EP2574735B1 - Target sensor - Google Patents
Target sensor Download PDFInfo
- Publication number
- EP2574735B1 EP2574735B1 EP12186718.8A EP12186718A EP2574735B1 EP 2574735 B1 EP2574735 B1 EP 2574735B1 EP 12186718 A EP12186718 A EP 12186718A EP 2574735 B1 EP2574735 B1 EP 2574735B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- target
- probe
- sensor
- frequency
- sensor probe
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000523 sample Substances 0.000 claims description 159
- 230000003993 interaction Effects 0.000 claims description 48
- 230000008859 change Effects 0.000 claims description 12
- 230000001105 regulatory effect Effects 0.000 claims description 9
- 238000000034 method Methods 0.000 claims description 8
- 238000010200 validation analysis Methods 0.000 claims description 8
- 230000005540 biological transmission Effects 0.000 claims description 6
- 238000000926 separation method Methods 0.000 claims description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 3
- 230000000694 effects Effects 0.000 description 19
- 238000001514 detection method Methods 0.000 description 13
- 238000010586 diagram Methods 0.000 description 11
- 230000004044 response Effects 0.000 description 8
- 230000035945 sensitivity Effects 0.000 description 8
- 239000000306 component Substances 0.000 description 7
- 230000004907 flux Effects 0.000 description 7
- 238000005259 measurement Methods 0.000 description 7
- 230000004048 modification Effects 0.000 description 6
- 238000012986 modification Methods 0.000 description 6
- 230000008901 benefit Effects 0.000 description 5
- 230000001939 inductive effect Effects 0.000 description 5
- 230000006835 compression Effects 0.000 description 4
- 238000007906 compression Methods 0.000 description 4
- 238000013461 design Methods 0.000 description 4
- 230000001965 increasing effect Effects 0.000 description 4
- 238000006073 displacement reaction Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000007689 inspection Methods 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 230000035699 permeability Effects 0.000 description 3
- 230000003068 static effect Effects 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- 230000002159 abnormal effect Effects 0.000 description 2
- 230000004075 alteration Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000006399 behavior Effects 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 2
- 238000004590 computer program Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 230000036039 immunity Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000001404 mediated effect Effects 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 230000007425 progressive decline Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 241000894433 Turbo <genus> Species 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 230000002301 combined effect Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000003750 conditioning effect Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000008358 core component Substances 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 238000003066 decision tree Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000008450 motivation Effects 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B7/00—Measuring arrangements characterised by the use of electric or magnetic techniques
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D21/00—Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for
- F01D21/003—Arrangements for testing or measuring
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D21/00—Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for
- F01D21/04—Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for responsive to undesired position of rotor relative to stator or to breaking-off of a part of the rotor, e.g. indicating such position
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B7/00—Measuring arrangements characterised by the use of electric or magnetic techniques
- G01B7/02—Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness
- G01B7/023—Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness for measuring distance between sensor and object
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B7/00—Measuring arrangements characterised by the use of electric or magnetic techniques
- G01B7/14—Measuring arrangements characterised by the use of electric or magnetic techniques for measuring distance or clearance between spaced objects or spaced apertures
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/12—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
- G01D5/14—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
- G01D5/20—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01P—MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
- G01P3/00—Measuring linear or angular speed; Measuring differences of linear or angular speeds
- G01P3/42—Devices characterised by the use of electric or magnetic means
- G01P3/44—Devices characterised by the use of electric or magnetic means for measuring angular speed
- G01P3/48—Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K17/00—Electronic switching or gating, i.e. not by contact-making and –breaking
- H03K17/94—Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the way in which the control signals are generated
- H03K17/945—Proximity switches
- H03K17/95—Proximity switches using a magnetic detector
- H03K17/952—Proximity switches using a magnetic detector using inductive coils
- H03K17/9537—Proximity switches using a magnetic detector using inductive coils in a resonant circuit
- H03K17/9542—Proximity switches using a magnetic detector using inductive coils in a resonant circuit forming part of an oscillator
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K17/00—Electronic switching or gating, i.e. not by contact-making and –breaking
- H03K17/94—Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the way in which the control signals are generated
- H03K17/945—Proximity switches
- H03K17/95—Proximity switches using a magnetic detector
- H03K17/952—Proximity switches using a magnetic detector using inductive coils
- H03K17/9537—Proximity switches using a magnetic detector using inductive coils in a resonant circuit
- H03K17/9542—Proximity switches using a magnetic detector using inductive coils in a resonant circuit forming part of an oscillator
- H03K17/9545—Proximity switches using a magnetic detector using inductive coils in a resonant circuit forming part of an oscillator with variable frequency
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2260/00—Function
- F05D2260/80—Diagnostics
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2270/00—Control
- F05D2270/80—Devices generating input signals, e.g. transducers, sensors, cameras or strain gauges
- F05D2270/804—Optical devices
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K17/00—Electronic switching or gating, i.e. not by contact-making and –breaking
- H03K17/94—Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the way in which the control signals are generated
- H03K17/945—Proximity switches
- H03K17/95—Proximity switches using a magnetic detector
- H03K17/952—Proximity switches using a magnetic detector using inductive coils
- H03K2017/9527—Details of coils in the emitter or receiver; Magnetic detector comprising emitting and receiving coils
Definitions
- the present invention relates to a target sensor and in particular a rotor blade sensor especially in turbines.
- the radial and axial position(s) of the turbine blade(s) of an aeroengine jet turbine vary over a range of up to several millimetres relative to their position when the engine is cold and unloaded.
- Extreme radial and axial shifts and/or overspeeding of the turbine i.e. higher than expected rates of revolution ⁇ t ) can be symptomatic of a reduction in the performance of the engine and, under certain circumstances, a degradation in its mechanical integrity.
- One means to implement such a monitoring system is to install a sensor in the engine casing capable of a) detecting the presence/absence of the turbine blades b) measuring the blade pass rate, from which the rotational speed of the turbine may be inferred.
- blade-tip clearance the radial distance between the blade tips and the turbine casing
- the radial blade tip to casing distance d r takes a maximum value when the engine is cold and unloaded and reduces under load as a result of the combined effects of heating and centripetal acceleration of the blades.
- Axial shift of the blades is due to the displacement of the turbine under load. Relative to its "neutral" position in the cold, static engine, the majority of the axial shift of the turbine is toward the rear of the casing (negative shift), but a small displacement toward the front of the engine (positive shift) is also possible (see Fig. 1(b) ).
- a case mounted instrument capable of meeting the demands of blade sensing should preferably:
- US2005/0088171 describes an eddy current sensor that drives a coil at its resonance frequency and then uses frequency demodulation to detect changes in that resonance frequency brought about by passing turbine blades. Whilst such a proximity sensor may detect fast moving blades, its sensitivity and range is low.
- GB 1066057 describes a monitoring system for the clearance of rotor blades from a surrounding casing inside a steam turbine.
- the system includes an inductive probe and a means for providing a constant voltage AC signal away from and below the resonance frequency.
- DE 102006019393 discloses a position sensor for use in a textile machine.
- the sensor includes a coil and a capacitor to form an inductor-capacitance resonance circuit which is operated at a frequency above or below the resonance frequency.
- RF radio frequency
- the target sensor may detect several targets as they pass and provide a blade-tip clearance indication and/or an indication of mechanical failure.
- the speed of rotation or absolute speed of target may also be detected.
- the oscillator and detector may be part of the same circuit or separate.
- the target sensor may further comprise a circuit arranged to determine the resonance frequency of the sensor probe. This allows the circuit to be calibrated for different conditions or following a change made to the targets.
- the control circuitry may be further configured to regulate the frequency of the RF signal to a constant frequency. Driving the sensor probe at a constant frequency below its resonance frequency allows a larger signal to be detected, therefore improving sensitivity.
- the detector may be an amplitude modulation (AM) detector.
- AM amplitude modulation
- the detector may include an amplitude demodulator.
- the electrical characteristic may be selected from the group consisting of: frequency; amplitude; quality factor, Q ; current; and voltage. Other characteristics or electrical properties may be used.
- the control circuitry is configured to regulate the applied RF signal below the resonance frequency of the sensor probe both in the absence and presence of interaction with a target and under all operating conditions of the sensor system. As detailed later, such an arrangement leads to an advantageous improvement in sensitivity over prior-art technologies.
- control circuitry may be configured to regulate the applied RF signal between 100 KHz and 250 MHz.
- Other frequencies may be used such as below 400 MHz, for example.
- Q may be between 2 and 20. Other values of Q may be used such as below 50 and between 10 and 20, for example and the Q may vary depending on the operating conditions of the sensor system.
- the detector may be further arranged to indicate target clearance from the change in impedance.
- the target sensor may also be configured to provide an indication of a speed of rotation of the targets. This may be achieved by detecting the frequency of the change of impedance or other electrical characteristic brought about by the passing of targets, for example.
- the detector may be further arranged to indicate that the target clearance is within a range of clearances.
- control circuitry may be further configured to determine at intervals the resonance frequency of the sensor probe. This may improve accuracy by calibrating the device at intervals or when the targets are stationary.
- the detector may further detect the real and imaginary components of the impedance of the sensor probe.
- the target sensor may further comprise a validation circuit configured to apply a DC continuity current to the sensor probe. This may provide an indication that the sensor probe is functioning and undamaged, providing validation to the results.
- a validation circuit configured to apply a DC continuity current to the sensor probe. This may provide an indication that the sensor probe is functioning and undamaged, providing validation to the results.
- an aero engine comprising the target sensor according to the first aspect.
- a system comprising: a plurality of the target sensor according to the first aspect; a single transmission line configured to provide an electrical connection between each sensor probe and its corresponding oscillator, wherein each oscillator is configured to drive its corresponding target sensor at a different frequency. Therefore, an array or arrangement of several sensors may be used with reduced cabling.
- the system may further comprise a multiplexor arranged to maintain the electrical connection within the single transmission line.
- RF radio frequency
- the RF signal may be regulated to a constant frequency.
- detecting the electrical characteristic further comprises detecting changes in amplitude of the RF signal at the regulated frequency.
- the frequency of the RF signal may be similar to but not more than that which coincides with the greatest rate of change of impedance and/or admittance with frequency of the sensor probe below its resonance frequency. This may improve sensitivity, range and/or signal-to-noise.
- the method may further comprise the step of determining the resonance frequency of the sensor probe in the absence of the target and configuring the RF signal to a frequency below this determined resonance frequency.
- the frequency of the RF signal may be between 100 kHz and 400 MHz
- the target may be selected from the group consisting of: rotor blade, rotor, surface, conductive surface, pipe, gas pipe, oil pipe, water pipe, tubing or well casing.
- the target may be any other object either static or movable.
- the target sensor may be configured to move relative to the target or the target may move with the target sensor static.
- Q may be between 2 and 20.
- the method described above may be implemented as a computer program comprising program instructions to operate a computer, processor or integrated circuit.
- the computer program may be stored on a computer-readable medium or stored as firmware.
- the sensor has two components: an inductive probe ("the probe” or “the resonant probe”) and a set of control electronics (“the electronics”) ( Fig. 2(a) ), connected via electrical interconnects (e.g. coaxial transmission line(s)) of arbitrary length.
- the inductive probe or “the resonant probe”
- the electronics Fig. 2(a)
- electrical interconnects e.g. coaxial transmission line(s)
- the resonant probe may comprise a coil (the "sensor coil") wound from one or more isolated layers of conducting wire (which might for example be copper or platinum wire) encapsulated in a temperature-resistant package.
- the sensor coil may be wound on a mandrel.
- RF radio frequency
- the package may be designed to partially screen the coil in such a way that when the probe is installed in the engine, its RF magnetic field extends into and only into the region through which the blade tips ("the targets”) pass (at the turbine tip velocity v t ).
- Fig. 2(b) One such possible configuration is illustrated in Fig. 2(b) but as will be appreciated by the reader, many others are possible.
- the dimensions and geometry of the sensor coil and package may be generally chosen such that the cross-sectional area of the RF magnetic field is, at its largest, smaller or significantly smaller than the tip area of an individual blade ("a target") so that at any instant in time the maximum number of individual blade tips in the region of the RF magnetic field is either one or two: the former condition corresponding to case that the blade-tip to blade-tip gap is large in comparison with the characteristic dimension of the RF field, the latter to the case that it is small.
- the probe may be engineered to have a particular resonant response having at least one resonance frequency.
- this resonant response is wholly or substantially defined by the combination of the self-inductance and inter-winding and layer capacitances of the sensor coil. In another, it may be partly defined by other electrical components or elements (for example lumped capacitors) connected to the coil.
- the resonant probe may be excited at a frequency which lies below but in proximity to its resonance frequency if it has just one such frequency or a particular one of its resonance frequencies (generally, but not necessarily the lowest) if it has multiple such frequencies. From henceforth, when we refer to "the resonance frequency" of the resonant probe, this should be understood to mean “the resonance frequency or the particular resonance frequency” of the resonant probe.
- the sensor electronics illustrated schematically in Fig. 3 , may be subdivided into three parts:
- the role of the drive section is to supply the resonant probe with an RF drive signal.
- it incorporates two functional elements: an oscillator, and a matching circuit.
- additional functional elements which may be present include power conditioning electronics (to set and stabilize the power supply to the electronics) and subsidiary oscillator control circuitry ( Fig. 3 ).
- the drive section may produce a drive signal or "probe input signal" at a single fixed frequency ⁇ 1 ("the drive frequency") via, for example, a fixed-frequency crystal oscillator.
- this frequency may be varied in response to changes in the operating conditions of the resonant probe via a variable frequency oscillator operating in conjunction with a subsidiary control loop.
- the variable frequency oscillator may either have a continuously variable operating frequency, or may be such that it can be operated at a certain plurality of fixed frequencies.
- the oscillator may be arranged to operate either continuously or in a pulsed or switched mode. If it is operated in a pulsed mode, the duty cycle of the pulses may be fixed or variable.
- a particular feature of the sensor system is that the frequency of the drive signal is always (i.e. under all conditions of operation or use) below the resonance frequency of the resonant probe.
- Q may be between or substantially between 10 and 20, for example.
- the probe may be configured to have other values of Q and the Q may change depending on the operating conditions of the sensor system.
- the matching circuit plays the role of an impedance transformer; it may comprise an assembly of passive or passive and active components having a frequency response such that the power transmission into the resonant probe may be increased or maximized.
- the role of the signal detect section is to receive a "probe output signal” from the resonant probe and to derive from this signal a “sensor output signal” indicative of the occurrence and timing of "blade pass events".
- a “blade pass event” may be defined as a passing of a single blade tip within range of the sensor. As will be explained below, the occurrence of such an event may be signalled by an amplitude modulation of the probe output signal. The closer the blade tip to the sensor, the larger this amplitude modulation.
- the signal detect section may incorporate at least three functional elements; an amplifier, an amplitude demodulator and a trigger stage.
- demodulator designs may be employed including for example a diode based envelope detector or coherent detectors (such as might, for example, operate via a multiplication of an amplitude regulated derivative of the raw oscillator output signal with the probe output signal).
- the trigger stage may be designed to produce an electrical output of fixed pre-defined level, "level 1" if and only if the signal at the output of the demodulator reaches or exceeds a certain amplitude ("the trigger threshold"). Otherwise, the stage may output a second pre-defined level, "level 0".
- the trigger threshold may be chosen to be the minimum expected demodulator output amplitude associated with "normal" values of d a and d r .
- the sensor output in response to a normal blade pass event may be a transition from level 0 to level 1 and back to level 0 again. If the turbine blade tips move out of the range of "normal" values of d a and d r the trigger will not undergo the transition from level 0 to level 1.
- real-time or post processing of the output from the trigger stage may be incorporated.
- circuitry may be included which is capable of detecting the onset of an intermittent blade detection regime. Such a regime would be expected to occur at the transition between normal and abnormal engine operating conditions.
- the role of the validation section is to provide the means to verify that the sensor system is operating normally. Both a DC continuity check of the resonant probe and a measurement to confirm the presence of the carrier may be incorporated.
- the operation of the sensor system may be as follows:
- the drive section of the sensor electronics excites the resonant probe with a radiofrequency signal at a fixed frequency ⁇ 1 chosen to be below the resonance frequency ⁇ 0 of the resonant probe under all operating conditions of the sensor system.
- the resonance frequency of the resonant probe may be subject to alteration through two mechanisms:
- the detuning of the fixed frequency drive signal relative to the resonance frequency of the resonant probe may be chosen to be relatively small but sufficiently large that the maximum possible downward shift through mechanism (2) cannot cause it to reduce to zero.
- Interaction between the RF magnetic field from the resonant probe and the target(s) has two effects. Firstly, as alluded to above, it causes the resonance frequency of the probe to increase. Secondly, it increases the loss in the resonant probe (that is, it reduces its quality or Q- factor). Both of these effects lead to an increase in the admittance of the resonant probe at the driving frequency ⁇ 1 and therefore to an increase in the probe output signal associated with a given amplitude of probe input signal.
- closed-loop variable driving frequency sensor systems operating in conjunction with resonant sensor probes excited at resonance have been shown to be advantageous (see for example US2010213929 , WO2010082035 , WO2010082036 , and associated applications).
- the open-loop sensor system we describe has the following specific advantages over such closed-loop instruments in the context of the blade-tip detection task:
- the senor may be essentially an entirely analogue device.
- One advantage of the sensor is therefore simplicity; it involves no decision trees or conditional behaviours, has a low core component count, and does not require specialist or complex components which might complicate regulatory issues.
- the electrical characteristics of the resonant probe may be analyzed with reference to an equivalent circuit of the form shown in Fig. 4(a) .
- the circuit has three components; an inductance L connected in series with a resistance r in shunt with a capacitance C.
- L represents the effective inductance of the sensor coil, r its loss equivalent resistance.
- C is the effective capacitance of the probe (originating from the parasitic capacitance of the sensor coil and any external capacitance).
- the equivalent circuit of Fig. 4(a) may be redrawn in the form shown in Fig. 4(b) : three components, admittances 1/ r * , 1/j ⁇ L and j ⁇ C connected in shunt.
- the influence of interaction between the resonant probe and a target may be modelled as interaction dependent changes ⁇ L and ⁇ r * in the effective inductance and transformed resistance of the equivalent circuit of Fig. 4(b) .
- Benefits of the system include that the interaction between the resonant probe and the target results in either or both of:
- the resonant probe may be driven by a probe input signal from a fixed or constant frequency source.
- a signal transmitted through the probe may constitute a probe output signal.
- the amplitude of the output signal is modulated via the change in the admittance of the probe brought about by the probe-target interaction. The stronger the interaction (and therefore, in general, the closer the target to the sensor probe), the more the admittance of the probe is reduced from its original value (Eqns. 4, 5, 6, and 2) and hence the larger the probe output signal amplitude.
- the initial detuning may be chosen via a process of empirical optimization which involves (other ways of determining this initial detuning may be used):
- a single operating frequency ⁇ 1 may be chosen so as to optimize the sensitivity of the sensor, given environmental constraints.
- the frequency at which the resonant probe is driven is varied (using for example a variable frequency crystal oscillator) in response to changes in its temperature (which might for example be determined using a DC conductance measurement).
- the operating frequency is always below the resonance frequency of the sensor probe, both in the absence of, and in the presence of, interaction with the target.
- probe-target interactions may reduce the effective quality factor of the probe; an effect which leads to a corresponding increase in the admittance of probe at the driving frequency at ⁇ 1 .
- Figure 5 summarizes the effect on the probe admittance of the probe-target interaction.
- Plotted schematically is the admittance Y of the probe as a function of frequency ⁇ in the region of the resonance at ⁇ 0 for the case that no target is present (solid) and for the case that a target is present (dashed).
- the minimum of the admittance moves upward and to the right as a result of interaction with the target.
- the upward motion is associated with the change in Q of the resonant probe, the rightward motion with the change in its resonance frequency. Both the rightward and upward motion may contribute to a net increase in admittance ⁇ Y 0 .
- the physical mechanism responsible for the particular electrical response of the resonant probe outlined above may be a "compression" of the flux emanating from the sensor coil as a result of interaction with the target (see for example WO2007 GB00350 and associated applications).
- compression of the flux emanating from the sensor coil as a result of interaction with the target.
- the sensor coil suspended far from any electrically conducting surfaces, when excited, the instantaneous magnetic field pattern around it would resemble that of a bar magnet; lines of flux would wrap in closed loops around its ends, extending far out into space.
- the sensor coil is not suspended in free space, but may be surrounded by a cylindrical conducting (generally metallic) screen of radius R s which may be open at one end ( Fig. 6(a) ).
- the magnetic flux originated by the coil may be accordingly confined by the screen in the direction parallel to its axis.
- the magnetic flux originated by the coil extends a distance from the unscreened end of the probe which is comparable with its diameter ( Fig. 6(a) ).
- the volume occupied by this flux thus defines a finite "sensitive volume".
- the effect is-by analogy with the description of the screen above-an axial confinement or “compression” of the magnetic flux ( Fig. 6(b) ).
- the effect of this axial compression on the inductance of the coil may be quantified by considering its effect on the magnetic field emanating from the end proximal to the target as the probe-target distance is varied. We elaborate on this description with reference to Figs. 6 and 7 .
- Figure 6 shows a screened coil in the absence of a target (a) and in the presence of (b) a target.
- apparatus and method have been described with reference to detecting rotor blades in engine turbines they may be used with any type of rotor blade such as gas turbines and turbos, etc.
- the target may be any of: a rotor blade, surface (including those that have low conductivities), conductive surface, pipe, gas pipe, oil pipe, water pipe, tubing or well casing.
- the target sensor may be used as a tool for downhole pipe inspection, corrosion or erosion detection, casing or tubing condition evaluation, casing collar location, crack detection and well integrity evaluation especially in the oil and gas industry.
- the tool may monitor the surface condition and changes associated with wear, corrosion and eventual failure.
- Such a tool may work on the inside or outside surfaces of pipes or tubes, for example. This tool works especially well on metallic surfaces and other conductors.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
- Measurement Of Resistance Or Impedance (AREA)
- Geophysics And Detection Of Objects (AREA)
Description
- The present invention relates to a target sensor and in particular a rotor blade sensor especially in turbines.
- Under normal operating conditions, the radial and axial position(s) of the turbine blade(s) of an aeroengine jet turbine vary over a range of up to several millimetres relative to their position when the engine is cold and unloaded. Extreme radial and axial shifts and/or overspeeding of the turbine (i.e. higher than expected rates of revolution ω t) can be symptomatic of a reduction in the performance of the engine and, under certain circumstances, a degradation in its mechanical integrity. Accordingly, it is desirable to monitor the speed and position of the turbine blades relative to the engine casing in such a way that abnormal conditions may be detected within several milliseconds of their appearance, and the appropriate control actions can be implemented to bring the engine back into a more desirable operating regime and/or minimize the risk of mechanical damage.
- One means to implement such a monitoring system is to install a sensor in the engine casing capable of a) detecting the presence/absence of the turbine blades b) measuring the blade pass rate, from which the rotational speed of the turbine may be inferred.
- In the context of such a measurement, two quantities are important: the radial distance between the blade tips and the turbine casing (commonly referred to as the "blade-tip clearance"), and the axial position of the turbine blades relative to a fixed point on the casing. The latter may be quantified in terms of an axial offset d a between the turbine blades and a fixed point on the turbine casing defined such that when the engine is cold and unloaded d a = 0 (see
Fig. 1(a) ). - The radial blade tip to casing distance d r takes a maximum value when the engine is cold and unloaded and reduces under load as a result of the combined effects of heating and centripetal acceleration of the blades. Axial shift of the blades is due to the displacement of the turbine under load. Relative to its "neutral" position in the cold, static engine, the majority of the axial shift of the turbine is toward the rear of the casing (negative shift), but a small displacement toward the front of the engine (positive shift) is also possible (see
Fig. 1(b) ). - A case mounted instrument capable of meeting the demands of blade sensing should preferably:
- Have sufficient range to reliably detect the turbine blades when both axial shift and radial displacement are taken into consideration.
- Achieve good immunity to noise and robustness to the effects of a hostile, varying temperature environment.
- Achieve in-situ validation. That is, be equipped with the means to verify unambiguously that the sensor system is functioning normally.
- Conventional position sensor technologies traditionally employed for the detection of moving metallic targets (for example variable capacitance sensors, optical sensors, and eddy current devices) are unable to satisfy all of the above.
- One existing attempt at the turbine blade-tip detection problem involves mounting an inductive sensor element (a coil) in the casing of the engine connected to a specially designed electronic controller (see for example
US2010213929 ,WO2010082035 and associated applications) to drive the sensor element at a resonance frequency. In this scheme, the position of the blades is established by measuring changes to the radiofrequency (100 kHz to several hundred MHz) impedance of the inductive element which occur as a result of its interaction with the blade tips. - Such systems have been developed and have been optimized for accurate, quantitative measurements of the blade-tip clearance d r over a relatively restricted range of axial offset values d a; the underlying motivation being the improvement in fuel efficiency which is known to be achievable if d r can be controlled.
- However, if the requirement is not to quantify the distance d r but to simply to detect the presence and speed of the blade tips: i.e. to confirm that d r, d a and ω t lie within certain "normal" operating ranges, the optimization exercise is significantly different: range rather than measurement accuracy is paramount. Accordingly, instrumentation schemes capable of delivering good performance in distance measurement applications typically fail to meet the demands of detection and speed sensing especially for the mid- and long-range detection and speed sensing of electrically conductive (though not necessarily metallic) rotor blades.
-
US2005/0088171 describes an eddy current sensor that drives a coil at its resonance frequency and then uses frequency demodulation to detect changes in that resonance frequency brought about by passing turbine blades. Whilst such a proximity sensor may detect fast moving blades, its sensitivity and range is low. - Therefore, there is required a rotor blade sensor that overcomes these problems.
-
GB 1066057 -
DE 102006019393 discloses a position sensor for use in a textile machine. The sensor includes a coil and a capacitor to form an inductor-capacitance resonance circuit which is operated at a frequency above or below the resonance frequency. - Against this background and in accordance with a first aspect there is provided a target sensor comprising: a sensor probe having a resonance frequency that changes as the separation of the sensor probe and a target changes; an oscillator arranged to apply a radio frequency (RF), signal to the sensor probe, the oscillator having: control circuitry configured to regulate the frequency of the RF signal applied to the sensor probe to a frequency which is, both in the presence and absence of interaction between the sensor probe and a target, simultaneously: (a) not less than ω 0/Q below the resonance frequency ω 0 of the sensor probe (Q being the quality factor of the sensor probe), and (b) not below the frequency ωL = R*/L where R* is the sum of the source impedance from which the sensor probe is driven and its resistance, and L its inductance; and a detector arranged to detect an electrical characteristic of the oscillator that varies with the impedance of the sensor probe indicating an interaction of the sensor probe with the target. Such an arrangement allows improved sensitivity and range to be achieved in comparison with prior-art technologies.
- The target sensor may detect several targets as they pass and provide a blade-tip clearance indication and/or an indication of mechanical failure. The speed of rotation or absolute speed of target may also be detected. The oscillator and detector may be part of the same circuit or separate.
- Optionally, the target sensor may further comprise a circuit arranged to determine the resonance frequency of the sensor probe. This allows the circuit to be calibrated for different conditions or following a change made to the targets.
Optionally, the control circuitry may be further configured to regulate the frequency of the RF signal to a constant frequency. Driving the sensor probe at a constant frequency below its resonance frequency allows a larger signal to be detected, therefore improving sensitivity. - Preferably, the detector may be an amplitude modulation (AM) detector. This AM detection may occur at the driving frequency. Therefore, the detector may include an amplitude demodulator.
- Optionally, the electrical characteristic may be selected from the group consisting of: frequency; amplitude; quality factor, Q; current; and voltage. Other characteristics or electrical properties may be used.
- The control circuitry is configured to regulate the applied RF signal below the resonance frequency of the sensor probe both in the absence and presence of interaction with a target and under all operating conditions of the sensor system. As detailed later, such an arrangement leads to an advantageous improvement in sensitivity over prior-art technologies.
- Preferably, the control circuitry may be configured to regulate the applied RF signal between 100 KHz and 250 MHz. Other frequencies may be used such as below 400 MHz, for example.
- Preferably, Q may be between 2 and 20. Other values of Q may be used such as below 50 and between 10 and 20, for example and the Q may vary depending on the operating conditions of the sensor system.
- Optionally, the detector may be further arranged to indicate target clearance from the change in impedance. The target sensor may also be configured to provide an indication of a speed of rotation of the targets. This may be achieved by detecting the frequency of the change of impedance or other electrical characteristic brought about by the passing of targets, for example.
- Optionally, the detector may be further arranged to indicate that the target clearance is within a range of clearances.
- Optionally, the control circuitry may be further configured to determine at intervals the resonance frequency of the sensor probe. This may improve accuracy by calibrating the device at intervals or when the targets are stationary.
- Optionally, the detector may further detect the real and imaginary components of the impedance of the sensor probe.
- Preferably, the target sensor may further comprise a validation circuit configured to apply a DC continuity current to the sensor probe. This may provide an indication that the sensor probe is functioning and undamaged, providing validation to the results.
- According to a second aspect there is provided an aero engine comprising the target sensor according to the first aspect.
- According to a third aspect there is provided a system comprising: a plurality of the target sensor according to the first aspect; a single transmission line configured to provide an electrical connection between each sensor probe and its corresponding oscillator, wherein each oscillator is configured to drive its corresponding target sensor at a different frequency. Therefore, an array or arrangement of several sensors may be used with reduced cabling.
- Preferably, the system may further comprise a multiplexor arranged to maintain the electrical connection within the single transmission line.
- According to a fourth aspect there is provided a method of sensing a target comprising the steps of: providing a sensor probe having a resonance frequency that changes as the separation of the sensor probe and the target changes; driving the sensor probe with a radio frequency (RF), signal regulated to a frequency which is, both in the presence and absence of interaction between the sensor probe and a target, simultaneously: (a) not less than ω 0/Q below the resonance frequency ω 0 of the sensor probe (Q being the quality factor of the sensor probe), and (b) not below the frequency ωL= R*/L where R* is the sum of the source impedance from which the sensor probe is driven and its resistance, and L its inductance; and detecting an electrical characteristic that varies with the impedance of the sensor probe indicating an interaction of the sensor probe with the target.
- Preferably, the RF signal may be regulated to a constant frequency.
- Optionally, detecting the electrical characteristic further comprises detecting changes in amplitude of the RF signal at the regulated frequency.
- Advantageously, the frequency of the RF signal may be similar to but not more than that which coincides with the greatest rate of change of impedance and/or admittance with frequency of the sensor probe below its resonance frequency. This may improve sensitivity, range and/or signal-to-noise.
- Optionally, the method may further comprise the step of determining the resonance frequency of the sensor probe in the absence of the target and configuring the RF signal to a frequency below this determined resonance frequency.
- Optionally, the frequency of the RF signal may be between 100 kHz and 400 MHz
- The target may be selected from the group consisting of: rotor blade, rotor, surface, conductive surface, pipe, gas pipe, oil pipe, water pipe, tubing or well casing. The target may be any other object either static or movable.
- The target sensor may be configured to move relative to the target or the target may move with the target sensor static.
- Optionally, Q may be between 2 and 20.
- The method described above may be implemented as a computer program comprising program instructions to operate a computer, processor or integrated circuit. The computer program may be stored on a computer-readable medium or stored as firmware.
- It should be noted that any feature described above may be used with any particular aspect or embodiment of the invention.
- The present invention may be put into practice in a number of ways and embodiments will now be described by way of example only and with reference to the accompanying drawings, in which:
-
FIG. 1a shows a schematic diagram in cross section of a part of a turbine engine; -
FIG. 1b shows a further schematic diagram in cross section of a part of a turbine engine illustrating a shift in rotor blade position; -
FIG. 2a shows a schematic diagram of a probe and drive electronics; -
FIG. 2b shows a schematic diagram of the probe ofFIG. 2a in greater detail interacting with a tip of a rotor blade; -
FIG. 3 shows a more detailed schematic diagram of the drive electronics indicated inFIG. 2a ; -
FIG. 4a shows a schematic diagram of an equivalent circuit of the probe ofFIG. 2a . -
FIG. 4b shows a second schematic diagram of an equivalent circuit of the probe ofFIG. 2a . -
FIG. 5 shows a graph of admittance (y-axis) of the probe ofFIG. 2a against frequency (x-axis) with and without a rotor blade in proximity; -
FIG. 6a shows a schematic diagram of the probe ofFIG. 2a in cross section including a metallic screen indicating a sensitive volume of space; -
FIG. 6b shows a schematic diagram of the probe ofFIG. 2a in cross section indicating a sensitive volume of space changing shape when in proximity to the rotor blade; -
FIG. 7a shows a schematic diagram of the probe ofFIG. 2a in cross section indicating the interaction with the rotor blade; and -
FIG. 7b shows a further schematic diagram of the probe ofFIG. 2a in cross section indicating the interaction with the rotor blade. - It should be noted that the figures are illustrated for simplicity and are not necessarily drawn to scale.
- The sensor has two components: an inductive probe ("the probe" or "the resonant probe") and a set of control electronics ("the electronics") (
Fig. 2(a) ), connected via electrical interconnects (e.g. coaxial transmission line(s)) of arbitrary length. In this section we give an outline description of both. - The resonant probe may comprise a coil (the "sensor coil") wound from one or more isolated layers of conducting wire (which might for example be copper or platinum wire) encapsulated in a temperature-resistant package. The sensor coil may be wound on a mandrel. In operation, a radio frequency (RF) current may flow through the coil, giving rise to an RF magnetic field in its vicinity. The package may be designed to partially screen the coil in such a way that when the probe is installed in the engine, its RF magnetic field extends into and only into the region through which the blade tips ("the targets") pass (at the turbine tip velocity v t). One such possible configuration is illustrated in
Fig. 2(b) but as will be appreciated by the reader, many others are possible. Further, the dimensions and geometry of the sensor coil and package may be generally chosen such that the cross-sectional area of the RF magnetic field is, at its largest, smaller or significantly smaller than the tip area of an individual blade ("a target") so that at any instant in time the maximum number of individual blade tips in the region of the RF magnetic field is either one or two: the former condition corresponding to case that the blade-tip to blade-tip gap is large in comparison with the characteristic dimension of the RF field, the latter to the case that it is small. - The probe may be engineered to have a particular resonant response having at least one resonance frequency. In one preferred implementation of the sensor invention, this resonant response is wholly or substantially defined by the combination of the self-inductance and inter-winding and layer capacitances of the sensor coil. In another, it may be partly defined by other electrical components or elements (for example lumped capacitors) connected to the coil.
- In operation, the resonant probe may be excited at a frequency which lies below but in proximity to its resonance frequency if it has just one such frequency or a particular one of its resonance frequencies (generally, but not necessarily the lowest) if it has multiple such frequencies. From henceforth, when we refer to "the resonance frequency" of the resonant probe, this should be understood to mean "the resonance frequency or the particular resonance frequency" of the resonant probe.
- The sensor electronics, illustrated schematically in
Fig. 3 , may be subdivided into three parts: - 1.
- A "drive" section.
- 2.
- A "signal detect" section.
- 3.
- A "validation" section.
- The role of the drive section is to supply the resonant probe with an RF drive signal. In general, it incorporates two functional elements: an oscillator, and a matching circuit. Examples of additional functional elements which may be present include power conditioning electronics (to set and stabilize the power supply to the electronics) and subsidiary oscillator control circuitry (
Fig. 3 ). - In one preferred implementation of the sensor system, the drive section may produce a drive signal or "probe input signal" at a single fixed frequency ω 1 ("the drive frequency") via, for example, a fixed-frequency crystal oscillator. In another, this frequency may be varied in response to changes in the operating conditions of the resonant probe via a variable frequency oscillator operating in conjunction with a subsidiary control loop. In such a case, the variable frequency oscillator may either have a continuously variable operating frequency, or may be such that it can be operated at a certain plurality of fixed frequencies.
- The oscillator may be arranged to operate either continuously or in a pulsed or switched mode. If it is operated in a pulsed mode, the duty cycle of the pulses may be fixed or variable.
- A particular feature of the sensor system is that the frequency of the drive signal is always (i.e. under all conditions of operation or use) below the resonance frequency of the resonant probe.
- The drive signal is at a frequency which is, for all operating conditions and both in the presence and absence of interaction between the sensor probe and a target (such as a rotor blade, for example), simultaneously: (a) not less than ω 0/Q below the resonance frequency ω 0 of the sensor probe (Q being the quality factor of the sensor probe), and (b) not below the frequency ωL=R*/L where R* is the sum of the source impedance from which the sensor probe is driven and its resistance, and L is its inductance. Q may be between or substantially between 10 and 20, for example. The probe may be configured to have other values of Q and the Q may change depending on the operating conditions of the sensor system.
- The matching circuit plays the role of an impedance transformer; it may comprise an assembly of passive or passive and active components having a frequency response such that the power transmission into the resonant probe may be increased or maximized.
- The role of the signal detect section is to receive a "probe output signal" from the resonant probe and to derive from this signal a "sensor output signal" indicative of the occurrence and timing of "blade pass events". A "blade pass event" may be defined as a passing of a single blade tip within range of the sensor. As will be explained below, the occurrence of such an event may be signalled by an amplitude modulation of the probe output signal. The closer the blade tip to the sensor, the larger this amplitude modulation.
The signal detect section may incorporate at least three functional elements; an amplifier, an amplitude demodulator and a trigger stage. - As will be appreciated by the skilled reader, a wide range of demodulator designs may be employed including for example a diode based envelope detector or coherent detectors (such as might, for example, operate via a multiplication of an amplitude regulated derivative of the raw oscillator output signal with the probe output signal).
- The trigger stage may be designed to produce an electrical output of fixed pre-defined level, "
level 1" if and only if the signal at the output of the demodulator reaches or exceeds a certain amplitude ("the trigger threshold"). Otherwise, the stage may output a second pre-defined level, "level 0". The trigger threshold may be chosen to be the minimum expected demodulator output amplitude associated with "normal" values of d a and d r. Thus, the sensor output in response to a normal blade pass event may be a transition fromlevel 0 tolevel 1 and back tolevel 0 again. If the turbine blade tips move out of the range of "normal" values of d a and d r the trigger will not undergo the transition fromlevel 0 tolevel 1. Optionally, real-time or post processing of the output from the trigger stage (using either analogue or digital electronics, or a combination of these) may be incorporated. For example, circuitry may be included which is capable of detecting the onset of an intermittent blade detection regime. Such a regime would be expected to occur at the transition between normal and abnormal engine operating conditions. - The role of the validation section is to provide the means to verify that the sensor system is operating normally. Both a DC continuity check of the resonant probe and a measurement to confirm the presence of the carrier may be incorporated.
- The operation of the sensor system may be as follows: The drive section of the sensor electronics excites the resonant probe with a radiofrequency signal at a fixed frequency ω 1 chosen to be below the resonance frequency ω 0 of the resonant probe under all operating conditions of the sensor system. In operation, the resonance frequency of the resonant probe may be subject to alteration through two mechanisms:
- 1. Interaction with the target(s) (which increases its frequency, detailed description follows).
- 2. Environmental factors, notably temperature (which may increase or decrease its frequency).
- Therefore, and particularly, the detuning of the fixed frequency drive signal relative to the resonance frequency of the resonant probe may be chosen to be relatively small but sufficiently large that the maximum possible downward shift through mechanism (2) cannot cause it to reduce to zero.
- Interaction between the RF magnetic field from the resonant probe and the target(s) has two effects. Firstly, as alluded to above, it causes the resonance frequency of the probe to increase. Secondly, it increases the loss in the resonant probe (that is, it reduces its quality or Q-factor). Both of these effects lead to an increase in the admittance of the resonant probe at the driving frequency ω 1 and therefore to an increase in the probe output signal associated with a given amplitude of probe input signal.
- In blade-tip clearance measurement applications, closed-loop variable driving frequency sensor systems operating in conjunction with resonant sensor probes excited at resonance have been shown to be advantageous (see for example
US2010213929 ,WO2010082035 ,WO2010082036 , and associated applications). The open-loop sensor system we describe has the following specific advantages over such closed-loop instruments in the context of the blade-tip detection task: - 1. The sensor may achieve greater sensitivity and therefore greater range by virtue of the fact that by operating at a fixed or constant frequency below the resonance frequency of the resonant probe, two effects; (i) the modification of the resonance frequency of the resonant probe, and (ii) the modification of the Q of the probe, contribute to a blade-tip detection signal which is an amplitude modulation at the driving frequency. In the case of a closed-loop instrument it may not be possible to co-exploit these two effects: the former will produce a signal in the form of a frequency modulation, the latter an amplitude modulation.
- 2. The described sensor system shows superior immunity to changes in the conductivity of the target (and is also suitable for use in conjunction with targets having a wide range of conductivities).
- 3. The sensor has the advantage of reduced complexity. It may be readily adapted to accommodate modifications to hardware such as might be required during the research and development/test bed phase of a prototype aircraft engine, or during the lifetime of a given engine or other turbine.
- 4. More so than those of a closed loop instrument, the sensor electronics lend themselves to modular design and construction.
- 5. Signal detection is more straightforward than in the case of a typical closed-loop instrument. The detection problem reduces to amplitude demodulation of a fixed frequency carrier with optimum signal-to-noise ratio (SNR).
- 6. The sensor system features superior robustness to changes or adjustments to the lengths of the cables connecting the probe to the instrumentation. It is thus suitable for use on production engines as a Line Replaceable Unit (LRU). Either sensor probe or sensor electronics manufactured to appropriate tolerances may be exchanged without the need for calibration or other adjustment.
- 7. The system may be compatible with frequency multiplexed operation: i.e. signals from multiple sensors on the engine operating at distinct frequencies may be routed down a single transmission line, the bandwidth requirement of each individual channel being low. Multi-channel operating modes may also be exploited for SNR enhancement.
- In addition to the advantages highlighted by the comparative features 1-7 above, certain other more general factors motivate the particular design of the open-loop sensor system:
- The temperature range over which the sensor is required to operate is typically in excess of 2000 K. The electrical characteristics of any practical inductive or capacitative probe designed for the blade-tip detection task may vary measurably over this range. For the particular described resonant probe, the RF probe admittance at a given frequency varies less strongly with temperature away from the resonance frequency. This is because at resonance small temperature induced changes in the complex admittance of the probe can shift the position of the resonance away from the driving frequency, resulting, for a system of non-negligible Q, in a large change in the system's behaviour. Thus, operating the probe below the resonance frequency allows improved, relatively constant sensitivity (that is a good and relatively constant signal-to-noise ratio, SNR) to be achieved over a wide temperature range.
- The sensor system may be capable of operating reliably in the presence of extreme mechanical vibration.
- Although the design is not incompatible with additional digital circuitry, such as might, for example, be used to perform data storage and processing on the same piece of circuit board which houses the drive, detect, and validation electronics prior to communication with the aircraft's engine controller (EEC, see
Fig. 3 ), the sensor may be essentially an entirely analogue device. One advantage of the sensor is therefore simplicity; it involves no decision trees or conditional behaviours, has a low core component count, and does not require specialist or complex components which might complicate regulatory issues. - The electrical characteristics of the resonant probe may be analyzed with reference to an equivalent circuit of the form shown in
Fig. 4(a) . The circuit has three components; an inductance L connected in series with a resistance r in shunt with a capacitance C. L represents the effective inductance of the sensor coil, r its loss equivalent resistance. C is the effective capacitance of the probe (originating from the parasitic capacitance of the sensor coil and any external capacitance). The admittance Y of the circuit at frequency ω is given, for ωL >> r, byEquation 1 may be rewrittenFig. 4(a) may be redrawn in the form shown inFig. 4(b) : three components,admittances 1/r* , 1/jωL and jωC connected in shunt.
The resonance frequency ω 0 of the resonant probe is the frequency at which the admittance Y is a minimum: - The influence of interaction between the resonant probe and a target may be modelled as interaction dependent changes ΔL and Δr* in the effective inductance and transformed resistance of the equivalent circuit of
Fig. 4(b) . - Benefits of the system include that the interaction between the resonant probe and the target results in either or both of:
- 1. A progressive decrease in the effective inductance L with increasing interaction with the target.
- 2. A progressive decrease in the transformed resistance r* with increasing interaction with the target.
- In operation, the resonant probe may be driven by a probe input signal from a fixed or constant frequency source. The frequency of the source ω 1 is chosen to be below the resonance frequency ω 0 of the resonant probe in the absence of interaction with the target for all operating conditions of the sensor system (Eqn. 3) and at a frequency which is not below the frequency ωL =R*/L where R* is the sum of the source impedance from which the probe is driven and the resistance of the probe. A signal transmitted through the probe may constitute a probe output signal. In the case that a target is present, the amplitude of the output signal is modulated via the change in the admittance of the probe brought about by the probe-target interaction. The stronger the interaction (and therefore, in general, the closer the target to the sensor probe), the more the admittance of the probe is reduced from its original value (Eqns. 4, 5, 6, and 2) and hence the larger the probe output signal amplitude.
- The changes in the admittance of the probe responsible for the signal can be considered to be derived from two interlinked but distinct effects:
- (i) Modification of the resonance frequency of the resonant probe.
- (ii) Modification of the quality factor of the resonant probe.
- Of these, (i) dominates in the case of high conductivity targets and (ii) for low conductivity targets.
-
-
- We can see from Eqn. 9 that the resonance frequency in the presence of probe-target interaction ω 0' is always larger than ω 0, the resonance frequency in the absence of probe-target interaction.
-
-
- For a given implementation of the sensor, the initial detuning may be chosen via a process of empirical optimization which involves (other ways of determining this initial detuning may be used):
- Measuring the amplitude of the sensor output (prior to any triggering stage which may be present) in response to the proximity of a representative conducting target over a range of potential driving frequencies.
- Quantifying the change in the electrical characteristics of the resonant probe over the required range of operating temperatures.
- In one preferred implementation of the system, a single operating frequency ω 1 may be chosen so as to optimize the sensitivity of the sensor, given environmental constraints. In other, more complex implementations of the sensor system it may be arranged that the frequency at which the resonant probe is driven is varied (using for example a variable frequency crystal oscillator) in response to changes in its temperature (which might for example be determined using a DC conductance measurement). (Note however that in any implementation, the operating frequency is always below the resonance frequency of the sensor probe, both in the absence of, and in the presence of, interaction with the target.)
-
-
-
- Thus, probe-target interactions may reduce the effective quality factor of the probe; an effect which leads to a corresponding increase in the admittance of probe at the driving frequency at ω 1.
-
Figure 5 summarizes the effect on the probe admittance of the probe-target interaction. Plotted schematically is the admittance Y of the probe as a function of frequency ω in the region of the resonance at ω 0 for the case that no target is present (solid) and for the case that a target is present (dashed). As indicated by the large grey arrows, the minimum of the admittance moves upward and to the right as a result of interaction with the target. The upward motion is associated with the change in Q of the resonant probe, the rightward motion with the change in its resonance frequency. Both the rightward and upward motion may contribute to a net increase in admittance ΔY 0. - The physical mechanism responsible for the particular electrical response of the resonant probe outlined above may be a "compression" of the flux emanating from the sensor coil as a result of interaction with the target (see for example
WO2007 GB00350 Fig. 6 . - Were the sensor coil suspended far from any electrically conducting surfaces, when excited, the instantaneous magnetic field pattern around it would resemble that of a bar magnet; lines of flux would wrap in closed loops around its ends, extending far out into space. However, in the context of the sensor system, the sensor coil is not suspended in free space, but may be surrounded by a cylindrical conducting (generally metallic) screen of radius R s which may be open at one end (
Fig. 6(a) ). The thickness t s of the screen may be arranged to be larger than the skin depth δ 1 at the operating frequency ω 1. That isorder 1 mm or less. (For example, even for very low conductivity stainless steel; σ 1 ∼ 106 Sm-1, µ 1 ∼ µ 0, at ω 1 = 2n x 30 MHz, δ 1 ∼ 0.1 mm) . - The magnetic flux originated by the coil may be accordingly confined by the screen in the direction parallel to its axis.
- In the absence of a target, the magnetic flux originated by the coil extends a distance from the unscreened end of the probe which is comparable with its diameter (
Fig. 6(a) ). The volume occupied by this flux thus defines a finite "sensitive volume". When the target enters the sensitive volume, the effect is-by analogy with the description of the screen above-an axial confinement or "compression" of the magnetic flux (Fig. 6(b) ). The effect of this axial compression on the inductance of the coil may be quantified by considering its effect on the magnetic field emanating from the end proximal to the target as the probe-target distance is varied. We elaborate on this description with reference toFigs. 6 and7 . -
Figure 6 shows a screened coil in the absence of a target (a) and in the presence of (b) a target. As a first step in our analysis we identify a number of important geometrical parameters with reference toFig. 7(a) . - The "coil cross section" A 1 is
- We now apply the relation of Eqn. 20 to the probe system assuming that a conducting target is positioned a distance d from the unscreened end of the probe (
Figs 7(a) and 7(b) ) and the other end of the coil is screened at a distance d* (note that in general, d* exceeds the maximum value of d). We can evaluate the integral around a rectangular contour of dimensions l 1 (axial) by l 2 (radial) where l 1 is the length of the coil and l 2 is approximately 2r w where r w is the radius of the wire from which the coil is wound, to obtain - Here, we assume that along the part of the contour through the centre of the coil the field takes a value B 1, along the part of the contour through the annular region between the coil and the screen, a value B 2 (both B 1 and B 2 being directed along the coil axis), and along the two short sides of the contour values B 3 (target end) and B 4 (screened end) (see
Fig. 7(b) ). B 3 and B 4 are directed perpendicular to the axis of the coil and are associated with what is commonly referred to as "end effects" (and would be zero for a coil of infinite length). -
-
- Note that the form of the expression on the right hand side of Eqn. 24 directly implies the minus sign applied to the ΔL(α) term on the left i.e. the reduction in inductance with decreasing probe-target distance d alluded to in previous sections.
- The change in loss-equivalent resistance Δr(α) of the probe associated with probe-target interaction results from the current density ΔJ t(α) produced in the target by the coil's alternating magnetic field:
- As will be appreciated by the skilled person, details of the above embodiment may be varied without departing from the scope of the present invention, as defined by the appended claims.
- For example, although the apparatus and method have been described with reference to detecting rotor blades in engine turbines they may be used with any type of rotor blade such as gas turbines and turbos, etc.
- Furthermore, the target may be any of: a rotor blade, surface (including those that have low conductivities), conductive surface, pipe, gas pipe, oil pipe, water pipe, tubing or well casing. For example, the target sensor may be used as a tool for downhole pipe inspection, corrosion or erosion detection, casing or tubing condition evaluation, casing collar location, crack detection and well integrity evaluation especially in the oil and gas industry. In these applications the tool may monitor the surface condition and changes associated with wear, corrosion and eventual failure. Such a tool may work on the inside or outside surfaces of pipes or tubes, for example. This tool works especially well on metallic surfaces and other conductors.
- Many combinations, modifications, or alterations to the features of the above embodiments will be readily apparent to the skilled person and are intended to form part of the invention. Any of the features described specifically relating to one embodiment or example may be used in any other embodiment by making the appropriate changes.
Claims (13)
- A target sensor comprising:a sensor probe having a resonance frequency that changes as the separation of the sensor probe and a target changes;an oscillator arranged to apply a radio frequency (RF) signal to the sensor probe, the oscillator having:control circuitry configured to regulate the frequency of the RF signal applied to the sensor probe to a regulated frequency which is, both in the presence and absence of interaction between the sensor probe and a target, simultaneously: (a) more than ω 0/Q below the resonance frequency ω 0 of the sensor probe (Q being the quality factor of the sensor probe), and (b) not below the frequency ωL = R*/L where R* is the sum of the source impedance from which the sensor probe is driven and its resistance, and L its inductance; anda detector arranged to detect an electrical characteristic of the oscillator that varies with the impedance of the sensor probe indicating an interaction of the sensor probe with the target.
- The target sensor of claim 1 further comprising a circuit arranged to determine the resonance frequency of the sensor probe.
- The target sensor according to claim 1 or claim 2, wherein the detector is an amplitude modulation detector.
- The target sensor according to any previous claim, wherein the electrical characteristic is selected from the group consisting of: frequency; amplitude; quality factor, Q; current; and voltage.
- The target sensor according to any previous claim, wherein the control circuitry is configured to regulate the applied RF signal between 1% and 25% below the resonance frequency of the sensor probe.
- The target sensor according to any previous claim, wherein the detector is further arranged to indicate that the target clearance is within a range of clearances.
- The target sensor according to any previous claim, wherein the detector is further arranged to indicate target clearance from the change in impedance.
- The target sensor according to any previous claim further comprising a validation circuit configured to apply a DC continuity current to the sensor probe.
- An aero engine comprising the target sensor according to any previous claim.
- A system comprising:a plurality of the target sensor according to any previous claim; anda single transmission line configured to provide an electrical connection between each sensor probe and its corresponding oscillator, wherein each oscillator is configured to drive its corresponding target sensor at a different frequency.
- A method of sensing a target comprising the steps of:providing a sensor probe having a resonance frequency that changes as the separation of the sensor probe and the target changes;driving the sensor probe with a radio frequency, RF, signal regulated to a regulated frequency which is, both in the presence and absence of interaction between the sensor probe and a target, simultaneously: (a) not less than ω0/Q below the resonance frequency ω 0 of the sensor probe (Q being the quality factor of the sensor probe), and (b) not below the frequency ωL =R*/L where R* is the sum of the source impedance from which the sensor probe is driven and its resistance, and L its inductance; anddetecting an electrical characteristic that varies with the impedance of the sensor probe indicating an interaction of the sensor probe with the target.
- The method of claim 13, wherein detecting the electrical characteristic further comprises detecting changes in amplitude of the RF signal at the regulated frequency.
- A method according to claim 11 or 12 wherein the target is selected from the group consisting of: rotor blade, rotor, surface, conductive surface, pipe, gas pipe, oil pipe, water pipe, tubing or well casing.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB1116727.7A GB2495104A (en) | 2011-09-28 | 2011-09-28 | Rotor blade sensor |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2574735A1 EP2574735A1 (en) | 2013-04-03 |
EP2574735B1 true EP2574735B1 (en) | 2016-06-01 |
Family
ID=44994126
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP12186718.8A Active EP2574735B1 (en) | 2011-09-28 | 2012-09-28 | Target sensor |
Country Status (3)
Country | Link |
---|---|
US (1) | US9030212B2 (en) |
EP (1) | EP2574735B1 (en) |
GB (2) | GB2495104A (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2506424B (en) * | 2012-09-28 | 2017-06-07 | Salunda Ltd | Target clearance measurement device |
GB2524061B (en) | 2014-03-13 | 2018-08-29 | Salunda Ltd | Sensor arrangement for a rotatable element |
US10190440B2 (en) | 2015-06-10 | 2019-01-29 | Rolls-Royce North American Technologies, Inc. | Emergency shut-down detection system for a gas turbine |
CN107449932B (en) * | 2017-06-02 | 2020-02-14 | 中国航空规划设计研究总院有限公司 | Method for measuring rotating speed of aero-engine rotor |
US11855971B2 (en) * | 2018-01-11 | 2023-12-26 | Visa International Service Association | Offline authorization of interactions and controlled tasks |
HUE051101T2 (en) * | 2018-03-22 | 2021-03-01 | Grieshaber Vega Kg | Impedance limit switch for reducing emi emissions and method for determining a limit level of a medium through an impedance limit switch |
CN113795730A (en) | 2019-03-26 | 2021-12-14 | 萨兰达有限公司 | Fastener assembly sensor unit |
JP6860715B2 (en) * | 2020-02-05 | 2021-04-21 | 株式会社東芝 | Physical property value evaluation device and method |
Family Cites Families (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE649204A (en) * | 1963-06-14 | 1964-10-01 | ||
GB1118235A (en) * | 1965-11-23 | 1968-06-26 | Tateisi Electronics Company | A proximity switch |
US3853064A (en) * | 1967-01-17 | 1974-12-10 | Us Army | Method of inducing negative - impedance effect, and devices based thereon |
US3780859A (en) | 1973-02-08 | 1973-12-25 | Owens Illinois Inc | Apparatus and method for displaying the minimum thickness of a dielectric member measured by a radio frequency thickness gauge |
DE3305546A1 (en) * | 1983-02-18 | 1984-08-23 | Robert Bosch Gmbh, 7000 Stuttgart | Device for contactless measurement of the distance of a metallic test specimen from a sensor coil |
DE3912946C3 (en) | 1989-04-20 | 1996-06-20 | Turck Werner Kg | Inductive proximity switch |
JPH02312316A (en) * | 1989-05-26 | 1990-12-27 | Omron Corp | High frequency oscillation type proximity switch |
US5414345A (en) * | 1991-04-29 | 1995-05-09 | Electronic Development, Inc. | Apparatus and method for low cost electromagnetic field susceptibility testing |
US5365787A (en) * | 1991-10-02 | 1994-11-22 | Monitoring Technology Corp. | Noninvasive method and apparatus for determining resonance information for rotating machinery components and for anticipating component failure from changes therein |
US5180978A (en) * | 1991-12-02 | 1993-01-19 | Honeywell Inc. | Proximity sensor with reduced temperature sensitivity using A.C. and D.C. energy |
JP3328705B2 (en) * | 1992-07-08 | 2002-09-30 | オムロン株式会社 | Proximity switch |
US6166551A (en) * | 1993-07-26 | 2000-12-26 | Phase Dynamics Inc. | Method for monitoring the state of microcrystalline change of solid materials |
FR2716979B1 (en) | 1994-03-04 | 1996-03-29 | Telemecanique | Inductive proximity switch. |
US5691639A (en) * | 1996-08-28 | 1997-11-25 | Honeywell Inc. | Proximity sensor circuit with frequency changing capability |
JPH10281806A (en) | 1997-04-11 | 1998-10-23 | Kokusai Electric Co Ltd | Signal processor and measuring device |
FR2771822B1 (en) | 1997-11-28 | 1999-12-31 | Schneider Electric Sa | CONFIGURABLE INDUCTIVE PROXIMITY DETECTOR |
US6239593B1 (en) | 1998-09-21 | 2001-05-29 | Southwest Research Institute | Method and system for detecting and characterizing mechanical damage in pipelines using nonlinear harmonics techniques |
WO2001092817A1 (en) | 2000-06-01 | 2001-12-06 | The J.M. Ney Company | Non-contact position sensing apparatus |
US6815958B2 (en) | 2003-02-07 | 2004-11-09 | Multimetrixs, Llc | Method and apparatus for measuring thickness of thin films with improved accuracy |
JP2005027907A (en) * | 2003-07-07 | 2005-02-03 | Olympus Corp | Ultrasonic surgery system and probe |
US7554324B2 (en) * | 2003-10-28 | 2009-06-30 | Honeywell International Inc. | Turbine blade proximity sensor and control system |
DE102004047116A1 (en) * | 2004-03-08 | 2005-10-06 | Micro-Epsilon Messtechnik Gmbh & Co Kg | Method and device for non-contact speed measurement |
US7696746B2 (en) | 2006-01-25 | 2010-04-13 | Denso Corporation | Motion detecting apparatus |
JP4644144B2 (en) * | 2006-02-28 | 2011-03-02 | 株式会社デンソー | Eddy current type conductor detector |
US7215129B1 (en) | 2006-03-30 | 2007-05-08 | General Electric Company | Multi tip clearance measurement system and method of operation |
DE102006019393A1 (en) * | 2006-04-24 | 2007-10-25 | Klaschka Gmbh & Co Kg | Position sensor for use in textile machine, has measuring oscillator whose natural frequency amounts to one mega hertz, where output signal of oscillator and output signal of reference oscillator are delivered to inputs of mixer |
US8295926B2 (en) * | 2006-06-02 | 2012-10-23 | Advanced Neuromodulation Systems, Inc. | Dynamic nerve stimulation in combination with other eating disorder treatment modalities |
US7768258B2 (en) * | 2006-09-06 | 2010-08-03 | Metrix Instrument Co., L.P. | Proximity probe transmitter |
WO2008114421A1 (en) * | 2007-03-20 | 2008-09-25 | Pioneer Corporation | State of physical properties detector and state of physical properties detection method |
ATE532457T1 (en) | 2007-04-18 | 2011-11-15 | Robert Jaeger | DEVICE FOR DETECTING AND ANALYZING VITAL PARAMETERS OF THE BODY, SUCH AS IN PARTICULAR PULSE AND RESPIRATION |
GB0718005D0 (en) | 2007-09-14 | 2007-10-24 | Oxford Rf Sensors Ltd | Totor blade sensor |
DE102008054319B4 (en) * | 2007-11-07 | 2014-05-28 | Denso Corporation | Detection device for a side collision in a vehicle and passenger protection system having this detection device |
GB0900746D0 (en) | 2009-01-16 | 2009-03-04 | Oxford Rf Sensors Ltd | Delay-line self oscillator |
GB0900744D0 (en) * | 2009-01-16 | 2009-03-04 | Oxford Rf Sensors Ltd | Remote sensor device |
US9588185B2 (en) * | 2010-02-25 | 2017-03-07 | Keith S. Champlin | Method and apparatus for detecting cell deterioration in an electrochemical cell or battery |
US8450965B2 (en) * | 2010-07-20 | 2013-05-28 | GM Global Technology Operations LLC | Stack-powered fuel cell monitoring device with prioritized arbitration |
GB201102542D0 (en) * | 2011-02-14 | 2011-03-30 | Qinetiq Ltd | Proximity sensor |
US8736285B2 (en) * | 2011-06-03 | 2014-05-27 | Hamilton Sundstrand Corporation | High temperature position sensor |
-
2011
- 2011-09-28 GB GB1116727.7A patent/GB2495104A/en not_active Withdrawn
-
2012
- 2012-09-28 EP EP12186718.8A patent/EP2574735B1/en active Active
- 2012-09-28 US US13/630,880 patent/US9030212B2/en active Active
- 2012-09-28 GB GB201217427A patent/GB2495388B/en active Active
Also Published As
Publication number | Publication date |
---|---|
EP2574735A1 (en) | 2013-04-03 |
GB201217427D0 (en) | 2012-11-14 |
US20130076373A1 (en) | 2013-03-28 |
GB2495104A (en) | 2013-04-03 |
GB2495388B (en) | 2015-01-21 |
GB201116727D0 (en) | 2011-11-09 |
US9030212B2 (en) | 2015-05-12 |
GB2495388A (en) | 2013-04-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2574735B1 (en) | Target sensor | |
EP2713137B1 (en) | Target clearance measurement device | |
EP2162698B1 (en) | Eddy current sensor | |
US8294458B2 (en) | Vibration and condition monitoring system and the parts thereof | |
Daura et al. | Wireless power transfer-based eddy current non-destructive testing using a flexible printed coil array | |
US20100213929A1 (en) | Rotor blade sensor | |
RU2686522C2 (en) | Method for real-time monitoring of operating conditions of capacitive sensor | |
CN106568565A (en) | Rotating machine vibration on-line monitoring device and rotating machine vibration on-line monitoring method | |
EP2597449A2 (en) | Method for prognosing a health problem of an apparatus | |
EP2592753A2 (en) | Proximity sensor assembly and inspection system | |
EP2672241A2 (en) | Sensor System and Antenna for use in a Sensor System | |
CN110118582A (en) | A kind of rotating machinery fault diagnosis method and system | |
EP2455705A1 (en) | Sensor assembly and method of measuring the proximity of a machine component to a sensor | |
EP2592391A2 (en) | Sensing element for sensor assembly | |
KR100919785B1 (en) | Detecting device a partial dischargein in oil filled transformer using ae sensor and method for detecting a partial dischargein | |
EP3322976B1 (en) | Method and device for determining the wear of a carbon ceramic brake disc in a vehicle by impedance measurements | |
US8593156B2 (en) | Sensor assembly and microwave emitter for use in a sensor assembly | |
Xingwei et al. | Research on cognitive mechanism and brain-computer interface application in visual-auditory crossmodal stimuli | |
TWI765285B (en) | System and methods for monitoring conditions of a dynamic system | |
CN114136613A (en) | Monitoring system and online monitoring method for working state of engine bearing | |
GB2506912A (en) | Inductive Probe Testing Apparatus | |
CN115901937A (en) | Integrated aero-engine blade tip clearance and damage monitoring method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
17P | Request for examination filed |
Effective date: 20131004 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: SALUNDA LIMITED |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Ref document number: 602012019133 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: F01D0021000000 Ipc: G01B0007140000 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: H03K 17/95 20060101ALI20151209BHEP Ipc: G01B 7/14 20060101AFI20151209BHEP Ipc: F01D 21/00 20060101ALI20151209BHEP Ipc: F01D 21/04 20060101ALI20151209BHEP |
|
INTG | Intention to grant announced |
Effective date: 20160105 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 804148 Country of ref document: AT Kind code of ref document: T Effective date: 20160615 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602012019133 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 5 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20160601 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160601 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160901 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160601 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 804148 Country of ref document: AT Kind code of ref document: T Effective date: 20160601 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160601 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160601 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160902 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160601 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160601 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160601 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160601 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161001 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160601 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160601 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160601 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160601 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160601 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160601 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161003 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160601 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160601 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160601 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602012019133 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160601 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
26N | No opposition filed |
Effective date: 20170302 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160601 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160601 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160930 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160928 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160928 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 6 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: CA Effective date: 20171217 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160601 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20120928 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160601 Ref country code: MT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160930 Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160601 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160601 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160601 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240927 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240925 Year of fee payment: 13 |