supply voltage, does not discharge very little, because only a more important point use of energy occurs during the frequency comparison of the reference signal V R and the alternating voltage Vp.
  • the self-regulation circuit 10 can also include well-known thermal compensation elements, as well as a unit for resetting to zero each time the self-regulation circuit 10 is activated. All the electronic components of the self-regulation circuit, as well as the resonator MEMS 16 and the capacitor Cc are part of the same compact electronic module. All these electronic components can be advantageously integrated into a single monolithic silicon substrate, which makes it possible to have only one self-powered electronic module for the frequency regulation of the oscillating mechanical system.
  • the counting time of the second counter d 'halfwaves 14 can be directly controlled by the first half-wave counter 12.
  • the number of half-waves Np of the alternating voltage Vp can be directly compared in the processor processing unit 17 with the number of half-waves counted N R in the second alternation counter 14.
  • the oscillating mechanical system can be an acoustic system. Provision can be made to adapt the oscillation frequency of the oscillating mechanical system by placing a number of capacitors in parallel with the piezoelectric or electroactive polymer element based on the frequency comparison of the alternating voltage and the reference signal. It may be envisaged to deposit on the spiral spring a metal-ion composite layer to serve for a purpose equivalent to the piezoelectric element.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Oscillators With Electromechanical Resonators (AREA)

Description

L'invention concerne un circuit d'autorégulation de la fréquence d'oscillation d'un système mécanique oscillant.The invention relates to a circuit for self-regulating the frequency of oscillation of an oscillating mechanical system.

L'invention concerne également un dispositif comprenant le système mécanique oscillant et le circuit d'autorégulation de la fréquence d'oscillation du système mécanique oscillant.The invention also relates to a device comprising the oscillating mechanical system and the self-regulating circuit of the oscillation frequency of the oscillating mechanical system.

Dans le domaine de l'horlogerie, le système mécanique oscillant peut être un balancier sur lequel est monté un ressort spiral, dont une extrémité est fixée à l'axe de rotation du balancier et l'autre extrémité est fixée sur un élément fixe d'une platine. Le système mécanique est maintenu en oscillation par l'intermédiaire d'une source d'énergie généralement mécanique. Cette source d'énergie peut être par exemple un barillet entraînant un train d'engrenages avec une roue d'échappement coopérant avec une ancre. Cette ancre rotative actionne par exemple une cheville fixée à proximité de l'axe de rotation du balancier. Le balancier avec le ressort spiral peut ainsi former un organe régulateur d'un mouvement d'horlogerie. Cet organe régulateur oscillant détermine la vitesse d'entraînement du train d'engrenages avec la roue d'échappement conduisant aux aiguilles d'indication de l'heure.In the field of watchmaking, the mechanical oscillating system may be a balance on which is mounted a spiral spring, one end of which is fixed to the axis of rotation of the balance and the other end is fixed to a fixed element of a turntable. The mechanical system is kept in oscillation by means of a generally mechanical energy source. This energy source may for example be a barrel driving a gear train with an escape wheel cooperating with an anchor. This rotary anchor actuates, for example, an anchor fixed near the axis of rotation of the balance. The balance with the spiral spring can thus form a regulating member of a clockwork movement. This oscillating regulating member determines the driving speed of the gear train with the escape wheel leading to the time indicating hands.

De manière à précisément régler la fréquence d'oscillation du système mécanique oscillant, il peut être prévu d'adapter la longueur du ressort ou également ajouter ou retirer une masse sur la partie circulaire extérieure du balancier. Cependant dans le cas d'une montre-bracelet, tous ces éléments supplémentaires de réglage occupent une place non négligeable à l'intérieur de la boîte de montre, et occasionne un temps de fabrication de la montre et un coût relativement élevés. Cela constitue donc des inconvénients.In order to precisely adjust the frequency of oscillation of the mechanical oscillating system, provision can be made to adapt the length of the spring or also to add or remove a mass on the outer circular part of the balance. However, in the case of a wristwatch, all these additional adjustment elements occupy a place that is not negligible inside the watch case, and causes relatively high watch manufacturing time and cost. This therefore constitutes drawbacks.

Dans une montre mécanique ou électro-mécanique, il est connu de réguler la vitesse de rotation d'une génératrice électrique reliée au barillet à ressort sous forme de spirale pour l'entraînement mécanique des aiguilles de la montre par l'intermédiaire d'un train d'engrenages. La génératrice électrique génère une tension alternative, qui est redressée au moyen d'un redresseur d'un circuit électronique de régulation. Ce circuit de régulation a pour tâche d'asservir la vitesse de rotation de la génératrice pour pouvoir déplacer les aiguilles d'indication de l'heure en fonction d'une indication correcte de l'heure courante. Un transistor du circuit de régulation peut permettre de court-circuiter par périodes temporelles déterminées, la génératrice afin de la freiner et ainsi réguler la vitesse de rotation. A ce titre, on peut citer les demandes de brevet EP 0 762 243 A1 ou EP 0 822 470 A1 , qui décrivent une telle montre munie de ce circuit de régulation.In a mechanical or electro-mechanical watch, it is known to regulate the speed of rotation of an electric generator connected to the spring barrel in the form of a spiral for the mechanical drive of the hands of the watch by means of a train. of gears. The electric generator generates an alternating voltage, which is rectified by means of a rectifier of an electronic regulation circuit. The task of this regulation circuit is to control the speed of rotation of the generator in order to be able to move the time indication hands according to a correct indication of the current time. A transistor of the regulation circuit can make it possible to short-circuit the generator for determined periods of time in order to slow it down and thus regulate the speed of rotation. As such, we can cite the requests of patent EP 0 762 243 A1 or EP 0 822 470 A1 , which describe such a watch provided with this regulation circuit.

La génératrice électrique susmentionnée comprend des aimants permanents en rotation et une bobine en regard des aimants, susceptible de fournir une tension induite alternative. La réalisation d'une telle génératrice et du circuit de régulation peut s'avérer compliquée. Il doit également être prévu un grand nombre d'éléments pour concevoir ladite génératrice avec le circuit de régulation. De plus, le champ magnétique des aimants en rotation peut induire des effets parasites à certaines parties ferromagnétiques voisines. Cela constitue donc plusieurs inconvénients.The aforementioned electric generator comprises rotating permanent magnets and a coil facing the magnets, capable of supplying an induced alternating voltage. The realization of such a generator and the regulation circuit can prove to be complicated. A large number of elements must also be provided to design said generator with the regulation circuit. In addition, the magnetic field of the rotating magnets can induce parasitic effects on certain neighboring ferromagnetic parts. This therefore constitutes several drawbacks.

En lieu et place d'une génératrice électrique composée d'aimants permanents en rotation et d'une bobine générant une tension induite alternative, il a déjà été proposé dans le brevet FR 2.119.482 de munir un système mécanique oscillant d'un élément piézoélectrique. Cet élément piézoélectrique est de préférence disposé sur un ressort spiral relié à un balancier. Pour ce faire, il est précisé le dépôt de pellicules de matière piézoélectrique (PZT) sur la majeure partie de la longueur du ressort et sur une face intérieure et une face extérieure dudit ressort métallique. Un convertisseur de tension permet de fournir une tension alternative à l'élément piézoélectrique pour générer alternativement une force de compression et une force d'extension au ressort afin de régler l'oscillation du balancier relié au ressort spiral. Cependant dans ce document de brevet, il n'est nullement fait mention de la régulation de la fréquence d'oscillation du balancier avec le ressort spiral au moyen d'un circuit d'autorégulation, ce qui est un désavantage.Instead of an electric generator made up of rotating permanent magnets and a coil generating an induced alternating voltage, it has already been proposed in the patent FR 2.119.482 to provide an oscillating mechanical system with a piezoelectric element. This piezoelectric element is preferably arranged on a spiral spring connected to a balance. To do this, it is specified the deposition of films of piezoelectric material (PZT) over the major part of the length of the spring and on an inner face and an outer face of said metal spring. A voltage converter is used to supply an alternating voltage to the piezoelectric element to alternately generate a compressive force and an extension force to the spring in order to regulate the oscillation of the balance connected to the spiral spring. However, in this patent document, there is no mention whatsoever of regulating the frequency of oscillation of the balance with the spiral spring by means of a self-regulating circuit, which is a disadvantage.

Le réglage de la fréquence d'oscillation d'un balancier combiné à un ressort spiral piézoélectrique en tant que générateur de tension alternative est connu de la demande de brevet JP 2002-228774 . La tension alternative est redressée dans un redresseur qui comprend au moins deux diodes et des transistors FET commandés par le circuit électronique de réglage. La tension redressée est stockée sur au moins un condensateur de stockage de la tension d'alimentation. Le circuit électronique peut être alimenté directement par la tension alternative du générateur, qui a été redressée et stockée sur le condensateur. Le générateur piézoélectrique est du type bimétal (PZT). Pour le réglage de la fréquence d'oscillation, il est effectué une comparaison entre un signal à fréquence de référence fourni par un circuit à oscillateur à quartz, et le signal alternatif du générateur. Le circuit électronique proposé ne permet pas de concevoir un système mécanique oscillant avec le circuit de régulation de manière très compacte et simple à réaliser, ce qui constitue un inconvénient.The adjustment of the oscillation frequency of a balance wheel combined with a piezoelectric spiral spring as an alternating voltage generator is known from the demand of patent JP 2002-228774 . The alternating voltage is rectified in a rectifier which comprises at least two diodes and FET transistors controlled by the electronic regulation circuit. The rectified voltage is stored on at least one supply voltage storage capacitor. The electronic circuit can be supplied directly by the alternating voltage of the generator, which has been rectified and stored on the capacitor. The piezoelectric generator is of the bimetal type (PZT). For the adjustment of the oscillation frequency, a comparison is made between a reference frequency signal supplied by a crystal oscillator circuit, and the alternating signal of the generator. The proposed electronic circuit does not make it possible to design a mechanical system oscillating with the regulation circuit in a very compact and easy to produce manner, which constitutes a drawback.

Il est également connu de la demande de brevet WO 2011/131784 A1 d'effectuer un réglage de la fréquence d'oscillation d'un balancier combiné à un ressort spiral piézoélectrique comme générateur de tension alternative. Une comparaison de fréquence entre la fréquence de la tension alternative du ressort piézoélectrique avec la fréquence d'un signal de référence d'un oscillateur à quartz est effectuée. La fréquence d'oscillation du balancier est adaptée par la connexion d'un ou plusieurs condensateurs en sortie du circuit de régulation. Un tel circuit n'est pas simple et compact.It is also known from the patent application WO 2011/131784 A1 to adjust the frequency of oscillation of a balance combined with a piezoelectric spiral spring as an alternating voltage generator. A frequency comparison between the frequency of the AC voltage of the piezoelectric spring with the frequency of a reference signal of a crystal oscillator is performed. The oscillation frequency of the balance is adapted by connecting one or more capacitors at the output of the regulation circuit. Such a circuit is not simple and compact.

L'invention a donc pour but de fournir un circuit d'autorégulation compact pour pouvoir réguler précisément la fréquence d'oscillation d'un système mécanique oscillant, avec un nombre restreint de composants et pour pallier aux inconvénients susmentionnés de l'état de la technique.The object of the invention is therefore to provide a compact self-regulation circuit in order to be able to precisely regulate the oscillation frequency of an oscillating mechanical system, with a small number of components and to overcome the aforementioned drawbacks of the state of the art. .

A cet effet, l'invention concerne un circuit d'autorégulation de la fréquence d'oscillation d'un système mécanique oscillant, qui comprend les caractéristiques mentionnées dans la revendication indépendante 1.To this end, the invention relates to a circuit for self-regulating the oscillation frequency of an oscillating mechanical system, which comprises the features mentioned in independent claim 1.

Des formes particulières du circuit d'autorégulation sont définies dans les revendications dépendantes 2 à 8.Particular forms of the self-regulation circuit are defined in dependent claims 2 to 8.

Un avantage d'un tel circuit d'autorégulation selon l'invention réside dans le fait qu'il peut être réalisé sous la forme d'un unique module électronique, qui peut être relié directement ou par l'intermédiaire de deux fils électriques à l'élément piézoélectrique ou à polymère électro-actif disposé sur le système mécanique oscillant. Ce système mécanique oscillant peut être de préférence un balancier sur lequel est disposé un ressort spiral, qui comprend l'élément piézoélectrique ou à polymère électro-actif.An advantage of such a self-regulation circuit according to the invention lies in the fact that it can be produced in the form of a single electronic module, which can be connected directly or by means of two electric wires to the piezoelectric or electroactive polymer element disposed on the oscillating mechanical system. This oscillating mechanical system may preferably be a balance on which is disposed a spiral spring, which comprises the piezoelectric or electroactive polymer element.

Avantageusement, le circuit d'autorégulation comprend un étage oscillateur relié à un résonateur du type MEMS, qui peut être placé ou réalisé sur, à côté ou dans le même substrat d'intégration des autres composants dudit circuit d'autorégulation. De cette manière, le circuit d'autorégulation avec tous ces composants ne constitue qu'un unique composant compact. Cela permet de réduire considérablement la dimension du système mécanique oscillant avec son circuit d'autorégulation de la fréquence d'oscillation, afin de pouvoir le monter avantageusement dans une montre-bracelet mécanique.Advantageously, the self-regulation circuit comprises an oscillator stage connected to a resonator of the MEMS type, which can be placed or produced on, next to or in the same integration substrate of the other components of said self-regulation circuit. In this way, the self-regulating circuit with all these components constitutes a single compact component. This makes it possible to considerably reduce the size of the oscillating mechanical system with its self-regulating circuit of the oscillation frequency, in order to be able to mount it advantageously in a mechanical wristwatch.

Avantageusement, le circuit d'autorégulation permet d'appliquer une tension d'adaptation pour générer une force de compression ou d'extension continuelle ou par périodes temporelles déterminées à l'élément piézoélectrique ou à polymère électro-actif. Ceci permet de réguler la fréquence d'oscillation du système mécanique oscillant. A ce titre, une comparaison entre une fréquence d'un signal de référence généré par l'intermédiaire de l'étage oscillateur et la fréquence de la tension alternative générée par l'élément piézoélectrique ou par l'élément à polymère électro-actif est effectuée.Advantageously, the self-regulation circuit makes it possible to apply an adaptation voltage to generate a continuous compression or extension force or by determined time periods to the piezoelectric element or to the electroactive polymer. This makes it possible to regulate the oscillation frequency of the oscillating mechanical system. As such, a comparison between a frequency of a reference signal generated through the oscillator stage and the frequency of the alternating voltage generated by the piezoelectric element or by the electroactive polymer element is performed. .

A cet effet, l'invention concerne également un dispositif comprenant le système mécanique oscillant et le circuit d'autorégulation de la fréquence d'oscillation du système mécanique oscillant, qui comprend les caractéristiques définies dans la revendication indépendante 9.To this end, the invention also relates to a device comprising the oscillating mechanical system and the frequency self-regulation circuit. of the oscillating mechanical system, which comprises the characteristics defined in independent claim 9.

Des formes particulières du dispositif sont définies dans les revendications dépendantes 10 à 13.Particular forms of the device are defined in dependent claims 10 to 13.

Les buts, avantages et caractéristiques du circuit d'autorégulation de la fréquence d'oscillation d'un système mécanique oscillant, et le dispositif le comprenant, apparaîtront mieux dans la description suivante sur la base d'au moins une forme d'exécution non limitative illustrée par les dessins sur lesquels :

  • la figure 1 représente de manière simplifiée un dispositif, qui comprend un système mécanique oscillant et un circuit d'autorégulation de la fréquence d'oscillation du système mécanique oscillant selon l'invention,
  • la figure 2 représente une portion d'un ressort spiral du système mécanique oscillant, qui comprend un élément piézoélectrique ou à polymère électro-actif du dispositif selon l'invention, et
  • la figure 3 représente un schéma bloc simplifié des composants électroniques du circuit d'autorégulation selon l'invention, qui est relié à l'élément piézoélectrique ou à polymère électro-actif du système mécanique oscillant.
The aims, advantages and characteristics of the self-regulating circuit of the frequency of oscillation of an oscillating mechanical system, and the device comprising it, will become more apparent in the following description on the basis of at least one non-limiting embodiment. illustrated by the drawings in which:
  • the figure 1 shows in a simplified manner a device, which comprises an oscillating mechanical system and a self-regulating circuit of the oscillation frequency of the oscillating mechanical system according to the invention,
  • the figure 2 represents a portion of a spiral spring of the oscillating mechanical system, which comprises a piezoelectric or electroactive polymer element of the device according to the invention, and
  • the figure 3 represents a simplified block diagram of the electronic components of the self-regulation circuit according to the invention, which is connected to the piezoelectric or electroactive polymer element of the oscillating mechanical system.

Dans la description suivante, tous les composants électroniques du circuit d'autorégulation de la fréquence d'oscillation du système mécanique oscillant, qui sont bien connus d'un homme du métier dans ce domaine technique, ne sont décrits que de manière simplifiée. Comme décrit ci-après, le circuit d'autorégulation est principalement utilisé pour réguler la fréquence d'oscillation d'un balancier sur lequel est monté un ressort spiral à élément piézoélectrique ou à polymère électro-actif. Toutefois d'autres systèmes mécaniques oscillants peuvent aussi être envisagés, par exemple un système acoustique comme un diapason, mais dans la suite de la description, il ne sera fait référence qu'à un système mécanique oscillant sous la forme d'un balancier avec le ressort spiral à élément piézoélectrique ou à élément à polymère électro-actif (EAP).In the following description, all the electronic components of the self-regulating circuit of the oscillation frequency of the oscillating mechanical system, which are well known to a person skilled in the art in this technical field, are only described in a simplified manner. As described below, the self-regulation circuit is mainly used to regulate the oscillation frequency of a balance on which is mounted a spiral spring with a piezoelectric element or with an electroactive polymer. However, other oscillating mechanical systems can also be considered, for example an acoustic system such as a tuning fork, but in the remainder of the description, reference will only be made to an oscillating mechanical system. in the form of a balance wheel with the piezoelectric element or electroactive polymer element (EAP) spiral spring.

La figure 1 représente un dispositif 1, qui comprend un système mécanique oscillant 2, 3 et un circuit d'autorégulation 10 de la fréquence d'oscillation fosc du système mécanique oscillant. Dans une montre mécanique, le système mécanique oscillant peut comprendre un balancier 2, qui est formé d'un anneau métallique relié par exemple par trois bras 5 à un axe de rotation 6, et un ressort spiral 3, sur lequel est disposé un élément piézoélectrique ou un élément à polymère électro-actif expliqué brièvement ci-après. Une première extrémité 3a du ressort spiral 3 est maintenue fixe par un piton 4 d'un pont de balancier (non représenté). Ce pont de balancier est fixé à la platine (non représentée) du mouvement de la montre. Une seconde extrémité 3b du ressort spiral 3 est fixée directement sur l'axe de rotation 6 du balancier.The figure 1 shows a device 1, which comprises an oscillating mechanical system 2, 3 and a self-regulating circuit 10 of the oscillation frequency fosc of the mechanical oscillating system. In a mechanical watch, the oscillating mechanical system may comprise a balance 2, which is formed of a metal ring connected for example by three arms 5 to an axis of rotation 6, and a spiral spring 3, on which is arranged a piezoelectric element. or an electroactive polymer element explained briefly below. A first end 3a of the spiral spring 3 is held fixed by a pin 4 of a balance bridge (not shown). This balance bridge is fixed to the plate (not shown) of the watch movement. A second end 3b of the spiral spring 3 is fixed directly to the axis of rotation 6 of the balance.

Le balancier 2 avec son ressort spiral 3 est maintenu en oscillation par l'intermédiaire d'une source d'énergie (non représentée), qui peut être électrique, mais de préférence mécanique. Cette source d'énergie mécanique peut être un barillet, qui entraîne traditionnellement un train d'engrenages avec une roue d'échappement coopérant avec une ancre. Cette ancre rotative actionne par exemple une cheville fixée à proximité de l'axe de rotation du balancier. Le balancier avec le ressort spiral peut ainsi former un organe régulateur d'un mouvement d'horlogerie.The balance 2 with its spiral spring 3 is kept in oscillation by means of an energy source (not shown), which can be electrical, but preferably mechanical. This source of mechanical energy can be a barrel, which traditionally drives a gear train with an escape wheel cooperating with an anchor. This rotary anchor actuates, for example, an ankle fixed near the axis of rotation of the balance. The balance with the spiral spring can thus form a regulating member of a clockwork movement.

Comme représenté en partie à la figure 2, le ressort spiral 3 est réalisé de manière connue au moyen d'un fil ou bande métallique d'épaisseur généralement inférieure à 0.3 mm, par exemple de l'ordre de 0.025 à 0.045 mm. Avant d'enrouler à chaud de préférence la bande métallique 24 sous la forme d'un spiral avec les spires espacées l'une de l'autre, au moins une couche piézoélectrique ou polymère électro-active 23 est déposée sur une des faces de la bande métallique 24. Cette couche piézoélectrique peut être composée par exemple d'oxyde de titane d'une épaisseur de préférence inférieure à 0.1 mm. Il peut aussi être prévu de déposer une première couche piézoélectrique ou polymère électro-active 23 sur une face désignée face extérieure et une seconde couche piézoélectrique ou polymère électro-active 23' sur une autre face désignée face intérieure. Lors de l'enroulement de la bande métallique avec les couches piézoélectriques ou polymères électro-actives 23, 23', la face intérieure est celle en regard de l'axe de rotation du balancier, alors que la face extérieure est opposée à la face intérieure.As shown in part at figure 2 , the spiral spring 3 is produced in a known manner by means of a metal wire or strip of thickness generally less than 0.3 mm, for example of the order of 0.025 to 0.045 mm. Before hot winding, preferably the metal strip 24 in the form of a spiral with the turns spaced from one another, at least one piezoelectric or electro-active polymer layer 23 is deposited on one of the faces of the coil. metal strip 24. This piezoelectric layer may be composed for example of titanium oxide with a thickness preferably less than 0.1 mm. It can also be planned to depositing a first piezoelectric or electroactive polymer layer 23 on a face designated the outer face and a second piezoelectric or electroactive polymer layer 23 'on another face designated the inner face. When winding the metal strip with the piezoelectric or electroactive polymer layers 23, 23 ', the inner face is that facing the axis of rotation of the balance, while the outer face is opposite the inner face .

De préférence, les couches piézoélectriques ou polymères électro-actives 23, 23' sont déposées sur toute la longueur de la bande métallique 24, mais il peut aussi être envisagé qu'uniquement une portion de la bande est recouverte par une ou plusieurs couches piézoélectriques ou polymères électro-actives. Il peut même aussi être envisagé que la bande est réalisée intégralement dans un matériau piézoélectrique ou dans un matériau polymère électro-actif par exemple de section transversale circulaire ou rectangulaire.Preferably, the piezoelectric or electroactive polymer layers 23, 23 'are deposited over the entire length of the metal strip 24, but it can also be envisaged that only a portion of the strip is covered by one or more piezoelectric layers or electroactive polymers. It can even also be envisaged that the strip is made entirely from a piezoelectric material or from an electroactive polymer material, for example of circular or rectangular cross section.

Lors de l'oscillation du balancier 2 avec le ressort spiral 3, une force de compression ou une force d'extension est appliquée alternativement aux couches piézoélectriques ou polymères électro-actives, qui génèrent ainsi une tension alternative. La fréquence d'oscillation du balancier 2 avec le ressort spiral 3 peut être située entre 3 et 10 Hz. Le circuit d'autorégulation 10 est donc relié électriquement aux deux couches piézoélectriques ou polymères électro-actives pour recevoir cette tension alternative. Ce circuit d'autorégulation peut être relié directement ou par l'intermédiaire de deux fils métalliques à deux bornes des couches piézoélectriques ou polymères électro-actives.During the oscillation of the balance 2 with the spiral spring 3, a compressive force or an extension force is applied alternately to the piezoelectric or electroactive polymer layers, which thus generate an alternating voltage. The frequency of oscillation of the balance 2 with the spiral spring 3 may be between 3 and 10 Hz. The self-regulation circuit 10 is therefore electrically connected to the two electro-active piezoelectric or polymer layers to receive this alternating voltage. This self-regulation circuit can be connected directly or by means of two metal wires to two terminals of the piezoelectric or electroactive polymer layers.

La figure 3 représente les différents éléments électroniques du circuit d'autorégulation 10 pour pouvoir réguler la fréquence d'oscillation du système mécanique oscillant. Le circuit d'autorégulation 10 est relié à deux bornes de l'élément piézoélectrique ou l'élément à polymère électro-actif 23, qui est placé sur le ressort spiral du système mécanique oscillant, tel que le balancier. Le circuit d'autorégulation 10 est en mesure de redresser la tension alternative Vp reçue de l'élément piézoélectrique ou à polymère électro-actif 23 par l'intermédiaire d'un redresseur 11 traditionnel. La tension redressée de la tension alternative Vp est stockée sur un condensateur Cc. Cette tension redressée entre les bornes VDD et VSS du condensateur Cc peut être suffisante pour alimenter tous les éléments électroniques du circuit d'autorégulation sans l'aide d'une source de tension supplémentaire comme une batterie.The figure 3 represents the different electronic elements of the self-regulation circuit 10 in order to be able to regulate the oscillation frequency of the oscillating mechanical system. The self-regulating circuit 10 is connected to two terminals of the piezoelectric element or the electroactive polymer element 23, which is placed on the spiral spring of the oscillating mechanical system, such as the balance. The self-regulation circuit 10 is able to rectify the alternating voltage Vp received from the piezoelectric or electroactive polymer element 23 via a traditional rectifier 11. The rectified voltage of the alternating voltage Vp is stored on a capacitor Cc. This rectified voltage between the terminals V DD and V SS of the capacitor Cc can be sufficient to supply all the electronic elements of the self-regulation circuit without the aid of an additional voltage source such as a battery.

Le circuit d'autorégulation 10 comprend un étage oscillateur 15 connecté à un résonateur du type MEMS 16. Le circuit oscillant de l'étage oscillateur avec le résonateur MEMS fournit un signal oscillant, qui peut être d'une fréquence inférieure à 500 kHz, par exemple de l'ordre de 200 kHz. Ainsi l'étage oscillateur 15 peut fournir de préférence un signal de référence VR, dont la fréquence peut être égale à la fréquence du signal oscillant du circuit oscillateur.The self-regulation circuit 10 comprises an oscillator stage 15 connected to a resonator of the MEMS type 16. The oscillator circuit of the oscillator stage with the MEMS resonator supplies an oscillating signal, which may be of a frequency less than 500 kHz, by example of the order of 200 kHz. Thus, the oscillator stage 15 can preferably supply a reference signal V R , the frequency of which can be equal to the frequency of the oscillating signal of the oscillator circuit.

Il peut aussi être envisagé que l'étage oscillateur comprenne au moins un diviseur de fréquence pour diviser la fréquence du signal oscillant, afin de fournir un signal de référence VR à fréquence divisée par rapport à la fréquence du signal oscillant. Dans ce cas, la fréquence du signal de référence VR peut être de l'ordre de la fréquence de la tension alternative Vp générée par l'élément piézoélectrique ou à polymère électro-actif.It can also be envisaged that the oscillator stage comprises at least one frequency divider for dividing the frequency of the oscillating signal, in order to provide a reference signal V R at a frequency divided with respect to the frequency of the oscillating signal. In this case, the frequency of the reference signal V R can be of the order of the frequency of the alternating voltage Vp generated by the piezoelectric or electroactive polymer element.

Le résonateur MEMS peut être réalisé dans un substrat silicium monolithique épais du type SOI. Ce même substrat peut également servir pour réaliser l'intégration de tous les autres composants du circuit d'autorégulation 10. Pour ce faire, il peut être déposé sur le substrat épais SOI, une autre couche de SOI fin pour intégrer les autres composants électroniques. Ainsi le circuit d'autorégulation peut constituer un unique module électronique compact pour la régulation de la fréquence d'oscillation du système mécanique oscillant. Le circuit d'autorégulation réalisé peut également être encapsulé de manière traditionnelle dans un matériau plastique opaque. Cela permet de réduire les interconnexions avec d'autres éléments externes et également de réduire la consommation électrique.The MEMS resonator can be made in a thick monolithic silicon substrate of the SOI type. This same substrate can also be used to integrate all the other components of the self-regulation circuit 10. To do this, it can be deposited on the thick SOI substrate, another thin SOI layer to integrate the other electronic components. Thus the self-regulation circuit can constitute a single compact electronic module for regulating the oscillation frequency of the oscillating mechanical system. The self-regulation circuit produced can also be encapsulated in the traditional way in an opaque plastic material. This helps reduce interconnections with other external elements and also reduce power consumption.

Il est à noter qu'il peut aussi être envisagé de réaliser le résonateur MEMS dans un premier substrat silicium monolithique. Le résonateur MEMS peut être placé sur ou à côté d'un second substrat silicium monolithique d'intégration des autres composants du circuit d'autorégulation. Les deux substrats sont encapsulés dans un matériau plastique opaque traditionnel pour former un unique module compact.It should be noted that it is also possible to envisage making the MEMS resonator in a first monolithic silicon substrate. The MEMS resonator can be placed on or next to a second monolithic silicon substrate for integrating other components of the self-regulation circuit. The two substrates are encapsulated in a traditional opaque plastic material to form a single compact module.

Pour pouvoir réguler la fréquence d'oscillation du système mécanique oscillant, une comparaison doit être effectuée dans le circuit d'autorégulation 10 entre la tension alternative Vp et le signal de référence VR. Pour ce faire, le circuit d'autorégulation 10 comprend des moyens de comparaison 12, 13, 14, 17 pour comparer la fréquence de la tension alternative Vp avec la fréquence du signal de référence VR. Dans le cas où la fréquence du signal de référence correspond à la fréquence du circuit oscillant de l'étage oscillateur 15, c'est-à-dire à une fréquence de l'ordre de 200 kHz, les moyens de comparaison doivent être conçus de telle manière à tenir compte de l'écart important de fréquence entre la tension alternative Vp et le signal de référence VR.In order to be able to regulate the oscillation frequency of the oscillating mechanical system, a comparison must be made in the self-regulation circuit 10 between the alternating voltage Vp and the reference signal V R. To do this, the self-regulation circuit 10 comprises comparison means 12, 13, 14, 17 for comparing the frequency of the alternating voltage Vp with the frequency of the reference signal V R. In the case where the frequency of the reference signal corresponds to the frequency of the oscillating circuit of the oscillator stage 15, that is to say at a frequency of the order of 200 kHz, the comparison means must be designed to in such a way as to take account of the large frequency difference between the alternating voltage Vp and the reference signal V R.

Les moyens de comparaison sont constitués tout d'abord d'un premier compteur d'alternances 12, qui reçoit en entrée la tension alternative Vp de l'élément piézoélectrique ou à polymère électro-actif, et qui fournit un premier signal de comptage Np à une unité de traitement à processeur 17. Les moyens de comparaison comprennent encore un second compteur d'alternances 14, qui reçoit en entrée le signal de référence VR, et qui fournit un second signal de comptage NR à l'unité de traitement à processeur 17.The comparison means consist first of all of a first half-wave counter 12, which receives as input the alternating voltage Vp of the piezoelectric or electroactive polymer element, and which supplies a first counting signal Np to a processor processing unit 17. The comparison means further comprise a second half-wave counter 14, which receives the reference signal V R as input, and which supplies a second counting signal N R to the processing unit at processor 17.

Pour tenir compte de l'écart de fréquence entre la tension alternative Vp et le signal de référence VR, il est prévu encore une fenêtre de mesure 13 disposée entre le premier compteur d'alternances 12 et le second compteur d'alternances 14. Cette fenêtre de mesure 13 détermine le temps de comptage du second compteur d'alternances 14. L'unité de traitement à processeur 17 fournit des paramètres de configuration à la fenêtre de mesure 13 pour déterminer le temps de comptage pour le second compteur d'alternances. Ces paramètres de configuration sont mémorisés dans une mémoire non représentée dans l'unité de traitement à processeur. Ces paramètres de configuration peuvent être différents selon qu'il s'agisse d'une montre pour dame ou d'une montre pour homme. Les différentes opérations traitées dans l'unité de traitement à processeur 17 peuvent être contrôlées par un signal d'horloge fourni par exemple par le circuit oscillant de l'étage oscillateur 15.To take account of the frequency difference between the alternating voltage Vp and the reference signal V R , there is also provided a measurement window 13 arranged between the first half-wave counter 12 and the second half-wave counter 14. This measuring window 13 determines the time of the second half-wave counter 14. The processor processing unit 17 supplies configuration parameters to the measurement window 13 to determine the counting time for the second half-wave counter. These configuration parameters are stored in a memory not shown in the processor processing unit. These configuration parameters may be different depending on whether it is a ladies' watch or a men's watch. The various operations processed in the processor processing unit 17 can be controlled by a clock signal supplied for example by the oscillating circuit of the oscillator stage 15.

Le temps de comptage du second compteur d'alternances 14 est adapté proportionnellement au temps de comptage d'un certain nombre déterminé d'alternances comptées par le premier compteur d'alternances dans le premier signal de comptage Np. L'unité de traitement à processeur peut éventuellement commander aussi le premier compteur d'alternances 12 pour définir le début et la fin d'une période de comptage. Cependant il peut aussi être envisagé que le premier compteur d'alternances 12 fournisse une information du début et de la fin d'un nombre déterminé d'alternances comptées à l'unité de traitement à processeur. S'il est prévu de compter par exemple 200 alternances dans le premier compteur d'alternances, la fenêtre de mesure 13 est configurée pour que le second compteur d'alternances 14 compte un nombre d'alternances du signal de référence VR pendant une durée à peu près 5000 fois inférieure. Cette durée peut être dépendante aussi du temps de comptage par exemple des 200 alternances du premier compteur d'alternances. Cela permet de réduire la consommation électrique du circuit d'autorégulation.The counting time of the second half-wave counter 14 is adapted proportionally to the counting time of a certain determined number of half-waves counted by the first half-wave counter in the first counting signal Np. The processor-based processing unit can optionally also control the first half-wave counter 12 to define the start and the end of a counting period. However, it can also be envisaged that the first half-wave counter 12 provides information on the start and end of a determined number of counted half-waves to the processor-based processing unit. If it is planned to count for example 200 vibrations in the first half-wave counter, the measurement window 13 is configured so that the second half-wave counter 14 counts a number of half-waves of the reference signal V R for a period roughly 5,000 times less. This duration can also be dependent on the counting time, for example, of the 200 vibrations of the first half-wave counter. This makes it possible to reduce the electrical consumption of the self-regulation circuit.

Le début de comptage commandé par la fenêtre de mesure 13 peut être déterminé par le premier compteur d'alternances 12, mais peut aussi de préférence être commandé directement par l'unité de traitement à processeur 17. L'unité de traitement à processeur peut recevoir tout d'abord le premier signal de comptage Np relatif à un premier nombre déterminé d'alternances comptées de la tension alternative Vp dans un premier intervalle de temps. Ce premier signal de comptage est mémorisé par exemple dans un registre de l'unité de traitement à processeur. Par la suite, l'unité de traitement à processeur peut recevoir le second signal de comptage NR relatif à un second nombre d'alternances comptées dans le second compteur d'alternances 14 dans un second intervalle de temps commandé par la fenêtre de mesure 13. Ce second signal de comptage NR peut aussi être mémorisé dans un autre registre de l'unité de traitement à processeur. Finalement une comparaison des deux signaux de comptage est effectuée dans l'unité de traitement à processeur pour déterminer si la fréquence de la tension alternative Vp est trop élevée ou trop basse par rapport proportionnellement à la fréquence du signal de référence.The start of counting controlled by the measurement window 13 can be determined by the first half-wave counter 12, but can also preferably be directly controlled by the processor processing unit 17. The processor processing unit can receive first of all the first count signal Np relating to a first number determined of counted alternations of the alternating voltage Vp in a first time interval. This first count signal is stored for example in a register of the processor-based processing unit. Subsequently, the processor-based processing unit can receive the second count signal N R relating to a second number of half-waves counted in the second half-wave counter 14 in a second time interval controlled by the measurement window 13 This second counting signal N R can also be stored in another register of the processor-based processing unit. Finally a comparison of the two count signals is performed in the processor processing unit to determine whether the frequency of the alternating voltage Vp is too high or too low relative to the frequency of the reference signal.

Sur la base de la comparaison effectuée entre les deux signaux de comptage Np et NR dans l'unité de traitement à processeur, ladite unité de traitement à processeur commande une unité d'adaptation de fréquence 18, dont la sortie est reliée aux bornes de l'élément piézoélectrique ou à polymère électro-actif 23. Cette unité d'adaptation de fréquence 18 peut être prévue pour fournir un signal d'adaptation de fréquence, qui est une tension continue VA, dont le niveau est fonction de la différence entre les deux signaux de comptage communiquée par l'unité de traitement à processeur. Un réseau commutable de condensateurs ou de résistances peut être prévu à cet effet. Il peut être fourni une valeur de tension continue par l'intermédiaire d'un suiveur de tension de l'unité d'adaptation 18 à une des bornes de l'élément piézoélectrique ou à polymère électro-actif 23 ou à l'autre borne de l'élément piézoélectrique ou à polymère électro-actif. Cela permet ainsi d'induire une certaine force sur l'élément piézoélectrique ou à polymère électro-actif pour freiner ou accélérer l'oscillation du système mécanique oscillant en fonction de la comparaison des deux signaux de comptage.On the basis of the comparison made between the two counting signals Np and N R in the processor processing unit, said processor processing unit controls a frequency adaptation unit 18, the output of which is connected to the terminals of the piezoelectric or electroactive polymer element 23. This frequency adaptation unit 18 can be provided to supply a frequency adaptation signal, which is a direct voltage V A , the level of which depends on the difference between the two count signals communicated by the processor processing unit. A switchable network of capacitors or resistors can be provided for this purpose. A DC voltage value can be supplied through a voltage follower of the matching unit 18 to one of the terminals of the piezoelectric or electro-active polymer element 23 or to the other terminal of the piezoelectric or electroactive polymer element. This thus makes it possible to induce a certain force on the piezoelectric or electroactive polymer element to slow down or accelerate the oscillation of the oscillating mechanical system as a function of the comparison of the two count signals.

La tension continue d'une certaine valeur VA peut être fournie par l'unité d'adaptation de fréquence 18 par périodes temporelles déterminées, ce qui peut être programmé dans l'unité de traitement à processeur. Il peut aussi être prévu que plusieurs composants électroniques du circuit d'autorégulation ne soient enclenchés que dans des intervalles temporels déterminés par économie d'énergie. Par exemple, la fenêtre de mesure 13, le second compteur d'alternances 14, l'étage oscillateur 15 relié au résonateur MEMS 16 et une partie de l'unité de traitement à processeur 17 peuvent être laissés dans un mode de repos et enclenchés par intervalles temporels déterminés pour effectuer la régulation de la fréquence d'oscillation. Le premier compteur d'alternances 12 qui fonctionne à très basse fréquence, peut par contre être enclenché en continu et servir à commander l'enclenchement des autres parties du circuit d'autorégulation 10 après un certain nombre d'alternances comptées de la tension alternative Vp.The direct voltage of a certain value V A can be supplied by the frequency adaptation unit 18 by determined time periods, which can be programmed into the processor-based processing unit. Provision can also be made for several electronic components of the self-regulation circuit to be switched on only in time intervals determined by energy saving. For example, the measurement window 13, the second half-wave counter 14, the oscillator stage 15 connected to the MEMS resonator 16 and part of the processor processing unit 17 can be left in an idle mode and switched on by time intervals determined to effect the regulation of the oscillation frequency. The first half-wave counter 12, which operates at very low frequency, can on the other hand be switched on continuously and be used to control the switching on of the other parts of the self-regulation circuit 10 after a certain number of counted half-waves of the alternating voltage Vp .

Si la fréquence d'oscillation du système mécanique oscillant a été adaptée, il peut être prévu de prolonger le temps de mise au repos notamment de l'étage oscillateur 15. La plupart des composants électroniques au repos du circuit d'autorégulation peuvent dans ces conditions être enclenchés par exemple chaque minute, ce qui permet de fortement réduire la consommation électrique du circuit d'autorégulation. Dans ces conditions, le condensateur Cc, qui stocke une tension redressée d'alimentation, ne se décharge que fort peu, car uniquement une utilisation ponctuelle plus importante d'énergie intervient lors de la comparaison de fréquence du signal de référence VR et de la tension alternative Vp.If the oscillation frequency of the oscillating mechanical system has been adapted, provision may be made to extend the resting time, in particular of the oscillator stage 15. Most of the electronic components at rest of the self-regulation circuit can under these conditions. be switched on for example every minute, which greatly reduces the electrical consumption of the self-regulation circuit. Under these conditions, the capacitor Cc, which stores a rectified supply voltage, does not discharge very little, because only a more important point use of energy occurs during the frequency comparison of the reference signal V R and the alternating voltage Vp.

Le circuit d'autorégulation 10 peut comprendre également des éléments de compensation thermique bien connus, ainsi qu'une unité de remise à zéro à chaque enclenchement du circuit d'autorégulation 10. Tous les composants électroniques du circuit d'autorégulation, ainsi que le résonateur MEMS 16 et le condensateur Cc font partie d'un même module électronique compact. Tous ces composants électroniques peuvent être intégrés avantageusement dans un même substrat silicium monolithique, ce qui permet de n'avoir qu'un seul module électronique autoalimenté pour la régulation de fréquence du système mécanique oscillant.The self-regulation circuit 10 can also include well-known thermal compensation elements, as well as a unit for resetting to zero each time the self-regulation circuit 10 is activated. All the electronic components of the self-regulation circuit, as well as the resonator MEMS 16 and the capacitor Cc are part of the same compact electronic module. All these electronic components can be advantageously integrated into a single monolithic silicon substrate, which makes it possible to have only one self-powered electronic module for the frequency regulation of the oscillating mechanical system.

Dans le cas où l'étage oscillateur 15 fournit un signal de référence VR à fréquence divisée correspondant à une fréquence désirée de la tension alternative Vp de l'élément piézoélectrique ou à polymère électro-actif 23, le temps de comptage du second compteur d'alternances 14 peut être directement commandé par le premier compteur d'alternances 12. Le nombre d'alternances Np de la tension alternative Vp peut être directement comparé dans l'unité de traitement à processeur 17 avec le nombre d'alternances comptées NR dans le second compteur d'alternances 14.In the case where the oscillator stage 15 supplies a reference signal V R at divided frequency corresponding to a desired frequency of the alternating voltage Vp of the piezoelectric or electroactive polymer element 23, the counting time of the second counter d 'halfwaves 14 can be directly controlled by the first half-wave counter 12. The number of half-waves Np of the alternating voltage Vp can be directly compared in the processor processing unit 17 with the number of half-waves counted N R in the second alternation counter 14.

A partir de la description qui vient d'être faite, plusieurs variantes du circuit d'autorégulation de la fréquence d'oscillation d'un système mécanique oscillant, ainsi que du dispositif le comprenant peuvent être conçues par l'homme du métier sans sortir du cadre de l'invention définie par les revendications. Le système mécanique oscillant peut être un système acoustique. Il peut être prévu d'adapter la fréquence d'oscillation du système mécanique oscillant en plaçant un certain nombre de condensateurs en parallèle avec l'élément piézoélectrique ou à polymère électro-actif sur la base de la comparaison de fréquence de la tension alternative et du signal de référence. Il peut être envisagé de déposer sur le ressort spiral une couche composite métal-ion pour servir dans un but équivalent à l'élément piézoélectrique.From the description which has just been given, several variants of the self-regulating circuit of the oscillation frequency of an oscillating mechanical system, as well as of the device comprising it can be designed by those skilled in the art without departing from the framework of the invention defined by the claims. The oscillating mechanical system can be an acoustic system. Provision can be made to adapt the oscillation frequency of the oscillating mechanical system by placing a number of capacitors in parallel with the piezoelectric or electroactive polymer element based on the frequency comparison of the alternating voltage and the reference signal. It may be envisaged to deposit on the spiral spring a metal-ion composite layer to serve for a purpose equivalent to the piezoelectric element.

Claims (13)

  1. Circuit (10) for autoregulating an oscillation frequency of an oscillating mechanical system (2, 3), wherein the mechanical system includes a piezoelectric or electroactive polymer element (23) capable of generating an alternating voltage (VP) following the oscillation of the mechanical system, the autoregulating circuit being intended to be connected to the piezoelectric or electroactive polymer element to adapt the oscillation frequency of the oscillating mechanical system, and the autoregulating circuit comprising:
    - a rectifier (11) for rectifying the alternating voltage (VP) generated by the piezoelectric or electroactive polymer element and for storing the rectified voltage in at least one capacitor (Cc) in order to supply the autoregulating circuit with electricity,
    - an oscillator stage (15), which includes an oscillating circuit connected to a MEMS resonator (16), to supply a reference signal (VR),
    - a means of comparison (12, 13, 14, 17) for comparing the frequency of the alternating voltage (VP) to the frequency of the reference signal (VR),
    - a frequency adaptation unit (18) intended to be connected to the piezoelectric or electroactive polymer element (23) to supply a frequency adaptation signal (VA) to the piezoelectric or electroactive polymer element on the basis of the result of the comparison in the comparison means (12, 13, 14, 17) in order to regulate the oscillation frequency of the oscillating mechanical system, the frequency adaptation unit (18) being adapted to supply, as a frequency adaptation signal (VA), a continuous adaptive voltage (VA) to the piezoelectric or electroactive polymer element (23) according to the result of the comparison in the processor unit (17),
    and wherein all the electronic components of the autoregulating circuit are grouped together to form a single electronic module,
    characterized in that the comparison means (12, 13, 14, 17) includes a first alternation counter (12) for counting a first number of alternations of the alternating voltage (VP) of the piezoelectric or electroactive polymer element in a first determined time period and for supplying a first counting signal (NP), a second alternation counter (14) for counting a second number of alternations of the reference signal (VR) supplied by the oscillator stage (15) in a second determined time period and for supplying a second counting signal (NR), and a measuring window (13) arranged between the first alternation counter (12) and the second alternation counter (14) so as to determine the counting time for the second alternation counter (14) partly on the basis of the first time period proportionately adapted to the counting time of a determined number of alternations counted by the first alternation counter in the first counting signal (NP), and a processor unit (17) for comparing the first counting signal to the second counting signal so as to control the frequency adaptation unit (18) on the basis of the result of the comparison, said measuring window (13) being configured by configuration parameters supplied by the processor unit (17) so as to determine the second counting time period for the second alternation counter (14) while taking account of the first time period.
  2. Autoregulating circuit (10) according to claim 1, characterized in that the MEMS resonator is made in a monolithic silicon substrate, which is also used for integrating all the other electronic components of the autoregulating circuit, so as to form a single compact module.
  3. Autoregulating circuit (10) according to claim 1, characterized in that the MEMS resonator is made in a first monolithic silicon substrate, which is placed on or beside a second monolithic silicon substrate for integrating the other components of the autoregulating circuit, the two substrates being encapsulated to form a single compact module.
  4. Autoregulating circuit (10) according to claim 1, characterized in that the oscillator stage (15) is adapted to supply a reference signal (VR) of identical frequency to the frequency of the oscillating signal from the oscillating circuit.
  5. Autoregulating circuit (10) according to claim 4, characterized in that the oscillator stage (15) is configured to supply a reference signal (VR) with a frequency higher than or equal to 200 kHz.
  6. Autoregulating circuit (10) according to claim 1, characterized in that the oscillator stage (15) includes a frequency divider for dividing the frequency of the oscillating signal, in order to supply a reference signal (VR), the frequency of which is defined according to the desired adaptation frequency of the alternating voltage (VP) of the piezoelectric or electroactive polymer element, and in that the processor unit (17) controls a counting operation of the first and second alternation counters (12, 14) with a first counting period which is the same as the second counting period.
  7. Autoregulating circuit (10) according to claim 1, characterized in that the frequency adaptation unit (18) is adapted to supply a continuous adaptive voltage (VA) in determined time periods.
  8. Autoregulating circuit (10) according to claim 1, characterized in that the first alternation counter (12) is adapted to switch on the oscillator stage (15), the second alternation counter (14) and a part of the processor unit (17) at determined periods for the frequency comparison, and outside the determined periods, the oscillator stage (15), the second alternation counter (14) and a part of the processor unit (17) are not powered by the rectified voltage in the capacitor (Cc).
  9. Device including an oscillating mechanical system (2, 3) and the circuit (10) for autoregulating the oscillation frequency of the oscillating system according to any of the preceding claims, characterized in that the oscillating mechanical system (2, 3) includes a piezoelectric or electroactive polymer element (23) for generating an alternating voltage at a frequency matching the oscillation frequency of the oscillating mechanical system, two terminals of the piezoelectric or electroactive polymer element being connected to the autoregulating circuit so as to receive from the autoregulating circuit (10) a frequency adaptation signal (VA) on the basis of a frequency comparison between the alternating voltage (VP) and a reference signal (VR) from an oscillator stage (15) of the autoregulating circuit.
  10. Device according to claim 9, characterized in that the oscillating mechanical system (2, 3) is a balance (2) of a watch, in which there is mounted a balance spring (3), which carries the piezoelectric or electroactive polymer element (23).
  11. Device according to claim 10, characterized in that the piezoelectric or electroactive polymer element includes at least one piezoelectric or electroactive polymer layer (23) arranged on at least one face of a metal strip (24) of the balance spring (3).
  12. Device according to claim 11, characterized in that the piezoelectric or electroactive polymer element includes a first piezoelectric or electroactive polymer layer (23) arranged on an external face of the metal strip (24) and a second piezoelectric or electroactive polymer layer (23') arranged on an internal face of the metal strip (24), in that a first connecting terminal of the piezoelectric or electroactive polymer element is fixed to the first piezoelectric or electroactive polymer layer, and in that a second connecting terminal of the piezoelectric or electroactive polymer element is fixed to the second piezoelectric or electroactive polymer layer, the first and second terminals being connected to the autoregulating circuit (10).
  13. Device according to claim 12, characterized in that the first and second piezoelectric or electroactive polymer layers (23, 23') are deposited on a part or the entire length of the internal and external faces of the metal strip (24).
EP11187360.0A 2011-11-01 2011-11-01 Circuit for self-regulating the oscillation frequency of an oscillating mechanical system and device including same Active EP2590035B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP11187360.0A EP2590035B1 (en) 2011-11-01 2011-11-01 Circuit for self-regulating the oscillation frequency of an oscillating mechanical system and device including same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP11187360.0A EP2590035B1 (en) 2011-11-01 2011-11-01 Circuit for self-regulating the oscillation frequency of an oscillating mechanical system and device including same

Publications (2)

Publication Number Publication Date
EP2590035A1 EP2590035A1 (en) 2013-05-08
EP2590035B1 true EP2590035B1 (en) 2020-12-30

Family

ID=44862831

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11187360.0A Active EP2590035B1 (en) 2011-11-01 2011-11-01 Circuit for self-regulating the oscillation frequency of an oscillating mechanical system and device including same

Country Status (1)

Country Link
EP (1) EP2590035B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4194960A1 (en) 2021-12-10 2023-06-14 The Swatch Group Research and Development Ltd Piezoelectric spiral spring and method for manufacturing said spiral spring

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3457224B1 (en) 2017-09-14 2020-10-28 The Swatch Group Research and Development Ltd Piezoelectric element for a frequency self-regulation circuit, oscillating mechanical system and device including the same, and method for manufacturing the piezoelectric element
EP3457223A1 (en) 2017-09-14 2019-03-20 The Swatch Group Research and Development Ltd Piezoelectric element for a frequency self-regulation circuit, and oscillating mechanical system and device including the same
EP3540528B1 (en) * 2018-03-16 2020-08-05 The Swatch Group Research and Development Ltd Timepiece comprising a mechanical movement the oscillating rate of which is controlled by an electronic device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3781955A (en) 1970-12-21 1974-01-01 V Lavrinenko Method of making a piezoelectric element
CH688879B5 (en) 1995-08-10 1998-11-13 Asulab Sa Timepiece with indication of the power reserve.
DK0848842T3 (en) * 1996-06-26 1999-11-08 Konrad Schafroth Movement
FR2752070B1 (en) 1996-08-01 1998-09-18 Asulab Sa ELECTRONIC WATCHMAKING PIECE COMPRISING A GENERATOR DRIVEN BY A SPRING BARREL
CN100420148C (en) * 1999-11-02 2008-09-17 伊塔瑞士钟表制造股份有限公司 Temperature compensation mechanism for a micromechanical ring resonator
JP3767388B2 (en) 2001-01-30 2006-04-19 セイコーエプソン株式会社 Piezoelectric governor and electronic device using the piezoelectric governor
EP2561409B1 (en) * 2010-04-21 2019-08-28 Team Smartfish GmbH Element of regulation for a timepiece and a corresponding process

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4194960A1 (en) 2021-12-10 2023-06-14 The Swatch Group Research and Development Ltd Piezoelectric spiral spring and method for manufacturing said spiral spring

Also Published As

Publication number Publication date
EP2590035A1 (en) 2013-05-08

Similar Documents

Publication Publication Date Title
CH705679A2 (en) Circuit self-regulation of the oscillation frequency of an oscillating mechanical system, and device comprising it.
EP2590035B1 (en) Circuit for self-regulating the oscillation frequency of an oscillating mechanical system and device including same
EP3579061B1 (en) Case for electromechanical watch and assembly comprising same
EP1521142B1 (en) Timepiece with a mechanical movement coupled to an electronic regulator mechanism
EP2689293A1 (en) Multifunctional case
EP3457223A1 (en) Piezoelectric element for a frequency self-regulation circuit, and oscillating mechanical system and device including the same
EP3457224A1 (en) Piezoelectric element for a frequency self-regulation circuit, oscillating mechanical system and device including the same, and method for manufacturing the piezoelectric element
EP0587031B1 (en) Timepiece with driving means consisting of a piezoelectric motor
EP2169479B1 (en) Time base device for a watch
WO2015140332A2 (en) Rotary clock member, clock oscillator
EP3842876A1 (en) Timepiece fitted with a mechanical movement and a device for correcting the time displayed
CH690523A5 (en) Timepiece including a generator of electricity.
EP1890204B1 (en) Electronic timepiece comprising a resonator
FR2496944A1 (en) LIQUID CRYSTAL DISPLAY CELL
EP4099100A1 (en) Timepiece movement provided with an oscillator comprising a piezoelectric hairspring
CH714144A2 (en) Piezoelectric element for a frequency self-regulating circuit, oscillating mechanical system and device comprising same, and method of manufacturing the piezoelectric element.
WO2021121711A1 (en) Timepiece component provided with a mechanical movement and a device for correcting a displayed time
FR2624286A1 (en) HOURLY METER FOR EXPLOSION MOTORS
CH714143A2 (en) Piezoelectric element for a frequency self-regulating circuit, and oscillating mechanical system and device comprising same.
CH717000A2 (en) Timepiece fitted with a mechanical movement and a device for correcting a displayed time.
EP2343747A1 (en) Electric energy generator for a portable device, in particular for a time piece
CH717002A2 (en) Timepiece fitted with a mechanical movement and a device for correcting a displayed time.
EP3944027B1 (en) Portable object, in particular a wristwatch, comprising a power supply device provided with an electromechanical converter
EP1426837B1 (en) Timepiece with power-reserve indication
CH714264B1 (en) Case for electromechanical watch and set comprising it.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20131108

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

17Q First examination report despatched

Effective date: 20140703

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200824

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602011069800

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1350542

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210115

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ICB INGENIEURS CONSEILS EN BREVETS SA, CH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210330

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1350542

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210330

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20201230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210430

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210430

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602011069800

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

26N No opposition filed

Effective date: 20211001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20211101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211101

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211130

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20211130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211101

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20111101

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230615

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231019

Year of fee payment: 13

Ref country code: DE

Payment date: 20231019

Year of fee payment: 13

Ref country code: CH

Payment date: 20231201

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230