EP2587576A2 - Fuel cell stack - Google Patents
Fuel cell stack Download PDFInfo
- Publication number
- EP2587576A2 EP2587576A2 EP13152707.9A EP13152707A EP2587576A2 EP 2587576 A2 EP2587576 A2 EP 2587576A2 EP 13152707 A EP13152707 A EP 13152707A EP 2587576 A2 EP2587576 A2 EP 2587576A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- coolant
- oxygen
- power generation
- containing gas
- passages
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0204—Non-porous and characterised by the material
- H01M8/0206—Metals or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0247—Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
- H01M8/0254—Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form corrugated or undulated
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0258—Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0258—Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
- H01M8/026—Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant characterised by grooves, e.g. their pitch or depth
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0258—Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
- H01M8/0263—Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant having meandering or serpentine paths
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0267—Collectors; Separators, e.g. bipolar separators; Interconnectors having heating or cooling means, e.g. heaters or coolant flow channels
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04007—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
- H01M8/04029—Heat exchange using liquids
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1004—Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
- H01M8/1006—Corrugated, curved or wave-shaped MEA
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1007—Fuel cells with solid electrolytes with both reactants being gaseous or vaporised
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/24—Grouping of fuel cells, e.g. stacking of fuel cells
- H01M8/241—Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/24—Grouping of fuel cells, e.g. stacking of fuel cells
- H01M8/2457—Grouping of fuel cells, e.g. stacking of fuel cells with both reactants being gaseous or vaporised
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/24—Grouping of fuel cells, e.g. stacking of fuel cells
- H01M8/2465—Details of groupings of fuel cells
- H01M8/2483—Details of groupings of fuel cells characterised by internal manifolds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M2008/1095—Fuel cells with polymeric electrolytes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0065—Solid electrolytes
- H01M2300/0082—Organic polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/023—Porous and characterised by the material
- H01M8/0232—Metals or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/023—Porous and characterised by the material
- H01M8/0234—Carbonaceous material
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Definitions
- the present invention relates to a fuel cell stack formed by stacking a plurality of power generation units together.
- Each of the power generation units is formed by stacking an electrolyte electrode assembly and a separator.
- the electrolyte electrode assembly includes a pair of electrodes and an electrolyte interposed between the electrodes.
- a solid polymer electrolyte fuel cell employs an electrolyte membrane.
- the electrolyte membrane is a polymer ion exchange membrane, and is interposed between an anode and a cathode to form a membrane electrode assembly (MEA).
- MEA membrane electrode assembly
- the membrane electrode assembly is sandwiched between a pair of separators, so as to form a power generation unit.
- a predetermined number of power generation units are stacked together to form a fuel cell stack.
- a fuel gas flow field is formed on a surface of one separator facing the anode for supplying a fuel gas to the anode
- an oxygen-containing gas flow field is formed on a surface of the other separator facing the cathode for supplying an oxygen-containing gas to the cathode.
- a coolant flow field is formed between the adjacent separators for supplying a coolant along surfaces of the separators.
- this type of fuel cell is constructed as the so-called "internal manifold type fuel cell".
- a fuel gas supply passage and a fuel gas discharge passage for the fuel gas an oxygen-containing gas supply passage and an oxygen-containing gas discharge passage for the oxygen-containing gas, and a coolant supply passage and a coolant discharge passage for the coolant extend through the power generation units in the stacking direction.
- a flow field plate as disclosed in Japanese Laid-Open Patent Publication No. 2008-536258 (PCT ) is known.
- a hydrogen flow field 2a is formed on the surface of an anode flow field plate 1 a.
- an anode air inlet manifold aperture 3a, an anode coolant inlet manifold aperture 4a, and an anode hydrogen inlet manifold aperture 5a are formed.
- an anode air outlet manifold aperture 3b, an anode coolant outlet manifold aperture 4b, and an anode hydrogen outlet manifold aperture 5b are formed.
- a separator 1 b is provided in contact with the oxidizing agent electrode.
- a plurality of oxygen-containing gas flow grooves 2b are formed on a main surface of the separator 1 b at the oxidizing agent electrode.
- Oxygen-containing gas inlets 6a are connected to the upstream side of the oxygen-containing gas flow grooves 2b, and oxygen-containing gas outlets 6b are connected to the downstream side of the oxygen-containing gas flow grooves 2b.
- One coolant water inlet 7a is formed between a pair of the oxygen-containing gas inlets 6a at an upper position of the separator 1 b, and one coolant water outlet 7b is formed between a pair of the oxygen-containing gas outlets 6b.
- a pair of fuel gas supply passages 8a are provided on both sides of an upper portion of the separator 1 b, and a pair of fuel gas discharge passages 8b are provided on both sides of a lower portion of the separator 1 b.
- a pair of the oxygen-containing gas inlets 6a and a pair of the fuel gas supply passages 8a are formed at both sides of the coolant water inlet 7a on the upper portion of the separator 1 b. Further, a pair of the oxygen-containing gas outlets 6b and a pair of the fuel gas discharge passages 8b are provided at both sides of the coolant water outlets 7b on the lower portion of the separator 1 b.
- the width of the separator 1 b in the direction indicated by the arrow H is significantly large, and the overall size of the unit cell including the separator 1 b is large disadvantageously.
- the present invention has been made to solve the problems of this type, and an object of the present invention is to provide a fuel cell stack having simple structure in which the width of the fuel cell stack is reduced as much as possible, and the desired cooling performance is achieved.
- the present invention relates to a fuel cell stack formed by stacking power generation units together.
- Each of the power generation units is formed by stacking an electrolyte electrode assembly and a metal separator having a rectangular shape in a plan view.
- the electrolyte electrode assembly includes a pair of electrodes and an electrolyte interposed between the electrodes.
- a corrugated gas flow field is formed on a surface of the metal separator facing the electrode for supplying a fuel gas or an oxygen-containing gas as a reactant gas along the electrode.
- a coolant flow field is formed as a back surface of the corrugated gas flow field, between the power generation units.
- reactant gas supply passages and reactant gas discharge passages for flowing the reactant gases extend through one pair of opposite sides of the metal separator in a stacking direction.
- a pair of coolant supply passages and a pair of coolant discharge passages for flowing a coolant extend through the other opposite sides of the metal separator in the stacking direction.
- the pair of the coolant supply passages and the pair of the coolant discharge passages are positioned adjacent to at least the reactant gas supply passages or the reactant gas discharge passages.
- the pair of the coolant supply passages are disposed separately on the other opposite sides of the metal separator, and the pair of the coolant discharge passages are disposed separately on the other opposite sides of the metal separator.
- the present invention relates to a fuel cell stack formed by stacking power generation units together.
- Each of the power generation units is formed by stacking an electrolyte electrode assembly and a separator having a rectangular shape in a plan view.
- the electrolyte electrode assembly includes a pair of electrodes and an electrolyte interposed between the electrodes.
- a gas flow field is formed on a surface of the separator facing the electrode for supplying a fuel gas or an oxygen-containing gas as a reactant gas along the electrode.
- a coolant flow field is formed between the power generation units.
- Reactant gas supply passages and reactant gas discharge passages for flowing the reactant gases extend through one pair of opposite sides of the separator in a stacking direction.
- a pair of coolant supply passages and a pair of coolant discharge passages for flowing a coolant extend through the other opposite sides of the separator in the stacking direction.
- the pair of the coolant supply passages and the pair of the coolant discharge passages are positioned adjacent to at least the reactant gas supply passages or the reactant gas discharge passages, and the pair of the coolant supply passages are disposed separately on the other opposite sides of the separator, while the pair of the coolant discharge passages are disposed separately on the other opposite sides of the separator.
- a fuel cell stack is formed by stacking a plurality of power generation units together.
- Each of the power generation units is formed by stacking an electrolyte electrode assembly and a metal separator having a rectangular shape in a plan view.
- the electrolyte electrode assembly includes a pair of electrodes and an electrolyte interposed between the electrodes.
- reactant gas supply passages and reactant gas discharge passages extend through one pair of opposite sides of the power generation unit in a stacking direction.
- a coolant supply passage and a coolant discharge passage extend through the other opposite sides of the power generation unit in the stacking direction.
- the coolant supply passage is positioned adjacent to the reactant gas supply passages, and the coolant discharge passage is positioned adjacent to the reactant gas discharge passages.
- Corrugated oxygen-containing gas flow grooves are formed on a surface of one of adjacent metal separators facing the electrode for supplying an oxygen-containing gas as one reactant gas along the electrode, and corrugated fuel gas flow grooves are formed on a surface of the other of the adjacent metal separators facing the electrode for supplying the fuel gas as the other reactant gas along the electrode.
- a coolant flow field is formed between the adjacent power generation units by ridges on the back surface of the corrugated oxygen-containing gas flow grooves and ridges on the back surface of the corrugated fuel gas flow grooves.
- the respective ridges on the back surfaces are set at different phases in an upstream area adjacent to the coolant supply passage and in a downstream area adjacent to the coolant discharge passage, and are set at the same phase in an intermediate area where the flow direction of the coolant is the same as at least the flow direction of the oxygen-containing gas or the fuel gas.
- the reactant gas supply passages and the coolant supply passages are not arranged along one side of the separator such as a metal separator or a carbon separator.
- the separator does not become significantly wide or long. In particular, the width of the separator can be reduced as much as possible, and it becomes possible to install the fuel cell stack conveniently.
- the coolant supply passages are disposed separately while the pair of the coolant discharge passages are disposed separately, the coolant can be supplied uniformly and reliably to the entire coolant flow field.
- the uniform moisture environment can be achieved in the entire power generation area, and efficient power generation is performed suitably.
- the respective ridges on the back surfaces forming the coolant flow field are set at different phases in the upstream area adjacent to the coolant supply passage and in the downstream area adjacent to the coolant discharge passage. Further, the respective ridges on the back surfaces are set at the same phase in the intermediate area.
- the flow direction of the coolant in the intermediate area of the coolant flow field, is the same as the gas flow direction of at least the oxygen-containing gas or the fuel gas, and the flow direction of the coolant is changed to a direction intersecting the gas flow direction, at positions adjacent to the coolant supply passage and the coolant discharge passage.
- the coolant supply passage and the coolant discharge passage are positioned on different two sides that are different from the two sides of the power generation unit where the oxygen-containing gas supply passage, the fuel gas supply passage, the oxygen-containing gas discharge passage, and the fuel gas discharge passage are provided.
- the respective ridges on the back surfaces are in the same phase in the intermediate area.
- the coolant can be supplied smoothly and reliably in the same direction as the flow direction of at least the oxygen-containing gas or the fuel gas. Accordingly, cooling efficiency of the power generation unit is improved advantageously.
- a fuel cell stack 10 includes a power generation unit 12.
- a plurality of the power generation units 12 are stacked together in a horizontal direction indicated by an arrow A.
- the power generation unit 12 includes a first metal separator 14, a first membrane electrode assembly (electrolyte electrode assembly) 16a, a second metal separator 18, a second membrane electrode assembly 16b, and a third metal separator 20.
- first metal separator 14, the second metal separator 18 and the third metal separator 20 are longitudinally long metal plates, which are made of steel plates, stainless steel plates, aluminum plates, plated steel sheets, or such metal plates having anti-corrosive surfaces formed by carrying out a surface treatment thereon.
- Each of the first metal separator 14, the second metal separator 18, and the third metal separator 20 has a rectangular shape in a plan view, and has a corrugated shape in cross section, by corrugating metal thin plates by pressure forming.
- the surface area of the first membrane electrode assembly 16a is smaller than the surface area of the second membrane electrode assembly 16b.
- Each of the first and second membrane electrode assemblies 16a, 16b includes an anode 24, a cathode 26 and a solid polymer electrolyte membrane 22 interposed between the anode 24 and the cathode 26.
- the solid polymer electrolyte membrane 22 is formed by impregnating a thin membrane of perfluorosulfonic acid with water, for example.
- the surface area of the anode 24 is smaller than the surface area of the cathode 26. That is, each of the first and second membrane electrode assemblies 16a, 16b is constructed as the so-called "stepped-type MEA".
- Each of the anode 24 and the cathode 26 has a gas diffusion layer (not shown) such as a carbon paper, and an electrode catalyst layer (not shown) of platinum alloy supported on porous carbon particles.
- the carbon particles are deposited uniformly on the surface of the gas diffusion layer.
- the electrode catalyst layer of the anode 24 and the electrode catalyst layer of the cathode 26 are fixed to both surfaces of the solid polymer electrolyte membrane 22, respectively.
- an oxygen-containing gas supply passage 30a for supplying an oxygen-containing gas and a fuel gas supply passage 32a for supplying a fuel gas such as a hydrogen-containing gas are provided at an upper end portion (i.e., a short side portion) of the power generation unit 12 in the longitudinal direction indicated by an arrow C.
- the oxygen-containing gas supply passage 30a and the fuel gas supply passage 32a extend through the power generation unit 12 in the direction indicated by the arrow A.
- a fuel gas discharge passage 32b for discharging the fuel gas and an oxygen-containing gas discharge passage 30b for discharging the oxygen-containing gas are provided.
- the fuel gas discharge passage 32b and the oxygen-containing gas discharge passage 30b extend through the power generation unit 12 in the direction indicated by the arrow A.
- a pair of coolant supply passages 34a for supplying a coolant are provided at upper positions, and at both end portions of the first power generation unit 12 in the lateral direction indicated by the arrow B, a pair of coolant discharge passages 34b for discharging the coolant are provided at lower positions.
- the coolant supply passages 34a and the coolant discharge passages 34b extend through the first power generation unit 12 in the direction indicated by the arrow A.
- the coolant supply passages 34a and the coolant discharge passages 34b are elongated longitudinally along the long sides of the power generation unit 12.
- the coolant supply passages 34a are positioned adjacent to the oxygen-containing gas supply passage 30a and the fuel gas supply passage 32a, and are disposed separately on opposite sides in the direction indicated by the arrow B.
- the coolant discharge passages 34b are positioned adjacent to the oxygen-containing gas discharge passage 30b and the fuel gas discharge passage 32b, and are disposed separately on the opposite sides in the direction indicated by the arrow B.
- the distance between the outer end of the opening of the oxygen-containing gas supply passage 30a and the outer end of the opening of the fuel gas supply passage 32a in the horizontal direction is defined as a spacing interval H.
- the distance between the outer end of the opening of the oxygen-containing gas discharge passage 30b and the outer end of the opening of the fuel gas discharge passage 32b in the horizontal direction is defined as the spacing interval H.
- the pair of the coolant supply passages 34a are disposed separately on the opposite sides within the spacing interval H
- the pair of the coolant discharge passages 34b are disposed separately on the opposite sides within the spacing interval H.
- it is sufficient that the pair of the coolant supply passages 34a and the pair of the coolant discharge passages 34b are provided separately on the opposite sides at an interval which is substantially equal to the spacing interval H.
- the first metal separator 14 has a first fuel gas flow field 36 on its surface 14a facing the first membrane electrode assembly 16a.
- the first fuel gas flow field 36 connects the fuel gas supply passage 32a and the fuel gas discharge passage 32b.
- the first fuel gas flow field 36 includes a plurality of corrugated flow grooves 36a extending in the direction indicated by the arrow C.
- An inlet buffer 38 and an outlet buffer 40 each having a plurality of bosses are provided near an inlet and an outlet of the first fuel gas flow field 36, respectively.
- a coolant flow field 44 is partially formed on a surface 14b of the first metal separator 14.
- the coolant flow field 44 connects the coolant supply passages 34a and the coolant discharge passages 34b.
- a plurality of corrugated flow grooves 44a are formed as the back surface of the corrugated flow grooves 36a of the first fuel gas flow field 36.
- the second metal separator 18 has a first oxygen-containing gas flow field 50 on its surface 18a facing the first membrane electrode assembly 16a.
- the first oxygen-containing gas flow field 50 connects the oxygen-containing gas supply passage 30a and the oxygen-containing gas discharge passage 30b.
- the first oxygen-containing gas flow field 50 includes a plurality of corrugated flow grooves 50a extending in the direction indicated by the arrow C.
- An inlet buffer 52 and an outlet buffer 54 are provided near an inlet and an outlet of the first oxygen-containing gas flow field 50, respectively.
- the second metal separator 18 has a second fuel gas flow field 58 on its surface 18b facing the second membrane electrode assembly 16b.
- the second fuel gas flow field 58 connects the fuel gas supply passage 32a and the fuel gas discharge passage 32b.
- the second fuel gas flow field 58 includes a plurality of corrugated flow grooves 58a extending in the direction indicated by the arrow C.
- An inlet buffer 60 and an outlet buffer 62 are provided near an inlet and an outlet of the second fuel gas flow field 58, respectively.
- the second fuel gas flow field 58 is formed on the back surface of the first oxygen-containing gas flow field 50, and the inlet buffer 60 and the outlet buffer 62 are formed on the back surfaces of the inlet buffer 52 and the outlet buffer 54, respectively.
- the third metal separator 20 has a second oxygen-containing gas flow field 66 on its surface 20a facing the second membrane electrode assembly 16b.
- the second oxygen-containing gas flow field 66 connects the oxygen-containing gas supply passage 30a and the oxygen-containing gas discharge passage 30b.
- the second oxygen-containing gas flow field 66 includes a plurality of corrugated flow grooves 66a extending in the direction indicated by arrow C.
- An inlet buffer 68 and an outlet buffer 70 are provided near an inlet and an outlet of the second oxygen-containing gas flow field 66, respectively.
- the coolant flow field 44 is partially formed on the surface 20b of the third metal separator 20.
- a plurality of corrugated flow grooves 44b are formed as the back surface of the corrugated flow grooves 66a of the second oxygen-containing gas flow field 66.
- the corrugated (wavelike) shapes thereof are set mutually at the same phase along the stacking direction. Further, the wave pitch and amplitude thereof are set the same.
- the wavelike shape thereof is set mutually at a different phase along the stacking direction from the first fuel gas flow field 36, the first oxygen-containing gas flow field 50, and the second fuel gas flow field 58, while the wave pitch and amplitude thereof are set the same.
- a first seal member 74 is formed integrally on the surfaces 14a, 14b of the first metal separator 14, surrounding the outer circumferential end of the first metal separator 14.
- the second seal member 76 is formed integrally on the surfaces 18a, 18b of the second metal separator 18, surrounding the outer circumferential end of the second metal separator 18.
- a third seal member 78 is formed integrally on the surfaces 20a, 20b of the third metal separator 20, surrounding the outer circumferential end of the third metal separator 20.
- the first metal separator 14 has a plurality of outer supply holes 80a and inner supply holes 80b connecting the fuel gas supply passage 32a to the first fuel gas flow field 36, and a plurality of outer discharge holes 82a and inner discharge holes 82b connecting the fuel gas discharge passage 32b to the first fuel gas flow field 36.
- the second metal separator 18 has a plurality of supply holes 84 connecting the fuel gas supply passage 32a to the second fuel gas flow field 58, and a plurality of discharge holes 86 connecting the fuel gas discharge passage 32b to the second fuel gas flow field 58.
- the power generation units 12 are stacked together.
- the coolant flow field 44 extending in the direction indicated by the arrow B is formed between the first metal separator 14 of one of the adjacent power generation units 12 and the third metal separator 20 of the other of the adjacent power generation units 12.
- the corrugated flow grooves 44a and the corrugated flow grooves 44b are set at different phases. By mutually overlapping the corrugated flow grooves 44a and the corrugated flow grooves 44b, a plurality of grooves 44c that communicate in a horizontal direction indicated by the arrow B are formed between the corrugated flow grooves 44a and the corrugated flow grooves 44b ( FIGS. 4 and 5 ).
- the coolant flow field 44 is configured to allow the coolant to flow across the back surfaces of the inlet buffer 38, the outlet buffer 40, the inlet buffer 68, and the outlet buffer 70.
- an oxygen-containing gas is supplied to the oxygen-containing gas supply passage 30a, and a fuel gas such as a hydrogen-containing gas is supplied to the fuel gas supply passage 32a. Further, a coolant such as pure water, ethylene glycol, or oil is supplied to the coolant supply passages 34a.
- the oxygen-containing gas from the oxygen-containing gas supply passage 30a flows into the first oxygen-containing gas flow field 50 of the second metal separator 18 and the second oxygen-containing gas flow field 66 of the third metal separator 20.
- the oxygen-containing gas moves along the first oxygen-containing gas flow field 50 in the direction of gravity indicated by the arrow C, and the oxygen-containing gas is supplied to the cathode 26 of the first membrane electrode assembly 16a.
- the oxygen-containing gas moves along the second oxygen-containing gas flow field 66 in the direction indicated by the arrow C, and the oxygen-containing gas is supplied to the cathode 26 of the second membrane electrode assembly 16b.
- the fuel gas from the fuel gas supply passage 32a flows through the outer supply holes 80a toward the surface 14b of the first metal separator 14. Further, the fuel gas from the inner supply holes 80b moves toward the surface 14a, and then, the fuel gas moves along the first fuel gas flow field 36 in the direction of gravity indicated by the arrow C. The fuel gas is thus supplied to the anode 24 of the first membrane electrode assembly 16a (see FIG. 1 ).
- the fuel gas flows through the supply holes 84 toward the surface 18b of the second metal separator 18.
- the fuel gas moves along the second fuel gas flow field 58 on the surface 18b in the direction indicated by the arrow C.
- the fuel gas is thus supplied to the anode 24 of the second membrane electrode assembly 16b.
- the oxygen-containing gas supplied to the cathode 26 and the fuel gas supplied to the anode 24 are consumed in the electrochemical reactions at electrode catalyst layers of the cathode 26 and the anode 24 for generating electricity.
- the oxygen-containing gas consumed at each of the cathodes 26 of the first and second membrane electrode assemblies 16a, 16b is discharged along the oxygen-containing gas discharge passage 30b in the direction indicated by the arrow A.
- the fuel gas consumed at the anode 24 of the first membrane electrode assembly 16a flows through the inner discharge holes 82b, and then, the fuel gas moves to the surface 14b. After the fuel gas moves to the surface 14b, the fuel gas flows through the outer discharge holes 82a, and again, the fuel gas moves to the surface 14a. Then, the fuel gas is discharged to the fuel gas discharge passage 32b.
- the fuel gas supplied to and consumed at the anode 24 of the second membrane electrode assembly 16b flows through the discharge holes 86 toward the surface 18a. Then, the fuel gas is discharged into the fuel gas discharge passage 32b.
- the coolant supplied to the pair of left and right coolant supply passages 34a flows into the coolant flow field 44 formed between the first metal separator 14 of one of the adjacent power generation units 12 and the third metal separator 20 of the other of the adjacent power generation units 12.
- the pair of the coolant supply passages 34a are disposed separately at the left and right ends on the upper portion of the power generation unit 12, and are positioned adjacent to the oxygen-containing gas supply passage 30a and the fuel gas supply passage 32a.
- substantially the same amount of coolant is supplied from each of the coolant supply passages 34a to the coolant flow field 44 toward each other, in the direction indicated by the arrow B.
- the flows of coolant from the coolant supply passages 34a meet at the center of the coolant flow field 44 in the direction indicated by the arrow B.
- the coolant moves in the direction of gravity (toward the lower side in the direction indicated by the arrow C), and substantially the same amount of the coolant is discharged into each of the coolant discharge passages 34b disposed separately on opposite sides of the lower portion of the power generation unit 12.
- the pair of left and right coolant supply passages 34a extend through upper positions of the power generation units 12, and the pair of left and right coolant discharge passages 34b extend through the lower positions of the power generation units 12. Therefore, the coolant can move in a vertically downward direction over the entire area of the coolant flow field 44. In the structure, it becomes possible to control the temperature distribution utilizing a temperature gradient in the coolant flow field 44, whereby uniform cooling efficiency can be maintained.
- the oxygen-containing gas supply passage 30a and the fuel gas supply passage 32a, and the oxygen-containing gas discharge passage 30b and the fuel gas discharge passage 32b are provided on upper and lower opposite sides of the power generation unit 12, respectively.
- the pair of coolant supply passages 34a are disposed separately on the left and right opposite sides of the power generation unit 12, while the pair of coolant discharge passages 34b are disposed separately on the left and right opposite sides of the power generation unit 12.
- the width of the power generation unit 12 in the direction indicated by the arrow B is reduced effectively.
- the coolant supply passages 34a and the coolant discharge passages 34b are disposed within the area of the spacing interval H in the horizontal direction (indicated by the arrow B) between the oxygen-containing gas supply passage 30a (oxygen-containing gas discharge passage 30b) and the fuel gas supply passage 32a (fuel gas discharge passage 32b), or disposed at an interval that is substantially equal to the spacing interval H.
- the width of the power generation unit 12 can be reduced as much as possible.
- the coolant flows through the coolant flow field 44 in the direction of gravity, i.e., in parallel to the direction in which the oxygen-containing gas flows through the second oxygen-containing gas flow field 66 on the back surface of the coolant flow field 44.
- the highly humidified area is expanded, and the resistance overpotential is reduced.
- the coolant flows on the back surfaces of the inlet buffer 38, the outlet buffer 40, the inlet buffer 68, and the outlet buffer 70.
- the flow of the coolant is distributed uniformly in the coolant flow field 44, and it becomes possible to cool the power generation area suitably.
- the coolant flows also into the areas on the back surfaces of the outlet buffers 40, 70, the temperature becomes high at the downstream side of the second oxygen-containing gas flow field 66 (and the first oxygen-containing gas flow field 50) where no power generation is performed.
- the temperature difference between the non-power-generation area and the power-generation area is reduced, whereby water condensation can be suppressed suitably.
- the present invention is not limited in this respect.
- a power generation unit formed by sandwiching one electrolyte electrode assembly between a pair of metal separators may be used, and the coolant flow field may be formed between the adjacent power generation units.
- the oxygen-containing gas supply passage 30a and the fuel gas supply passage 32a are provided at the upper end portion of the power generation unit 12, while the oxygen-containing gas discharge passage 30b and the fuel gas discharge passage 32b are provided at the lower end portion of the power generation unit 12. Conversely, the oxygen-containing gas discharge passage 30b and the fuel gas discharge passage 32b may be provided at the upper end portion of the power generation unit 12, while the oxygen-containing gas supply passage 30a and the fuel gas supply passage 32a may be provided at the lower end portion of the power generation unit 12.
- a pair of the coolant supply passages 34a are provided at both ends in the lateral direction on the upper portion of the power generation unit 12,, while a pair of the coolant discharge passages 34b are provided at both ends in the lateral direction on the lower portion of the power generation unit 12.
- the pair of coolant discharge passages 34b may be provided at both ends in the lateral direction on the upper portion of the power generation unit 12, and a pair of coolant supply passages 34a may be provided at both ends in the lateral direction on the lower portion of the power generation unit 12.
- FIG. 6 is an exploded perspective view showing main components of a power generation unit 102 of a fuel cell stack 100 according to a second embodiment of the present invention.
- constituent elements of the fuel cell stack 100 that are identical to those of the fuel cell stack 10 according to the first embodiment are labeled with the same reference numerals, and detailed descriptions thereof will be omitted. Also in third and other embodiments as described later, the constituent elements that are identical to those of the fuel cell stack 10 according to the first embodiment are labeled with the same reference numerals, and detailed descriptions thereof will be omitted.
- the power generation unit 102 includes a first metal separator 104, a first membrane electrode assembly 106a, a second metal separator 108, a second membrane electrode assembly 106b, and a third metal separator 109.
- An oxygen-containing gas supply passage 30a and a fuel gas discharge passage 32b extend through the power generation unit 102 at upper end positions in the longitudinal direction.
- An oxygen-containing gas discharge passage 30b and a fuel gas supply passage 32a extend through the power generation unit 102 at lower end positions in the longitudinal direction.
- the oxygen-containing gas flows in the first and second oxygen-containing gas flow fields 50, 66 in the direction of gravity, while the fuel gas flows in the first and second fuel gas flow fields 36, 58 in the direction opposite to gravity, i.e., in the direction opposite to the flow direction of the oxygen-containing gas.
- the oxygen-containing gas and the fuel gas flow in a counterflow manner. Further, the same advantages as in the case of the first embodiment are obtained.
- FIG. 7 is an exploded perspective view showing main components of a power generation unit 112 of a fuel cell stack 110 according to a third embodiment of the present invention.
- the power generation unit 112 is formed by stacking a first metal separator 114, a first membrane electrode assembly 116a, a second metal separator 118, a second membrane electrode assembly 116b, and a third metal separator 120 in the direction of gravity.
- the width of the power generation unit 112 in the direction indicated by the arrow A is reduced as much as possible.
- the width of the fuel cell stack 110 is reduced.
- FIG. 8 is an exploded perspective view showing main components of a power generation unit 132 of a fuel cell stack 130 according to a fourth embodiment of the present invention.
- the power generation unit 132 includes a first carbon separator 134, a first membrane electrode assembly 136a, a second carbon separator 138, a second membrane electrode assembly 136b, and a third carbon separator 140.
- the power generation units 132 are stacked in a horizontal direction indicated by an arrow A. Alternatively, the power generation units 132 may be stacked in a vertical direction indicated by an arrow C as in the case of the third embodiment.
- the reactant gas flow field includes straight flow grooves instead of the corrugated flow grooves.
- the first carbon separator 134 instead of the metal separators, the first carbon separator 134, the second carbon separator 138, and the third carbon separator 140 are used. Further, the same advantages as in the case of the first to third embodiments are obtained.
- FIG. 9 is an exploded perspective view showing main components of a power generation unit 152 of a fuel cell stack 150 according to a fifth embodiment of the present invention.
- the power generation unit 152 includes a first metal separator 154, a first membrane electrode assembly 156a, a second metal separator 158, a second membrane electrode assembly 156b, and a third metal separator 160.
- the first metal separator 154 includes a first fuel gas flow field 162 on its surface 154a facing the first membrane electrode assembly 156a.
- the first fuel gas flow field 162 connects a fuel gas supply passage 32a and a fuel gas discharge passage 32b.
- the first fuel gas flow field 162 includes a plurality of corrugated flow grooves 162a extending in a direction indicated by an arrow C.
- the corrugated flow grooves 162a include first phase areas 164a having the same phase and which are arranged respectively on the upstream side (upper side) and on the downstream side (lower side), and a second phase area 164b having a phase which is reverse to the phase of the first phase areas 164a and which is reversed through phase reversing sections 166a, 166b.
- the phase reversing sections 166a, 166b form a corrugated flow field shifted by a half pitch by reversing the phase at the central region as shown by dotted lines in FIG. 10 , in midstream.
- a coolant flow field 168 connecting a pair of coolant supply passages 34a and a pair of coolant discharge passages 34b is partially formed on a surface 154b of the first metal separator 154.
- a plurality of corrugated flow grooves 168a are formed as the back surface of a plurality of corrugated flow grooves 162a of the first fuel gas flow field 162.
- the corrugated flow grooves 168a are formed between ridges on the back surface of the corrugated flow grooves 162a.
- First phase areas 170a are provided on the upstream side (upper side) and the downstream side (lower side) of the corrugated flow grooves 168a, and a second phase area 170b in the reversed phase is formed in the intermediate area thereof.
- the second metal separator 158 has a first oxygen-containing gas flow field 172 on its surface 158a facing the first membrane electrode assembly 156a.
- the first oxygen-containing gas flow field 172 connects the oxygen-containing gas supply passage 30a and the oxygen-containing gas discharge passage 30b.
- the first oxygen-containing gas flow field 172 includes a plurality of corrugated flow grooves 172a extending in the direction indicated by the arrow C.
- the corrugated flow grooves 172a face the corrugated flow grooves 162a of the first fuel gas flow field 162.
- the corrugated flow grooves 172a and the corrugated flow grooves 162a are set at different phases.
- the corrugated flow grooves 172a and the corrugated flow grooves 162a are set at the same phase.
- the second metal separator 158 has a second fuel gas flow field 174 on its surface 158b facing the second membrane electrode assembly 156b.
- the second fuel gas flow field 174 connects the fuel gas supply passage 32a and the fuel gas discharge passage 32b.
- the second fuel gas flow field 174 includes a plurality of corrugated flow grooves 174a extending in the direction indicated by the arrow C.
- the third metal separator 160 has a second oxygen-containing gas flow field 176 on its surface 160a facing the second membrane electrode assembly 156b.
- the second oxygen-containing gas flow field 176 connects the oxygen-containing gas supply passage 30a and the oxygen-containing gas discharge passage 30b.
- the second oxygen-containing gas flow field 176 includes a plurality of corrugated flow grooves 176a extending in the direction indicated by the arrow C.
- the corrugated flow grooves 176a face the corrugated flow grooves 174a.
- the corrugated flow grooves 176a and the corrugated flow grooves 174a are set at the same phase.
- the coolant flow field 168 is partially formed on the surface 160b of the third metal separator 160.
- a plurality of corrugated flow grooves 168b are formed as the back surface of the corrugated flow grooves 176a of the second oxygen-containing gas flow field 176.
- the corrugated flow grooves 168a of the first metal separator 154 and the corrugated flow grooves 168b of the third metal separator 160 are overlapped with each other to form the coolant flow field 168.
- the corrugated flow grooves 168a and the corrugated flow grooves 168b are in different phases.
- the corrugated flow grooves 168a and the corrugated flow grooves 168b are in the same phase, and form a corrugated flow field extending in the direction indicated by the arrow C.
- the corrugated flow grooves 168a and the corrugated flow grooves 168b are in different phases thereby to form a flow field extending in the direction indicated by the arrow B.
- the surface 154b of the first metal separator 154 and the surface 160b of the third metal separator 160 are overlapped with each other.
- ridges on the back surfaces forming the coolant flow field 168 contact each other to provide an upper contact area 178a, a lower contact area 178b, and an intermediate contact area 178c.
- the ridges on the back surfaces are in different phases, and thus are placed in point-contact with each other.
- the ridges on the back surfaces are in the same phase thereby to form a flow field including a plurality of corrugated flow grooves extending in the direction indicated by the arrow C, between the respective ridges in the intermediate contact area 178c.
- the corrugated flow grooves 168a of the coolant flow field 168 and the corrugated flow grooves 168b thereof are set at different phases.
- the corrugated flow grooves 168a and the corrugated flow grooves 168b are in the same phase.
- the flow direction of the coolant is the same as the flow direction of (at least one of) the oxygen-containing gas and the fuel gas.
- the flow direction can be changed to a direction (indicated by the arrow B) intersecting the flow direction indicated by the arrow C. This is because, as shown in FIG. 13 , in each of the upstream area and the downstream area, the upper contact area 178a and the lower contact area 178b are in point-contact with each other.
- the coolant supply passages 34a and the coolant discharge passages 34b can be formed on opposite left and right sides of the power generation units 152.
- the width of the power generation unit 152 indicated by the arrow B is reduced effectively.
- the coolant supply passages 34a and the coolant discharge passages 34b are disposed within the area of the spacing interval H in a horizontal direction indicated by the arrow B between the oxygen-containing gas supply passage 30a (oxygen-containing gas discharge passage 30b) and the fuel gas supply passage 32a (fuel gas discharge passage 32b).
- the width of the power generation unit 12 can be reduced as much as possible.
- the corrugated flow grooves 168a, 168b are set at the same phase. Therefore, the coolant can flow smoothly and reliably in the same direction as the flow direction of the oxygen-containing gas and the fuel gas. Thus, improvement in the efficiency of cooling the power generation unit 152 is achieved suitably.
- the power generation unit 152 a power generation unit formed by sandwiching one electrolyte electrode assembly between a pair of metal separators may be used, and the coolant flow field may be formed between the adjacent power generation units.
- FIG. 14 is an exploded perspective view showing main components of a power generation unit 192 of a fuel cell stack 190 according to a sixth embodiment of the present invention.
- the power generation unit 192 is formed by sandwiching a membrane electrode assembly 194 between a first metal separator 196 and a second metal separator 198.
- the membrane electrode assembly 194 includes an anode 24, a cathode 26, and a solid polymer electrolyte membrane 22 interposed between the anode 24 and the cathode 26.
- the surface area of the anode 24 is the same as the surface area of the cathode 26.
- a first fuel gas flow field 162 is formed on a surface 196a of the first metal separator 196 facing the membrane electrode assembly 194.
- corrugated flow grooves 168a of the coolant flow field 168 are formed as the back surface of the first fuel gas flow field 162.
- a second oxygen-containing gas flow field 176 is formed on a surface 198a of the second metal separator 198 facing the membrane electrode assembly 194.
- corrugated flow grooves 168b of the coolant flow field 168 are formed as the back surface of the second oxygen-containing gas flow field 176.
- the coolant flow field 168 is formed between the adjacent power generation units 192, i.e., between a surface 196b of the first metal separator 196 of one of the adjacent power generation units 192, and a surface 198b of the second metal separator 198 of the other of the adjacent power generation units 192.
- the coolant flow field 168 is formed by the back surface of the first fuel gas flow field 162 and the back surface of the second oxygen-containing gas flow field 176.
- the fuel gas and the oxygen-containing gas flow in parallel to each other (i.e., in the same direction).
- the present invention is not limited in this respect.
- the fuel gas and the oxygen-containing gas may flow in a counterflow manner (i.e., in opposite directions).
- FIG. 15 is an exploded perspective view showing main components of a power generation unit 202 of a fuel cell stack 200 according to a seventh embodiment of the present invention.
- the power generation unit 202 includes a first metal separator 204, a first membrane electrode assembly 156a, a second metal separator 158, a second membrane electrode assembly 156b, and a third metal separator 160.
- the first metal separator 204 has a first fuel gas flow field 162 on its surface 204a facing the first membrane electrode assembly 156a.
- the first fuel gas flow field 162 connects the fuel gas supply passage 32a and the fuel gas discharge passage 32b.
- the corrugated flow grooves 162a of the first fuel gas flow field 162 on the upstream side (upper side) and on the downstream side (lower side), the first phase areas 206a having the same phase are provided, and in the intermediate area, the second phase area 206b subjected to a phase shift by a half phase through the straight sections 208a, 208b are provided.
- the straight sections 208a, 208b form corrugated flow grooves where the phase on the lower side as shown by the two-dot chain lines in FIG. 16 is shifted by a half pitch in the middle.
- the corrugated flow grooves 168a of the first metal separator 204 are overlapped with the corrugated flow grooves 168b of the third metal separator 160 to form the coolant flow field 168.
- the corrugated flow grooves 168a and the corrugated flow grooves 168b are in the different phases.
- the corrugated flow grooves 168a and the corrugated flow grooves 168b form a corrugated flow field having the same phase, and extending in the direction indicated by the arrow C.
- the surface 204b of the first metal separator 204 and the surface 160b of the third metal separator 160 are overlapped with each other.
- ridges on the back surfaces forming the coolant flow field 168 contact each other thereby to provide an upper contact section 210a, a lower contact section 210b, and an intermediate contact section 210c.
- the intermediate contact section 210c has a corrugated shape extending in the direction indicated by the arrow C.
- a plurality of corrugated flow grooves extending in the direction indicated by the arrow C are formed between the ridges of the intermediate contact section 210c.
- the coolant supply passages 34a and the coolant discharge passages 34b are formed on left and right opposite sides of the power generation unit 202. Further, the same advantages as in the case of the fifth and sixth embodiments are obtained. For example, the coolant can be supplied in the same direction as the flow direction of the oxygen-containing gas and the fuel gas smoothly and reliably.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Fuel Cell (AREA)
Abstract
Description
- The present invention relates to a fuel cell stack formed by stacking a plurality of power generation units together. Each of the power generation units is formed by stacking an electrolyte electrode assembly and a separator. The electrolyte electrode assembly includes a pair of electrodes and an electrolyte interposed between the electrodes.
- For example, a solid polymer electrolyte fuel cell employs an electrolyte membrane. The electrolyte membrane is a polymer ion exchange membrane, and is interposed between an anode and a cathode to form a membrane electrode assembly (MEA). The membrane electrode assembly is sandwiched between a pair of separators, so as to form a power generation unit. In use of the fuel cell of this type, normally, a predetermined number of power generation units are stacked together to form a fuel cell stack.
- In the fuel cell, a fuel gas flow field is formed on a surface of one separator facing the anode for supplying a fuel gas to the anode, and an oxygen-containing gas flow field is formed on a surface of the other separator facing the cathode for supplying an oxygen-containing gas to the cathode. Further, a coolant flow field is formed between the adjacent separators for supplying a coolant along surfaces of the separators.
- Further, in many cases, this type of fuel cell is constructed as the so-called "internal manifold type fuel cell". In the internal manifold type fuel cell, a fuel gas supply passage and a fuel gas discharge passage for the fuel gas, an oxygen-containing gas supply passage and an oxygen-containing gas discharge passage for the oxygen-containing gas, and a coolant supply passage and a coolant discharge passage for the coolant extend through the power generation units in the stacking direction.
- As an internal manifold type fuel cell, for example, a flow field plate as disclosed in Japanese Laid-Open Patent Publication No.
2008-536258 FIG. 19 , ahydrogen flow field 2a is formed on the surface of an anodeflow field plate 1 a. At one end of the anodeflow field plate 1a in a longitudinal direction indicated by an arrow X, an anode airinlet manifold aperture 3a, an anode coolantinlet manifold aperture 4a, and an anode hydrogeninlet manifold aperture 5a are formed. At the other end of the anodeflow field plate 1 a in the longitudinal direction, an anode airoutlet manifold aperture 3b, an anode coolantoutlet manifold aperture 4b, and an anode hydrogenoutlet manifold aperture 5b are formed. - Further, in a fuel cell disclosed in Japanese Laid-Open Patent Publication No.
09-161819 FIG. 20 , aseparator 1 b is provided in contact with the oxidizing agent electrode. A plurality of oxygen-containinggas flow grooves 2b are formed on a main surface of theseparator 1 b at the oxidizing agent electrode. Oxygen-containinggas inlets 6a are connected to the upstream side of the oxygen-containinggas flow grooves 2b, and oxygen-containinggas outlets 6b are connected to the downstream side of the oxygen-containinggas flow grooves 2b. - One
coolant water inlet 7a is formed between a pair of the oxygen-containinggas inlets 6a at an upper position of theseparator 1 b, and onecoolant water outlet 7b is formed between a pair of the oxygen-containinggas outlets 6b. A pair of fuelgas supply passages 8a are provided on both sides of an upper portion of theseparator 1 b, and a pair of fuelgas discharge passages 8b are provided on both sides of a lower portion of theseparator 1 b. - However, in Japanese Laid-Open Patent Publication No.
2008-536258 flow field plate 1 a in the direction indicated by the arrow Y is significantly large, and reduction in the width of the anodeflow field plate 1 a cannot be achieved easily. - Further, in Japanese Laid-Open Patent Publication No.
09-161819 gas inlets 6a and a pair of the fuelgas supply passages 8a are formed at both sides of thecoolant water inlet 7a on the upper portion of theseparator 1 b. Further, a pair of the oxygen-containinggas outlets 6b and a pair of the fuelgas discharge passages 8b are provided at both sides of thecoolant water outlets 7b on the lower portion of theseparator 1 b. - Therefore, the width of the
separator 1 b in the direction indicated by the arrow H is significantly large, and the overall size of the unit cell including theseparator 1 b is large disadvantageously. - The present invention has been made to solve the problems of this type, and an object of the present invention is to provide a fuel cell stack having simple structure in which the width of the fuel cell stack is reduced as much as possible, and the desired cooling performance is achieved.
- The present invention relates to a fuel cell stack formed by stacking power generation units together. Each of the power generation units is formed by stacking an electrolyte electrode assembly and a metal separator having a rectangular shape in a plan view. The electrolyte electrode assembly includes a pair of electrodes and an electrolyte interposed between the electrodes. In the fuel cell stack, a corrugated gas flow field is formed on a surface of the metal separator facing the electrode for supplying a fuel gas or an oxygen-containing gas as a reactant gas along the electrode. A coolant flow field is formed as a back surface of the corrugated gas flow field, between the power generation units.
- In the fuel cell stack, reactant gas supply passages and reactant gas discharge passages for flowing the reactant gases extend through one pair of opposite sides of the metal separator in a stacking direction. A pair of coolant supply passages and a pair of coolant discharge passages for flowing a coolant extend through the other opposite sides of the metal separator in the stacking direction. The pair of the coolant supply passages and the pair of the coolant discharge passages are positioned adjacent to at least the reactant gas supply passages or the reactant gas discharge passages. The pair of the coolant supply passages are disposed separately on the other opposite sides of the metal separator, and the pair of the coolant discharge passages are disposed separately on the other opposite sides of the metal separator.
- Further, the present invention relates to a fuel cell stack formed by stacking power generation units together. Each of the power generation units is formed by stacking an electrolyte electrode assembly and a separator having a rectangular shape in a plan view. The electrolyte electrode assembly includes a pair of electrodes and an electrolyte interposed between the electrodes. In the fuel cell stack, a gas flow field is formed on a surface of the separator facing the electrode for supplying a fuel gas or an oxygen-containing gas as a reactant gas along the electrode. A coolant flow field is formed between the power generation units.
- Reactant gas supply passages and reactant gas discharge passages for flowing the reactant gases extend through one pair of opposite sides of the separator in a stacking direction. A pair of coolant supply passages and a pair of coolant discharge passages for flowing a coolant extend through the other opposite sides of the separator in the stacking direction. The pair of the coolant supply passages and the pair of the coolant discharge passages are positioned adjacent to at least the reactant gas supply passages or the reactant gas discharge passages, and the pair of the coolant supply passages are disposed separately on the other opposite sides of the separator, while the pair of the coolant discharge passages are disposed separately on the other opposite sides of the separator.
- In the present invention, a fuel cell stack is formed by stacking a plurality of power generation units together. Each of the power generation units is formed by stacking an electrolyte electrode assembly and a metal separator having a rectangular shape in a plan view. The electrolyte electrode assembly includes a pair of electrodes and an electrolyte interposed between the electrodes. In the fuel cell stack, reactant gas supply passages and reactant gas discharge passages extend through one pair of opposite sides of the power generation unit in a stacking direction. A coolant supply passage and a coolant discharge passage extend through the other opposite sides of the power generation unit in the stacking direction. The coolant supply passage is positioned adjacent to the reactant gas supply passages, and the coolant discharge passage is positioned adjacent to the reactant gas discharge passages.
- Corrugated oxygen-containing gas flow grooves are formed on a surface of one of adjacent metal separators facing the electrode for supplying an oxygen-containing gas as one reactant gas along the electrode, and corrugated fuel gas flow grooves are formed on a surface of the other of the adjacent metal separators facing the electrode for supplying the fuel gas as the other reactant gas along the electrode.
- A coolant flow field is formed between the adjacent power generation units by ridges on the back surface of the corrugated oxygen-containing gas flow grooves and ridges on the back surface of the corrugated fuel gas flow grooves. The respective ridges on the back surfaces are set at different phases in an upstream area adjacent to the coolant supply passage and in a downstream area adjacent to the coolant discharge passage, and are set at the same phase in an intermediate area where the flow direction of the coolant is the same as at least the flow direction of the oxygen-containing gas or the fuel gas.
- In the present invention, the reactant gas supply passages and the coolant supply passages are not arranged along one side of the separator such as a metal separator or a carbon separator. In the structure, the separator does not become significantly wide or long. In particular, the width of the separator can be reduced as much as possible, and it becomes possible to install the fuel cell stack conveniently.
- Further, since the pair of the coolant supply passages are disposed separately while the pair of the coolant discharge passages are disposed separately, the coolant can be supplied uniformly and reliably to the entire coolant flow field. Thus, the uniform moisture environment can be achieved in the entire power generation area, and efficient power generation is performed suitably.
- In the present invention, the respective ridges on the back surfaces forming the coolant flow field are set at different phases in the upstream area adjacent to the coolant supply passage and in the downstream area adjacent to the coolant discharge passage. Further, the respective ridges on the back surfaces are set at the same phase in the intermediate area. In the structure, in the intermediate area of the coolant flow field, the flow direction of the coolant is the same as the gas flow direction of at least the oxygen-containing gas or the fuel gas, and the flow direction of the coolant is changed to a direction intersecting the gas flow direction, at positions adjacent to the coolant supply passage and the coolant discharge passage.
- Thus, the coolant supply passage and the coolant discharge passage are positioned on different two sides that are different from the two sides of the power generation unit where the oxygen-containing gas supply passage, the fuel gas supply passage, the oxygen-containing gas discharge passage, and the fuel gas discharge passage are provided.
- Therefore, since it is not required to arrange these passages in the width direction of the power generation unit, it is possible to provide an internal manifold type fuel cell stack, with a simple structure, where the width of the fuel cell stack can be reduced as much as possible.
- Further, the respective ridges on the back surfaces are in the same phase in the intermediate area. Thus, the coolant can be supplied smoothly and reliably in the same direction as the flow direction of at least the oxygen-containing gas or the fuel gas. Accordingly, cooling efficiency of the power generation unit is improved advantageously.
-
-
FIG. 1 is an exploded perspective view showing main components of a power generation unit of a fuel cell stack according to a first embodiment of the present invention; -
FIG. 2 is a cross sectional view showing the fuel cell stack, taken along a line II-II inFIG. 1 ; -
FIG. 3 is a front view showing a third metal separator of the power generation unit; -
FIG. 4 is a partial cross sectional view showing the fuel cell stack; -
FIG. 5 is a perspective view showing a coolant flow field formed between the power generation units; -
FIG. 6 is an exploded perspective view showing main components of a fuel cell stack according to a second embodiment of the present invention; -
FIG. 7 is an exploded perspective view showing main components of a fuel cell stack according to a third embodiment of the present invention; -
FIG. 8 is an exploded perspective view showing main components of a fuel cell stack according to a fourth embodiment of the present invention; -
FIG. 9 is an exploded perspective view showing main components of a power generation unit of a fuel cell stack according to a fifth embodiment of the present invention; -
FIG. 10 is a front view showing a first metal separator of the power generation unit; -
FIG. 11 is a view showing a coolant flow field formed between power generation units. -
FIG. 12 is a transparent view showing a first fuel gas flow field and a first oxygen-containing gas flow field of the power generation unit; -
FIG. 13 is a view showing contact areas of the coolant flow field; -
FIG. 14 is an exploded perspective view showing main components of a power generation unit of a fuel cell stack according to a sixth embodiment of the present invention; -
FIG. 15 is an exploded perspective view showing main components of a power generation unit of a fuel cell stack according to a seventh embodiment of the present invention; -
FIG. 16 is a front view showing a first metal separator of the power generation unit; -
FIG. 17 is a view showing a coolant flow field formed between the power generation units; -
FIG. 18 is a view showing contact areas of the coolant flow field; -
FIG. 19 is a view showing an anode flow field plate disclosed in Japanese Laid-Open Patent Publication No.2008-536258 -
FIG. 20 is a view showing a separator of a fuel cell disclosed in Japanese Laid-Open Patent Publication No.09-161819 - As shown in
FIG. 1 , afuel cell stack 10 according to a first embodiment of the present invention includes apower generation unit 12. A plurality of thepower generation units 12 are stacked together in a horizontal direction indicated by an arrow A. As shown inFIGS. 1 and2 , thepower generation unit 12 includes afirst metal separator 14, a first membrane electrode assembly (electrolyte electrode assembly) 16a, asecond metal separator 18, a secondmembrane electrode assembly 16b, and athird metal separator 20. - For example, the
first metal separator 14, thesecond metal separator 18 and thethird metal separator 20 are longitudinally long metal plates, which are made of steel plates, stainless steel plates, aluminum plates, plated steel sheets, or such metal plates having anti-corrosive surfaces formed by carrying out a surface treatment thereon. Each of thefirst metal separator 14, thesecond metal separator 18, and thethird metal separator 20 has a rectangular shape in a plan view, and has a corrugated shape in cross section, by corrugating metal thin plates by pressure forming. - As shown in
FIG. 2 , the surface area of the firstmembrane electrode assembly 16a is smaller than the surface area of the secondmembrane electrode assembly 16b. Each of the first and secondmembrane electrode assemblies anode 24, acathode 26 and a solidpolymer electrolyte membrane 22 interposed between theanode 24 and thecathode 26. The solidpolymer electrolyte membrane 22 is formed by impregnating a thin membrane of perfluorosulfonic acid with water, for example. The surface area of theanode 24 is smaller than the surface area of thecathode 26. That is, each of the first and secondmembrane electrode assemblies - Each of the
anode 24 and thecathode 26 has a gas diffusion layer (not shown) such as a carbon paper, and an electrode catalyst layer (not shown) of platinum alloy supported on porous carbon particles. The carbon particles are deposited uniformly on the surface of the gas diffusion layer. The electrode catalyst layer of theanode 24 and the electrode catalyst layer of thecathode 26 are fixed to both surfaces of the solidpolymer electrolyte membrane 22, respectively. - As shown in
FIG. 1 , at an upper end portion (i.e., a short side portion) of thepower generation unit 12 in the longitudinal direction indicated by an arrow C, an oxygen-containinggas supply passage 30a for supplying an oxygen-containing gas and a fuelgas supply passage 32a for supplying a fuel gas such as a hydrogen-containing gas are provided. The oxygen-containinggas supply passage 30a and the fuelgas supply passage 32a extend through thepower generation unit 12 in the direction indicated by the arrow A. - At a lower end portion (i.e., the other short side portion) of the
power generation unit 12 in the longitudinal direction indicated by the arrow C, a fuelgas discharge passage 32b for discharging the fuel gas and an oxygen-containinggas discharge passage 30b for discharging the oxygen-containing gas are provided. The fuelgas discharge passage 32b and the oxygen-containinggas discharge passage 30b extend through thepower generation unit 12 in the direction indicated by the arrow A. - At both end portions (i.e., long side portions) of the first
power generation unit 12 in a lateral direction indicated by an arrow B, a pair ofcoolant supply passages 34a for supplying a coolant are provided at upper positions, and at both end portions of the firstpower generation unit 12 in the lateral direction indicated by the arrow B, a pair ofcoolant discharge passages 34b for discharging the coolant are provided at lower positions. Thecoolant supply passages 34a and thecoolant discharge passages 34b extend through the firstpower generation unit 12 in the direction indicated by the arrow A. Thecoolant supply passages 34a and thecoolant discharge passages 34b are elongated longitudinally along the long sides of thepower generation unit 12. - The
coolant supply passages 34a are positioned adjacent to the oxygen-containinggas supply passage 30a and the fuelgas supply passage 32a, and are disposed separately on opposite sides in the direction indicated by the arrow B. Thecoolant discharge passages 34b are positioned adjacent to the oxygen-containinggas discharge passage 30b and the fuelgas discharge passage 32b, and are disposed separately on the opposite sides in the direction indicated by the arrow B. - As shown in
FIG. 3 , the distance between the outer end of the opening of the oxygen-containinggas supply passage 30a and the outer end of the opening of the fuelgas supply passage 32a in the horizontal direction is defined as a spacing interval H. Further, the distance between the outer end of the opening of the oxygen-containinggas discharge passage 30b and the outer end of the opening of the fuelgas discharge passage 32b in the horizontal direction is defined as the spacing interval H. Preferably, the pair of thecoolant supply passages 34a are disposed separately on the opposite sides within the spacing interval H, and the pair of thecoolant discharge passages 34b are disposed separately on the opposite sides within the spacing interval H. However, in practical, it is sufficient that the pair of thecoolant supply passages 34a and the pair of thecoolant discharge passages 34b are provided separately on the opposite sides at an interval which is substantially equal to the spacing interval H. - As shown in
FIG. 1 , thefirst metal separator 14 has a first fuelgas flow field 36 on itssurface 14a facing the firstmembrane electrode assembly 16a. The first fuelgas flow field 36 connects the fuelgas supply passage 32a and the fuelgas discharge passage 32b. The first fuelgas flow field 36 includes a plurality ofcorrugated flow grooves 36a extending in the direction indicated by the arrow C.An inlet buffer 38 and anoutlet buffer 40 each having a plurality of bosses are provided near an inlet and an outlet of the first fuelgas flow field 36, respectively. - A
coolant flow field 44 is partially formed on asurface 14b of thefirst metal separator 14. Thecoolant flow field 44 connects thecoolant supply passages 34a and thecoolant discharge passages 34b. On thesurface 14b, a plurality ofcorrugated flow grooves 44a are formed as the back surface of thecorrugated flow grooves 36a of the first fuelgas flow field 36. - The
second metal separator 18 has a first oxygen-containinggas flow field 50 on itssurface 18a facing the firstmembrane electrode assembly 16a. The first oxygen-containinggas flow field 50 connects the oxygen-containinggas supply passage 30a and the oxygen-containinggas discharge passage 30b. The first oxygen-containinggas flow field 50 includes a plurality ofcorrugated flow grooves 50a extending in the direction indicated by the arrow C.An inlet buffer 52 and anoutlet buffer 54 are provided near an inlet and an outlet of the first oxygen-containinggas flow field 50, respectively. - The
second metal separator 18 has a second fuelgas flow field 58 on itssurface 18b facing the secondmembrane electrode assembly 16b. The second fuelgas flow field 58 connects the fuelgas supply passage 32a and the fuelgas discharge passage 32b. The second fuelgas flow field 58 includes a plurality ofcorrugated flow grooves 58a extending in the direction indicated by the arrow C.An inlet buffer 60 and anoutlet buffer 62 are provided near an inlet and an outlet of the second fuelgas flow field 58, respectively. The second fuelgas flow field 58 is formed on the back surface of the first oxygen-containinggas flow field 50, and theinlet buffer 60 and theoutlet buffer 62 are formed on the back surfaces of theinlet buffer 52 and theoutlet buffer 54, respectively. - The
third metal separator 20 has a second oxygen-containinggas flow field 66 on itssurface 20a facing the secondmembrane electrode assembly 16b. The second oxygen-containinggas flow field 66 connects the oxygen-containinggas supply passage 30a and the oxygen-containinggas discharge passage 30b. The second oxygen-containinggas flow field 66 includes a plurality ofcorrugated flow grooves 66a extending in the direction indicated by arrow C.An inlet buffer 68 and anoutlet buffer 70 are provided near an inlet and an outlet of the second oxygen-containinggas flow field 66, respectively. - The
coolant flow field 44 is partially formed on thesurface 20b of thethird metal separator 20. On thesurface 20b, a plurality ofcorrugated flow grooves 44b are formed as the back surface of thecorrugated flow grooves 66a of the second oxygen-containinggas flow field 66. - In the
power generation unit 12, concerning the first fuelgas flow field 36 of thefirst metal separator 14, the first oxygen-containinggas flow field 50 of thesecond metal separator 18, and the second fuelgas flow field 58 of thesecond metal separator 18, the corrugated (wavelike) shapes thereof are set mutually at the same phase along the stacking direction. Further, the wave pitch and amplitude thereof are set the same. Concerning the second oxygen-containinggas flow field 66 of thethird metal separator 20, which is arranged at one end of thepower generation unit 12 in the stacking direction indicated by the arrow A, the wavelike shape thereof is set mutually at a different phase along the stacking direction from the first fuelgas flow field 36, the first oxygen-containinggas flow field 50, and the second fuelgas flow field 58, while the wave pitch and amplitude thereof are set the same. - As shown in
FIGS. 1 and2 , afirst seal member 74 is formed integrally on thesurfaces first metal separator 14, surrounding the outer circumferential end of thefirst metal separator 14. Further, thesecond seal member 76 is formed integrally on thesurfaces second metal separator 18, surrounding the outer circumferential end of thesecond metal separator 18. Athird seal member 78 is formed integrally on thesurfaces third metal separator 20, surrounding the outer circumferential end of thethird metal separator 20. - The
first metal separator 14 has a plurality ofouter supply holes 80a andinner supply holes 80b connecting the fuelgas supply passage 32a to the first fuelgas flow field 36, and a plurality ofouter discharge holes 82a and inner discharge holes 82b connecting the fuelgas discharge passage 32b to the first fuelgas flow field 36. - The
second metal separator 18 has a plurality of supply holes 84 connecting the fuelgas supply passage 32a to the second fuelgas flow field 58, and a plurality of discharge holes 86 connecting the fuelgas discharge passage 32b to the second fuelgas flow field 58. - The
power generation units 12 are stacked together. Thus, thecoolant flow field 44 extending in the direction indicated by the arrow B is formed between thefirst metal separator 14 of one of the adjacentpower generation units 12 and thethird metal separator 20 of the other of the adjacentpower generation units 12. - In the
coolant flow field 44, thecorrugated flow grooves 44a and thecorrugated flow grooves 44b are set at different phases. By mutually overlapping thecorrugated flow grooves 44a and thecorrugated flow grooves 44b, a plurality ofgrooves 44c that communicate in a horizontal direction indicated by the arrow B are formed between thecorrugated flow grooves 44a and thecorrugated flow grooves 44b (FIGS. 4 and5 ). Thecoolant flow field 44 is configured to allow the coolant to flow across the back surfaces of theinlet buffer 38, theoutlet buffer 40, theinlet buffer 68, and theoutlet buffer 70. - Operation of the
fuel cell stack 10 having the structure will be described below. - Firstly, as shown in
FIG. 1 , an oxygen-containing gas is supplied to the oxygen-containinggas supply passage 30a, and a fuel gas such as a hydrogen-containing gas is supplied to the fuelgas supply passage 32a. Further, a coolant such as pure water, ethylene glycol, or oil is supplied to thecoolant supply passages 34a. - Thus, the oxygen-containing gas from the oxygen-containing
gas supply passage 30a flows into the first oxygen-containinggas flow field 50 of thesecond metal separator 18 and the second oxygen-containinggas flow field 66 of thethird metal separator 20. The oxygen-containing gas moves along the first oxygen-containinggas flow field 50 in the direction of gravity indicated by the arrow C, and the oxygen-containing gas is supplied to thecathode 26 of the firstmembrane electrode assembly 16a. Further, the oxygen-containing gas moves along the second oxygen-containinggas flow field 66 in the direction indicated by the arrow C, and the oxygen-containing gas is supplied to thecathode 26 of the secondmembrane electrode assembly 16b. - As shown in
FIG. 2 , the fuel gas from the fuelgas supply passage 32a flows through theouter supply holes 80a toward thesurface 14b of thefirst metal separator 14. Further, the fuel gas from the inner supply holes 80b moves toward thesurface 14a, and then, the fuel gas moves along the first fuelgas flow field 36 in the direction of gravity indicated by the arrow C. The fuel gas is thus supplied to theanode 24 of the firstmembrane electrode assembly 16a (seeFIG. 1 ). - Further, as shown in
FIG. 2 , the fuel gas flows through the supply holes 84 toward thesurface 18b of thesecond metal separator 18. Thus, as shown inFIG. 1 , the fuel gas moves along the second fuelgas flow field 58 on thesurface 18b in the direction indicated by the arrow C. The fuel gas is thus supplied to theanode 24 of the secondmembrane electrode assembly 16b. - Thus, in each of the first and second
membrane electrode assemblies cathode 26 and the fuel gas supplied to theanode 24 are consumed in the electrochemical reactions at electrode catalyst layers of thecathode 26 and theanode 24 for generating electricity. - The oxygen-containing gas consumed at each of the
cathodes 26 of the first and secondmembrane electrode assemblies gas discharge passage 30b in the direction indicated by the arrow A. - The fuel gas consumed at the
anode 24 of the firstmembrane electrode assembly 16a flows through theinner discharge holes 82b, and then, the fuel gas moves to thesurface 14b. After the fuel gas moves to thesurface 14b, the fuel gas flows through theouter discharge holes 82a, and again, the fuel gas moves to thesurface 14a. Then, the fuel gas is discharged to the fuelgas discharge passage 32b. - The fuel gas supplied to and consumed at the
anode 24 of the secondmembrane electrode assembly 16b flows through the discharge holes 86 toward thesurface 18a. Then, the fuel gas is discharged into the fuelgas discharge passage 32b. - As shown in
FIG. 3 , the coolant supplied to the pair of left and rightcoolant supply passages 34a flows into thecoolant flow field 44 formed between thefirst metal separator 14 of one of the adjacentpower generation units 12 and thethird metal separator 20 of the other of the adjacentpower generation units 12. - The pair of the
coolant supply passages 34a are disposed separately at the left and right ends on the upper portion of thepower generation unit 12, and are positioned adjacent to the oxygen-containinggas supply passage 30a and the fuelgas supply passage 32a. - In the structure, substantially the same amount of coolant is supplied from each of the
coolant supply passages 34a to thecoolant flow field 44 toward each other, in the direction indicated by the arrow B. The flows of coolant from thecoolant supply passages 34a meet at the center of thecoolant flow field 44 in the direction indicated by the arrow B. Then the coolant moves in the direction of gravity (toward the lower side in the direction indicated by the arrow C), and substantially the same amount of the coolant is discharged into each of thecoolant discharge passages 34b disposed separately on opposite sides of the lower portion of thepower generation unit 12. - As described above, in the first embodiment, the pair of left and right
coolant supply passages 34a extend through upper positions of thepower generation units 12, and the pair of left and rightcoolant discharge passages 34b extend through the lower positions of thepower generation units 12. Therefore, the coolant can move in a vertically downward direction over the entire area of thecoolant flow field 44. In the structure, it becomes possible to control the temperature distribution utilizing a temperature gradient in thecoolant flow field 44, whereby uniform cooling efficiency can be maintained. - Further, in the first embodiment, the oxygen-containing
gas supply passage 30a and the fuelgas supply passage 32a, and the oxygen-containinggas discharge passage 30b and the fuelgas discharge passage 32b are provided on upper and lower opposite sides of thepower generation unit 12, respectively. The pair ofcoolant supply passages 34a are disposed separately on the left and right opposite sides of thepower generation unit 12, while the pair ofcoolant discharge passages 34b are disposed separately on the left and right opposite sides of thepower generation unit 12. - In the structure, the width of the
power generation unit 12 in the direction indicated by the arrow B is reduced effectively. In particular, thecoolant supply passages 34a and thecoolant discharge passages 34b are disposed within the area of the spacing interval H in the horizontal direction (indicated by the arrow B) between the oxygen-containinggas supply passage 30a (oxygen-containinggas discharge passage 30b) and the fuelgas supply passage 32a (fuelgas discharge passage 32b), or disposed at an interval that is substantially equal to the spacing interval H. In the structure, the width of thepower generation unit 12 can be reduced as much as possible. - Further, in the first embodiment, the coolant flows through the
coolant flow field 44 in the direction of gravity, i.e., in parallel to the direction in which the oxygen-containing gas flows through the second oxygen-containinggas flow field 66 on the back surface of thecoolant flow field 44. In the structure, since the temperature at the upstream side of the second oxygen-containinggas flow field 66 decreases with increasing flow rate of the coolant, the highly humidified area is expanded, and the resistance overpotential is reduced. - On the downstream side of the second oxygen-containing gas flow field 66 (and the first oxygen-containing gas flow field 50), heated coolant is supplied, and then the temperature is increased. Therefore, vaporization of the water produced in the power generation reaction is facilitated, and flooding is suppressed. Thus, reduction in the concentration overpotential is achieved. In the structure, improvement in the output and durability of the
power generation unit 12 is achieved. Further, the uniform humidification environment from the upstream side to the downstream side of the second oxygen-containing gas flow field 66 (and the first oxygen-containing gas flow field 50) is achieved, and water swelling of the solidpolymer electrolyte membrane 22 becomes uniform. Moreover, deflection of the stack is suppressed. - Further, in the first embodiment, in the
coolant flow field 44, the coolant flows on the back surfaces of theinlet buffer 38, theoutlet buffer 40, theinlet buffer 68, and theoutlet buffer 70. In the structure, since the coolant flows in the direction of gravity through the back surfaces of the buffers, the flow of the coolant is distributed uniformly in thecoolant flow field 44, and it becomes possible to cool the power generation area suitably. - Further, since the coolant flows also into the areas on the back surfaces of the outlet buffers 40, 70, the temperature becomes high at the downstream side of the second oxygen-containing gas flow field 66 (and the first oxygen-containing gas flow field 50) where no power generation is performed. Thus, the temperature difference between the non-power-generation area and the power-generation area is reduced, whereby water condensation can be suppressed suitably.
- Though the first embodiment has been described in the case of using the
power generation unit 12 having thefirst metal separator 14, the firstmembrane electrode assembly 16a, thesecond metal separator 18, the secondmembrane electrode assembly 16b, and thethird metal separator 20, the present invention is not limited in this respect. For example, a power generation unit formed by sandwiching one electrolyte electrode assembly between a pair of metal separators may be used, and the coolant flow field may be formed between the adjacent power generation units. - In the first embodiment, the oxygen-containing
gas supply passage 30a and the fuelgas supply passage 32a are provided at the upper end portion of thepower generation unit 12, while the oxygen-containinggas discharge passage 30b and the fuelgas discharge passage 32b are provided at the lower end portion of thepower generation unit 12. Conversely, the oxygen-containinggas discharge passage 30b and the fuelgas discharge passage 32b may be provided at the upper end portion of thepower generation unit 12, while the oxygen-containinggas supply passage 30a and the fuelgas supply passage 32a may be provided at the lower end portion of thepower generation unit 12. - Further, a pair of the
coolant supply passages 34a are provided at both ends in the lateral direction on the upper portion of thepower generation unit 12,, while a pair of thecoolant discharge passages 34b are provided at both ends in the lateral direction on the lower portion of thepower generation unit 12. Conversely, the pair ofcoolant discharge passages 34b may be provided at both ends in the lateral direction on the upper portion of thepower generation unit 12, and a pair ofcoolant supply passages 34a may be provided at both ends in the lateral direction on the lower portion of thepower generation unit 12. - The above also applies to second to fourth embodiments of the present invention, to be described below.
-
FIG. 6 is an exploded perspective view showing main components of apower generation unit 102 of afuel cell stack 100 according to a second embodiment of the present invention. - The constituent elements of the
fuel cell stack 100 that are identical to those of thefuel cell stack 10 according to the first embodiment are labeled with the same reference numerals, and detailed descriptions thereof will be omitted. Also in third and other embodiments as described later, the constituent elements that are identical to those of thefuel cell stack 10 according to the first embodiment are labeled with the same reference numerals, and detailed descriptions thereof will be omitted. - The
power generation unit 102 includes afirst metal separator 104, a firstmembrane electrode assembly 106a, asecond metal separator 108, a secondmembrane electrode assembly 106b, and athird metal separator 109. - An oxygen-containing
gas supply passage 30a and a fuelgas discharge passage 32b extend through thepower generation unit 102 at upper end positions in the longitudinal direction. An oxygen-containinggas discharge passage 30b and a fuelgas supply passage 32a extend through thepower generation unit 102 at lower end positions in the longitudinal direction. - In the
power generation unit 102, the oxygen-containing gas flows in the first and second oxygen-containing gas flow fields 50, 66 in the direction of gravity, while the fuel gas flows in the first and second fuel gas flow fields 36, 58 in the direction opposite to gravity, i.e., in the direction opposite to the flow direction of the oxygen-containing gas. In the second embodiment, the oxygen-containing gas and the fuel gas flow in a counterflow manner. Further, the same advantages as in the case of the first embodiment are obtained. -
FIG. 7 is an exploded perspective view showing main components of apower generation unit 112 of afuel cell stack 110 according to a third embodiment of the present invention. - The
power generation unit 112 is formed by stacking afirst metal separator 114, a firstmembrane electrode assembly 116a, asecond metal separator 118, a secondmembrane electrode assembly 116b, and athird metal separator 120 in the direction of gravity. - In the third embodiment, the width of the
power generation unit 112 in the direction indicated by the arrow A is reduced as much as possible. In a state where a plurality ofpower generation units 112 are stacked together in the direction of gravity, the width of thefuel cell stack 110 is reduced. Further, the same advantages as in the case of the first and second embodiments are obtained. It should be noted that the oxygen-containing gas and the fuel gas may flow in a counterflow manner as in the case of the second embodiment. -
FIG. 8 is an exploded perspective view showing main components of apower generation unit 132 of afuel cell stack 130 according to a fourth embodiment of the present invention. - The
power generation unit 132 includes afirst carbon separator 134, a firstmembrane electrode assembly 136a, asecond carbon separator 138, a secondmembrane electrode assembly 136b, and athird carbon separator 140. - The
power generation units 132 are stacked in a horizontal direction indicated by an arrow A. Alternatively, thepower generation units 132 may be stacked in a vertical direction indicated by an arrow C as in the case of the third embodiment. The reactant gas flow field includes straight flow grooves instead of the corrugated flow grooves. - In the fourth embodiment, instead of the metal separators, the
first carbon separator 134, thesecond carbon separator 138, and thethird carbon separator 140 are used. Further, the same advantages as in the case of the first to third embodiments are obtained. -
FIG. 9 is an exploded perspective view showing main components of apower generation unit 152 of afuel cell stack 150 according to a fifth embodiment of the present invention. - The
power generation unit 152 includes afirst metal separator 154, a firstmembrane electrode assembly 156a, asecond metal separator 158, a secondmembrane electrode assembly 156b, and athird metal separator 160. - The
first metal separator 154 includes a first fuelgas flow field 162 on itssurface 154a facing the firstmembrane electrode assembly 156a. The first fuelgas flow field 162 connects a fuelgas supply passage 32a and a fuelgas discharge passage 32b. The first fuelgas flow field 162 includes a plurality ofcorrugated flow grooves 162a extending in a direction indicated by an arrow C. - As shown in
FIG. 10 , thecorrugated flow grooves 162a includefirst phase areas 164a having the same phase and which are arranged respectively on the upstream side (upper side) and on the downstream side (lower side), and asecond phase area 164b having a phase which is reverse to the phase of thefirst phase areas 164a and which is reversed throughphase reversing sections phase reversing sections FIG. 10 , in midstream. - A
coolant flow field 168 connecting a pair ofcoolant supply passages 34a and a pair ofcoolant discharge passages 34b is partially formed on asurface 154b of thefirst metal separator 154. On thesurface 154b, a plurality ofcorrugated flow grooves 168a are formed as the back surface of a plurality ofcorrugated flow grooves 162a of the first fuelgas flow field 162. - As schematically shown in
FIG. 11 , thecorrugated flow grooves 168a are formed between ridges on the back surface of thecorrugated flow grooves 162a.First phase areas 170a are provided on the upstream side (upper side) and the downstream side (lower side) of thecorrugated flow grooves 168a, and asecond phase area 170b in the reversed phase is formed in the intermediate area thereof. - As shown in
FIG. 9 , thesecond metal separator 158 has a first oxygen-containinggas flow field 172 on itssurface 158a facing the firstmembrane electrode assembly 156a. The first oxygen-containinggas flow field 172 connects the oxygen-containinggas supply passage 30a and the oxygen-containinggas discharge passage 30b. The first oxygen-containinggas flow field 172 includes a plurality ofcorrugated flow grooves 172a extending in the direction indicated by the arrow C. - As shown in
FIG. 12 , thecorrugated flow grooves 172a face thecorrugated flow grooves 162a of the first fuelgas flow field 162. In thefirst phase areas 164a, thecorrugated flow grooves 172a and thecorrugated flow grooves 162a are set at different phases. In thesecond phase area 164b, thecorrugated flow grooves 172a and thecorrugated flow grooves 162a are set at the same phase. - The
second metal separator 158 has a second fuelgas flow field 174 on itssurface 158b facing the secondmembrane electrode assembly 156b. The second fuelgas flow field 174 connects the fuelgas supply passage 32a and the fuelgas discharge passage 32b. As shown inFIG. 9 , the second fuelgas flow field 174 includes a plurality ofcorrugated flow grooves 174a extending in the direction indicated by the arrow C. - The
third metal separator 160 has a second oxygen-containinggas flow field 176 on itssurface 160a facing the secondmembrane electrode assembly 156b. The second oxygen-containinggas flow field 176 connects the oxygen-containinggas supply passage 30a and the oxygen-containinggas discharge passage 30b. The second oxygen-containinggas flow field 176 includes a plurality ofcorrugated flow grooves 176a extending in the direction indicated by the arrow C. Thecorrugated flow grooves 176a face thecorrugated flow grooves 174a. Thecorrugated flow grooves 176a and thecorrugated flow grooves 174a are set at the same phase. - The
coolant flow field 168 is partially formed on thesurface 160b of thethird metal separator 160. On thesurface 160b, a plurality ofcorrugated flow grooves 168b are formed as the back surface of thecorrugated flow grooves 176a of the second oxygen-containinggas flow field 176. - As shown in
FIG. 11 , thecorrugated flow grooves 168a of thefirst metal separator 154 and thecorrugated flow grooves 168b of thethird metal separator 160 are overlapped with each other to form thecoolant flow field 168. - In the
first phase areas 170a, thecorrugated flow grooves 168a and thecorrugated flow grooves 168b are in different phases. In thesecond phase area 170b, thecorrugated flow grooves 168a and thecorrugated flow grooves 168b are in the same phase, and form a corrugated flow field extending in the direction indicated by the arrow C. - In each of the
first phase areas 170a at the upper and lower positions, thecorrugated flow grooves 168a and thecorrugated flow grooves 168b are in different phases thereby to form a flow field extending in the direction indicated by the arrow B. - As shown in
FIG. 13 , thesurface 154b of thefirst metal separator 154 and thesurface 160b of thethird metal separator 160 are overlapped with each other. Thus, ridges on the back surfaces forming thecoolant flow field 168 contact each other to provide anupper contact area 178a, alower contact area 178b, and anintermediate contact area 178c. - In the
upper contact area 178a and thelower contact area 178b, the ridges on the back surfaces are in different phases, and thus are placed in point-contact with each other. In theintermediate contact area 178c, the ridges on the back surfaces are in the same phase thereby to form a flow field including a plurality of corrugated flow grooves extending in the direction indicated by the arrow C, between the respective ridges in theintermediate contact area 178c. - In the fifth embodiment, as shown in
FIG. 11 , in the first phase area (upstream area) 170a adjacent to thecoolant supply passages 34a and in the first phase area (downstream area) 170a adjacent to thecoolant discharge passages 34b, thecorrugated flow grooves 168a of thecoolant flow field 168 and thecorrugated flow grooves 168b thereof are set at different phases. - Further, in the second phase area (intermediate area) 170b of the
corrugated flow grooves 168a, thecorrugated flow grooves 168a and thecorrugated flow grooves 168b are in the same phase. Thus, in the intermediate area of thecoolant flow field 168, the flow direction of the coolant is the same as the flow direction of (at least one of) the oxygen-containing gas and the fuel gas. In the upstream area and the downstream area, the flow direction can be changed to a direction (indicated by the arrow B) intersecting the flow direction indicated by the arrow C. This is because, as shown inFIG. 13 , in each of the upstream area and the downstream area, theupper contact area 178a and thelower contact area 178b are in point-contact with each other. - Thus, the
coolant supply passages 34a and thecoolant discharge passages 34b can be formed on opposite left and right sides of thepower generation units 152. In the structure, the width of thepower generation unit 152 indicated by the arrow B is reduced effectively. - In particular, the
coolant supply passages 34a and thecoolant discharge passages 34b are disposed within the area of the spacing interval H in a horizontal direction indicated by the arrow B between the oxygen-containinggas supply passage 30a (oxygen-containinggas discharge passage 30b) and the fuelgas supply passage 32a (fuelgas discharge passage 32b). In the structure, the width of thepower generation unit 12 can be reduced as much as possible. - Further, in the intermediate area of the
coolant flow field 168, thecorrugated flow grooves power generation unit 152 is achieved suitably. - As the
power generation unit 152, a power generation unit formed by sandwiching one electrolyte electrode assembly between a pair of metal separators may be used, and the coolant flow field may be formed between the adjacent power generation units. -
FIG. 14 is an exploded perspective view showing main components of apower generation unit 192 of afuel cell stack 190 according to a sixth embodiment of the present invention. - The
power generation unit 192 is formed by sandwiching amembrane electrode assembly 194 between afirst metal separator 196 and asecond metal separator 198. Themembrane electrode assembly 194 includes ananode 24, acathode 26, and a solidpolymer electrolyte membrane 22 interposed between theanode 24 and thecathode 26. The surface area of theanode 24 is the same as the surface area of thecathode 26. - A first fuel
gas flow field 162 is formed on asurface 196a of thefirst metal separator 196 facing themembrane electrode assembly 194. On asurface 196b of thefirst metal separator 196,corrugated flow grooves 168a of thecoolant flow field 168 are formed as the back surface of the first fuelgas flow field 162. - A second oxygen-containing
gas flow field 176 is formed on asurface 198a of thesecond metal separator 198 facing themembrane electrode assembly 194. On asurface 198b of thesecond metal separator 198,corrugated flow grooves 168b of thecoolant flow field 168 are formed as the back surface of the second oxygen-containinggas flow field 176. - The
coolant flow field 168 is formed between the adjacentpower generation units 192, i.e., between asurface 196b of thefirst metal separator 196 of one of the adjacentpower generation units 192, and asurface 198b of thesecond metal separator 198 of the other of the adjacentpower generation units 192. - In the sixth embodiment, the
coolant flow field 168 is formed by the back surface of the first fuelgas flow field 162 and the back surface of the second oxygen-containinggas flow field 176. Thus, the same advantages as in the case of the fifth embodiment are obtained. - In the fifth and sixth embodiments, the fuel gas and the oxygen-containing gas flow in parallel to each other (i.e., in the same direction). However, the present invention is not limited in this respect. For example, the fuel gas and the oxygen-containing gas may flow in a counterflow manner (i.e., in opposite directions).
-
FIG. 15 is an exploded perspective view showing main components of apower generation unit 202 of afuel cell stack 200 according to a seventh embodiment of the present invention. - The
power generation unit 202 includes afirst metal separator 204, a firstmembrane electrode assembly 156a, asecond metal separator 158, a secondmembrane electrode assembly 156b, and athird metal separator 160. - As shown in
FIGS. 15 and16 , thefirst metal separator 204 has a first fuelgas flow field 162 on itssurface 204a facing the firstmembrane electrode assembly 156a. The first fuelgas flow field 162 connects the fuelgas supply passage 32a and the fuelgas discharge passage 32b. - In the
corrugated flow grooves 162a of the first fuelgas flow field 162, on the upstream side (upper side) and on the downstream side (lower side), thefirst phase areas 206a having the same phase are provided, and in the intermediate area, thesecond phase area 206b subjected to a phase shift by a half phase through thestraight sections straight sections FIG. 16 is shifted by a half pitch in the middle. - As shown in
FIG. 17 , thecorrugated flow grooves 168a of thefirst metal separator 204 are overlapped with thecorrugated flow grooves 168b of thethird metal separator 160 to form thecoolant flow field 168. - In the
first phase areas 206a, thecorrugated flow grooves 168a and thecorrugated flow grooves 168b are in the different phases. In thesecond phase area 206b, thecorrugated flow grooves 168a and thecorrugated flow grooves 168b form a corrugated flow field having the same phase, and extending in the direction indicated by the arrow C. - As shown in
FIG. 18 , thesurface 204b of thefirst metal separator 204 and thesurface 160b of thethird metal separator 160 are overlapped with each other. Thus, ridges on the back surfaces forming thecoolant flow field 168 contact each other thereby to provide anupper contact section 210a, alower contact section 210b, and anintermediate contact section 210c. - In the
upper contact section 210a and thelower contact section 210b, ridges on the back surfaces are in different phases, i.e., the ridges are in point-contact with each other. In theintermediate contact section 210c, ridges on the back surfaces are in the same phase. Therefore, theintermediate contact section 210c has a corrugated shape extending in the direction indicated by the arrow C. A plurality of corrugated flow grooves extending in the direction indicated by the arrow C are formed between the ridges of theintermediate contact section 210c.
Thus, in the seventh embodiment, thecoolant supply passages 34a and thecoolant discharge passages 34b are formed on left and right opposite sides of thepower generation unit 202. Further, the same advantages as in the case of the fifth and sixth embodiments are obtained. For example, the coolant can be supplied in the same direction as the flow direction of the oxygen-containing gas and the fuel gas smoothly and reliably.
Claims (7)
- A fuel cell stack formed by stacking power generation units (12) together, the power generation units (12) each being formed by stacking an electrolyte electrode assembly (16a) and a separator (14) having a rectangular shape in a plan view, the electrolyte electrode assembly (16a) including a pair of electrodes (24, 26) and an electrolyte (22) interposed between the electrodes (24, 26), the fuel cell stack comprising:a gas flow field (36) formed on a surface of the separator (14) facing the electrode (24) for supplying a fuel gas or an oxygen-containing gas as a reactant gas along the electrode (24);a coolant flow field (44) formed between the power generation units (12);reactant gas supply passages (30a, 32a) and reactant gas discharge passages (30b, 32b) for flowing the reactant gases and which extend through one pair of opposite sides of the separator (14) in a stacking direction; anda pair of coolant supply passages (34a) and a pair of coolant discharge passages (34b) for flowing a coolant and which extend through the other opposite sides of the separator (14) in the stacking direction, the pair of the coolant supply passages (34a) and the pair of the coolant discharge passages (34b) being positioned adjacent to at least the reactant gas supply passages (30a, 32a) or the reactant gas discharge passages (30b, 32b), the pair of the coolant supply passages (34a) being disposed separately on the other opposite sides of the separator (14), the pair of the coolant discharge passages (34b) being disposed separately on the other opposite sides of the separator (14).
- The fuel cell stack according to claim 1,
wherein the separator (14) is elongated longitudinally,
the reactant gas supply passages (30a, 32a) and the reactant gas discharge passages (30b, 32b) extend through short sides of the separator; and
the coolant supply passages (34a) and the coolant discharge passages (34b) extend through opposite long sides of the separator. - The fuel cell stack according to claim 2,
wherein the coolant supply passages (34a) and the coolant discharge passages (34b) have longitudinally-elongated shapes which extend along the long sides. - A fuel cell stack formed by stacking a plurality of power generation units (152) together, the power generation units (152) each being formed by stacking an electrolyte electrode assembly (156a) and a metal separator (154) having a rectangular shape in a plan view, the electrolyte electrode assembly (156a) including a pair of electrodes (24, 26) and an electrolyte (22) interposed between the electrodes (24, 26), the fuel cell stack comprising:reactant gas supply passages (30a, 32a) and reactant gas discharge passages (30b, 32b) extending through one pair of opposite sides of the power generation unit (152) in a stacking direction;a coolant supply passage (34a) and a coolant discharge passage (34b) extending through the other opposite sides of the power generation unit (152) in the stacking direction, the coolant supply passage (34a) being positioned adjacent to the reactant gas supply passages (30a, 32a) and the coolant discharge passage (34b) being positioned adjacent to the reactant gas discharge passages (30b, 32b);corrugated oxygen-containing gas flow grooves (176a) formed on a surface of one (160) of adjacent metal separators facing the electrode (26) for supplying an oxygen-containing gas as one reactant gas along the electrode (26), and corrugated fuel gas flow grooves (162a) formed on a surface of the other (154) of the adjacent metal separators facing the electrode (24) for supplying the fuel gas as the other reactant gas along the electrode (24); anda coolant flow field (168) formed between the adjacent power generation units (152) by ridges on the back surface of the corrugated oxygen-containing gas flow grooves (176a) and ridges on the back surface of the corrugated fuel gas flow grooves (162a),wherein the respective ridges on the back surfaces are set at different phases in an upstream area adjacent to the coolant supply passage (34a) and in a downstream area adjacent to the coolant discharge passage (34b), and are set at the same phase in an intermediate area where the flow direction of the coolant is the same as at least the flow direction of the oxygen-containing gas or the fuel gas.
- The fuel cell stack according to claim 4,
wherein the corrugated oxygen-containing gas flow grooves (176a) or the corrugated fuel gas flow grooves (162a) include phase reversing sections where phase reversal occurs between the upstream and downstream areas and the intermediate area. - The fuel cell stack according to claim 4,
wherein the corrugated oxygen-containing gas flow grooves (176a) or the corrugated fuel gas flow grooves (162a) include straight sections (208a, 208b) through which a phase shift by a half-phase is caused between the upstream and downstream areas and the intermediate area. - The fuel cell stack according to any one of claims 4 to 6, wherein the metal separator (154) is elongated longitudinally;
the oxygen-containing gas supply passage (30a) and the fuel gas supply passage (32a) serving as the reactant gas supply passages extend through an upper end side of the metal separator (154) in a longitudinal direction thereof;
the oxygen-containing gas discharge passage (30b) and the fuel gas discharge passage (32b) serving as the reactant gas discharge passages extend through a lower end side of the metal separator (154) in the longitudinal direction; and
on opposite sides of the metal separator (154) in a lateral direction thereof, a pair of the coolant supply passages (34a) are positioned adjacent to the oxygen-containing gas supply passage (30a) and the fuel gas supply passage (32a), and a pair of the coolant discharge passages (34b) are positioned adjacent to the oxygen-containing gas discharge passage (30b) and the fuel gas discharge passage (32b).
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009008041 | 2009-01-16 | ||
JP2009083882 | 2009-03-31 | ||
EP10731258.9A EP2381521B1 (en) | 2009-01-16 | 2010-01-14 | Fuel cell stack |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP10731258.9 Division | 2010-01-14 | ||
EP10731258.9A Division EP2381521B1 (en) | 2009-01-16 | 2010-01-14 | Fuel cell stack |
Publications (3)
Publication Number | Publication Date |
---|---|
EP2587576A2 true EP2587576A2 (en) | 2013-05-01 |
EP2587576A3 EP2587576A3 (en) | 2013-09-25 |
EP2587576B1 EP2587576B1 (en) | 2014-09-24 |
Family
ID=42339843
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP13152707.9A Not-in-force EP2587576B1 (en) | 2009-01-16 | 2010-01-14 | Fuel cell stack |
EP10731258.9A Not-in-force EP2381521B1 (en) | 2009-01-16 | 2010-01-14 | Fuel cell stack |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP10731258.9A Not-in-force EP2381521B1 (en) | 2009-01-16 | 2010-01-14 | Fuel cell stack |
Country Status (5)
Country | Link |
---|---|
US (2) | US20110274999A1 (en) |
EP (2) | EP2587576B1 (en) |
JP (1) | JP5693968B2 (en) |
CN (1) | CN102282708B (en) |
WO (1) | WO2010082589A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102013216587B4 (en) | 2013-08-21 | 2023-12-28 | Robert Bosch Gmbh | Geometry of a highly efficient media distributor for an electrolysis cell and an electrolysis stack |
Families Citing this family (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5415122B2 (en) * | 2009-03-31 | 2014-02-12 | 本田技研工業株式会社 | Fuel cell stack |
JP5123279B2 (en) * | 2009-11-25 | 2013-01-23 | 本田技研工業株式会社 | Fuel cell |
JP5280468B2 (en) * | 2011-02-04 | 2013-09-04 | 本田技研工業株式会社 | Fuel cell |
JP5395840B2 (en) | 2011-04-07 | 2014-01-22 | 本田技研工業株式会社 | Fuel cell |
JP5808695B2 (en) * | 2011-04-22 | 2015-11-10 | 本田技研工業株式会社 | Fuel cell |
GB201204736D0 (en) * | 2012-03-19 | 2012-05-02 | Intelligent Energy Ltd | Fuel cell fluid distribution |
US9350029B2 (en) | 2012-11-21 | 2016-05-24 | Honda Motor Co., Ltd. | Fuel cell stack |
JP6045980B2 (en) * | 2012-11-26 | 2016-12-14 | 本田技研工業株式会社 | Fuel cell stack |
JP5802648B2 (en) | 2012-12-25 | 2015-10-28 | 本田技研工業株式会社 | Fuel cell |
JP6059036B2 (en) * | 2013-02-18 | 2017-01-11 | 本田技研工業株式会社 | Fuel cell stack |
DE202013003969U1 (en) * | 2013-04-29 | 2014-08-04 | Theodor Gräbener GmbH & Co. KG | Bipolar half shell of a bipolar plate for fuel cells or Elektrolyseurstacks |
DE112014004252B4 (en) * | 2013-09-17 | 2017-11-02 | Honda Motor Co., Ltd. | fuel cell stack |
JP6122406B2 (en) * | 2013-09-27 | 2017-04-26 | 本田技研工業株式会社 | Fuel cell stack |
CN103700865B (en) * | 2013-12-18 | 2015-12-09 | 清华大学 | A kind of metal double polar plates for fuel cell |
DE102014206336A1 (en) * | 2014-04-02 | 2015-10-08 | Volkswagen Ag | Bipolar plate, fuel cell and a motor vehicle |
KR102024259B1 (en) * | 2016-08-12 | 2019-09-23 | 주식회사 엘지화학 | Separator, and Fuel cell stack comprising the same |
USD924137S1 (en) * | 2017-09-08 | 2021-07-06 | Soyo Oishi | Electrode plate |
CN108172857B (en) * | 2017-11-23 | 2021-02-02 | 同济大学 | Fuel cell stack flow field plate supporting high-current-density discharge |
KR20190078917A (en) * | 2017-12-27 | 2019-07-05 | 현대자동차주식회사 | Fuel cell stack |
JP6874724B2 (en) * | 2018-03-28 | 2021-05-19 | トヨタ自動車株式会社 | Fuel cell |
JP6874725B2 (en) | 2018-03-28 | 2021-05-19 | トヨタ自動車株式会社 | Fuel cell |
JP7067363B2 (en) | 2018-03-28 | 2022-05-16 | トヨタ自動車株式会社 | Fuel cell |
CN110854404B (en) * | 2018-08-21 | 2021-07-30 | 上海汽车集团股份有限公司 | Fuel cell bipolar plate and electric pile |
FR3092203B1 (en) * | 2019-01-24 | 2021-01-01 | Commissariat Energie Atomique | BIPOLAR PLATE FOR HOMOGENIZING THE COOLANT TEMPERATURE |
CN114759212B (en) * | 2022-06-16 | 2022-09-16 | 爱德曼氢能源装备有限公司 | Bipolar plate for fuel cell |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09161819A (en) | 1995-12-06 | 1997-06-20 | Fuji Electric Co Ltd | Solid polymer electrolytic fuel cell |
JP2008536258A (en) | 2005-03-15 | 2008-09-04 | ハイドロジェニクス コーポレイション | Arrangement of flow field plate |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IT1293814B1 (en) * | 1997-08-04 | 1999-03-10 | De Nora Spa | ION EXCHANGE MEMBRANE FUEL CELL WITH PERIPHERAL COOLING |
JP3971969B2 (en) * | 2002-02-26 | 2007-09-05 | 本田技研工業株式会社 | Polymer electrolyte fuel cell |
JP3599280B2 (en) * | 2002-05-17 | 2004-12-08 | 本田技研工業株式会社 | Fuel cell |
US20040096715A1 (en) * | 2002-11-14 | 2004-05-20 | 3M Innovative Properties Company | Liquid cooled fuel cell stack |
JP4917755B2 (en) * | 2005-03-08 | 2012-04-18 | 本田技研工業株式会社 | Fuel cell |
JP4753599B2 (en) * | 2005-03-17 | 2011-08-24 | 本田技研工業株式会社 | Fuel cell |
JP4948823B2 (en) * | 2005-11-16 | 2012-06-06 | 本田技研工業株式会社 | Fuel cell stack |
JP5090651B2 (en) * | 2006-03-02 | 2012-12-05 | 本田技研工業株式会社 | Fuel cell |
JP5119619B2 (en) | 2006-07-21 | 2013-01-16 | 日産自動車株式会社 | Fuel cell |
JP5064888B2 (en) * | 2007-05-23 | 2012-10-31 | 本田技研工業株式会社 | Fuel cell |
JP5216240B2 (en) * | 2007-05-24 | 2013-06-19 | 本田技研工業株式会社 | Fuel cell |
-
2010
- 2010-01-14 US US13/144,893 patent/US20110274999A1/en not_active Abandoned
- 2010-01-14 EP EP13152707.9A patent/EP2587576B1/en not_active Not-in-force
- 2010-01-14 WO PCT/JP2010/050301 patent/WO2010082589A1/en active Application Filing
- 2010-01-14 EP EP10731258.9A patent/EP2381521B1/en not_active Not-in-force
- 2010-01-14 JP JP2010546634A patent/JP5693968B2/en not_active Expired - Fee Related
- 2010-01-14 CN CN201080004409.0A patent/CN102282708B/en active Active
-
2017
- 2017-03-29 US US15/473,185 patent/US9905880B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09161819A (en) | 1995-12-06 | 1997-06-20 | Fuji Electric Co Ltd | Solid polymer electrolytic fuel cell |
JP2008536258A (en) | 2005-03-15 | 2008-09-04 | ハイドロジェニクス コーポレイション | Arrangement of flow field plate |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102013216587B4 (en) | 2013-08-21 | 2023-12-28 | Robert Bosch Gmbh | Geometry of a highly efficient media distributor for an electrolysis cell and an electrolysis stack |
Also Published As
Publication number | Publication date |
---|---|
EP2381521A1 (en) | 2011-10-26 |
US20170207478A1 (en) | 2017-07-20 |
JP5693968B2 (en) | 2015-04-01 |
US20110274999A1 (en) | 2011-11-10 |
EP2381521B1 (en) | 2013-07-10 |
WO2010082589A1 (en) | 2010-07-22 |
EP2381521A4 (en) | 2012-07-11 |
EP2587576B1 (en) | 2014-09-24 |
US9905880B2 (en) | 2018-02-27 |
CN102282708A (en) | 2011-12-14 |
CN102282708B (en) | 2015-07-01 |
EP2587576A3 (en) | 2013-09-25 |
JPWO2010082589A1 (en) | 2012-07-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2587576B1 (en) | Fuel cell stack | |
JP4344484B2 (en) | Solid polymer cell assembly | |
US7718298B2 (en) | Bifurcation of flow channels in bipolar plate flowfields | |
US7790326B2 (en) | Fuel cell and separator for fuel cell | |
CN107251300B (en) | Flat-plate type fuel cell | |
US20120295180A1 (en) | Fuel cell stack | |
JP2002260710A (en) | Solid polymer cell assembly, fuel cell stack and supply method of reactive gas for fuel cell | |
JP2002260709A (en) | Solid polymer cell assembly, fuel cell stack and operation method of fuel cell | |
US20100316924A1 (en) | Fuel cell | |
US9590254B2 (en) | Fuel cell stack | |
US8465880B2 (en) | Fuel cell stack | |
JP5449838B2 (en) | Fuel cell stack | |
US8802312B2 (en) | Fuel cell separators capable of suppressing variation in pressure loss | |
US8574781B2 (en) | Fuel cell stack | |
JP5297990B2 (en) | Fuel cell | |
US8409767B2 (en) | Fuel cell | |
JP5274908B2 (en) | Fuel cell stack | |
JP4516630B2 (en) | Solid polymer cell assembly | |
JP4572252B2 (en) | Fuel cell stack | |
JP5583824B2 (en) | Fuel cell | |
JP5415122B2 (en) | Fuel cell stack | |
JP5123824B2 (en) | FUEL CELL STACK AND METHOD OF OPERATING FUEL CELL STACK | |
JP5336221B2 (en) | Fuel cell stack | |
JP4228895B2 (en) | Solid oxide fuel cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20130125 |
|
AC | Divisional application: reference to earlier application |
Ref document number: 2381521 Country of ref document: EP Kind code of ref document: P |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: H01M 8/02 20060101AFI20130528BHEP Ipc: H01M 8/10 20060101ALI20130528BHEP Ipc: H01M 8/24 20060101ALI20130528BHEP |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: H01M 8/10 20060101ALI20130816BHEP Ipc: H01M 8/02 20060101AFI20130816BHEP Ipc: H01M 8/24 20060101ALI20130816BHEP |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: H01M 8/10 20060101ALN20140407BHEP Ipc: H01M 8/02 20060101AFI20140407BHEP Ipc: H01M 8/24 20060101ALI20140407BHEP |
|
INTG | Intention to grant announced |
Effective date: 20140428 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: H01M 8/24 20060101ALI20140416BHEP Ipc: H01M 8/10 20060101ALN20140416BHEP Ipc: H01M 8/02 20060101AFI20140416BHEP |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: H01M 8/02 20060101AFI20140519BHEP Ipc: H01M 8/24 20060101ALI20140519BHEP Ipc: H01M 8/10 20060101ALN20140519BHEP |
|
INTG | Intention to grant announced |
Effective date: 20140603 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AC | Divisional application: reference to earlier application |
Ref document number: 2381521 Country of ref document: EP Kind code of ref document: P |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 688962 Country of ref document: AT Kind code of ref document: T Effective date: 20141015 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602010019197 Country of ref document: DE Effective date: 20141106 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141225 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140924 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140924 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140924 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141224 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D Ref country code: NL Ref legal event code: VDEP Effective date: 20140924 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140924 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140924 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140924 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 688962 Country of ref document: AT Kind code of ref document: T Effective date: 20140924 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140924 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150126 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140924 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140924 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140924 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140924 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140924 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150124 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140924 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140924 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602010019197 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140924 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140924 Ref country code: LU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150114 |
|
26N | No opposition filed |
Effective date: 20150625 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140924 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150131 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150131 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20150930 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150202 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150114 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140924 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140924 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140924 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140924 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20100114 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140924 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140924 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R084 Ref document number: 602010019197 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 746 Effective date: 20180814 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20190109 Year of fee payment: 10 Ref country code: DE Payment date: 20190102 Year of fee payment: 10 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602010019197 Country of ref document: DE |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20200114 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200801 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200114 |