EP2585684B1 - Eingehäusige dampfturbine mit zwischenüberhitzung - Google Patents

Eingehäusige dampfturbine mit zwischenüberhitzung Download PDF

Info

Publication number
EP2585684B1
EP2585684B1 EP11741154.6A EP11741154A EP2585684B1 EP 2585684 B1 EP2585684 B1 EP 2585684B1 EP 11741154 A EP11741154 A EP 11741154A EP 2585684 B1 EP2585684 B1 EP 2585684B1
Authority
EP
European Patent Office
Prior art keywords
turbine
working medium
region
partition
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP11741154.6A
Other languages
English (en)
French (fr)
Other versions
EP2585684A1 (de
Inventor
Mathias Funke
Ralf Kozak
Bernd Leidinger
Lutz Neumann
Jörg Eppendorfer
Hartmut Schreiber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to PL11741154T priority Critical patent/PL2585684T3/pl
Publication of EP2585684A1 publication Critical patent/EP2585684A1/de
Application granted granted Critical
Publication of EP2585684B1 publication Critical patent/EP2585684B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/001Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between stator blade and rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/02Preventing or minimising internal leakage of working-fluid, e.g. between stages by non-contact sealings, e.g. of labyrinth type
    • F01D11/04Preventing or minimising internal leakage of working-fluid, e.g. between stages by non-contact sealings, e.g. of labyrinth type using sealing fluid, e.g. steam
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/02Preventing or minimising internal leakage of working-fluid, e.g. between stages by non-contact sealings, e.g. of labyrinth type
    • F01D11/04Preventing or minimising internal leakage of working-fluid, e.g. between stages by non-contact sealings, e.g. of labyrinth type using sealing fluid, e.g. steam
    • F01D11/06Control thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/24Casings; Casing parts, e.g. diaphragms, casing fastenings
    • F01D25/26Double casings; Measures against temperature strain in casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/02Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being of multiple-expansion type
    • F01K7/025Consecutive expansion in a turbine or a positive displacement engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/31Application in turbines in steam turbines

Definitions

  • the present invention relates to a turbine system, in particular a steam turbine system, and a method for operating the turbine system.
  • steam In steam power plants, steam is used to operate steam turbines as the working medium.
  • the steam is heated in a steam boiler and flows via pipelines into the steam turbine.
  • the previously absorbed energy of the working medium is converted into kinetic energy.
  • a generator By means of kinetic energy, a generator is operated, which converts the generated mechanical power into electrical power.
  • the expanded and cooled steam flows into a condenser where it is condensed by heat transfer in a heat exchanger and returned as liquid water to the steam boiler for heating.
  • the steam is reheated after a first turbine stage in a reheater before the water vapor is fed back to a second turbine stage.
  • the steam is heated further beyond its evaporation temperature and fed to the following second turbine stage.
  • a reheating of the water vapor is carried out between the individual turbine stages. This leads to a higher efficiency, since by means of the superheated steam more efficient mechanical energy can be generated in the turbine stages.
  • the material of the outer wall in particular highly stressed between the turbine stages.
  • the colder water vapor is removed, fed to the reheater, and the heated water vapor is fed to the second turbine stage.
  • high temperature differences occur in the outer wall in the transition between the first turbine stage and the second turbine stage. Since the end of the first turbine stage, from which the colder steam is removed and the beginning of the second turbine stage, in which the hot steam is supplied from the reheater, are close to each other, high thermal stresses occur in the outer wall. This can lead to leaks or cracks in the outer wall.
  • a turbine system including a friction preventing device for a steam turbine seal case (2) is known.
  • the device has a rotor shaft (1), which is surrounded by sealing lamellae (3), which are mounted on a sealing ring (2a).
  • the sealing ring (2a) is connected via support rings (2b) to the seal housing (2) radially inwardly.
  • the sealing ring (2a) is coupled to a heating device (4) by means of which the sealing ring can be heated. If the temperature of an auxiliary steam flow which is provided by an auxiliary steam boiler is too low, the sealing ring (2a) is heated via the heating system (4) in order to avoid a contraction of the sealing ring.
  • the heating takes place in the mass that at the same time a rubbing of the sealing plates (5) with the rotor shaft (1) is avoided.
  • the seal housing (2) has a temperature sensor (5) in order to keep the temperature of the sealing ring constant.
  • a turbine system in particular a steam turbine system
  • the turbine system has a turbine shaft, a first one Turbine area and a second turbine area.
  • the second turbine region is arranged in the axial direction of the turbine shaft after the first turbine region.
  • the turbine system has a housing with an outer wall, a first partition and a second partition.
  • the outer wall has an extension along the first turbine region and the second turbine region in the axial direction.
  • the outer wall extends, for example, along the first turbine region and the second turbine region substantially in the axial direction.
  • the first divider wall and the second divider wall are each coupled to the outer wall and each have a radial extension toward the turbine shaft so that the first divider wall limits the expansion of the first turbine region in the axial direction and the second turbine wall limits the extension of the second turbine region in the axial direction ,
  • the first partition wall is spaced from the second partition wall along the axial direction such that a gap is defined, which is bounded at least by a part of the outer wall, the first partition wall and the second partition wall.
  • the first dividing wall is set up such that a first working medium can be flowed into the intermediate space from the first turbine region with a first working pressure and wherein the second dividing wall is set up such that a second working medium with a second working pressure, which is lower than the first working pressure, for example can be flowed from the second turbine region in the intermediate space, so that a fluid mixture of the first working medium and the second working medium in the intermediate space can be generated, wherein a first mass flow (m1) of the first working medium (A1) due to the formation of the first partition wall (111 ) and a second mass flow (m2) of the second working medium (A2) are adjustable such that in the intermediate space (104) the fluid mixture (Fm) has a mean temperature range with respect to the first temperature (T1) of the first working medium (A1) in the first turbine section (101) and the second en temperature (T2) of the second working medium (A2) in the second turbine section (102), and wherein the first working medium (A1) and the second working medium (A2) to the fluid mixture (F
  • the first working medium with the first working pressure from the first turbine region is flowed into the intermediate space.
  • the second working medium is at the second working pressure, which is lower than the first working pressure, flowed from the second turbine region in the intermediate space, so that a fluid mixture of the first working medium and the second working medium in the gap, and adjusting the first mass flow (m1) of the first working medium (A1) due to the formation of the first partition wall (111) and the second mass flow (m2) of the second working medium (A2) the formation of the second partition wall (112) such that in the intermediate space (104) the fluid mixture (Fm) has a mean temperature range with respect to the first temperature (T1) of the first working medium (A1) in the first turbine region (101) and the second temperature (T2 ) of the second working medium (A2) in the second turbine region (102), wherein the first working medium (A1) and the second working medium (A2) are mixed to form the fluid mixture (
  • the first working pressure in the first turbine region has a higher working pressure than a second working pressure of the second working medium.
  • the first turbine region can therefore form the high-pressure turbine and the second turbine region the low-pressure turbine of the turbine system.
  • turbine region describes a turbine stage.
  • a turbine section includes, for example, functional elements such as a stator or a moving space and / or a guide for a rotor or a turbine runner.
  • functional elements such as a stator or a moving space and / or a guide for a rotor or a turbine runner.
  • a combustion chamber can be set up in a turbine area.
  • the first working medium is understood as the working medium which flows through the first turbine region and has a first working pressure and a first temperature in the first turbine region.
  • the second working medium is understood as the working medium which flows through the second turbine region and has a second working pressure and a second temperature.
  • the outer wall of the housing is understood as the one boundary of the housing, which in particular the largest radial Distance from the turbine shaft has. Furthermore, the outer wall extends in the longitudinal direction substantially parallel to the turbine shaft. In this case, the outer wall extends along the first turbine region, the second turbine region and the Gap and forms part of the lateral surface of the housing.
  • the axial direction can be understood as the direction which runs along the turbine shaft from the first turbine region to the second turbine region.
  • the axial direction is defined as the direction along the turbine shaft along which the working fluid flows from a first high pressure turbine region to a second lower pressure turbine region than in the first turbine region.
  • dividing wall is understood to mean a wall which extends essentially radially or radially expands and which extends from the outer wall in the direction of the turbine shaft.
  • a partition wall particularly defines a turbine area in the axial direction. In other words, a turbine region is defined in the axial direction by the region which is bounded by two partitions, which extend essentially radially.
  • the first partition wall is in particular that partition wall which delimits the first turbine area in the direction of the adjacent second turbine area.
  • the second partition wall is the partition wall of the second turbine section which is located closest to the first partition wall.
  • the gap is formed.
  • the space is bounded by the first partition, the outer wall and the second partition.
  • the gap is limited for example by the turbine shaft or by other radially arranged elements.
  • the intermediate space differs, for example, from the turbine areas in that a medium in the intermediate space does no work, so that no energy of the medium in the intermediate space is converted into mechanical energy.
  • the intermediate space has no functional internals which are involved in the energy conversion (eg rotors, Stators), on.
  • the gap may moreover also comprise functional devices which are not directly involved in the energy conversion.
  • the first working medium and the second working medium can flow into the intermediate space through devices in the first dividing wall and the second dividing wall. This creates the fluid mixture in the intermediate space.
  • mixing parameters such as a certain fluid temperature and a certain fluid pressure, which is the result of mixing the respective first and second parameters of the first and second working medium are.
  • the intermediate space is formed, in particular, in that the fluid mixture in the intermediate space is in thermal contact with the outer wall or with the area of the outer wall which forms the intermediate space. Thus, heating or cooling of the outer wall can be produced by the fluid mixture.
  • a gap is provided between the first turbine region and the second turbine region.
  • the region of the outer wall that runs along the first turbine region no longer directly adjoins the region of the outer wall that runs along the second turbine region.
  • the first working medium and the second working medium is now mixed to form a fluid mixture, so that ever after proportional volume, a certain fluid temperature is formed, which in particular has a temperature range between the first temperature of the first working medium and the second temperature of the second working medium.
  • an average temperature corresponding to the fluid temperature of the fluid mixture is set in the region of the intermediate space on the outer wall.
  • the high temperature differences between the first working medium in the first turbine region and the second working medium in the second temperature region in the transition region between the first turbine region and the second turbine region are reduced on the outer wall.
  • the material stress of the outer wall is reduced.
  • the temperature transition along the outer wall is stretched from the first turbine region to the second turbine region, or a larger transition region is provided.
  • the outer wall is integrally formed.
  • the outer wall is integrally formed along the first turbine section, the intermediate space, and the second turbine section. Due to the reduction of the thermal stresses by forming a gap between the first turbine region and the second turbine region, an integrally formed outer wall is possible.
  • the material of the outer wall is reduced due to the reduced thermal stresses along the first turbine region and the second turbine region by the intervening gap, so that, for example, no expansion gaps are necessary. This can be done in one and the same Manufacturing process, for example, in one and the same casting, the outer wall are poured, so that a cheaper and faster manufacturing process of the outer wall and thus the housing is made possible. Further, mounting steps that would be necessary to mount a plurality of different outer wall parts are eliminated.
  • a first mass flow of the first working medium due to the formation of the first dividing wall and a second mass flow of the second working medium due to the formation of the second partition so adjustable that in the intermediate space, the fluid mixture, a mean temperature range with respect to the first temperature of the first working medium in the first turbine region and the second temperature of the second working medium in the second temperature range can be generated.
  • the middle temperature range comprises a temperature of the fluid mixture which is between the temperature of the first working medium and the temperature of the second working medium.
  • the dividing walls can control the mass flows by the dividing walls having, for example, an opening with a predetermined opening diameter.
  • control valves can be installed in each of these openings in order to variably control the first mass flow or the second mass flow.
  • the first mass flow or the second mass flow can be controlled by the formation of the respective partition wall in that a radial expansion of the respective partition wall from the outer wall in the direction of the turbine shaft is predetermined, so that forms a predefined opening gap between the turbine shaft and the respective partition ,
  • the first partition wall is formed such that a first gap between the first partition wall and the turbine shaft is formed, so that the first working medium of the first turbine portion in the intermediate space, in particular with a predetermined first mass flow, einströmbar is.
  • the second partition wall may be formed such that a second gap is formed between the second partition wall and the turbine shaft, so that the second working medium can be flowed into the intermediate space with a predetermined second mass flow from the second turbine region.
  • the turbine system comprises a sealing element disposed between the first partition wall and / or the second partition wall and the turbine shaft to control the inflow of the first mass flow or the second mass flow in the gap.
  • the sealing element may in particular be arranged in the first gap and / or the second gap, so that a predetermined first mass flow or a predetermined second mass flow is adjustable.
  • the sealing element may be arranged non-rotatably, for example, on the turbine shaft or on the respective partition wall.
  • the sealing element may have a sealing ring or a labyrinth seal.
  • the outer wall in the first turbine region has a first opening for the outflow of the first working medium from the housing. Due to the outflow of the first working medium from the first opening, a specific first working pressure in the first turbine region can be set.
  • the effluent working fluid can be fed to a reheater. In the reheater, for example, at a substantially constant first working pressure, the first temperature of the first working medium is increased until the first temperature corresponds to the value of the second temperature. through reheat of the working fluid increases the efficiency of the turbine system.
  • the outer wall in the second turbine region has a second opening for the flow of the second working medium into the housing.
  • the superheated second working medium can flow through the second opening, so that the effectiveness of the turbine system is increased.
  • the second opening is in particular configured such that the second working medium can be supplied from the reheater.
  • the first working medium is supplied, then superheated and discharged as the second working medium with the second temperature and the second working pressure.
  • the second working medium has substantially the same pressure as the first working pressure, wherein the second working medium has a significantly higher second temperature as a result of the reheating compared to the first temperature of the first working medium.
  • the outer wall in the region of the intermediate space has a third opening, from which the fluid mixture can flow out of the housing.
  • the outflow of the fluid mixture by means of the third opening is controllable such that a fluid pressure of the fluid mixture in the intermediate space is less than the first working pressure of the first working medium in the first turbine region and less than the second working pressure of the second working medium in the second turbine region ,
  • a fluid pressure of the fluid mixture in the intermediate space is less than the first working pressure of the first working medium in the first turbine region and less than the second working pressure of the second working medium in the second turbine region .
  • the turbine system has a control valve which is coupled to the third opening for controlling the outflow of the fluid mixture.
  • the fluid pressure is adjustable.
  • the turbine system further includes a pressure chamber coupled to control the outflow of the fluid mixture to the third port.
  • the fluid mixture can be flowed in from the intermediate space.
  • the pressure chamber is adapted to adjust the fluid pressure of the fluid mixture in the pressure chamber.
  • a mass flow of the outflowing fluid mixture can also be set.
  • the pressure difference of the fluid pressure in the intermediate space on the one hand and the first working pressure and the second working pressure on the other hand be increased or reduced, which in turn is the first mass flow and the second mass flow adjustable.
  • the outer wall extends in the axial direction along a third turbine region, wherein the third turbine region is arranged in the axial direction after the second turbine region.
  • the outer wall in the third turbine region has a fourth opening which is coupled to the third opening in such a way that the fluid mixture can be flown in from the outside of the housing into the third turbine region through the fourth opening.
  • the fluid mixture can be flowed into the third turbine region for further energy release.
  • the fluid mixture which serves for thermal compensation of the outer wall between the first and second turbine region, can thus be further processed efficiently become. Thus, a high efficiency is generated in the entire steam cycle of the turbine system.
  • the third turbine region can furthermore have a further intermediate space in the region of the inflow of the fluid mixture through the fourth opening, so that the inflowing fluid mixture tempers the region along the further gap of the outer wall.
  • the same fluid mixture can reduce thermal stresses even in a transition region of the outer wall between the second turbine region and the third turbine region.
  • a separation of the mostly colder first working medium and the intermediate overheated hotter second working medium is created on the outer wall along the gap.
  • the fluid mixture generated in the intermediate space is removed, for example by coupling a pressure chamber to the intermediate space, wherein the fluid mixture in the pressure chamber has a lower pressure than the fluid pressure in the intermediate space.
  • a mixing temperature In the space adjusts itself by the inflow of the first working medium and the second working medium, a mixing temperature, whereby the temperature gradient between the usually colder first working fluid and the usually hotter second working fluid is distributed over a larger axial extent.
  • an integrally molded outer housing can be created so that joints can be unnecessary.
  • an additional inflow housing for reducing the temperature of the superheated steam can be dispensed with.
  • larger volumes or mass flows of the working medium are manageable, in particular, since the steam connections can be connected directly to the outer housing without passing through the additional inflow housing.
  • the figure shows an exemplary embodiment of the turbine system according to an embodiment of the present invention.
  • the figure shows a turbine system 100, in particular a steam turbine system, according to an exemplary embodiment of the present invention.
  • the turbine system 100 has a turbine shaft 105, a first turbine region 101 and a second turbine region 102.
  • the second turbine region 101 is arranged in the axial direction 106 of the turbine shaft 105 after the first turbine region 101.
  • the turbine system 100 has a housing 110 with an outer wall 113, a first partition 111 and a second partition 112.
  • the outer wall 113 has an extension along the turbine shaft 105.
  • the outer wall 113 extends along the first turbine portion 101 and the second turbine portion 102 in the axial direction 106.
  • the first Partition wall 111 and second partition wall 112 are respectively coupled to outer wall 113 and each have a radial extension toward turbine shaft 105 such that first partition wall 111 limits expansion of first turbine section 101 in axial direction 106 and second partition wall 112 limits expansion of the second turbine section bounded in the axial direction.
  • the first partition wall 111 is spaced from the second partition wall 112 along the axial direction 106 such that a gap 104 is formed, which is bounded at least by a part of the outer wall 113 of the first partition wall 111 and the second partition wall 112.
  • the first partition wall 111 is set up such that a first working medium A1 can be flowed into the intermediate space 104 with a first working pressure P1 from the first turbine region 101.
  • the second dividing wall 112 is set up in such a way that a second working medium A 2 having a second working pressure P 2, which is lower than the first working pressure P 1 for example, can be flowed into the intermediate space 104 from the second turbine region 102, so that a fluid mixture Fm of the first working medium A1 and the second working medium A2 in the intermediate space 104 can be generated.
  • the first partition wall 111 and / or the second partition wall 112 can be produced, for example, in one piece together with the outer wall 113, in particular by means of a casting method.
  • the first partition wall 111 and / or the second partition wall 112 can be manufactured separately or independently of the outer wall 113 and subsequently connected to the outer wall 113, for example by means of a screw connection or by electron beam welding.
  • the first turbine region 101 there is a turbine device 130, such as a rotor or a stator, via which the first working medium A1 emits energy and converts it into mechanical energy.
  • the first working medium A1 can through the first partition 111 flow through.
  • the first partition wall 111 has a flow-through opening, or, as shown in the figure, a first gap 114.
  • the first gap 114 is defined, for example, by the distance of the radial end of the first turbine wall 111 to the turbine shaft 105.
  • a sealing element 116 such as a labyrinth seal, may be arranged.
  • the second working medium A2 is located in the second turbine region 102. Between the second dividing wall 112 and the turbine shaft 105, a second gap 115 is provided, through which the second working medium A2 flows into the intermediate space 104.
  • the second mass flow M2 of the second working medium A2 can be adjusted via the dimensioning of the second gap 115 and / or via a sealing element 116 arranged in the second gap 115.
  • the first working medium A1 and the second working medium A2 mix to form a fluid mixture Fm.
  • the fluid pressure Pm of the fluid mixture Fm depends on the one hand on the size of the first mass flow m1 and the second mass flow m2.
  • the first mass flow m1 and the second mass flow m2 in turn depend on the size of the passage in the first partition wall 111 and the second partition wall 112 and in addition on the first working pressure P1 and the second working pressure P2.
  • the pressure Pm of the fluid mixture Fm depends on how much fluid mixture Fm flows out of the intermediate space 104, for example via a third opening 119.
  • a predetermined fluid temperature Tm is set in the gap 104.
  • the fluid mixture Fm transfers thermal energy to the region of the outer wall 113, which extends in the longitudinal direction (axial direction 106) along the gap 104.
  • a first working pressure of approximately 40-50 bar and a first temperature of approximately 300-400 ° C. prevail.
  • the superheated second working medium A2 can flow in via a second opening 118.
  • a working pressure P2 of approximately 35-45 bar and a second temperature T2 of approximately 500-600 ° C. prevail. Accordingly, the outer wall 113 is heated in the region of the first turbine region 101 with the first temperature T1 and the outer wall 113 along the second turbine region 102 with the second temperature T2.
  • a fluid temperature Tm of approximately 400-500 ° C. is established by controlling the first mass flow m1 and the second mass flow m2.
  • the fluid temperature Tm is selected such that approximately the average temperature between the first temperature T1 and the second temperature T2 in the intermediate space 104 is set.
  • a fluid pressure Pm of the fluid mixture Fm in the clearance 104 which is smaller than the first working pressure P1 and the second working pressure P2, that is, is set. about 30 to 40 bar.
  • the outer wall 113 in the region of the intermediate space 104 is heated with the fluid temperature Tm of the fluid mixture Fm.
  • the outer wall 113 along the gap 104 the corresponding average temperature, since the outer wall 113 along the gap 104 is tempered by the fluid mixture.
  • the introduction of the intermediate space 104 thus reduces the thermal stress in the outer wall 113 in the axial direction 106, since smaller temperature jumps occur.
  • the figure shows that in the first turbine region 101, the first opening 117 is arranged, through which the first working medium A1 can flow out and, for example, a heater 109 (eg reheater) can be fed.
  • a heater 109 eg reheater
  • the first working pressure P1 is kept substantially constant, while the first working medium A1 is heated to the second temperature T2.
  • the second working medium A2 flows out, which now has the second temperature T2, which is generally higher than the first temperature T1.
  • the second working medium A2 is supplied through the second opening 118 to the second turbine section 102.
  • the second working pressure P2 of the second working medium A2 is due to line losses usually slightly lower than the first working pressure P1 of the first working medium A1.
  • the fluid mixture Fm flows out.
  • a control valve 107 may be coupled to the third opening 119. Via the control valve 107, the outflow is controlled selectively, so that a predetermined fluid pressure Pm prevails in the intermediate space 104. This takes place in particular by the fact that a targeted flow of the fluid mixture Fm from the intermediate space 104, an inflow of the first working medium A1 with the first mass flow M1 and an inflow of the second working medium A2 with the second mass flow M2 is controllable.
  • the more fluid mixture Fm flows out through the third opening 119, the lower the fluid pressure Pm, whereby the more of the first working medium A1 and the second working medium A2 flows into the intermediate space 104.
  • a pressure chamber 108 may be coupled to the third opening 119.
  • the fluid mixture Fm is cached and further processed.
  • a targeted outflow of the fluid mixture Fm through the third opening 119 can also be adjusted by means of the pressure chamber 108.
  • the fluid mixture Fm can either be supplied to the environment or be flowed through a conduit through a fourth opening 120 into a third turbine region 103.
  • the fluid mixture Fm serves as the third working medium A3, which has a third working pressure P3 and a third temperature T3.
  • energy can be extracted from the third working medium A3 via turbine device 130 and converted into mechanical energy.
  • the fluid mixture Fm can also be supplied to a further intermediate space, which is formed, for example, between the second turbine region 102 and the third turbine region 103.
  • a further intermediate space which is formed, for example, between the second turbine region 102 and the third turbine region 103.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Control Of Turbines (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Description

    Technisches Gebiet
  • Die vorliegende Erfindung betrifft ein Turbinensystem, insbesondere ein Dampfturbinensystem, und ein Verfahren zum Betreiben des Turbinensystems.
  • Hintergrund der Erfindung
  • In Dampfkraftwerken wird zum Betrieb von Dampfturbinen als Arbeitsmedium Dampf verwendet. Der Wasserdampf wird in einem Dampfkessel erwärmt und strömt über Rohrleitungen in die Dampfturbine. In der Dampfturbine wird die zuvor aufgenommene Energie des Arbeitsmediums in Bewegungsenergie umgewandelt. Mittels der Bewegungsenergie wird ein Generator betrieben, welcher die erzeugte mechanische Leistung in elektrische Leistung umwandelt. Danach strömt der entspannte und abgekühlte Dampf in einen Kondensator, wo er durch Wärmeübertragung in einem Wärmetauscher kondensiert und als flüssiges Wasser erneut dem Dampfkessel zum Erhitzen zugeführt wird.
  • Um die Effizienz eines Dampfkraftwerks zu erhöhen, wird der Wasserdampf nach einer ersten Turbinenstufe in einem Zwischenüberhitzer zwischenerhitzt, bevor der Wasserdampf einer zweiten Turbinenstufe erneut zugeführt wird. In dem Überhitzer wird der Wasserdampf über seine Verdampfungstemperatur hinaus weiter erhitzt und der folgenden zweiten Turbinenstufe zugeführt. Bei mehrstufigen Dampfturbinen wird zwischen den einzelnen Turbinenstufen eine solche Zwischenüberhitzung des Wasserdampfs durchgeführt. Dies führt zu einer höheren Effizienz, da mittels des überhitzten Wasserdampfs effizienter mechanische Energie in den Turbinenstufen erzeugbar ist.
  • Bei der Implementierung von Zwischenüberhitzungssystemen in Dampfturbinen wird das Material der Außenwand insbesondere zwischen den einzelnen Turbinenstufen hoch beansprucht. An der ersten Turbinenstufe wird der kältere Wasserdampf entnommen, dem Zwischenüberhitzer zugeführt und der aufgeheizte Wasserdampf der zweiten Turbinenstufe zugeführt. Dabei treten in der Außenwand im Übergang zwischen der ersten Turbinenstufe und der zweiten Turbinenstufe hohe Temperaturdifferenzen auf. Da das Ende der ersten Turbinenstufe, aus der der kältere Wasserdampf entnommen wird und der Beginn der zweiten Turbinenstufe, in welchem der heiße Wasserdampf aus dem Zwischenüberhitzer zugeführt wird, eng beieinander liegen, treten hohe thermische Spannungen in der Außenwand auf. Dies kann zu Undichtigkeiten oder zu Rissen in der Außenwand führen. Ferner besteht die Gefahr, dass bei Entnahme des kalten Wasserdampfes aus der ersten Turbinenstufe Nassdampfparameter herrschen und dadurch an der Innenwand des Außengehäuses Kondensat beaufschlagt wird. Das Kondensat kühlt die Innenseite der Außenwand zusätzlich ab. Somit wird die thermische Spannung an der Außenwand erhöht. Die Temperaturen des überhitzten Wasserdampfes werden zur Reduktion der thermischen Spannungen daher abgekühlt, damit der überhitzte Wasserdampf keine schädlichen thermischen Spannungen verursacht. Dies wird üblicherweise in vorgeschalteten Einströmgehäusen durchgeführt. Diese zusätzlichen Einströmgehäuse können allerdings zu Energieverlusten führen.
  • Aus der JP 06 185303 ist beispiesweise ein Turbinensystem bekannt, welches eine Reibung-verhindernde Vorrichtung für ein Dampfturbinen-Dichtungsgehäuse (2) beinhaltet. Die Vorrichtung weist eine Rotorwelle (1) auf, welche von Dichtungslamellen (3) umgeben ist, wobei diese auf einen Dichtungsring (2a) angebracht sind. Der Dichtungsring (2a) ist dabei über Stützringe (2b) an das Dichtungsgehäuse (2) radial innen verbunden. Der Dichtungsring (2a) ist mit einer Heizvorrichtung (4) gekoppelt, mittels welcher der Dichtungsring erwärmt werden kann. Sofern die Temperatur eines Hilfsdampfstroms welcher von einem Hilfsdampfkessel bereitgestellt wird zu niedrig ist, wird über das Heizsystem (4) der Dichtungsring (2a) erwärmt, um eine Kontraktion des Dichtungsrings zu vermeiden. Dabei erfolgt das Erwärmen in dem Masse, dass gleichzeitig ein Reiben der Dichtungslamellen (5) mit der Rotorwelle (1) vermieden wird. Zu diesem Zweck weist das Dichtungsgehäuse (2) einen Temperatursensor (5) auf, um die Temperatur des Dichtungsrings konstant zu halten.
  • Darstellung der Erfindung
  • Es ist eine Aufgabe der vorliegenden Erfindung, thermische Spannungen in einer Außenwand einer Turbine zu reduzieren. Diese Aufgabe wird durch ein Turbinensystem, insbesondere ein Dampfturbinensystem, und ein Verfahren zum Betreiben des Dampfturbinensystems gemäß den unabhängigen Ansprüchen gelöst.
  • Gemäß einem ersten Aspekt der vorliegenden Erfindung wird ein Turbinensystem, insbesondere ein Dampfturbinensystem geschaffen. Das Turbinensystem weist eine Turbinenwelle, einen ersten Turbinenbereich und einen zweiten Turbinenbereich auf. Der zweite Turbinenbereich ist in Axialrichtung der Turbinenwelle nach dem ersten Turbinenbereich angeordnet. Ferner weist das Turbinensystem ein Gehäuse mit einer Außenwand, einer ersten Trennwand und einer zweiten Trennwand auf. Die Außenwand weist eine Ausdehnung entlang des ersten Turbinenbereichs und des zweiten Turbinenbereichs in Axialrichtung auf. Die Außenwand verläuft z.B. entlang des ersten Turbinenbereichs und des zweiten Turbinenbereichs im Wesentlichen in Axialrichtung. Die erste Trennwand und die zweite Trennwand sind jeweils mit der Außenwand gekoppelt und weisen jeweils eine radiale Ausdehnung hin zu der Turbinenwelle auf, so dass die erste Trennwand die Ausdehnung des ersten Turbinenbereichs in Axialrichtung eingrenzt und die zweite Turbinenwand die Ausdehnung des zweiten Turbinenbereichs in Axialrichtung eingrenzt. Die erste Trennwand ist von der zweiten Trennwand entlang der Axialrichtung derart beabstandet, dass ein Zwischenraum gebildet ist, welcher zumindest von einem Teil der Außenwand, der ersten Trennwand und der zweiten Trennwand eingegrenzt ist. Die erste Trennwand ist derart eingerichtet, dass ein erstes Arbeitsmedium mit einem ersten Arbeitsdruck aus dem ersten Turbinenbereich in den Zwischenraum einströmbar ist und wobei die zweite Trennwand derart eingerichtet ist, dass ein zweites Arbeitsmedium mit einem zweiten Arbeitsdruck, welcher z.B. niedriger als der erste Arbeitsdruck sein kann, aus dem zweiten Turbinenbereich in den Zwischenraum einströmbar ist, so dass eine Fluidmischung des ersten Arbeitsmediums und des zweiten Arbeitsmediums in dem Zwischenraum erzeugbar ist, wobei ein erster Massenstrom (m1) des ersten Arbeitsmediums (A1) aufgrund der Ausbildung der ersten Trennwand (111) und ein zweiter Massenstrom (m2) des zweiten Arbeitsmediums (A2) aufgrund der Ausbildung der zweiten Trennwand (112) derart einstellbar sind, dass in dem Zwischenraum (104) die Fluidmischung (Fm) einen mittleren Temperaturbereich bezüglich der ersten Temperatur (T1) des ersten Arbeitsmediums (A1) im ersten Turbinenbereich (101) und der zweiten Temperatur (T2) des zweiten Arbeitsmediums (A2) im zweiten Turbinenbereich (102) aufweist, und wobei das erste Arbeitsmedium (A1) und das zweite Arbeitsmedium (A2) zu der Fluidmischung (Fm) vermischt werden, so dass dadurch je nach anteiligem Volumen eine bestimmte Fluidtemperatur entsteht, welche den Temperaturbereich zwischen der ersten Temperatur (T1) des ersten Arbeitsmediums (A1) und der zweiten Temperatur (T2) des zweiten Arbeitsmediums (A2) aufweist.
  • Gemäß eines weiteren Aspekts der vorliegenden Erfindung wird ein Verfahren zum Betreiben des oben beschriebenen Turbinensystems beschrieben. Gemäß dem Verfahren wird das erste Arbeitsmedium mit dem ersten Arbeitsdruck aus dem ersten Turbinenbereich in den Zwischenraum eingeströmt. Das zweite Arbeitsmedium wird mit dem zweiten Arbeitsdruck, welcher niedriger als der erste Arbeitsdruck ist, aus dem zweiten Turbinenbereich in dem Zwischenraum eingeströmt, so dass eine Fluidmischung des ersten Arbeitsmediums und des zweiten Arbeitsmediums in dem Zwischenraum erzeugt wird, und Einstellen des ersten Massenstroms (m1) des ersten Arbeitsmediums (A1) aufgrund der Ausbildung der ersten Trennwand (111) und des zweiten Massenstroms (m2) des zweiten Arbeitsmediums (A2) aufgrund der Ausbildung der zweiten Trennwand (112) derart, dass in dem Zwischenraum (104) die Fluidmischung (Fm) einen mittleren Temperaturbereich bezüglich der ersten Temperatur (T1) des ersten Arbeitsmediums (A1) im ersten Turbinenbereich (101) und der zweiten Temperatur (T2) des zweiten Arbeitsmediums (A2) im zweiten Turbinenbereich (102) aufweist, wobei das erste Arbeitsmedium (A1) und das zweite Arbeitsmedium (A2) zu der Fluidmischung (Fm) vermischt werden, so dass dadurch je nach anteiligem Volumen eine bestimmte Fluidtemperatur entsteht, welche den Temperaturbereich zwischen der ersten Temperatur (T1) des ersten Arbeitsmediums (A1) und der zweiten Temperatur (T2) des zweiten Arbeitsmediums (A2) aufweist.
  • In einer beispielhaften Ausführungsform der Erfindung weist der erste Arbeitsdruck in dem ersten Turbinenbereich einen höheren Arbeitsdruck als ein zweiter Arbeitsdruck des zweiten Arbeitsmediums auf. Der erste Turbinenbereich kann daher die Hochdruckturbine und der zweite Turbinenbereich die Niederdruckturbine des Turbinensystems bilden.
  • Unter dem Begriff "Turbinenbereich" wird beispielsweise eine Turbinenstufe beschrieben. Ein Turbinenbereich beinhaltet beispielsweise funktionale Elemente, wie beispielsweise einen Stator oder einen Bewegungsraum und/oder eine Führung für einen Rotor bzw. einen Turbinenläufer. In einem Turbinenbereich wird ein Energieanteil des Arbeitsmediums in mechanische Energie umgewandelt. Ferner kann in einem Turbinenbereich eine Brennkammer eingerichtet sein.
  • Als Arbeitsmedium können beispielsweise Wasserdampf oder auch andere Fluide im gasförmigen Zustand eingesetzt werden. Ferner kann als Arbeitsmedium auch ein beliebiges Fluid im Dampfstadium mit flüssigen und gasförmigen Bestandteilen verstanden werden. Das erste Arbeitsmedium wird als das Arbeitsmedium verstanden, welches den ersten Turbinenbereich durchströmt und in dem ersten Turbinenbereich einen ersten Arbeitsdruck und eine erste Temperatur aufweist. Das zweite Arbeitsmedium wird als dasjenige Arbeitsmedium verstanden, welches den zweiten Turbinenbereich durchströmt und einen zweiten Arbeitsdruck und eine zweite Temperatur aufweist.
  • Die Außenwand des Gehäuses wird als diejenige Begrenzung des Gehäuses verstanden, welche insbesondere den größten radialen Abstand zur Turbinenwelle aufweist. Ferner erstreckt sich die Außenwand in Längsrichtung im Wesentlichen parallel zu der Turbinenwelle. Dabei verläuft die Außenwand entlang des ersten Turbinenbereichs, des zweiten Turbinenbereichs und des Zwischenraums und bildet einen Teil der Mantelfläche des Gehäuses.
  • Die Axialrichtung kann als diejenige Richtung verstanden werden, welche entlang der Turbinenwelle von dem ersten Turbinenbereich zu dem zweiten Turbinenbereich verläuft. Die Axialrichtung wird beispielsweise als die Richtung entlang der Turbinenwelle definiert, entlang welcher das Arbeitsmedium von einem ersten Turbinenbereich mit einem hohen Druck zu einem zweiten Turbinenbereich mit einem niedrigeren Druck als im ersten Turbinenbereich strömt.
  • Unter dem Begriff "Trennwand" wird eine im Wesentlichen radial verlaufende bzw. eine sich radial ausdehnende Wand verstanden, welche ausgehend von der Außenwand in Richtung Turbinenwelle verläuft. Eine Trennwand grenzt insbesondere einen Turbinenbereich in Axialrichtung ein. Mit anderen Worten wird ein Turbinenbereich in Axialrichtung durch den Bereich definiert, welcher durch zwei Trennwände, welche im Wesentlichen radial verlaufen, eingegrenzt ist. Die erste Trennwand ist insbesondere diejenige Trennwand, welche den ersten Turbinenbereich in Richtung des angrenzenden zweiten Turbinenbereichs begrenzt. Die zweite Trennwand ist diejenige Trennwand des zweiten Turbinenbereichs, welche am nächsten zu der ersten Trennwand angeordnet ist.
  • Durch eine Beabstandung der ersten Trennwand in Axialrichtung zu der zweiten Trennwand entsteht der Zwischenraum. Der Zwischenraum ist von der ersten Trennwand, der Außenwand und der zweiten Trennwand eingegrenzt. In radialer Richtung wird der Zwischenraum beispielsweise durch die Turbinenwelle oder durch andere radial angeordnete Elemente begrenzt. Der Zwischenraum unterscheidet sich beispielsweise von den Turbinenbereichen dadurch, dass ein Medium in dem Zwischenraum keine Arbeit verrichtet, so dass keine Energie des Mediums im Zwischenraum in mechanische Energie umgesetzt wird. Der Zwischenraum weist insbesondere keine funktionalen Einbauten, welche an der Energieumwandlung beteiligt sind (z.B. Rotoren, Statoren), auf. Der Zwischenraum kann darüber hinaus auch funktionale Einrichtungen aufweisen, welche nicht direkt an der Energieumwandlung beteiligt sind.
  • In den Zwischenraum können durch Vorrichtungen in der ersten Trennwand und der zweiten Trennwand jeweils das erste Arbeitsmedium und das zweite Arbeitsmedium einströmen. Dadurch entsteht im Zwischenraum die Fluidmischung. Je nach einströmender Masse pro Zeiteinheit (Massenstrom) des ersten Arbeitsmediums und des zweiten Arbeitsmediums in den Zwischenraum entstehen für die Fluidmischung jeweils Mischparameter, wie beispielsweise eine bestimmte Fluidtemperatur und ein bestimmter Fluiddruck, welche das Ergebnis der Mischung der jeweiligen ersten und zweiten Parameter des ersten und zweiten Arbeitsmediums sind. Der Zwischenraum ist insbesondere dadurch gebildet, dass die Fluidmischung in dem Zwischenraum in thermischem Kontakt mit der Außenwand steht, bzw. mit dem Bereich der Außenwand, welcher den Zwischenraum bildet. Somit kann ein Erwärmen bzw. ein Abkühlen der Außenwand durch die Fluidmischung erzeugt werden.
  • Mit der vorliegenden Erfindung wird ein Zwischenraum zwischen dem ersten Turbinenbereich und dem zweiten Turbinenbereich bereitgestellt. Dadurch grenzt der Bereich der Außenwand, welcher entlang des ersten Turbinenbereichs verläuft, nicht länger direkt an dem Bereich der Außenwand an, welcher entlang des zweiten Turbinenbereichs verläuft. Bei einem solchen direkten Übergang des ersten Turbinenbereichs auf den zweiten Turbinenbereich entstehen im Übergang an der Außenwand hohe Temperatursprünge. Aufgrund der unterschiedlichen Temperaturen zwischen dem ersten Arbeitsmedium und dem zweiten Arbeitsmedium können daher große Temperatursprünge in dem Übergangsbereich an der Außenwand entstehen, welche zu hohen thermischen Spannungen im Material der Außenwand führen.
  • Mit dem erzeugten Zwischenraum gemäß der vorliegenden Erfindung wird nun das erste Arbeitsmedium und das zweite Arbeitsmedium zu einer Fluidmischung vermischt, so dass dadurch je nach anteiligem Volumen eine bestimmte Fluidtemperatur entsteht, welche insbesondere einen Temperaturbereich zwischen der ersten Temperatur des ersten Arbeitsmediums und der zweiten Temperatur des zweiten Arbeitsmediums aufweist. Dadurch wird im Bereich des Zwischenraums an der Außenwand eine mittlere Temperatur entsprechend der Fluidtemperatur der Fluidmischung eingestellt. Dadurch reduzieren sich an der Außenwand die hohen Temperaturunterschiede zwischen dem ersten Arbeitsmedium im ersten Turbinenbereich und dem zweiten Arbeitsmedium im zweiten Temperaturbereich im Übergangsbereich zwischen dem ersten Turbinenbereich und dem zweiten Turbinenbereich. Somit wird auch die Materialbeanspruchung der Außenwand reduziert. Mit anderen Worten wird aufgrund des Zwischenraums der Temperaturübergang entlang der Außenwand von dem ersten Turbinenbereich zu dem zweiten Turbinenbereich gestreckt bzw. ein größerer Übergangsbereich bereitgestellt.
  • Durch die geringeren thermischen Spannungen an der Außenwand im Übergangsbereich wird insbesondere die Materialbeanspruchung der Außenwand reduziert. Ferner werden die thermischen Dehnungen der Außenwand beherrschbarer, so dass geringe Spaltenmaße an der Außenwand eingeplant werden müssen. Dies führt insbesondere dazu, dass die Dichtigkeit des Gehäuses erhöht wird.
  • Gemäß einer weiteren beispielhaften Ausführungsform ist die Außenwand einstückig geformt. Gemäß der beispielhaften Ausführungsform ist die Außenwand insbesondere einstückig entlang des ersten Turbinenbereichs, des Zwischenraums und des zweiten Turbinenbereichs ausgebildet. Aufgrund der Verringerung der thermischen Spannungen durch Bilden eines Zwischenraums zwischen dem ersten Turbinenbereich und dem zweiten Turbinenbereich ist eine einstückig geformte Außenwand möglich. Das Material der Außenwand wird aufgrund der reduzierten thermischen Spannungen entlang des ersten Turbinenbereichs und des zweiten Turbinenbereichs durch den dazwischen liegenden Zwischenraum reduziert, so dass beispielsweise keine Dehnungsspalten notwendig sind. Damit kann in ein und demselben Fertigungsvorgang, z.B. in ein und demselben Gießvorgang, die Außenwand gegossen werden, so dass ein kostengünstigeres und schnelleres Herstellverfahren der Außenwand und somit des Gehäuses ermöglicht wird. Ferner fallen Montageschritte weg, welche notwendig wären, um eine Vielzahl von verschiedenen Außenwandteilen zu montieren.
  • Gemäß einer weiteren beispielhaften Ausführungsform sind ein erster Massenstrom des ersten Arbeitsmediums aufgrund der Ausbildung der ersten Trennwand und ein zweiter Massenstrom des zweiten Arbeitsmediums aufgrund der Ausbildung der zweiten Trennwand derart einstellbar, dass in dem Zwischenraum die Fluidmischung ein mittlerer Temperaturbereich bezüglich der ersten Temperatur des ersten Arbeitsmediums im ersten Turbinenbereich und der zweiten Temperatur des zweiten Arbeitsmediums im zweiten Temperaturbereich erzeugbar ist. Der mittlere Temperaturbereich umfasst eine Temperatur der Fluidmischung, welche zwischen der Temperatur des ersten Arbeitsmediums und der Temperatur des zweiten Arbeitsmediums liegt. Mit dieser mittleren Fluidtemperatur im Zwischenraum wird entsprechend der Bereich der Außenwand im Zwischenraum temperiert. Somit wird ein schonenderer Temperaturübergang von der ersten Temperatur zu der zweiten Temperatur geschaffen, so dass thermische Spannungen der Außenwand reduziert werden.
  • Die Trennwände können aufgrund ihrer Ausbildung die Massenströme dadurch steuern, indem die Trennwände beispielsweise eine Öffnung mit einem vorbestimmten Öffnungsdurchmesser aufweisen. Darüber hinaus können in diese Öffnungen jeweils Steuerventile eingebaut sein, um variabel den ersten Massenstrom bzw. den zweiten Massenstrom zu steuern.
  • Ferner kann der erste Massenstrom bzw. der zweite Massenstrom durch die Ausbildung der jeweiligen Trennwand dadurch gesteuert werden, dass eine radiale Ausdehnung der jeweiligen Trennwand von der Außenwand in Richtung Turbinenwelle vorbestimmt ist, so dass sich ein vordefinierter Öffnungsspalt zwischen der Turbinenwelle und der jeweiligen Trennwand bildet. Dementsprechend ist in einer weiteren beispielhaften Ausführungsform der Erfindung die erste Trennwand derart ausgebildet, dass ein erster Spalt zwischen der ersten Trennwand und der Turbinenwelle gebildet ist, so dass das erste Arbeitsmedium von dem ersten Turbinenbereich in den Zwischenraum, insbesondere mit einem vorbestimmten ersten Massenstrom, einströmbar ist. Entsprechend kann in einer weiteren beispielhaften Ausführungsform die zweite Trennwand derart ausgebildet sein, dass ein zweiter Spalt zwischen der zweiten Trennwand und der Turbinenwelle gebildet ist, so dass das zweite Arbeitsmedium mit einem vorbestimmten zweiten Massenstrom von dem zweiten Turbinenbereich in den Zwischenraum, einströmbar ist.
  • Gemäß einer weiteren beispielhaften Ausführungsform weist das Turbinensystem ein Dichtelement auf, welches zwischen der ersten Trennwand und/oder der zweiten Trennwand und der Turbinenwelle angeordnet ist, um das Einströmen des ersten Massenstroms oder des zweiten Massenstroms in dem Zwischenraum zu steuern. Das Dichtelement kann insbesondere in dem ersten Spalt und/oder dem zweiten Spalt angeordnet sein, damit ein vorbestimmter erster Massenstrom bzw. ein vorbestimmter zweiter Massenstrom einstellbar ist. Das Dichtelement kann beispielsweise an der Turbinenwelle oder an der jeweiligen Trennwand drehfest angeordnet sein. Das Dichtelement kann einen Dichtungsring oder eine Labyrinthdichtung aufweisen.
  • Gemäß einer weiteren beispielhaften Ausführungsform weist die Außenwand in dem ersten Turbinenbereich eine erste Öffnung zum Ausströmen des ersten Arbeitsmediums aus dem Gehäuse auf. Durch das Ausströmen des ersten Arbeitsmediums aus der ersten Öffnung kann ein bestimmter erster Arbeitsdruck im ersten Turbinenbereich eingestellt werden. Darüber hinaus ist das ausströmende Arbeitsmedium einem Zwischenüberhitzer zuführbar. In dem Zwischenüberhitzer wird beispielsweise bei im Wesentlichen gleichbleibendem erstem Arbeitsdruck die erste Temperatur des ersten Arbeitsmediums erhöht, bis die erste Temperatur dem Wert der zweiten Temperatur entspricht. Mittels einer Zwischenüberhitzung des Arbeitsmediums wird die Effizienz des Turbinensystems erhöht.
  • In einer weiteren beispielhaften Ausführungsform weist die Außenwand in dem zweiten Turbinenbereich eine zweite Öffnung zum Einströmen des zweiten Arbeitsmediums in das Gehäuse auf. Durch die zweite Öffnung kann beispielsweise das überhitzte zweite Arbeitsmedium einströmen, damit die Effektivität des Turbinensystems erhöht wird. Die zweite Öffnung ist insbesondere derart eingerichtet, dass das zweite Arbeitsmedium von dem Zwischenüberhitzer zuführbar ist. In dem Zwischenüberhitzer wird beispielsweise das erste Arbeitsmedium zugeführt, anschließend überhitzt und als zweites Arbeitsmedium mit der zweiten Temperatur und dem zweiten Arbeitsdruck abgeführt. Das zweite Arbeitsmedium weist im Wesentlichen den gleichen Druck wie der ersten Arbeitsdruck auf, wobei das zweite Arbeitsmedium durch die Zwischenüberhitzung eine deutlich höhere zweite Temperatur im Vergleich zu der ersten Temperatur des ersten Arbeitsmediums aufweist.
  • Gemäß einer weiteren beispielhaften Ausführungsform weist die Außenwand im Bereich des Zwischenraums eine dritte Öffnung auf, aus welcher die Fluidmischung aus dem Gehäuse ausströmbar ist. Durch ein gesteuertes Ausströmen der Fluidmischung aus dem Zwischenraum kann beispielsweise der Fluiddruck in dem Zwischenraum eingestellt werden.
  • Gemäß einer weiteren beispielhaften Ausführungsform ist das Ausströmen der Fluidmischung mittels der dritten Öffnung derart steuerbar, dass ein Fluiddruck der Fluidmischung im Zwischenraum kleiner als der erste Arbeitsdruck des ersten Arbeitsmediums in dem ersten Turbinenbereich und kleiner als der zweite Arbeitsdruck des zweiten Arbeitsmediums in dem zweiten Turbinenbereich ist. Durch die Einstellung des Fluiddrucks der Fluidmischung im Zwischenraum kann darüber hinaus der erste Massenstrom des ersten Arbeitsmediums und der zweite Massenstrom des zweiten Arbeitsmediums eingestellt werden. Je höher das Druckgefälle zwischen dem Fluiddruck und dem ersten Arbeitsdruck bzw. dem zweiten Arbeitsdruck, desto höher ist der erste Massenstrom bzw. der zweite Massenstrom.
  • Gemäß einer weiteren beispielhaften Ausführungsform weist das Turbinensystem ein Steuerventil auf, welches zur Steuerung des Ausströmens der Fluidmischung an die dritte Öffnung gekoppelt ist. Mittels des Steuerventils ist der Fluiddruck einstellbar.
  • Gemäß einer weiteren beispielhaften Ausführungsform weist das Turbinensystem ferner eine Druckkammer auf, welche zur Steuerung des Ausströmens der Fluidmischung an die dritte Öffnung gekoppelt ist. In die Druckkammer ist die Fluidmischung aus dem Zwischenraum einströmbar. Die Druckkammer ist eingerichtet, den Fluiddruck der Fluidmischung in der Druckkammer einzustellen. Abhängig von dem Fluiddruck der Fluidmischung in der Druckkammer kann ebenfalls ein Massenstrom der ausströmenden Fluidmischung eingestellt werden. Somit kann beispielsweise die Druckdifferenz des Fluiddrucks in dem Zwischenraum einerseits und dem ersten Arbeitsdruck bzw. dem zweiten Arbeitsdruck andererseits erhöht oder reduziert werden, womit wiederum den erste Massenstrom und der zweite Massenstrom einstellbar ist.
  • Gemäß einer weiteren beispielhaften Ausführungsform verläuft die Außenwand in Axialrichtung entlang eines dritten Turbinenbereichs, wobei der dritte Turbinenbereich in Axialrichtung nach dem zweiten Turbinenbereich angeordnet ist. Die Außenwand in dem dritten Turbinenbereich weist eine vierte Öffnung auf, welche mit der dritten Öffnung derart gekoppelt ist, dass die Fluidmischung von außerhalb des Gehäuses in den dritten Turbinenbereich durch die vierte Öffnung einströmbar ist. Mit der beispielhaften Ausführungsform kann insbesondere die Fluidmischung zur weiteren Energieabgabe in den dritten Turbinenbereich eingeströmt werden. Die Fluidmischung, welche zum thermischen Ausgleich der Außenwand zwischen dem ersten und zweiten Turbinenbereich dient, kann somit effizient weiterverarbeitet werden. Damit wird im gesamten Dampfkreislauf des Turbinensystems eine hohe Effizienz erzeugt.
  • Der dritte Turbinenbereich kann ferner im Bereich der Einströmung der Fluidmischung durch die vierte Öffnung einen weiteren Zwischenraum aufweisen, so dass die einströmende Fluidmischung den Bereich entlang des weiteren Zwischenraums der Außenwand temperiert. Somit kann dieselbe Fluidmischung thermische Spannungen auch in einem Übergangsbereich der Außenwand zwischen dem zweiten Turbinenbereich und dem dritten Turbinenbereich reduzieren.
  • Mit der vorliegenden Erfindung wird an der Außenwand entlang des Zwischenraums eine Trennung des meist kälteren ersten Arbeitsmediums und des zwischenüberhitzten heißeren zweiten Arbeitsmediums geschaffen. Aus dem Zwischenraum wird die im Zwischenraum erzeugte Fluidmischung abgeführt, beispielsweise durch Ankopplung einer Druckkammer an den Zwischenraum, wobei die Fluidmischung in der Druckkammer einen niedrigeren Druck als der Fluiddruck im Zwischenraum aufweist. In dem Zwischenraum stellt sich durch das Einströmen des ersten Arbeitsmediums und des zweiten Arbeitsmediums eine Mischtemperatur ein, womit das Temperaturgefälle zwischen dem meist kälteren ersten Arbeitsmedium und dem meist heißeren zweiten Arbeitsmedium auf eine größere axiale Erstreckung verteilt wird. Somit können z.B. Dichtigkeiten von Trennfugen in den Grenzbereichen der Turbinenbereiche besser eingestellt werden. Darüber hinaus kann ein einstückig geformtes Außengehäuse geschaffen werden, so dass Trennfugen gar unnötig werden können. Ferner kann auf ein zusätzliches Einströmgehäuse zum Reduzieren der Temperatur des überhitzten Wasserdampfes verzichtet werden. Damit sind größere Volumen bzw. Massenströme des Arbeitsmediums beherrschbar, insbesondere, da die Dampfanschlüsse direkt an dem Außengehäuse ohne ein Durchlaufen des zusätzlichen Einströmgehäuses angeschlossen werden können.
  • Es wird darauf hingewiesen, dass die hier beschriebenen Ausführungsformen lediglich eine beschränkte Auswahl an möglichen Ausführungsvarianten der Erfindung darstellen. So ist es möglich, die Merkmale einzelner Ausführungsformen in geeigneter Weise miteinander zu kombinieren, so dass für den Fachmann mit den hier expliziten Ausführungsvarianten eine Vielzahl von verschiedenen Ausführungsformen als offensichtlich offenbart anzusehen sind.
  • Kurze Beschreibung der Zeichnung
  • Im Folgenden werden zur weiteren Erläuterung und zum besseren Verständnis der vorliegenden Erfindung Ausführungsbeispiele unter Bezugnahme auf die beigefügte Figur näher beschrieben.
  • Die Figur zeigt eine beispielhafte Ausführungsform des Turbinensystems gemäß einem Ausführungsbeispiel der vorliegenden Erfindung.
  • Detaillierte Beschreibung von exemplarischen Ausführungsformen
  • Gleiche oder ähnliche Komponenten sind in der Figur mit gleichen Bezugsziffern versehen. Die Darstellung in der Figur ist schematisch und nicht maßstäblich.
  • Die Figur zeigt ein Turbinensystem 100, insbesondere ein Dampfturbinensystem, gemäß einer beispielhaften Ausführungsform der vorliegenden Erfindung. Das Turbinensystem 100 weist eine Turbinenwelle 105, einen ersten Turbinenbereich 101 und einen zweiten Turbinenbereich 102 auf. Der zweite Turbinenbereich 101 ist in Axialrichtung 106 der Turbinenwelle 105 nach dem ersten Turbinenbereich 101 angeordnet.
  • Ferner weist das Turbinensystem 100 ein Gehäuse 110 mit einer Außenwand 113, einer ersten Trennwand 111 und einer zweiten Trennwand 112 auf. Die Außenwand 113 weist eine Ausdehnung entlang der Turbinenwelle 105 auf. Insbesondere verläuft die Außenwand 113 entlang des ersten Turbinenbereichs 101 und des zweiten Turbinenbereichs 102 in Axialrichtung 106. Die erste Trennwand 111 und die zweite Trennwand 112 sind jeweils mit der Außenwand 113 gekoppelt und weisen jeweils eine radiale Ausdehnung hin zu der Turbinenwelle 105 auf, so dass die erste Trennwand 111 die Ausdehnung des ersten Turbinenbereichs 101 in Axialrichtung 106 eingrenzt und die zweite Trennwand 112 die Ausdehnung des zweiten Turbinenbereichs in Axialrichtung eingrenzt.
  • Die erste Trennwand 111 ist von der zweiten Trennwand 112 entlang der Axialrichtung 106 derart beabstandet, dass ein Zwischenraum 104 gebildet ist, welcher zumindest von einem Teil der Außenwand 113 der ersten Trennwand 111 und der zweiten Trennwand 112 eingegrenzt ist. Die erste Trennwand 111 ist derart eingerichtet, dass ein erstes Arbeitsmedium A1 mit einem ersten Arbeitsdruck P1 aus dem ersten Turbinenbereich 101 in den Zwischenraum 104 einströmbar ist. Ferner ist die zweite Trennwand 112 derart eingerichtet, dass ein zweites Arbeitsmedium A2 mit einem zweiten Arbeitsdruck P2, welcher beispielsweise niedriger als der erste Arbeitsdruck P1 ist, aus dem zweiten Turbinenbereich 102 in den Zwischenraum 104 einströmbar ist, so dass eine Fluidmischung Fm des ersten Arbeitsmediums A1 und des zweiten Arbeitsmediums A2 in dem Zwischenraum 104 erzeugbar ist.
  • Die erste Trennwand 111 und/oder die zweite Trennwand 112 kann beispielsweise einstückig zusammen mit der Außenwand 113 hergestellt werden, insbesondere mittels eines Gießverfahrens. Darüber hinaus kann die erste Trennwand 111 und/oder die zweite Trennwand 112 separat bzw. unabhängig von der Außenwand 113 gefertigt werden und nachträglich, beispielsweise mittels einer Schraubverbindung oder mittels Elektronenstrahlschweißens, mit der Außenwand 113 verbunden werden.
  • In dem ersten Turbinenbereich 101 befindet sich beispielsweise eine Turbineneinrichtung 130, wie beispielsweise ein Rotor oder ein Stator, über welche das erste Arbeitsmedium A1 Energie abgibt und diese in mechanische Energie umwandelt. Das erste Arbeitsmedium A1 kann durch die erste Trennwand 111 durchströmen. Beispielsweise weist die erste Trennwand 111 eine Durchströmöffnung auf, oder, wie in der Figur dargestellt, einen ersten Spalt 114. Der erste Spalt 114 wird beispielsweise durch den Abstand des radialen Endes der ersten Turbinenwand 111 zur Turbinenwelle 105 definiert. In diesem ersten Spalt 114 kann ein Dichtelement 116, wie beispielsweise eine Labyrinthdichtung, angeordnet sein. Durch die Dimensionierung des Spalts 114 und/oder die Dimensionierung des Dichtelements 116 kann ein erster Massenstrom m1 des ersten Arbeitsmediums A1 in dem Zwischenraum 104 gesteuert werden.
  • Entsprechend befindet sich in dem zweiten Turbinenbereich 102 das zweite Arbeitsmedium A2. Zwischen der zweiten Trennwand 112 und der Turbinenwelle 105 ist ein zweiter Spalt 115 bereitgestellt, durch welchen das zweite Arbeitsmedium A2 in den Zwischenraum 104 einströmt. Der zweite Massenstrom M2 des zweiten Arbeitsmediums A2 kann über die Dimensionierung des zweiten Spalts 115 und/oder über ein im zweiten Spalt 115 angeordnetes Dichtelement 116 eingestellt werden.
  • In dem Zwischenraum 104 vermischt sich das erste Arbeitsmedium A1 und das zweite Arbeitsmedium A2 zu einer Fluidmischung Fm. Der Fluiddruck Pm der Fluidmischung Fm hängt einerseits von der Größe des ersten Massenstroms m1 und des zweiten Massenstroms m2 ab. Der erste Massenstrom m1 und der zweite Massenstroms m2 hängen wiederum von der Größe des Durchgangs in der ersten Trennwand 111 bzw. der zweiten Trennwand 112 ab und zusätzlich von dem ersten Arbeitsdruck P1 und dem zweiten Arbeitsdruck P2. Zusätzlich hängt der Druck Pm der Fluidmischung Fm davon ab, wie viel Fluidmischung Fm beispielsweise über eine dritte Öffnung 119 aus dem Zwischenraum 104 abströmt.
  • Aufgrund der zugeführten ersten und zweiten Massenströme m1, m2 und aufgrund der ersten Temperatur T1 des ersten Arbeitsmediums A1 und der zweiten Temperatur T2 des zweiten Arbeitsmediums A2 wird eine vorbestimmte Fluidtemperatur Tm in dem Zwischenraum 104 eingestellt. Die Fluidmischung Fm überträgt thermische Energie an den Bereich der Außenwand 113, welcher sich in longitudinaler Richtung (Axialrichtung 106) entlang des Zwischenraums 104 erstreckt.
  • Beispielsweise herrscht in dem ersten Turbinenbereich 101 ein erster Arbeitsdruck von ungefähr 40-50 bar und eine erste Temperatur von ungefähr 300-400°C. In dem zweiten Turbinenbereich 102 kann über eine zweite Öffnung 118 das überhitzte zweite Arbeitsmedium A2 einströmen. In dem zweiten Turbinenbereich 102 herrscht aufgrund der Parameter des zweiten Arbeitsmediums A2 beispielsweise ein Arbeitsdruck P2 von ca. 35-45 bar und eine zweite Temperatur T2 von ungefähr 500-600°C. Entsprechend wird die Außenwand 113 in dem Bereich des ersten Turbinenbereichs 101 mit der ersten Temperatur T1 und die Außenwand 113 entlang des zweiten Turbinenbereichs 102 mit der zweiten Temperatur T2 aufgeheizt. Durch das Einströmen des ersten Arbeitsmediums A1 und das Einströmen des zweiten Arbeitsmediums A2 in den Zwischenraum 104 stellt sich durch Regelung des ersten Massenstroms m1 und des zweiten Massenstroms m2 eine Fluidtemperatur Tm von ca. 400-500°C ein. Die Fluidtemperatur Tm wird insbesondere so gewählt, dass ungefähr die mittlere Temperatur zwischen der ersten Temperatur T1 und der zweiten Temperatur T2 im Zwischenraum 104 eingestellt wird. Ferner stellt sich ein Fluiddruck Pm der Fluidmischung Fm in dem Zwischenraum 104 ein, welcher kleiner ist als der erste Arbeitsdruck P1 und der zweite Arbeitsdruck P2, d.h. ungefähr 30 bis 40 bar. Die Außenwand 113 im Bereich des Zwischenraums 104 wird mit der Fluidtemperatur Tm der Fluidmischung Fm erwärmt. Damit weist die Außenwand 113 entlang des Zwischenraums 104 die entsprechende mittlere Temperatur auf, da die Außenwand 113 entlang des Zwischenraums 104 durch die Fluidmischung temperiert wird. Durch das Einbringen des Zwischenraums 104 ist somit die thermische Spannung in der Außenwand 113 in Axialrichtung 106 reduziert, da kleinere Temperatursprünge entstehen.
  • Die Figur zeigt, dass im ersten Turbinenbereich 101 die erste Öffnung 117 angeordnet ist, durch welche das erste Arbeitsmedium A1 ausströmen kann und beispielsweise einer Heizvorrichtung 109 (z.B. Zwischenüberhitzer) zuführbar ist.
  • In der Heizvorrichtung 109 wird der erste Arbeitsdruck P1 weitestgehend konstant gehalten, während das erste Arbeitsmedium A1 auf die zweite Temperatur T2 erhitzt wird. Aus der Heizvorrichtung 109 strömt das zweite Arbeitsmedium A2 aus, welches nunmehr die zweite Temperatur T2 aufweist, welche im Allgemeinen höher als die erste Temperatur T1 ist.
  • Anschließend wird das zweite Arbeitsmedium A2 durch die zweite Öffnung 118 dem zweiten Turbinenbereich 102 zugeführt. Der zweite Arbeitsdruck P2 des zweiten Arbeitsmediums A2 ist aufgrund von Leitungsverlusten in der Regel etwas geringer als der erste Arbeitsdruck P1 des ersten Arbeitsmediums A1.
  • In dem zweiten Turbinenbereich 102 wird Energie des zweiten Arbeitsmediums A2, beispielsweise über die Turbineneinrichtung 130, in mechanische Energie umgesetzt.
  • Über die dritte Öffnung 119 strömt die Fluidmischung Fm aus. Zur Steuerung des Ausströmens der Fluidmischung Fm kann ein Steuerventil 107 an die dritte Öffnung 119 gekoppelt sein. Über das Steuerventil 107 wird das Ausströmen gezielt gesteuert, so dass ein vorbestimmter Fluiddruck Pm in dem Zwischenraum 104 herrscht. Dies erfolgt insbesondere dadurch, dass durch ein gezieltes Ausströmen der Fluidmischung Fm aus dem Zwischenraum 104 ein Zuströmen des ersten Arbeitsmediums A1 mit dem ersten Massenstrom M1 und ein Zuströmen des zweiten Arbeitsmediums A2 mit dem zweiten Massenstrom M2 steuerbar ist. Je mehr Fluidmischung Fm durch die dritte Öffnung 119 ausströmt, desto geringer ist der Fluiddruck Pm, wodurch umso mehr von dem ersten Arbeitsmedium A1 und dem zweiten Arbeitsmedium A2 in den Zwischenraum 104 einströmt.
  • Alternativ oder zusätzlich zum Steuerventil 107 kann eine Druckkammer 108 an die dritten Öffnung 119 gekoppelt sein. In der Druckkammer 108 wird die Fluidmischung Fm zwischengespeichert und weiterverarbeitet. Ferner kann ebenfalls mittels der Druckkammer 108 ein gezieltes Ausströmen der Fluidmischung Fm durch die dritte Öffnung 119 eingestellt werden.
  • Die Fluidmischung Fm kann entweder der Umgebung zugeführt werden oder über eine Leitung durch eine vierte Öffnung 120 in einen dritten Turbinenbereich 103 eingeströmt werden. In diesem dritten Turbinenbereich 103 dient die Fluidmischung Fm als drittes Arbeitsmedium A3, welches einen dritten Arbeitsdruck P3 und eine dritte Temperatur T3 aufweist. In dem dritten Turbinenbereich 103 kann über Turbineneinrichtung 130 dem dritten Arbeitsmedium A3 Energie entzogen werden und in mechanische Energie umgewandelt werden.
  • Anstatt direkt in einem dritten Turbinenbereich 103 einzuströmen, kann die Fluidmischung Fm auch einem weiteren Zwischenraum zugeführt werden, welcher beispielsweise zwischen dem zweiten Turbinenbereich 102 und dem dritten Turbinenbereich 103 gebildet wird. Somit kann auch mittels des weiteren Zwischenraums thermische Spannungen an der Außenwand 113 reduziert werden.
  • Ergänzend ist darauf hinzuweisen, dass "umfassend" keine anderen Elemente oder Schritte ausschließt und "eine" oder "ein" keine Vielzahl ausschließt. Ferner sei darauf hingewiesen, dass Merkmale oder Schritte, die mit Verweis auf eines der obigen Ausführungsbeispiele beschrieben worden ist, auch in Kombination mit anderen Merkmalen oder Schritten anderer oben beschriebener Ausführungsbeispiele verwendet werden können. Bezugszeichen in den Ansprüchen sind nicht als Einschränkung anzusehen.

Claims (13)

  1. Turbinensystem (100) aufweisend
    eine Turbinenwelle (105),
    einen ersten Turbinenbereich (101),
    einen zweiten Turbinenbereich (102), welcher in Axialrichtung (106) der Turbinenwelle (105) nach dem ersten Turbinenbereich (101) angeordnet ist, und
    ein Gehäuse (110) mit einer Außenwand (113), einer ersten Trennwand (111) und einer zweiten Trennwand (112),
    wobei die Außenwand (113) eine Ausdehnung entlang des ersten Turbinenbereichs (101) und des zweiten Turbinenbereichs (102) aufweist,
    wobei die erste Trennwand (111) und die zweite Trennwand (112) jeweils mit der Außenwand (113) gekoppelt sind und jeweils eine radiale Ausdehnung hin zu der Turbinenwelle (105) aufweisen, so dass die erste Trennwand (111) die Ausdehnung des erster Turbinenbereich (101) in Axialrichtung (106) eingrenzt und die zweite Trennwand (112) die Ausdehnung des zweiten Turbinenbereichs (102) in Axialrichtung (106) eingrenzt,
    wobei die erste Trennwand (111) von der zweiten Trennwand (112) entlang der Axialrichtung (106) derart beabstandet ist, dass ein Zwischenraum (104) gebildet ist, welcher zumindest von einem Teil der Außenwand (113), der ersten Trennwand (111) der zweiten Trennwand (112) eingegrenzt ist,
    wobei die erste Trennwand (111) derart eingerichtet ist, dass ein erstes Arbeitsmedium (A1) mit einem ersten Arbeitsdruck (P1) aus dem ersten Turbinenbereich (101) in den Zwischenraum (104) einströmbar ist und wobei die zweite Trennwand (112) derart eingerichtet ist, dass ein zweites Arbeitsmedium (A2) mit einem zweiten Arbeitsdruck (P2) aus dem zweiten Turbinenbereich (102) in den Zwischenraum (104) einströmbar ist, sodass eine Fluidmischung (Fm) des ersten Arbeitsmediums (A1) und des zweiten Arbeitsmediums (A2) in dem Zwischenraum (104) erzeugbar ist,
    wobei ein erster Massenstrom (m1) des ersten Arbeitsmediums (A1) aufgrund der Ausbildung der ersten Trennwand (111) und ein zweiter Massenstrom (m2) des zweiten Arbeitsmediums (A2) aufgrund der Ausbildung der zweiten Trennwand (112) derart einstellbar sind, dass in dem Zwischenraum (104) die Fluidmischung (Fm) einen mittleren Temperaturbereich bezüglich der ersten Temperatur (T1) des ersten Arbeitsmediums (A1) im ersten Turbinenbereich (101) und der zweiten Temperatur (T2) des zweiten Arbeitsmediums (A2) im zweiten Turbinenbereich (102) aufweist, und
    wobei das erste Arbeitsmedium (A1) und das zweite Arbeitsmedium (A2) zu der Fluidmischung (Fm) vermischt werden, so dass dadurch je nach anteiligem Volumen eine bestimmte Fluidtemperatur entsteht, welche den Temperaturbereich zwischen der ersten Temperatur (T1) des ersten Arbeitsmediums (A1) und der zweiten Temperatur (T2) des zweiten Arbeitsmediums (A2) aufweist.
  2. Turbinensystem (100) nach Anspruch 1,
    wobei die Außenwand (113) einstückig geformt ist.
  3. Turbinensystem (100) nach Anspruch 1 oder 2,
    wobei die erste Trennwand (111) derart ausgebildet ist, dass ein erster Spalt (114) zwischen der ersten Trennwand (111) und der Turbinenwelle (105) gebildet ist, so dass das erste Arbeitsmedium (A1) von dem ersten Turbinenbereich (101) in den Zwischenraum (104) einströmbar ist.
  4. Turbinensystem (100) nach einem der Ansprüche 1 bis 3,
    wobei die zweite Trennwand (112) derart ausgebildet ist, dass ein zweiter Spalt (115) zwischen der zweiten Trennwand (112) und der Turbinenwelle (105) gebildet ist, so dass das zweite Arbeitsmedium (A2) von dem zweiten Turbinenbereich (102) in den Zwischenraum (104) einströmbar ist.
  5. Turbinensystem (100) nach einem der Ansprüche 1 bis 4, ferner aufweisend
    ein Dichtelement (116), welches zwischen der ersten Trennwand (111) oder der zweiten Trennwand (112) und der Turbinenwelle (105) angeordnet ist, um das Einströmen des ersten Massenstroms (m1) oder des zweiten Massenstroms (m2) in den Zwischenraum (104) zu steuern.
  6. Turbinensystem (100) nach einem der Ansprüche 1 bis 5,
    wobei die Außenwand (113) in dem ersten Turbinenbereich (101) eine erste Öffnung (117) zum Ausströmen des ersten Arbeitsmediums (A1) aus dem Gehäuse (110) aufweist.
  7. Turbinensystem (100) nach einem der Ansprüche 1 bis 6,
    wobei die Außenwand (113) in dem zweiten Turbinenbereich (102) eine zweite Öffnung (118) zum Einströmen des zweiten Arbeitsmediums (A2) in das Gehäuse (110) aufweist.
  8. Turbinensystem (100) nach einem der Ansprüche 1 bis 7,
    wobei die Außenwand (113) im Bereich des Zwischenraums (104) eine dritte Öffnung (119) aufweist, aus welcher die Fluidmischung (Fm) aus dem Gehäuse (110) ausströmbar ist.
  9. Turbinensystem (100) nach Anspruch 8,
    wobei mittels der dritten Öffnung (119) das Ausströmen der Fluidmischung (Fm) derart steuerbar ist, dass ein Fluiddruck (Pm) der Fluidmischung (Fm) im Zwischenraum (104) kleiner als der erste Arbeitsdruck des ersten Arbeitsmediums (A1) in dem ersten Turbinenbereich (101) und kleiner als der zweite Arbeitsdruck (P2) des zweiten Arbeitsmediums (A2) in dem zweiten Turbinenbereich (102) ist.
  10. Turbinensystem (100) nach Anspruch 8 oder 9, ferner aufweisend
    ein Steuerventil (107), welches zur Steuerung des Ausströmens der Fluidmischung (Fm) an die dritte Öffnung (119) gekoppelt ist.
  11. Turbinensystem (100) nach einem der Ansprüche 8 bis 10, ferner aufweisend
    eine Druckkammer (108), welche zur Steuerung des Ausströmens der Fluidmischung (Fm) an die dritte Öffnung (119) gekoppelt ist,
    wobei in die Druckkammer (108) die Fluidmischung (Fm) aus dem Zwischenraum (104) einströmbar ist, und
    wobei die Druckkammer (108) eingerichtet ist, den Fluiddruck (Pm) der Fluidmischung (Fm) in der Druckkammer (108) einzustellen.
  12. Turbinensystem (100) nach einem der Ansprüche 8 bis 11,
    wobei die Außenwand (113) in Axialrichtung (106) entlang eines dritten Turbinenbereichs (103) verläuft, wobei der dritte Turbinenbereich in Axialrichtung (106) nach dem zweiten Turbinenbereich (102) angeordnet ist, und
    wobei die Außenwand (113) in dem dritten Turbinenbereich (103) eine vierte Öffnung (120) aufweist, welche mit der dritten Öffnung (119) derart gekoppelt ist, dass die Fluidmischung (Fm) von außerhalb des Gehäuses (110) in den dritten Turbinenbereich (103) durch die vierte Öffnung (120) einströmbar ist.
  13. Verfahren zum Betreiben eines Turbinensystems (100) nach einem der Ansprüche 1 bis 12, das Verfahren aufweisend
    Einströmen des ersten Arbeitsmediums (A1) mit dem ersten Arbeitsdruck (P1) aus einem ersten Turbinenbereich (101) in den Zwischenraum (104),
    Einströmen des zweiten Arbeitsmediums (A2) mit dem zweiten Arbeitsdruck (P2) aus dem zweiten Turbinenbereich (102) in den Zwischenraum (104), sodass eine Fluidmischung (Fm) des ersten Arbeitsmediums (A1) und des zweiten Arbeitsmediums (A2) in dem Zwischenraum (104) erzeugt wird, und
    Einstellen des ersten Massenstroms (m1) des ersten Arbeitsmediums (A1) aufgrund der Ausbildung der ersten Trennwand (111) und des zweiten Massenstroms (m2) des zweiten Arbeitsmediums (A2) aufgrund der Ausbildung der zweiten Trennwand (112) derart, dass in dem Zwischenraum (104) die Fluidmischung (Fm) einen mittleren Temperaturbereich bezüglich der ersten Temperatur (T1) des ersten Arbeitsmediums (A1) im ersten Turbinenbereich (101) und der zweiten Temperatur (T2) des zweiten Arbeitsmediums (A2) im zweiten Turbinenbereich (102) aufweist, wobei das erste Arbeitsmedium (A1) und das zweite Arbeitsmedium (A2) zu der Fluidmischung (Fm) vermischt werden, so dass dadurch je nach anteiligem Volumen eine bestimmte Fluidtemperatur entsteht, welche den Temperaturbereich zwischen der ersten Temperatur (T1) des ersten Arbeitsmediums (A1) und der zweiten Temperatur (T2) des zweiten Arbeitsmediums (A2) aufweist.
EP11741154.6A 2010-08-04 2011-07-18 Eingehäusige dampfturbine mit zwischenüberhitzung Not-in-force EP2585684B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL11741154T PL2585684T3 (pl) 2010-08-04 2011-07-18 Turbina parowa z pojedynczą obudową z przegrzewaniem międzystopniowym

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE201010033327 DE102010033327A1 (de) 2010-08-04 2010-08-04 Eingehäusige Dampfturbine mit Zwischenüberhitzung
PCT/EP2011/062194 WO2012016809A1 (de) 2010-08-04 2011-07-18 Eingehäusige dampfturbine mit zwischenüberhitzung

Publications (2)

Publication Number Publication Date
EP2585684A1 EP2585684A1 (de) 2013-05-01
EP2585684B1 true EP2585684B1 (de) 2016-12-28

Family

ID=44629904

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11741154.6A Not-in-force EP2585684B1 (de) 2010-08-04 2011-07-18 Eingehäusige dampfturbine mit zwischenüberhitzung

Country Status (4)

Country Link
EP (1) EP2585684B1 (de)
DE (1) DE102010033327A1 (de)
PL (1) PL2585684T3 (de)
WO (1) WO2012016809A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112016016645B1 (pt) 2014-02-10 2021-10-13 Philip Morris Products S.A. Cartucho para uso em um sistema gerador de aerossol, método para a fabricação de um cartucho para uso em um sistema gerador de aerossol e sistema gerador de aerossol
DE102015218368A1 (de) 2015-09-24 2017-03-30 Siemens Aktiengesellschaft Dampfturbine mit Zwischenüberhitzung
DE102018219374A1 (de) * 2018-11-13 2020-05-14 Siemens Aktiengesellschaft Dampfturbine und Verfahren zum Betreiben derselben

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06185303A (ja) * 1992-12-15 1994-07-05 Fuji Electric Co Ltd 蒸気タービンのグランドパッキンのラビング防止装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1030357B (de) * 1953-03-04 1958-05-22 Siemens Ag Entnahmeturbine
US3206166A (en) * 1964-01-21 1965-09-14 Westinghouse Electric Corp Elastic fluid apparatus
GB2026099B (en) * 1978-07-20 1982-12-15 Bharat Heavy Electricals Steam turbines
US5152665A (en) * 1990-12-24 1992-10-06 Westinghouse Electric Corporation Methods and apparatus for reducing inlet sleeve vibration
EP1378630A1 (de) * 2002-07-01 2004-01-07 ALSTOM (Switzerland) Ltd Dampfturbine
GB2409002A (en) * 2003-12-08 2005-06-15 Siemens Power Generation Ltd Thrust balance piston fitted between high and low pressure paths in a turbine.

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06185303A (ja) * 1992-12-15 1994-07-05 Fuji Electric Co Ltd 蒸気タービンのグランドパッキンのラビング防止装置

Also Published As

Publication number Publication date
PL2585684T3 (pl) 2017-06-30
EP2585684A1 (de) 2013-05-01
WO2012016809A1 (de) 2012-02-09
DE102010033327A1 (de) 2012-02-09

Similar Documents

Publication Publication Date Title
EP1774140B1 (de) Dampfturbine und verfahren zum betrieb einer dampfturbine
EP2199547A1 (de) Abhitzedampferzeuger sowie ein Verfahren zum verbesserten Betrieb eines Abhitzedampferzeugers
DE102012102368A1 (de) Kombikraftwerk
EP2585684B1 (de) Eingehäusige dampfturbine mit zwischenüberhitzung
DE102015105699A1 (de) Brennstoffheizsystem zur Verwendung mit einer Gasturbine für den kombinierten Gas- und Dampfprozess
EP3610137B1 (de) Dampfturbine und verfahren zum betreiben derselben
EP2997236B1 (de) Dampfturbine
EP2347101A1 (de) Gasturbine
EP3099978B1 (de) Silobrennkammer für eine gasturbine
EP2324208B1 (de) Turbinenleitschaufelträger für eine gasturbine und verfahren zum betrieb einer gasturbine
EP2927460A1 (de) Gasturbine
EP2937630B1 (de) Verfahren zum Betreiben eines Systems für einen thermodynamischen Kreisprozess mit einem mehrflutigen Verdampfer, Steuereinrichtung für ein System, System für einen thermodynamischen Kreisprozess mit einem mehrflutigen Verdampfer, und Anordnung einer Brenkraftmaschine und eines Systems
EP2274504B1 (de) Dampfturbine mit kühlvorrichtung
DE102016220634A1 (de) Abwärme-Kraftanlage mit stufenweiser Wärmezufuhr
EP3183426B1 (de) Kontrollierte kühlung von turbinenwellen
DE1002570C2 (de) Gasturbinenanlage mit doppeltem Kreisprozess
EP2119878A1 (de) Dampfturbine mit geteiltem Innengehäuse
EP3850194B1 (de) Dampfturbine und verfahren zum betreiben derselben
DE102018131043A1 (de) Komponenten und Systeme zur Reduktion der thermischen Belastung von Abhitzedampferzeugern in Kombikraftwerkssystemen
DE112013004969T5 (de) Verflüssiger
DE102012218542B4 (de) Verfahren zum flexiblen Betrieb einer Kraftwerksanlage
WO2014146845A2 (de) Verfahren zum anfahren eines solarthermischen kraftwerks
EP3375985A1 (de) Innengehäusestruktur mit kondensationskammer für eine dampfturbine
WO2010023036A1 (de) Leitschaufelträger für eine gasturbine
EP2781701A1 (de) Verfahren zum Betreiben eines solarthermischen Kraftwerks

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130123

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502011011423

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: F01D0011000000

Ipc: F01K0007020000

RIC1 Information provided on ipc code assigned before grant

Ipc: F01D 25/26 20060101ALI20151209BHEP

Ipc: F01D 11/06 20060101ALI20151209BHEP

Ipc: F01D 11/04 20060101ALI20151209BHEP

Ipc: F01K 7/02 20060101AFI20151209BHEP

Ipc: F01D 11/00 20060101ALI20151209BHEP

17Q First examination report despatched

Effective date: 20151222

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160729

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 857490

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG, CH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011011423

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161228

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170328

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161228

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161228

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20161228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161228

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161228

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161228

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170428

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161228

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161228

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161228

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161228

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170428

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170328

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161228

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCOW

Free format text: NEW ADDRESS: WERNER-VON-SIEMENS-STRASSE 1, 80333 MUENCHEN (DE)

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011011423

Country of ref document: DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20170919

Year of fee payment: 7

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161228

26N No opposition filed

Effective date: 20170929

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161228

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20171017

Year of fee payment: 7

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170718

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170718

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170718

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170718

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170731

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 857490

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170718

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161228

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20180726

Year of fee payment: 8

Ref country code: IT

Payment date: 20180727

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170718

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20180716

Year of fee payment: 8

Ref country code: PL

Payment date: 20180709

Year of fee payment: 8

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502011011423

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190201

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110718

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190718

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190718

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190718