EP2583033A1 - Turbine burner - Google Patents

Turbine burner

Info

Publication number
EP2583033A1
EP2583033A1 EP11711862.0A EP11711862A EP2583033A1 EP 2583033 A1 EP2583033 A1 EP 2583033A1 EP 11711862 A EP11711862 A EP 11711862A EP 2583033 A1 EP2583033 A1 EP 2583033A1
Authority
EP
European Patent Office
Prior art keywords
fuel nozzle
fuel
blades
turbine burner
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP11711862.0A
Other languages
German (de)
French (fr)
Other versions
EP2583033B1 (en
Inventor
Boris Ferdinand Kock
Berthold Köstlin
Bernd Prade
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP11711862.0A priority Critical patent/EP2583033B1/en
Publication of EP2583033A1 publication Critical patent/EP2583033A1/en
Application granted granted Critical
Publication of EP2583033B1 publication Critical patent/EP2583033B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/36Supply of different fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/34Feeding into different combustion zones
    • F23R3/343Pilot flames, i.e. fuel nozzles or injectors using only a very small proportion of the total fuel to insure continuous combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2900/00Special features of, or arrangements for burners using fluid fuels or solid fuels suspended in a carrier gas
    • F23D2900/00008Burner assemblies with diffusion and premix modes, i.e. dual mode burners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2900/00Special features of, or arrangements for burners using fluid fuels or solid fuels suspended in a carrier gas
    • F23D2900/00014Pilot burners specially adapted for ignition of main burners in furnaces or gas turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2900/00Special features of, or arrangements for burners using fluid fuels or solid fuels suspended in a carrier gas
    • F23D2900/14Special features of gas burners
    • F23D2900/14021Premixing burners with swirling or vortices creating means for fuel or air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/00002Gas turbine combustors adapted for fuels having low heating value [LHV]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/00004Preventing formation of deposits on surfaces of gas turbine components, e.g. coke deposits

Definitions

  • Turbine burner The invention relates to a turbine burner according to the preamble of claim 1.
  • the combustible components of the synthesis gases are essentially CO and H2.
  • the calorific value of the synthesis gas is about 5 to 10 times smaller compared to the calorific value of natural gas.
  • Main constituents in addition to CO and H2 are inert fractions such as nitrogen and / or water vapor and possibly also carbon dioxide. Due to the low calorific value, ⁇ high volumetric flows of fuel gas must be supplied through the burner of the combustion chamber ⁇ . This has the consequence that one or more separate fuel passages must be made available for the combustion of low calorific fuels - such as synthesis gas.
  • the synthesis gas is fed to the combustion chamber in the burner of the prior art-as described in EP 1 649 219 B1-via a ring-chamber passage arranged around the burner axis.
  • the gas is carried out upstream of the burner nozzle by a nozzle ring provided in the burner nozzle with salaried holes, wherein the gas is acted upon by a facultysgeschwin ⁇ dtechnikskomponente.
  • the synthesis gas directly on the nozzle a relatively low Mach number is impressed. Associated with this is due to the low fuel pulse also relatively low intensity in terms of mixing with the combustion air, which encloses the annular flow of fuel from both inside and outside.
  • aggravating for a quick mixing of the fuel with the combustion air is the geometric design of the annular gap with a relatively large gap width and a correspondingly large mixing path.
  • the nozzle ring EP 1649219 Bl with employed bores was ⁇ value, selected in particular for the synthesis gases with a relatively high heating to achieve a suffi ⁇ accordingly high for the acoustic stability loss of pressure at the nozzle without changing the main dimensions substantially.
  • this embodiment has aerodynamic disadvantages. As discrete rays are generated, which can not be sufficiently made uniform on the burner outlet to the available path Kgs ⁇ NEN, resulting in increased NOX emissions. By the currents mung commutations inside and in front of the nozzle a considerable total pressure loss occurs about it on out, so this is not a mixture of energy supply Availability checked ⁇ ⁇ In pulse-loss hereafter. It is therefore an object of the invention to provide an improved
  • Combustion zone effected as in the nozzle of the prior art.
  • FIG. 1 shows such a turbine burner according to the invention.
  • FIG. 2 shows a fuel nozzle according to the invention.
  • the turbine burner according to FIG. 1 has a secondary supply unit for supplying a secondary fuel or air and for discharging the fuel or air from an opening 6 into a combustion zone 10.
  • the secondary fuel may include natural gas and air.
  • the Sekundärzu ⁇ drove unit has a radius Ri.
  • the Sekundärzu 1500ein ⁇ unit may also include a pilot burner 2, which is designed for another fuel such as oil.
  • a further, arranged around the pilot burner 2 annular natural gas duct 35 may be provided for supplying natural gas Gn.
  • the natural gas can be diluted with steam or water to control the NOx levels.
  • the Sekundärzu ⁇ circulating unit may comprise a further annular air channel 30 Vorse ⁇ hen, flows into the compressor air L '.
  • the Sekundärzu slaughter- unit comprises at the downstream end at least one swirl generator, a so-called axial grid 22 for generating a twist.
  • the Axialgitter 22 can check 30 the Sekundärzu Switzerland in the downstream end of the air duct ⁇ ⁇ rtigen be ordered.
  • the natural gas Gn of the channel 35 is flowed before Axi ⁇ algitter 22 in the air duct 30th
  • the so entste ⁇ rising air-natural gas mixture is then swirled through the Axialgitter 22 in the combustion zone 10 is introduced.
  • the burner further comprises a primary supply unit which has a primary mixing tube 11 and a fuel nozzle 1 with an opening facing the combustion zone to the fuel nozzle outlet 4 for supplying a primary fuel, the fuel nozzle 1 and the primary mixing tube 11 being arranged concentrically around the secondary supply unit.
  • the primary mixing tube 11 and the fuel nozzle 1 have a fluid flow connection. Through the primary mixer tube 11 and the fuel nozzle 1 of the combustion zone 10 synthesis gas is supplied.
  • a ring ⁇ channel 40 is arranged around the primary supply, which has a plurality of circumferentially arranged Swirler 45 with or without fuel nozzles. Compressor air L "flows through this annular channel 40, into which fuel can be injected by means of the swirlers 45. The resulting compressor air L '' - fuel mixture or the air L '' is also introduced into the combustion zone 10 twisted.
  • the fuel nozzle 1 has an annular wall 9, wel ⁇ che in the axial direction is radially spaced from the Sekundärzu meltech, so that a gap height h is formed by the annular wall 9 and Se ⁇ kundärzu 1500iser.
  • the fuel nozzle to the secondary feeding unit ge ⁇ directed inner wall 50
  • the inner wall 50 has annularly arranged blades 12 ( Figure 2).
  • the blades 12 may be disposed on the outer wall of the secondary feed unit (not shown).
  • the fuel nozzle 1 also has a fuel nozzle inlet 20 and a fuel nozzle outlet 4.
  • the pressure loss at the fuel nozzle outlet 4 is ge ⁇ sets. This has the advantage that higher acoustic Sta ⁇ stability in the combustion zone 10, that is GE stability ⁇ gen to the known hum in the combustion zone 10 than in the nozzles of the burner of the prior art provides a ⁇ .
  • the pressure loss can also be adjusted in this embodiment on the speed of the synthesis gas or the cross section of the fuel nozzle outlet.
  • the fuel nozzle 1 is formed downstream at least partially conical.
  • the blades 12 have on the upstream side a blade inlet edge 51 and opposite a blade trailing edge 60.
  • the blade inlet edge 51 has an axial distance s from the fuel nozzle inlet 20.
  • the ratio of distance s and gap height h is greater than 1 and less than 4.
  • the fuel nozzle inlet 20 is designed with a larger gap height h.
  • the maximum utilization of the acceptable pressure loss and the avoidance of parasitic pressure losses takes place at the fuel nozzle outlet 4. This results in stable combustion.
  • the fuel nozzle inlet 20 is also rounded, the rounding having a fuel nozzle inlet radius Re.
  • the rounding points away from a fuel nozzle interior.
  • the ratio of the fuel nozzle inlet radius Re and the gap height h is greater than 0.2 and less than 0.8. Since ⁇ by carried to the blade leading 51 a gleichze- ssige flow acceleration, which the minimization
  • Inlet pressure losses and on the blades 12 causes a gleichmäßi ⁇ ges flow profile.
  • this can also be done by a straight nozzle 1 with a straight fuel nozzle inlet 20 are caused by an angle ⁇ 75 ° (not shown).
  • the blade inflow edge 51 has the above-mentioned upstream relative axial distance of approximately Ks (distance) / h (gap height) ⁇ 4 to the fuel nozzle inlet 20.
  • the nozzle 1 is thus designed such that by reducing the gap height h at the fuel nozzle inlet 20, the axial velocity is increased before the blades 12 and a uniform acceleration of the gas until it exits the nozzle 1 he follows ⁇ .
  • the gap height h at Brennstoffdüsenaus ⁇ occurs 4 between O.Kh (gap height) /Ra ⁇ 0.2, where Ra represents the outer fuel nozzle radius Ra, so that a Mach number in the range 0.4 ⁇ Ma ⁇ O.8 is maintained, which is better Acoustic decoupling of the fuel system of combustion ⁇ pressure oscillations causes.
  • an increase in the mixing energy is associated with the higher Mach number. Due to the smaller gap height h than in the case of the prior art nozzles at the nozzle outlet 4, mixing paths are also minimized.
  • the blades 12 additionally have a blade angle of attack (FIG. 2).
  • the blade pitch angle to currency ⁇ len in which a very high swirl number S is set, however, without causing flow separation on the blade trailing edge 60 and the hub 70, wherein the swirl ⁇ number S sets the rotation pulse current in relation to the Axialimpulsstrom.
  • the hub 70 that part of the seconds ⁇ därzuchttechnik refers, which is located on the axial grid 22 and which represents the inner boundary of the fuel nozzle 1 at the nozzle outlet 4.
  • the swirl number S is in a range of greater than 1.2 and less than 1.7.
  • the ratio of the radius Ri of the secondary feed unit to the outer fuel nozzle radius Ra of the fuel nozzle 1 at the fuel nozzle outlet 4 must be greater than 0.6 and less than 0.8. Since the swirl number S depends on the ratio Ri / Ra, compliance with the ratio, that the synthesis gas flow still follows the contour of the fuel nozzle 1, without detaching itself on the hub side.
  • the fuel-air mixture which flows through the axial grid 22, also has a tangential flow direction 100 (swirl). Also in the fuel nozzle 1 Syn ⁇ synthesis gas stream is imparted by an angle of attack of the blades 12 a tangential flow direction 110th The blade angle of attack can now be arranged so that the tangential flow directions 100 and 110 are now in opposite directions
  • the blades 12 and the axial grid 22 must have an opposing arrangement. This causes a significant increase in the mixing intensity due to the increased shear rates in the contact zones of the flows 100 and 110. Because of the counter-roll, namely, the relative velocities between the air-fuel mixture and synthesis gas is well above the relative velocities of a co-directional arrangement, which in turn significantly higher mixing both streams entails. This in turn has a positive effect on NOx emissions. Also, the air flowing through the annular passage 40 has a twist 120. This is preferably gleichgerich ⁇ tet to the swirl flow 100. The fuel nozzle 1, seen in the flow direction after the blades 12 still have holes 130.
  • the air of the annular channel 40 can occur when the burner is not in the synthesis gas operation.
  • an operation of the burner without synthesis gas is possible when fuel is supplied via the pilot burner or fuel via the Ergaspassage 35.
  • no hot gas, which is present in the combustion zone 10 can flow back through the nozzle 1 during operation without synthesis gas.
  • the holes 130 may be formed in the flow direction with an inlet shell (7), which projects into the channel 40.
  • Combustion zone 10 flows back into the nozzle 1.
  • FIG. 2 shows a fuel nozzle 1 according to the invention in detail.
  • This nozzle 1 has an inner wall 50.
  • the show ⁇ blades 12 are arranged annular over the circumference of the inner wall 50.
  • the nozzle 1 has a conical shape over the entire area of the hub 70 (FIG. 1), resulting in a smaller gap height h (FIG. 1) at the fuel nozzle outlet 4 than is the case with the nozzles of the prior art.
  • the volume flow of the synthesis gas which must be supplied by the burner according to the invention to the combustion zone 10, can be reduced with the same NOx emissions.
  • the better acoustic stability allows an extended operating range of the burner according to the invention in terms of load and fuel quality.

Abstract

The invention relates to a secondary feed unit and a primary feed unit which comprises a primary mixing tube (11) and a fuel nozzle (1) having a fuel nozzle outlet (4), wherein the fuel nozzle (1) and the primary mixing tube (11) are arranged concentrically around the secondary feed unit, wherein the primary mixing tube (11) and the fuel nozzle (1) have a fluid flow connection, wherein the fuel nozzle (1) comprises an annular wall (9) that is radially spaced in the axial direction from the secondary feed unit such that a gap height (h) is formed by the annular wall (9) and the secondary feed unit, wherein the annular wall (9) of the fuel nozzle (1) has an inside wall (50) directed toward the secondary feed unit, wherein the inside wall (50) comprises blades (12), wherein the blades (12) have a leading edge (51) on the upstream side thereof and the fuel nozzle (1) has an inlet (20) and the blades (12) have an axial distance (S) from the inlet (20), and wherein the ratio of the distance (S) to the gap height (h) is greater than 1 and less than h.

Description

Beschreibung Turbinenbrenner Die Erfindung betrifft einen Turbinenbrenner gemäß dem Oberbegriff des Anspruchs 1. Description Turbine burner The invention relates to a turbine burner according to the preamble of claim 1.
Verglichen mit den klassischen Gasturbinenbrennstoffen Erdgas und Erdöl, die überwiegend aus Kohlenwasserstoff erbindungen bestehen, sind die brennbaren Bestandteile der Synthesegase im Wesentlichen CO und H2. Abhängig vom Vergasungsverfahren und Gesamtanlagenkonzept ist der Heizwert des Synthesegases etwa 5 bis lOmal kleiner verglichen mit dem Heizwert von Erd¬ gas. Hauptbestandteile neben CO und H2 sind inerte Anteile wie Stickstoff und/oder Wasserdampf und gegebenenfalls noch Kohlendioxid. Bedingt durch den kleinen Heizwert müssen dem¬ zufolge hohe Volumenströme an Brenngas durch den Brenner der Brennkammer zugeführt werden. Dies hat zur Folge, dass für die Verbrennung von niederkalorischen Brennstoffen - wie z.B. Synthesegas eine oder mehrere gesonderte Brennstoffpassagen zur Verfügung gestellt werden müssen. Wegen der im Vergleich zu konventionellen Brennstoffen wie Erdgas und Öl hohen Reaktivität (hohe Flammengeschwindigkeit, großer Zündbereich) von Synthesegasen besteht ein deutlich höheres Risiko bezüglich Flammenrückschlages, das heißt einer Brennerschädigung. Aus diesem Grunde erfolgt die Verbrennung von Synthesegasen in industriellen Gasturbinen zurzeit noch ausschließlich im Diffusionsbetrieb. Die damit verbundenen lokalen hohen Verbrennungstemperaturen führen zu hohen Stickoxid-Emissionen, wel- che wiederum durch eine zusätzliche Verdünnung durch Inertstoffe wie N2 oder Wasserdampf abgesenkt werden. Der damit verbundene zusätzliche Anstieg des Brennstoffmassenstromes stellt wiederum besondere Anforderungen an das Verbrennungs¬ system und die vorgelagerten Hilfssysteme. Compared with the traditional gas turbine fuels natural gas and petroleum, which consist predominantly of hydrocarbon compounds, the combustible components of the synthesis gases are essentially CO and H2. Depending on the gasification process and overall plant concept, the calorific value of the synthesis gas is about 5 to 10 times smaller compared to the calorific value of natural gas. Main constituents in addition to CO and H2 are inert fractions such as nitrogen and / or water vapor and possibly also carbon dioxide. Due to the low calorific value, ¬ high volumetric flows of fuel gas must be supplied through the burner of the combustion chamber ¬ . This has the consequence that one or more separate fuel passages must be made available for the combustion of low calorific fuels - such as synthesis gas. Because of the high reactivity (high flame velocity, large ignition range) of synthesis gases compared to conventional fuels such as natural gas and oil, there is a significantly higher risk of flashback, that is, burner damage. For this reason, the combustion of synthesis gases in industrial gas turbines is currently still exclusively in the diffusion mode. The associated local high combustion temperatures lead to high nitrogen oxide emissions, which in turn are lowered by additional dilution with inert substances such as N2 or water vapor. The associated additional increase in the fuel mass flow in turn makes special demands on the combustion system and the upstream auxiliary systems.
Das Synthesegas wird im Brenner des Stands der Technik - wie in der EP 1 649 219 Bl beschrieben- über eine um die Brennerachse angeordnete Ringraumpassage dem Brennraum zugeführt. Dabei wird das Gas stromauf der Brennerdüse durch einen in der Brennerdüse vorhandenen Düsenring mit angestellten Bohrungen durchgeführt, wobei das Gas mit einer Umfangsgeschwin¬ digkeitskomponente beaufschlagt wird. Das bedeutet, dass im Stand der Technik dem Synthesegas unmittelbar an der Düse eine relativ geringe Mach-Zahl aufgeprägt wird. Damit verbunden besteht eine wegen des geringen Brennstoffimpulses auch nur relativ geringe Intensität hinsichtlich der Vermischung mit der Verbrennungsluft, die die ringförmige BrennstoffStrömung sowohl von innen als auch außen umschließt. Zusätzlich erschwerend für eine schnelle Vermischung des Brennstoffes mit der Verbrennungsluft ist die geometrische Ausführung des Ringspaltes mit relativ großer Spaltbreite und entsprechend großem Mischungsweg. The synthesis gas is fed to the combustion chamber in the burner of the prior art-as described in EP 1 649 219 B1-via a ring-chamber passage arranged around the burner axis. In this case, the gas is carried out upstream of the burner nozzle by a nozzle ring provided in the burner nozzle with salaried holes, wherein the gas is acted upon by a Umfangsgeschwin ¬ digkeitskomponente. This means that in the prior art, the synthesis gas directly on the nozzle a relatively low Mach number is impressed. Associated with this is due to the low fuel pulse also relatively low intensity in terms of mixing with the combustion air, which encloses the annular flow of fuel from both inside and outside. In addition aggravating for a quick mixing of the fuel with the combustion air is the geometric design of the annular gap with a relatively large gap width and a correspondingly large mixing path.
Der Düsenring der EP 1 649 219 Bl mit angestellten Bohrungen wurde insbesondere für Synthesegase mit relativ hohem Heiz¬ wert gewählt, um einen für die akustische Stabilität ausrei¬ chend hohen Druckverlust an der Düse zu erreichen, ohne die Hauptabmessungen wesentlich zu ändern. Diese Ausführung hat jedoch aerodynamische Nachteile. So werden diskrete Strahlen erzeugt, die auf dem bis zum Brenneraustritt zur Verfügung stehenden Weg nicht ausreichend vergleichmäßigt werden kön¬ nen, was zu erhöhten NOX Emissionen führt. Durch die Strö- mungsablösungen innerhalb und vor der Düse tritt darüber hinaus ein erheblicher Totaldruckverlust auf, so dass dieser Im¬ pulsverlust im Weiteren nicht als Mischungsenergie zur Verfü¬ gung steht. Es ist daher eine Aufgabe der Erfindung einen verbessertenThe nozzle ring EP 1649219 Bl with employed bores was ¬ value, selected in particular for the synthesis gases with a relatively high heating to achieve a suffi ¬ accordingly high for the acoustic stability loss of pressure at the nozzle without changing the main dimensions substantially. However, this embodiment has aerodynamic disadvantages. As discrete rays are generated, which can not be sufficiently made uniform on the burner outlet to the available path Kgs ¬ NEN, resulting in increased NOX emissions. By the currents mung commutations inside and in front of the nozzle a considerable total pressure loss occurs about it on out, so this is not a mixture of energy supply Availability checked ¬ ¬ In pulse-loss hereafter. It is therefore an object of the invention to provide an improved
Brenner mit einer verbesserten Brennstoffdüse anzugeben, welche eine verbesserte Durchmischung zur Folge hat und die obi¬ gen Nacheile vermeidet. Diese Aufgabe wird durch die Angabe eines Turbinenbrenners nach Anspruch 1 gelöst. Die Unteransprüche enthalten vorteil¬ hafte Ausgestaltungen und Weiterbildungen der Erfindung. Die Erfindung bewirkt, dass sich bei gleicher Drallstärke ein niedrigerer Druckverlust einstellt, im Vergleich zu dem Dü¬ senring der Düse des Stands der Technik. Zudem bewirken die Schaufeln, dass bei gleichem Gesamtdruckverlust ein größerer Anteil des Druckverlusts an den Brennstoffdüsenaustritt ge¬ legt wird, was eine höhere akustische Stabilität in der Indicate burners with an improved fuel nozzle, which has an improved mixing result and avoids the obi ¬ gen hot spots. This object is achieved by the specification of a turbine burner according to claim 1. The sub-claims contain advantageous ¬ refinements and developments of the invention. The invention causes a lower pressure drop is established at the same swirl strength, as compared with the SI ¬ senring the nozzle of the prior art. In addition, the blades cause, with the same total pressure loss, a greater proportion of the pressure loss to the fuel nozzle outlet , which results in a higher acoustic stability in the
Verbrennungszone bewirkt als bei der Düse des Stands der Technik . Combustion zone effected as in the nozzle of the prior art.
Weitere Merkmale, Eigenschaften und Vorteile der vorliegenden Erfindung ergeben sich aus der nachfolgenden Beschreibung von Ausführungsbeispielen unter Bezugnahme auf die beiliegenden Figuren 1 und 2. Further features, properties and advantages of the present invention will become apparent from the following description of embodiments with reference to the accompanying figures 1 and 2.
Die Figur 1 zeigt einen solchen erfindungsgemäßen Turbinenbrenner . FIG. 1 shows such a turbine burner according to the invention.
Die Figur 2 zeigt eine erfindungsgemäße Brennstoffdüse . FIG. 2 shows a fuel nozzle according to the invention.
Der Turbinenbrenner nach Fig.l weist dabei eine Sekundärzuführeinheit zur Zuführung eines Sekundärbrennstoffes oder Luft und zum Entladen des Brennstoffes oder Luft von einer Öffnung 6 in eine Verbrennungszone 10 auf. Der Sekundärbrenn- Stoff kann dabei Erdgas und Luft umfassen. Die Sekundärzu¬ fuhreinheit weist einen Radius Ri auf. Die Sekundärzuführein¬ heit kann zudem einen Pilotbrenner 2 umfassen, welcher für einen weiteren Brennstoff z.B. Öl ausgelegt ist. Zudem kann ein weiterer, ringförmig um dem Pilotbrenner 2 angeordneter Erdgaskanal 35 zum Zuführen von Erdgas Gn vorgesehen sein.In this case, the turbine burner according to FIG. 1 has a secondary supply unit for supplying a secondary fuel or air and for discharging the fuel or air from an opening 6 into a combustion zone 10. The secondary fuel may include natural gas and air. The Sekundärzu ¬ drove unit has a radius Ri. The Sekundärzuführein ¬ unit may also include a pilot burner 2, which is designed for another fuel such as oil. In addition, a further, arranged around the pilot burner 2 annular natural gas duct 35 may be provided for supplying natural gas Gn.
Dabei kann das Erdgas mit Dampf oder Wasser verdünnt werden, um die NOx-Werte zu kontrollieren. Zudem kann die Sekundärzu¬ führeinheit einen weiteren ringförmigen Luftkanal 30 vorse¬ hen, in den Verdichterluft L' einströmt. Die Sekundärzuführ- einheit umfasst dabei am stromabwärtigen Ende zumindest einen Drallerzeuger, ein sogenanntes Axialgitter 22 zum erzeugen eines Dralls. Dabei kann das Axialgitter 22 in dem stromab¬ wärtigen Ende des Luftkanals 30 der Sekundärzuführeinheit an- geordnet sein. Das Erdgas Gn des Kanals 35 wird vor dem Axi¬ algitter 22 in den Luftkanal 30 eingeströmt. Das so entste¬ hende Luft-Erdgasgemisch wird dann durch das Axialgitter 22 verdrallt in die Verbrennungszone 10 eingebracht. The natural gas can be diluted with steam or water to control the NOx levels. In addition, the Sekundärzu ¬ circulating unit may comprise a further annular air channel 30 Vorse ¬ hen, flows into the compressor air L '. The Sekundärzuführ- unit comprises at the downstream end at least one swirl generator, a so-called axial grid 22 for generating a twist. Here, the Axialgitter 22 can check 30 the Sekundärzuführeinheit in the downstream end of the air duct ¬ wärtigen be ordered. The natural gas Gn of the channel 35 is flowed before Axi ¬ algitter 22 in the air duct 30th The so entste ¬ rising air-natural gas mixture is then swirled through the Axialgitter 22 in the combustion zone 10 is introduced.
Der Brenner umfasst weiter eine Primärzuführeinheit, welche eine Primärmischröhre 11 und eine Brennstoffdüse 1 mit einer in die Verbrennungszone weisenden Öffnung dem Brennstoffdü- senaustritt 4 zur Zuführung eines Primärbrennstoffes auf- weist, wobei die Brennstoffdüse 1 sowie die Primärmischröhre 11 konzentrisch um die Sekundärzuführeinheit angeordnet ist. Dabei haben die Primärmischröhre 11 und die Brennstoffdüse 1 eine Fluidflussverbindung . Durch die Primärmischröhre 11 und die Brennstoffdüse 1 wird der Verbrennungszone 10 Synthesegas zugeführt. The burner further comprises a primary supply unit which has a primary mixing tube 11 and a fuel nozzle 1 with an opening facing the combustion zone to the fuel nozzle outlet 4 for supplying a primary fuel, the fuel nozzle 1 and the primary mixing tube 11 being arranged concentrically around the secondary supply unit. The primary mixing tube 11 and the fuel nozzle 1 have a fluid flow connection. Through the primary mixer tube 11 and the fuel nozzle 1 of the combustion zone 10 synthesis gas is supplied.
Um die Primärzuführeinheit ist zumindest teilweise ein Ring¬ kanal 40 angeordnet, der mehrere auf dem Umfang angeordnete Swirler 45 mit oder ohne Brennstoffdüsen aufweist. Durch die- sen Ringkanal 40 wird Verdichterluft L' ' geströmt, in das mittels den Swirlern 45 Brennstoff eingedüst werden kann. Das daraus entstehende Verdichterluft L' ' - Brennstoffgemisch oder die Luft L' ' wird ebenfalls verdrallt in die Verbrennungszone 10 eingebracht. At least partially, a ring ¬ channel 40 is arranged around the primary supply, which has a plurality of circumferentially arranged Swirler 45 with or without fuel nozzles. Compressor air L "flows through this annular channel 40, into which fuel can be injected by means of the swirlers 45. The resulting compressor air L '' - fuel mixture or the air L '' is also introduced into the combustion zone 10 twisted.
Die Brennstoffdüse 1 weist eine ringförmige Wand 9 auf, wel¬ che in axialer Richtung radial von der Sekundärzuführeinheit beabstandet ist, so dass durch die ringförmige Wand 9 und Se¬ kundärzuführeinheit eine Spalthöhe h ausgebildet wird. Dabei weist die Brennstoffdüse 1 eine zur Sekundärzufuhreinheit ge¬ richtete Innenwand 50 auf, wobei die Innenwand 50 ringförmig angeordnete Schaufeln 12 aufweist (Fig.2). Alternativ können die Schaufeln 12 auch auf der Außenwand der Sekundärzuführeinheit angeordnet werden (nicht gezeigt) . Dabei versteht man unter der Außenwand der Sekundärzuführeinheit die zur Brenn¬ stoffdüse gerichtete Außenwand der Sekundärzuführeinheit. Die Brennstoffdüse 1 weist zudem einen Brennstoffdüseneinlass 20 und einen Brennstoffdüsenaustritt 4 auf. Durch die Schaufeln 12 wird der Druckverlust an den Brennstoffdüsenaustritt 4 ge¬ legt. Dies hat den Vorteil, dass sich höhere akustische Sta¬ bilität in der Verbrennungszone 10, das heißt Stabilität ge¬ gen über dem bekannten Brummen in der Verbrennungszone 10, als bei den Düsen des Brenners des Stands der Technik ein¬ stellt. Der Druckverlust kann in dieser Ausführung zudem über die Geschwindigkeit des Synthesegases bzw. den Querschnitt des Brennstoffdüsenaustritts eingestellt werden. Die Brennstoffdüse 1 ist stromab zumindest teilweise konisch ausgebildet . The fuel nozzle 1 has an annular wall 9, wel ¬ che in the axial direction is radially spaced from the Sekundärzuführeinheit, so that a gap height h is formed by the annular wall 9 and Se ¬ kundärzuführeinheit. In this case 1, the fuel nozzle to the secondary feeding unit ge ¬ directed inner wall 50, the inner wall 50 has annularly arranged blades 12 (Figure 2). Alternatively, the blades 12 may be disposed on the outer wall of the secondary feed unit (not shown). Here we mean by the outer wall of Sekundärzuführeinheit directed to the internal ¬ material nozzle outer wall of the Sekundärzuführeinheit. The fuel nozzle 1 also has a fuel nozzle inlet 20 and a fuel nozzle outlet 4. Through the blades 12, the pressure loss at the fuel nozzle outlet 4 is ge ¬ sets. This has the advantage that higher acoustic Sta ¬ stability in the combustion zone 10, that is GE stability ¬ gen to the known hum in the combustion zone 10 than in the nozzles of the burner of the prior art provides a ¬. The pressure loss can also be adjusted in this embodiment on the speed of the synthesis gas or the cross section of the fuel nozzle outlet. The fuel nozzle 1 is formed downstream at least partially conical.
Die Schaufeln 12 haben auf der stromaufwärtigen Seite eine Schaufelanströmkante 51 und gegenüberliegend eine Schaufel- hinterkante 60. Dabei weist die Schaufelanströmkante 51 einen axialen Abstand s zu dem Brennstoffdüseneinlass 20 auf. Das Verhältnis von Abstand s und Spalthöhe h ist dabei größer als 1 und kleiner als 4. Durch diese Begrenzung des Abstandes s zu den Schaufel 12 in axialer Richtung wird die Ausbildung einer nennenswerten Grenzschicht verhindert. The blades 12 have on the upstream side a blade inlet edge 51 and opposite a blade trailing edge 60. In this case, the blade inlet edge 51 has an axial distance s from the fuel nozzle inlet 20. The ratio of distance s and gap height h is greater than 1 and less than 4. By this limitation of the distance s to the blade 12 in the axial direction, the formation of a significant boundary layer is prevented.
Zur Maximierung des akzeptablen, verfügbaren Druckverlustes in der Düse 1 wird der Brennstoffdüseneinlass 20 mit einer größeren Spalthöhe h ausgeführt. Dadurch erfolgt die maximale Ausnutzung des akzeptablen Druckverlustes und die Vermeidung von parasitären Druckverlusten am Brennstoffdüsenaustritt 4. Es stellt sich somit eine stabile Verbrennung ein. To maximize the acceptable, available pressure loss in the nozzle 1, the fuel nozzle inlet 20 is designed with a larger gap height h. As a result, the maximum utilization of the acceptable pressure loss and the avoidance of parasitic pressure losses takes place at the fuel nozzle outlet 4. This results in stable combustion.
Der Brennstoffdüseneinlass 20 ist zudem abgerundet, wobei die Abrundung einen Brennstoffdüseneinlassradius Re aufweist. Die Abrundung weist dabei von einem Brennstoffdüseninneren weg. Das Verhältnis von Brennstoffdüseneinlassradius Re und der Spalthöhe h ist dabei größer als 0.2 und kleiner als 0.8. Da¬ durch erfolgt bis zur Schaufelanströmkante 51 eine gleichmä- ßige Strömungsbeschleunigung, welche eine Minimierung derThe fuel nozzle inlet 20 is also rounded, the rounding having a fuel nozzle inlet radius Re. The rounding points away from a fuel nozzle interior. The ratio of the fuel nozzle inlet radius Re and the gap height h is greater than 0.2 and less than 0.8. Since ¬ by carried to the blade leading 51 a gleichmä- ssige flow acceleration, which the minimization
Einlaufdruckverluste und an den Schaufeln 12 ein gleichmäßi¬ ges Strömungsprofil bewirkt. Alternativ kann dies auch durch eine gerade Düse 1 mit einem geraden Brennstoffdüseneintritt 20 mit einem Winkel <75° bewirkt werden (nicht dargestellt) . Die Schaufelanströmkante 51 weist dabei den oben erwähnten stromaufwärtigen relativen axialen Abstand von etwa Ks (Abstand) /h (Spalthöhe) <4 zum Brennstoffdüseneintritt 20 auf. Inlet pressure losses and on the blades 12 causes a gleichmäßi ¬ ges flow profile. Alternatively, this can also be done by a straight nozzle 1 with a straight fuel nozzle inlet 20 are caused by an angle <75 ° (not shown). In this case, the blade inflow edge 51 has the above-mentioned upstream relative axial distance of approximately Ks (distance) / h (gap height) <4 to the fuel nozzle inlet 20.
Im Gegensatz zu bestehenden Lösungen ist die Düse 1 also derart ausgeführt, dass durch Reduzierung der Spalthöhe h am Brennstoffdüseneintritt 20 die Axialgeschwindigkeit bereits vor den Schaufeln 12 erhöht wird und eine gleichmäßige Be- schleunigung des Gases bis zum Austritt aus der Düse 1 er¬ folgt. Dabei beträgt die Spalthöhe h am Brennstoffdüsenaus¬ tritt 4 zwischen O.Kh (Spalthöhe) /Ra<0.2, wobei Ra den äußeren Brennstoffdüsenradius Ra darstellt, damit eine Mach-Zahl im Bereich 0.4<Ma<O.8 eingehalten wird, was eine bessere akustische Entkopplung des BrennstoffSystems von Brennkammer¬ druckschwingungen bewirkt. Zusätzlich ist mit der höheren Mach-Zahl eine Vergrößerung der Mischenergie verbunden. Durch die kleinere Spalthöhe h als bei den Düsen des Stands der Technik am Düsenaustritt 4 werden zudem Mischungswege mini- miert. In contrast to existing solutions, the nozzle 1 is thus designed such that by reducing the gap height h at the fuel nozzle inlet 20, the axial velocity is increased before the blades 12 and a uniform acceleration of the gas until it exits the nozzle 1 he follows ¬ . The gap height h at Brennstoffdüsenaus ¬ occurs 4 between O.Kh (gap height) /Ra<0.2, where Ra represents the outer fuel nozzle radius Ra, so that a Mach number in the range 0.4 <Ma <O.8 is maintained, which is better Acoustic decoupling of the fuel system of combustion ¬ pressure oscillations causes. In addition, an increase in the mixing energy is associated with the higher Mach number. Due to the smaller gap height h than in the case of the prior art nozzles at the nozzle outlet 4, mixing paths are also minimized.
Die Schaufeln 12 weisen zusätzlich einen Schaufelanstellwinkel auf (Fig. 2) . Dabei ist der Schaufelanstellwinkel zu wäh¬ len, bei dem eine möglichst hohe Drallzahl S eingestellt wird, ohne jedoch eine Strömungsablösung an der Schaufelhinterkante 60 und der Nabe 70 zu verursachen, wobei die Drall¬ zahl S den Drehimpulsstrom zum Axialimpulsstrom ins Verhältnis setzt. Dabei wird als Nabe 70 derjenige Teil der Sekun¬ därzufuhreinheit bezeichnet, welche sich am Axialgitter 22 befindet und welche die innere Berandung des Brennstoffdüse 1 am Düsenaustritt 4 darstellt. Die Drallzahl S liegt dabei in einem Bereich von größer 1.2 und kleiner 1.7. Dabei ist gleichzeitig am Brennstoffdüsenaustritt 4 das Verhältnis des Radius Ri der Sekundärzufuhreinheit zum äußeren Brennstoffdü- senradius Ra der Brennstoffdüse 1 größer als 0.6 und kleiner als 0.8 einzuhalten. Da die Drallzahl S von dem Verhältnis Ri/Ra abhängt, bewirkt eine Einhaltung des Verhältnisses, dass die Synthesegasströmung der Kontur der Brennstoffdüse 1 noch folgt, ohne sich auf der Nabenseite abzulösen. The blades 12 additionally have a blade angle of attack (FIG. 2). Here, the blade pitch angle to currency ¬ len, in which a very high swirl number S is set, however, without causing flow separation on the blade trailing edge 60 and the hub 70, wherein the swirl ¬ number S sets the rotation pulse current in relation to the Axialimpulsstrom. In this case, as the hub 70 that part of the seconds ¬ därzufuhreinheit refers, which is located on the axial grid 22 and which represents the inner boundary of the fuel nozzle 1 at the nozzle outlet 4. The swirl number S is in a range of greater than 1.2 and less than 1.7. At the same time, the ratio of the radius Ri of the secondary feed unit to the outer fuel nozzle radius Ra of the fuel nozzle 1 at the fuel nozzle outlet 4 must be greater than 0.6 and less than 0.8. Since the swirl number S depends on the ratio Ri / Ra, compliance with the ratio, that the synthesis gas flow still follows the contour of the fuel nozzle 1, without detaching itself on the hub side.
Das Brennstoff-Luftgemisch, welches durch das Axialgitter 22 durchströmt, weist zudem eine tangentiale Strömungsrichtung 100 (Drall) auf. Auch in der Brennstoffdüse 1 wird dem Syn¬ thesegasstrom durch einen Anstellwinkel der Schaufeln 12 eine tangentiale Strömungsrichtung 110 aufgeprägt. Der Schaufelanstellwinkel kann nun so angeordnet werden, dass die tangenti- ale Strömungsrichtungen 100 und 110 nun eine gegensinnigeThe fuel-air mixture, which flows through the axial grid 22, also has a tangential flow direction 100 (swirl). Also in the fuel nozzle 1 Syn ¬ synthesis gas stream is imparted by an angle of attack of the blades 12 a tangential flow direction 110th The blade angle of attack can now be arranged so that the tangential flow directions 100 and 110 are now in opposite directions
Drehrichtung aufweisen. Dazu müssen die Schaufeln 12 und das Axialgitter 22 eine gegensinnige Anordnung aufweisen. Dies bewirkt eine erhebliche Steigerung der Mischungsintensität wegen der vergrößerten Schergeschwindigkeiten in den Kontakt- zonen der Strömungen 100 und 110. Aufgrund des Gegendralls liegt nämlich die Relativgeschwindigkeiten zwischen den Luft- Brennstoffgemisch und Synthesegas deutlich über der Relativgeschwindigkeiten einer gleichsinnigen Anordnung, was wiederum die deutlich höhere Durchmischung beider Ströme zur Folge hat. Dies wirkt sich wiederum positiv auf die NOx Emissionen aus. Auch die Luft, welches durch die Ringpassage 40 strömt weist einen Drall 120 auf. Diese ist bevorzugt gleichgerich¬ tet zum Drallstrom 100. Die Brennstoffdüse 1 kann in Strömungsrichtung gesehen nach den Schaufeln 12 noch Löcher 130 aufweisen. Durch diese kann die Luft des Ringkanals 40 eintreten, wenn der Brenner nicht im Synthesegasbetrieb ist. Somit ist eine Betreibung des Brenners auch ohne Synthesegas möglich, wenn Brennstoff über den Pilotbrenner oder aber Brennstoff über die Ergaspassage 35 zugeführt wird. Damit kann im Betrieb ohne Synthesegas kein Heißgas, welches im Verbrennungszone 10 vorhanden ist, über die Düse 1 zurückströmen. Die Löcher 130 können dabei in Strömungsrichtung mit einer Einlaufschale (7) ausgebildet sein, welche in den Kanal 40 hineinragt. Somit kann, im Be¬ trieb ohne Synthesegas, die Luft L' ' gezielter durch die Lö¬ cher 130 in die Düse 1 geströmt werden, um somit das Heißgas noch gezielter daran zu hindern, dass Heißgas aus der Have direction of rotation. For this purpose, the blades 12 and the axial grid 22 must have an opposing arrangement. This causes a significant increase in the mixing intensity due to the increased shear rates in the contact zones of the flows 100 and 110. Because of the counter-roll, namely, the relative velocities between the air-fuel mixture and synthesis gas is well above the relative velocities of a co-directional arrangement, which in turn significantly higher mixing both streams entails. This in turn has a positive effect on NOx emissions. Also, the air flowing through the annular passage 40 has a twist 120. This is preferably gleichgerich ¬ tet to the swirl flow 100. The fuel nozzle 1, seen in the flow direction after the blades 12 still have holes 130. Through this, the air of the annular channel 40 can occur when the burner is not in the synthesis gas operation. Thus, an operation of the burner without synthesis gas is possible when fuel is supplied via the pilot burner or fuel via the Ergaspassage 35. Thus, no hot gas, which is present in the combustion zone 10, can flow back through the nozzle 1 during operation without synthesis gas. The holes 130 may be formed in the flow direction with an inlet shell (7), which projects into the channel 40. Thus, in the loading drive ¬ without the synthesis gas, the air L '' are targeted flowed through the Lö ¬ cher 130 in the nozzle 1, thereby the hot gas even more purposefully to prevent that hot gas from the
Verbrennungszone 10 in die Düse 1 zurückströmt. Combustion zone 10 flows back into the nozzle 1.
Die Figur 2 zeigt eine erfindungsgemäße Brennstoffdüse 1 im Detail. Diese Düse 1 weist eine Innenwand 50 auf. Die Schau¬ feln 12 sind ringförmig über den Umfang der Innenwand 50 angeordnet. Die Düse 1 ist konisch ausgebildet und zwar über den gesamten Bereich der Nabe 70 (Fig. 1), woraus sich am Brennstoffdüsenaustritt 4 eine geringere Spalthöhe h(Fig. 1) ergibt, als dies bei den Düsen des Stands der Technik der Fall ist. FIG. 2 shows a fuel nozzle 1 according to the invention in detail. This nozzle 1 has an inner wall 50. The show ¬ blades 12 are arranged annular over the circumference of the inner wall 50. The nozzle 1 has a conical shape over the entire area of the hub 70 (FIG. 1), resulting in a smaller gap height h (FIG. 1) at the fuel nozzle outlet 4 than is the case with the nozzles of the prior art.
Im Gegensatz zu der Düse 1 des Brenners im Stand der Technik kann der Volumenstrom des Synthesegases, der durch den erfin- dungsgemäßen Brenner der Verbrennungszone 10 zugeführt werden muss, bei gleichen NOx Emissionen verringert werden. Daraus ergibt sich der Vorteil eines geringeren Bauraums der Primärzuführeinheit bzw. der Zufuhrsysteme zur Primärzuführeinheit. Die bessere akustische Stabilität lässt einen erweiterten Be- triebsbereich des erfindungsgemäßen Brenners hinsichtlich Last und Brennstoffqualität zu. In contrast to the nozzle 1 of the burner in the prior art, the volume flow of the synthesis gas, which must be supplied by the burner according to the invention to the combustion zone 10, can be reduced with the same NOx emissions. This results in the advantage of a smaller installation space of the primary supply unit or of the supply systems for the primary supply unit. The better acoustic stability allows an extended operating range of the burner according to the invention in terms of load and fuel quality.

Claims

Patentansprüche claims
1. Turbinenbrenner der eine Sekundärzuführeinheit zur Zuführung eines Sekundärbrennstoffes oder Luft und zum Entladen des Brennstoffes oder Luft von einer Öffnung (6) in eineA turbine burner of a secondary supply unit for supplying a secondary fuel or air and for discharging the fuel or air from an opening (6) in one
Verbrennungszone (10) aufweist und eine Primärzuführeinheit, welche eine Primärmischröhre (11) und eine Brennstoffdüse (1) mit einem in die Verbrennungszone weisenden Brennstoffdüsen- austritt(4) zur Zuführung eines Primärbrennstoffes aufweist, wobei die Brennstoffdüse (1) sowie die Primärmischröhre (11) konzentrisch um die Sekundärzuführeinheit angeordnet ist, wo¬ bei die Primärmischröhre (11) und die Brennstoffdüse (1) eine Fluidflussverbindung aufweisen, wobei die Brennstoffdüse (1) eine ringförmige Wand (9) aufweist, welche in axialer Rich- tung radial von der Sekundärzuführeinheit beabstandet ist, so dass durch die ringförmige Wand (9) und Sekundärzuführeinheit eine Spalthöhe (h) ausgebildet wird, wobei die ringförmige Wand (9) der Brennstoffdüse (1) eine zur Sekundärzufuhrein¬ heit gerichtete Innenwand (50) aufweist, wobei zwischen Se- kundärzuführeinheit und der ringförmigen Wand (9) ein Fluid- kanal ausgebildet wird, und in dem Fluidkanal Schaufeln (12) angeordnet sind, Combustion zone (10) and a Primärzuführeinheit having a primary mixer tube (11) and a fuel nozzle (1) with a pointing into the combustion zone Brennstoffdüsen- (4) for supplying a primary fuel, wherein the fuel nozzle (1) and the primary mixing tube (11 ) is arranged concentrically around the Sekundärzuführeinheit where ¬ in the primary mixing tube (11) and the fuel nozzle (1) have a fluid flow connection, wherein the fuel nozzle (1) has an annular wall (9), which in the axial direction radially from the Sekundärzuführeinheit a gap height (h) is formed by the annular wall (9) and secondary feed unit, wherein the annular wall (9) of the fuel nozzle (1) has an inner wall (50) directed towards the secondary feed unit , wherein between kundärzuführeinheit and the annular wall (9) a fluid channel is formed, and in the fluid channel Schau are arranged (12)
d a d u r c h g e k e n n z e i c h n e t, d a s s die die Schaufeln (12) auf ihrer stromaufwärtigen Seite eine Schau- felanströmkante (51) aufweisen und die Brennstoffdüse (1) ei¬ nen Brennstoffdüseneinlass (20) aufweist und die Schaufeln (12) einen axialen Abstand (s) zu diesem Brennstoffdüseneinlass (20) aufweisen, wobei das Verhältnis des Abstands (s) und der Spalthöhe (h) größer als 1 und kleiner als 4 ist. characterized in that the blades (12) on its upstream side a Schau- felanströmkante (51) and the fuel nozzle (1) Ei ¬ NEN fuel nozzle inlet (20) and the blades (12) an axial distance (s) on this fuel nozzle inlet (20), wherein the ratio of the distance (s) and the gap height (h) is greater than 1 and less than 4.
2. Turbinenbrenner nach Anspruch 1, 2. turbine burner according to claim 1,
d a d u r c h g e k e n n z e i c h n e t, d a s s die Schaufeln (12) ringförmig über den Umfang der Innenwand (50) angeordnet sind. That is, the blades (12) are annularly disposed about the circumference of the inner wall (50).
3. Turbinenbrenner nach Anspruch 1 oder 2, 3. turbine burner according to claim 1 or 2,
die Sekundärzuführeinheit eine zur Brennstoffdüse (1) gerich¬ tete Außenwand aufweist, wobei die Außenwand der Sekundärzu- fuhreinheit Schaufeln (12) aufweist, wobei die Schaufeln (12) ringförmig über den gesamten Umfang der Außenwand angeordnet sind . which has a Sekundärzuführeinheit to the fuel nozzle (1) preparing court ¬ outer wall wherein said outer wall of Sekundärzu- has blades (12), wherein the blades (12) are arranged annular over the entire circumference of the outer wall.
4. Turbinenbrenner nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t, d a s s die Brennstoffdüse (1) in Strömungsrichtung zumindest teilweise konisch ausgebildet ist. 4. Turbinenbrenner according to any one of the preceding claims, d a d u r c h e c e n e z e c h e n e, t a s s the fuel nozzle (1) in the flow direction is at least partially conical.
5. Turbinenbrenner nach Anspruch 4, 5. turbine burner according to claim 4,
d a d u r c h g e k e n n z e i c h n e t, d a s s die Brennstoffdüse (1) in Strömungsrichtung nach den Schaufeln (12) gesehen eine kontinuierliche Reduktion der Spalthöhe (h) aufweist . The fuel nozzle (1) in the flow direction downstream of the blades (12) has a continuous reduction of the gap height (h).
6. Turbinenbrenner nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t, d a s s der Brennstoffdüseneinlass (20) abgerundet ist, wobei die Abrun- dung einen Brennstoffdüseneinlassradius (Re) aufweist, wobei die Abrundung von einem Brennstoffdüseninneren weg weist. 6. The turbine burner of claim 1, wherein the fuel nozzle inlet (20) is rounded, the orifice having a fuel nozzle inlet radius (Re), wherein the rounding faces away from a fuel nozzle interior.
7. Turbinenbrenner nach Anspruch 6, 7. turbine burner according to claim 6,
d a d u r c h g e k e n n z e i c h n e t, d a s s das Verhältnis von Brennstoffdüseneinlassradius (Re) und die Spalthöhe (h) größer aus 0.2 und kleiner als 0.8 ist. The ratio of the fuel nozzle inlet radius (Re) and the gap height (h) is greater than 0.2 and less than 0.8 d a d u c h e c e n e s.
8. Turbinenbrenner nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t, d a s s die Brennstoffdüse (1) einen äußeren Brennstoffdüsenradius (Ra) aufweist. 8. The turbine burner according to one of the preceding claims, wherein the fuel nozzle (1) has an outer fuel nozzle radius (R a).
9. Turbinenbrenner nach Anspruch 8, 9. turbine burner according to claim 8,
d a d u r c h g e k e n n z e i c h n e t, d a s s am Brennstoffdüseneintritt (20) das Verhältnis der Spalthöhe (h) und des Brennstoffdüsenradius (Ra) größer als 0.2 und kleiner als 0.3 ist . characterized in that at the fuel nozzle inlet (20) the ratio of the gap height (h) and the fuel nozzle radius (Ra) is greater than 0.2 and less than 0.3.
10. Turbinenbrenner nach Anspruch 8 oder 9, 10. turbine burner according to claim 8 or 9,
d a d u r c h g e k e n n z e i c h n e t, d a s s die Se¬ kundärzufuhreinheit einen Radius (Ri) aufweist und am Brenn¬ stoffdüsenaustritt (4) das Verhältnis von dem Radius (Ri) zu den äußeren Brennstoffdüsenradius (Ra) der Brennstoffdüse (1) größer als 0.6 und kleiner als 0.8 ist. characterized in that the Se ¬ kundärzufuhreinheit having a radius (Ri) and the combustion ¬ material nozzle outlet (4) the ratio of the radius (Ri) to the outer fuel nozzles radius (Ra) of the fuel nozzle (1) is greater than 0.6 and less than 0.8.
11. Turbinenbrenner nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t, d a s s die Brennstoffdüse (1) Löcher (130) aufweist, welche in Strö¬ mungsrichtung gesehen den Schaufeln (12) nachgeordnet sind und welche über den gesamten Umfang der Wand (9) der Brennstoffdüse (1) angeordnet sind. 11. Turbinenbrenner according to any one of the preceding claims, characterized in that the fuel nozzle (1) holes (130), which are seen in Strö ¬ tion direction downstream of the blades (12) and which over the entire circumference of the wall (9) of the fuel nozzle ( 1) are arranged.
12. Turbinenbrenner nach Anspruch 11, 12. turbine burner according to claim 11,
d a d u r c h g e k e n n z e i c h n e t, d a s s die Lö¬ cher (130) eine Einlaufschale (7) aufweisen. characterized in that the Lö ¬ cher (130) have an inlet shell (7).
13. Turbinenbrenner nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t, d a s s zumin¬ dest teilweise um die Primärzuführeinheit ein Ringkanal (40) angeordnet ist, der mehrere auf dem Umfang angeordnete Swir- ler (45) mit Brennstoffdüsen aufweist. 13. turbine burner according to one of the preceding claims, characterized in that ¬ at least partially around the Primärzuführeinheit an annular channel (40) is arranged, which has a plurality of arranged on the circumference Swir- ler (45) with fuel nozzles.
EP11711862.0A 2010-06-18 2011-03-29 Turbine burner Active EP2583033B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP11711862.0A EP2583033B1 (en) 2010-06-18 2011-03-29 Turbine burner

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP10166431A EP2397764A1 (en) 2010-06-18 2010-06-18 Turbine burner
PCT/EP2011/054777 WO2011157458A1 (en) 2010-06-18 2011-03-29 Turbine burner
EP11711862.0A EP2583033B1 (en) 2010-06-18 2011-03-29 Turbine burner

Publications (2)

Publication Number Publication Date
EP2583033A1 true EP2583033A1 (en) 2013-04-24
EP2583033B1 EP2583033B1 (en) 2014-06-25

Family

ID=43086876

Family Applications (2)

Application Number Title Priority Date Filing Date
EP10166431A Withdrawn EP2397764A1 (en) 2010-06-18 2010-06-18 Turbine burner
EP11711862.0A Active EP2583033B1 (en) 2010-06-18 2011-03-29 Turbine burner

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP10166431A Withdrawn EP2397764A1 (en) 2010-06-18 2010-06-18 Turbine burner

Country Status (4)

Country Link
US (1) US8869535B2 (en)
EP (2) EP2397764A1 (en)
CN (1) CN102947650B (en)
WO (1) WO2011157458A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2312215A1 (en) * 2008-10-01 2011-04-20 Siemens Aktiengesellschaft Burner and Method for Operating a Burner
CN105393057B (en) * 2013-09-23 2017-06-30 西门子股份公司 Burner for combustion gas turbine and the method for reducing the thermal acoustic oscillation in combustion gas turbine
US10731861B2 (en) * 2013-11-18 2020-08-04 Raytheon Technologies Corporation Dual fuel nozzle with concentric fuel passages for a gas turbine engine
EP2993406A1 (en) 2014-09-03 2016-03-09 Siemens Aktiengesellschaft Method for operating a gas turbine and burner for a gas turbine
DE102021002508A1 (en) 2021-05-12 2022-11-17 Martin GmbH für Umwelt- und Energietechnik Nozzle for injecting gas into an incinerator with a tube and a swirler, flue with such a nozzle and method for using such a nozzle

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100234569B1 (en) * 1991-04-25 1999-12-15 피터 토마스 Burner arrangement especially for gas turbines for the low-pollutant combustion of coal gas and other fuels
DE19549143A1 (en) 1995-12-29 1997-07-03 Abb Research Ltd Gas turbine ring combustor
DE59801583D1 (en) * 1997-07-17 2001-10-31 Siemens Ag BURNER ARRANGEMENT FOR A COMBUSTION PLANT, IN PARTICULAR A GAS TURBINE COMBUSTION CHAMBER
DE19757617A1 (en) * 1997-12-23 1999-03-25 Siemens Ag Combustion system
ATE394637T1 (en) 2003-07-25 2008-05-15 Ansaldo Energia Spa GAS TURBINE BURNER
EP1659339A1 (en) * 2004-11-18 2006-05-24 Siemens Aktiengesellschaft Method of starting up a burner
WO2007036964A1 (en) * 2005-09-30 2007-04-05 Ansaldo Energia S.P.A. Method for starting a gas turbine equipped with a gas burner, and axial swirler for said burner
US7685823B2 (en) 2005-10-28 2010-03-30 Power Systems Mfg., Llc Airflow distribution to a low emissions combustor
US8393891B2 (en) * 2006-09-18 2013-03-12 General Electric Company Distributed-jet combustion nozzle

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2011157458A1 *

Also Published As

Publication number Publication date
EP2583033B1 (en) 2014-06-25
US8869535B2 (en) 2014-10-28
US20130074506A1 (en) 2013-03-28
WO2011157458A1 (en) 2011-12-22
CN102947650A (en) 2013-02-27
EP2397764A1 (en) 2011-12-21
CN102947650B (en) 2014-12-17

Similar Documents

Publication Publication Date Title
EP1802915B1 (en) Gas turbine burner
DE102007004864B4 (en) Combustion chamber of a gas turbine and combustion control method for a gas turbine
EP2588805B1 (en) Burner
DE102014102584A1 (en) Fuel nozzle to reduce the modal coupling of the combustion dynamics
DE102011055241B4 (en) Apparatus and method for igniting a combustor assembly
DE102014102780A1 (en) System and method for air flow conditioning at a rape level
CH708992A2 (en) Fuel injector with premixed pilot nozzle.
CH703765A2 (en) Nozzle and method of mixing fuel and air in a nozzle.
CH707771A2 (en) System with multi-tube fuel nozzle having a plurality of fuel injectors.
DE102015122927A1 (en) Pilot nozzle in a gas turbine combustor
DE102008037480A1 (en) Lean premixed dual-fuel annular tube combustion chamber with radial multi-ring stage nozzle
CH702684B1 (en) Combustor assembly.
CH701293B1 (en) Fuel nozzle with a swirler and a plurality of vanes and gas turbine engine.
EP2583033B1 (en) Turbine burner
CH698098B1 (en) Premix, combustion chamber and method of operating a combustion chamber.
EP2439447A1 (en) Fuel nozzle, gas turbine combustion chamber and burner with such a fuel nozzle
CH703230B1 (en) Gas turbine with single-stage fuel injection.
EP2601447A2 (en) Gas turbine combustion chamber
DE102016106984A1 (en) Systems and methods for controlling combustion dynamics in a combustion system
DE102008002934A1 (en) Secondary fuel nozzle arrangement for use in gas-turbine engine, has nozzle section with central passage and passages, and head section with set of inlets in flow-connection with nozzle passages
CH703764A2 (en) Fuel injector for use in a turbine engine and turbine drive.
EP2558781B1 (en) Swirl generator for a torch
DE102014111070A1 (en) System for injecting a liquid fuel into a combustion gas flow field
EP4089325B1 (en) Nozzle for blowing gas into a combustion plant with a pipe and a swirl generator, flue with such a nozzle and method of using such a nozzle
EP3584501A1 (en) Burner system and method for generating hot gas in a gas turbine plant

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20121031

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140123

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 674946

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140715

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011003552

Country of ref document: DE

Effective date: 20140807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140625

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140625

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140625

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140925

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140926

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20140625

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140625

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140625

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140625

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140625

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140625

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140625

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140625

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141027

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140625

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140625

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141025

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140625

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140625

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011003552

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140625

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20150326

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150329

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140625

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140625

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20151130

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150331

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150329

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140625

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 674946

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140625

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110329

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140625

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160329

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140625

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140625

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140625

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502011003552

Country of ref document: DE

Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG, DE

Free format text: FORMER OWNER: SIEMENS AKTIENGESELLSCHAFT, 80333 MUENCHEN, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230321

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240328

Year of fee payment: 14