EP2573315B1 - Centreur - Google Patents

Centreur Download PDF

Info

Publication number
EP2573315B1
EP2573315B1 EP12185143.0A EP12185143A EP2573315B1 EP 2573315 B1 EP2573315 B1 EP 2573315B1 EP 12185143 A EP12185143 A EP 12185143A EP 2573315 B1 EP2573315 B1 EP 2573315B1
Authority
EP
European Patent Office
Prior art keywords
outer blade
centralizer
wedging member
main body
bore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP12185143.0A
Other languages
German (de)
English (en)
Other versions
EP2573315A3 (fr
EP2573315A2 (fr
Inventor
Rowan Warwick Patterson
Glenn Searle
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Claxton Engineering Services Ltd
Original Assignee
Claxton Engineering Services Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Claxton Engineering Services Ltd filed Critical Claxton Engineering Services Ltd
Publication of EP2573315A2 publication Critical patent/EP2573315A2/fr
Publication of EP2573315A3 publication Critical patent/EP2573315A3/fr
Application granted granted Critical
Publication of EP2573315B1 publication Critical patent/EP2573315B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • E21B17/10Wear protectors; Centralising devices, e.g. stabilisers
    • E21B17/1014Flexible or expansible centering means, e.g. with pistons pressing against the wall of the well
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • E21B17/10Wear protectors; Centralising devices, e.g. stabilisers
    • E21B17/1078Stabilisers or centralisers for casing, tubing or drill pipes
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • E21B17/10Wear protectors; Centralising devices, e.g. stabilisers
    • E21B17/12Devices for placing or drawing out wear protectors

Definitions

  • This invention relates to the field of centralizers for use in maintaining a tubular member such a conductor or string in a substantially co-axial arrangement within a bore, for example a platform guide or an outer tubular member or conductor.
  • this invention relates to a centralizer suitable for use in a hydrocarbon drilling or extraction installation.
  • one tubular member extends lengthwise within a bore, for example another tubular member, it may be advantageous to maintain the two tubular members substantially co-axial.
  • offshore oil production platforms have vertically extending pipelines, referred to as conductors or casing strings, which connect the platform to the oil or gas resource being extracted from underneath the seabed.
  • casing strings typically have a number of casing strings arranged concentrically.
  • the outermost casing string will pass through a number of guides, each of which may comprise a relatively short sleeve and each of which is securely attached to the structural framework of the platform.
  • one such guide is provided above the water surface and is known as a splash-level jacket conductor guide and, depending upon the depth of water above the well head, one or more further jacket conductor guides may be provided below the water surface.
  • centralizers between the outer conductor and the guides, and between the inner casing strings.
  • the centralizers act to locate an inner member co-axially with respect to the outer surrounding member.
  • Centralizers typically include a cylindrical main body portion, which is clamped to the inner tubular member, and a number of protrusions, longitudinally extending abutments or fins that are spaced apart around the main body and which each extend radially outwards from the main body portion towards the inner surface of the bore or outer tubular member to minimise the gap for movement between the two members.
  • Centralizers may be one of two distinct types. Fixed centralizers provide a constant radial extension and adjustable centralizers provide a variable radial extension in order to provide a better fit (i.e. a smaller gap) between the inner and outer tubular elements. However, even with the use of adjustable centralizers, such as those described in GB 2381280 A , a gap may still exist between the inner and outer tubular members even when the protrusions are moved outwards to their full extent.
  • GB 2391570 A Another prior art adjustable centralizer is described in GB 2391570 A , considered the closest prior art.
  • This has a number of guide members that are mounted on and project radially from a tubular main body. At least two of the guide members are adjustable in a radially outwards direction, the movement being driven either by rotatable cam surfaces between the guide members and the main body, or by a longitudinally movable wedge, which is also between the guide members and the main body, this wedge being driven by turning a nut on a threaded steel bar.
  • a centralizer suitable for centralizing a tubular member within a substantially vertical bore
  • the centralizer comprising a main body adapted to be connectable around a tubular member to be centralized, the main body defining a longitudinal axis of the centralizer, and a plurality of longitudinally extending abutments spaced apart around the main body, each abutment extending radially outwards from the main body for making abutting contact with said bore and at least one of said abutments having an adjustment mechanism for making a radially adjustable abutting contact with said bore, said adjustment mechanism comprising a radially movable outer blade for making said abutting contact, a longitudinally movable wedging member located between the outer blade and the main body for moving the outer blade radially into said abutting contact, at least one guiding mount for guiding said radial movement of the outer blade, and at least one longitudinally extending ramp surface, said at least one ramp surface being inclined with respect to
  • the longitudinally extending abutments there are preferably at least three of the longitudinally extending abutments. Most conveniently, a minimum of two adjustment mechanisms may be mounted at right angles to each other. In a preferred embodiment of the invention there are four such abutments spaced equidistantly apart around the main body, all of which have the adjustment mechanism for making a radially adjustable abutting contact with the bore. Preferably, these form two opposing pairs of radially extending projections which extend longitudinally along at least half of the length of the centralizer.
  • the main body may comprise two separable halves which may be secured together to clamp the main body around the tubular member.
  • The, or each, ramp surface is separate from the wedging member.
  • the at least one ramp surface is provided on the outer blade. It would however, alternatively be possible for the at least one ramp surface to be provided on the main body.
  • the wedging member may be in the form of a blade, in which case the wedging member is an inner blade relative to the outer, radially movable blade.
  • the outer blade and wedging member may, for example, be sheet material of the same thickness.
  • the outer blade and the inner blade forming wedging member are in-line with each other in the radial direction.
  • the wedging member and the ramp surface may have therebetween mating surfaces, which may include a ramp surface on the outer blade or a ramp surface on the main body.
  • these mating surfaces are inclined relative to the longitudinal axis of the centralizer so that the movement of the wedging member in a first longitudinal direction causes the movement of the outer blade in a radially outwards direction as the wedging member moves relative to the ramp surface.
  • pairs of the inclined mating surfaces there may be a plurality of pairs of the inclined mating surfaces, these pairs being spaced longitudinally apart and being separated by substantially radially extending steps in each of the mating surfaces.
  • At least one of the wedging member and the outer blade may comprise securing means to prevent movement of the wedging member in the longitudinal direction in which the wedging member would cause or permit the outer blade to move radially inwards.
  • the securing means may be provided on opposing surfaces between the wedging member and ramp surface.
  • the opposing surfaces may be textured with a saw-tooth profile such that the opposing surfaces engage to prevent movement of the wedging member in said longitudinal direction in which the wedging member causes or permits the outer blade to move radially inwards.
  • the securing means should not, however, hinder or prevent movement in an opposite longitudinal direction.
  • the guiding mount preferably comprises a pair of guide plates extending radially outwards from the main body, the wedging member and the outer blade being mounted, for example slidably mounted, between this pair of guide plates.
  • the outer blade may then be mounted to the pair of guide plates in such a way as to limit the extent of radial movement of the outer blade from a retracted position, nearest the main body, to an extended position, furthest from the main body.
  • the outer blade may then include a slot, with a pin, for example the shaft of a bolt, carried by the pair of guide plates extending through the slot so as to adjustably mount the outer blade to the guide plates.
  • the centralizer may further comprise a wedging member release means connectable to the wedging member.
  • the release means retains the wedging member in a first, retracted position and prevents the wedging member moving in a longitudinal direction under gravity until the centralizer is in position for installation.
  • the wedging member release means may comprise a hole in the wedging member, a corresponding hole in at least one of the guide plates and a removable wedging member release pin extending through these holes when aligned.
  • the wedging member release means may also comprise release cables attached at one end of this pin so that the pin may be pulled out remotely.
  • the centralizer may further comprise outer blade release means connectable to the outer blade, the outer blade release means retaining the outer blade in a first, retracted position and preventing the wedging member moving in a longitudinal direction under gravity.
  • the outer blade release means may comprise a hole in the outer blade, a corresponding hole in at least one of the guide plates and a removable outer blade release pin extending through these holes when aligned.
  • the outer blade release means may also comprise release cables attached at one end of this pin so that the pin may be pulled out remotely.
  • a deployment collar for temporary mounting to a substantially cylindrical centralizer for centralizing a tubular member within a bore, the deployment collar comprising a ring-like main body defining a longitudinal axis of the deployment collar and having mounted to the collar main body a latching mechanism and an activating mechanism, wherein:
  • the latching mechanism may comprise at least one and preferably a set of hydraulically or electrically operable ram actuators, these ram actuators including a piston for engaging and disengaging with the centralizer, the piston being movable in a tangential direction relative to the axis of the deployment collar as the centralizer deployment assembly latches and de-latches from the centralizer.
  • The, or each, actuator of the activating mechanism may include a hydraulically or electrically operable ram actuator, this ram actuator including a piston, the piston being movable in a direction parallel with the axis of the deployment collar as the centralizer deployment assembly activates the radial adjustment mechanism of the centralizer.
  • a centralizer deployment assembly comprising a centralizer suitable for centralizing a tubular member within a bore, and a deployment collar for temporary mounting to said centralizer when said centralizer is to be connected to said tubular member, the centralizer being in accordance with the first aspect of the invention and the deployment collar being in accordance with the second aspect of the invention, wherein the deployment collar is temporarily mountable to said centralizer by means of the latching mechanism in such a way that said activating mechanism is configured relative to the centralizer to activate the wedging member of an adjustment mechanism of one of said abutments in order to make said radially adjustable abutting contact of said abutment with said bore.
  • a centralizer to centralize a tubular member within a substantially vertical bore, the centralizer being in accordance with the first aspect of the invention, the method comprising the steps of:
  • Also described herein is a method of using a centralizer deployment assembly to centralize a tubular member within a bore, the centralizer deployment assembly being in accordance with the third aspect of the invention, the method comprising the steps of:
  • FIGS 1 and 2 show a centralizer 1 according to a first preferred embodiment of the present invention.
  • the centralizer 1 is designed to locate between a tubular member 5, for example a conductor or a casing string, and a bore 7, for example a platform guide located either just above or just below the splash zone, in order to reduce conductor movement to a minimum.
  • the centralizer 1 comprises a main body 2, which in this example is in the form of a steel split central tube defining a longitudinal axis 4 of the centralizer 1.
  • the central tube 2 is formed from two semi-cylindrical tube portions 6, 8 each including a lip or flange 11 extending radially outwards from each of the four longitudinally extending free edges 12 of the tube portions 6, 8. These flanges 11 are used to secure the two tube portions 6, 8 together to enable the central tube 2 to be clamped around the inner tubular member 5.
  • one pair of flanges 11 supports at each of its longitudinal ends 15, 17 a hinge mechanism 19, 21.
  • the hinge mechanism 19, 21 is used to close together the two cylinder halves 6, 8 during clamping of the centralizer to the tubular member 5.
  • both pairs of flanges 11 are then secured together using suitable fastening means such as nuts 14 and bolts 16 which pass through aligned holes (not shown) in the flanges 11, as shown most clearly in Figure 3 .
  • the central tube 2 should, ideally, have an inner diameter that is approximately equal to an outer diameter of the tubular member 5 so that, when the central tube 2 is clamped around the tubular member, it may be fastened to grip tightly around the tubular member 5 so that it remains in position and does not slide longitudinally along the tubular member.
  • abutments 18 are spaced apart around the main body 2. Each abutment extends radially outwards from an external surface 20 of the central tube 2.
  • the abutments 18 extend the complete length of the central tube 2 and, in this embodiment, first and second, or upper and lower, abutment end portions 22, 24 extend beyond first and second, or upper and lower, ends 26, 28 of the central tube 2, as shown most clearly in Figure 2 .
  • a series of guide members or fairleads 30 also project outwards from the external surface 20 of the central tube 2, the function of which will be described later. There are four such guide members 30, each guide member being located near and associated with one of the abutments 18.
  • abutments 18 and guide members 30 are such that there are two abutments 18 and two guide members 30 extending from each of the tube portions 6, 8. Furthermore, the abutments 18 are positioned equidistantly around the central tube 2 so as to form two opposing pairs of abutments 18.
  • each of the abutments 18 includes guiding mounts 3 and an outer movable member 34 and a movable inner wedging member 36 which cooperate with each other such that the position of the outer movable member is radially adjustable.
  • the movement of these members 34, 26 with respect to both longitudinal and radial directions is guided by the guiding mounts.
  • the guiding mounts 3 include a pair of parallel guide plates 32 between which the outer and inner movable members 34, 36 are received.
  • the guide plates 32 extend parallel to each other and parallel to the longitudinal axis 4 beyond the upper and lower edges 26, 28 of the semi-cylindrical tube portions 6, 8 to provide the upper and lower abutment end portions 22, 24, all of which have a tapered outer edge 31 to aid insertion of the centralizer 1 into the bore 7.
  • the guide plates 32 are spaced apart by a distance approximately equal to the width of the movable members 34, 36 so that there is a sliding fit of the movable members 34, 36 between the guide plates 32.
  • the innermost movable member is a wedging member 36, most clearly shown in Figures 6 and 7 , and includes a flat longitudinal edge 38 that is in sliding contact with the external surface 20 of the central tube 2 and a second opposing radially outwards edge that includes a series of ramped surfaces 42.
  • the ramped surfaces 42 are inclined with respect to the longitudinal axis 4 of the centralizer 1 and, in this embodiment, each of the ramped surfaces 42 slopes downwards and inwards with respect to the central tube 2 when the axis is vertically oriented, as in the drawings.
  • Relatively short separating steps 44 extend between a lower end 46 of one ramped surface 42 and an upper end 48 of an adjacent ramped surface 42 and, as such, the steps 44 extend generally perpendicular to the ramped surfaces 42 and transverse to the flat longitudinal edge 38.
  • the outermost movable member is a radially movable blade 34 that includes a first radially inwards edge having a series of inclined surfaces 52 and separating steps 54 that correspond and engage with the ramped surfaces 42 and separating steps 44 of the wedging member 36.
  • the outer blade 34 also includes a flat longitudinal edge 56 that forms an outer contact surface of this blade 34.
  • this arrangement provides a plurality of pairs of inclined mating surfaces 42, 52 separated by the separating steps 44, 54 and together with the guide plates 32, this constrains both the radial and longitudinal movement of the outer movable member 34, and therefore serves to retain the wedging member to the main body.
  • Both the wedging member 36 and outer blade 34 are formed from the same thickness of steel plate material.
  • the wedging member in this example is therefore also in the form of a blade 36, which is radially in-line with the outer blade 34.
  • both these blade members together form part of an adjustment mechanism for making a radially adjustable abutting contact with an outer bore 7 inside of which the centralizer 1 is to be used.
  • each of the guide plates 32 includes a plurality of holes 60, 60', 62, 64.
  • a pair of holes 60, 60' is located proximate an outer longitudinal edge 66 of each of the guide plates 32, as shown in Figure 4 .
  • One of these holes 60 is located towards the first, tapered upper end 22 of the guide plate 32 and the other one of these holes 60' is located towards the second, tapered lower end 24 of the guide plate 32.
  • a corresponding pair of holes 72, 72' is formed in the outer blade 34.
  • a transportation bolt 74 may be located through the aligned holes 60, 60', 72, 72' and fastened with a nut 75 in order to secure the outer blade 34 in position with respect to the guide plates 32 during transportation and storage of the centralizer 1.
  • a single hole 62 is located proximate a radially inner edge 76 of the guide plates 32, and towards the upper end 22 of each of the guide plates 32.
  • a corresponding hole 78 is formed in the inner wedging blade 36.
  • a wedging member release pin 80 is preferably a split pin secured at one end with a cotter pin 13. The release pin 80 is located through the aligned holes 62, 78 in the guide plates 32 and inner wedging blade 36. The function of this release pin will be described further below.
  • a set of holes 64 is located proximate the outer edge 66 of each of the guide plates 32.
  • a corresponding series of slots 82 is formed in the outer blade 34 so that, when the outer blade 34 is in a retracted position, a first end 84 of each of the slots 82 aligns with the corresponding hole 64 and, when the outer blade 34 is in an extended position, a second end 86 of each of the slots 82 aligns with the hole 64.
  • a blade guide bolt passes through each of the aligned holes 64 and slots 82.
  • the blade guide bolt includes a pin or shaft 87, a head portion 89 at one end of the shaft and a locking nut 97 that is secured to the other end of the shaft.
  • the head portion 89 locates against an outer surface 91 of one of the guide plates 32 and the locking nut 97 locates against an outer surface 93 of the other one of the guide plates 32.
  • the head portion 89 and locking nut 97 retain the guide bolt shaft 87 through the outer blade 34.
  • the guide members 30 each include an arm portion 92 that extends from the external surface 20 of the central tube 2 and a loop section 94 located at a free end 95 of the arm portion 92.
  • the wedging member release pins 80 include a ring portion 96 at one end of the release pin. When the release pin is located through the guide plates 32 and the outer blade 34 it is oriented such that the ring portion 96 is located on the same side of the abutment fin 18 as the corresponding guide member 30.
  • Flexible, elongate release cables 98 in the form of a rope or wire, are fixed at their ends 99 to each of the ring portions 96 of the wedging member release pins 80.
  • Each release cable 98 passes through the loop section 94 of the corresponding guide member 30 and extends upwards beyond the upper end 26 of the centralizer 1.
  • the release cable 98 runs up to the surface or up to a production platform (not shown).
  • the central tube 2 is first clamped around an inner tubular member 5, which in this example is a hollow conductor.
  • the transportation bolts 74 are then removed so that the outer and inner blade members 34, 36 are only held in the retracted position by means of the wedging member release pins 80.
  • upper and lower ends 81, 83 of the inner wedging blade 36 are aligned with the first and second ends 26, 28 of the central tube 2, and the flat longitudinal edge 56 of the outer blade 34 protrudes only slightly from the outer edge 66 of the guide plates 32.
  • the conductor 5 is then run and located in the desired position in the sea floor and platform structure. Because the outer and inner blade members 34, 36 are in a retracted position during this procedure there is sufficient clearance between the centralizer 1 and the bore 7, for example a conductor guide, so that the tubular member 5, for example a conductor, passes easily through the conductor guide.
  • the centralizer 1 is lowered within the conductor guide bore 7 by means of steel ropes (not shown) attached to lugs 33.
  • the release cables 98 are then pulled which causes the wedging member release pins 80 to be pulled out of the holes 78, 62 through the guide plates 32 and outer blade 34.
  • the wedging member release pins 80 may be retrieved to the surface or the production platform.
  • the movement of the outer blade 34 is, in turn, constrained by the sliding of the shafts 87 of the guide bolts along the slots 82, as the outer blade moves from the retracted to an extended position.
  • the shafts and slots therefore comprise together with the parallel guide plates 32 the guiding mounts 3.
  • the slots are inclined slightly so that as the outer blade 34 moves outwards there is also a small component of movement in the downwards direction.
  • the slots 82 are angled downwards and radially outwards preferably at between about 5° to 15° below horizontal, so that the outwards movement of the outer blade 34 is substantially in a radial direction.
  • the angle of the slot 82 causes the outer blade to move downwards as well as outwards, so the movement of the outer blade is assisted, and not hindered, by gravity and the weight of the outer blade.
  • the outer blades 34 move outwards until the outer contact surface 56 of the outer blade 34 contacts the inner surface 7 of the conductor guide. In this extended position, the flat longitudinal edge 56 of the outer blade 34 protrudes significantly from the outer edge 66 of the guide plates 32.
  • each of the ramped and inclined surfaces 42, 52 of the wedging blade 36 and outer blade 34 are serrated in order to provide a securing means to prevent the outer blade from moving radially inwards.
  • each of the ramped and inclined surfaces 42, 52 includes a plurality of projecting, angled teeth 85, as shown most clearly in the insert of Figure 7 .
  • the guide plates 32 act to centralize the conductor 5 within the conductor guide bore 7 to some degree while the outer and inner blades 34, 36 are still in a retracted position. The extension of each of the outer blades 34 then further minimises the gap between the centralizer 1 and the conductor guide bore 7 to prevent or minimise lateral movement of the conductor 5 within the conductor guide.
  • the loads and force directions on the conductor 5 and the conductor guide are such that the wedging blade 36 will not be pushed in an upwards direction.
  • the outer blade 34 will always fill the gap between the centralizer 1 and the conductor guide bore 7 with minimum clearance and without preload on the centralizer 1 or guide.
  • wedging member release pins 80 were removed by the use of flexible, elongate release cables 98, in other embodiments it may be preferable to use other release means to remove the wedging member release pins 80.
  • the release pins 80 may be removed by the use of remotely operated hydraulic cylinders (not shown).
  • Figures 8 to 11 show various views of a centralizer 101 according to a second preferred embodiment of the present invention.
  • Features which are the same as those of the first embodiment are indicated using the same reference numerals, and as such features work in the same way as those of the first embodiment, these will not be described again in full detail.
  • Features which have been modified in some way as compared with the first embodiment are indicated using reference numerals incremented by 100, and will be described insofar the functioning of these features differs from the first embodiment.
  • the centralizer 101 is designed to locate between a tubular member 5, for example a conductor, and a bore 7 in order to reduce conductor movement to a minimum.
  • the centralizer 101 is adapted to be used in more remote locations than the first embodiment, for example near the sea bed.
  • the second embodiment of centralizer 101 differs from the first embodiment mainly in that each pair of guide plates 132 is truncated at the top end 122, and in that each guide plate is provided with a clearance hole 58.
  • the top ends 122 of the guide plates 132 together present aligned uppermost surfaces 25 which lie just above and parallel with the upper edge 26 of the tubular main body 102.
  • These uppermost surfaces 25 of the centralizer 101 provide a flat platform on which a deployment collar 10 is located.
  • the deployment collar 10 is shown separately in Figures 12 to 14 .
  • the deployment collar 10 is temporarily attached to the centralizer 101 to form a centralizer deployment assembly 50, as illustrated in Figures 15 to 18 .
  • the deployment collar 10 is substantially ring-shaped, having a split annular main body 27 formed in two semi-circular rings 23, 29 that define a collar axis 104.
  • Each ring 23, 29 is a flat plate of steel material, extending in a half annulus between opposite ends 35, 35', three of which 35 are square and one of which 35' is partly curved so that the half rings 23, 29 can pivot apart about a hinge 39 by which one pair of opposed ends 35, 35' of the half rings 23, 29 are joined.
  • the hinge includes a pair of joining plates 41 welded on opposite sides to one of the half rings 29 and a pivot, which is provided by a bolt 45, fixed to the other half ring 23.
  • the bolt 45 which passes through aligned holes (not shown) in the joining plates 41 and the rounded end 35' of one half ring 23 to engage with a nut 47.
  • the other pair of opposed ends 35 of the half rings may be connected and disconnected by means of a pair of locking plates 43 welded on opposite sides to one of the half rings 29 and by a pair of bolts 49 then extend through holes (not shown) in both the locking plates 43 and one of the half ring ends 35 which slots between the locking plates when the rings 23, 29 are pivoted to a closed orientation.
  • the pair of bolts 45 can then be tightened or released by means of a pair of nuts 51 threaded on the bolts in order to place or remove the deployment ring around the tubular member 5 to which the centralizer 101 is to be secured.
  • the deployment collar 10 has a plurality of steel lifting brackets 53, in this example eight, each of which extends in an axial direction from an upper side 55 of the annular main body 27.
  • Each lifting bracket is topped by a lifting lug 57 by which the collar may be lowered into place, after assembling around the tubular member 5 and prior to connection to the centralizer 101.
  • steel ropes and shackles would, in use, be connected to each of the lifting lugs 57.
  • a radial inner side of each lifting bracket 53 is provided with a roller 59 to minimise scraping and prevent snagging of the deployment collar 10 on the tubular member as the collar is being lowered or raised.
  • a hydraulic ram actuator 40 having a longitudinally movable piston 63, shown schematically in Figure 16 .
  • actuators 40 there are four such actuators 40.
  • These actuators are an activating mechanism for controllably applying a force in an axial direction away from the collar main body for activating a radial adjustment mechanism of the centralizer. In this example, this force is applied to the movable wedge plate 136.
  • Parts of the activating mechanism not shown include hydraulic lines and associated hydraulic control equipment.
  • hydraulic lines will be connected at ports 68 on each cylinder and routed through apertures 69 in each lifting bracket 53 to be fixed to a routing bracket 71 extending upwards from the upper side 55 of the annular main body 27. From the routing bracket, hydraulic lines may extend back to the surface, or may terminate at a manifold to which a remotely operated vehicle may be connected.
  • each piston 63 when activated moves axially downwardly through a corresponding clearance hole 65 in the flat plate of steel material forming the half ring 23, 29.
  • a plurality of latching mechanisms are provided around the ring of the collar main body 27 for latching to and de-latching from the upper end 26 of the centralizer main body so that, in use, the deployment collar 10 may be temporarily mounted to the centralizer.
  • the latching mechanism includes a plurality of ram actuators 90 each having a piston 63 and a tangentially movable piston 70.
  • Each of the latching ram actuators is oriented in a circumferential direction, being mounted on a first steel flange plate 77.
  • a second steel flange plate 79 is provided on an opposite side of the first flange plate 77 from the cylinder 73.
  • the first and second flange plates 77, 79 are parallel with each other and extend downwardly from a lower side 67 of the annular main body 27.
  • Each pair of flange plates 77, 79 is directly beneath and radially inside one of the clearance holes 65 in the half rings 23, 29.
  • Each flange plate 77, 79 lies in an approximately radial plane and is parallel with the collar axis 104.
  • Each flange plate has a clearance hole 37, the location of which is indicated by dots in Figure 15 , these clearance holes being aligned to receive the piston 70 when the latching ram actuator is activated.
  • Parts of the latching mechanism not shown include hydraulic lines, which would be connected to inlet and outlet ports 88 and associated hydraulic control equipment. The hydraulic lines will be routed back to the routing bracket 71.
  • the deployment collar 10 also includes four cameras 9, mounted on the lower side 67 of the collar main body 27. Although electrical wiring to each camera is not illustrated, this wiring will be routed back to the routing bracket 71.
  • the deployment collar 10 is lowered towards the centralizer with the pistons 70 of the latching rams 90 fully retracted into the corresponding cylinders 73.
  • the separation between the flange plates 77, 79 is just wider than the distance between the opposite faces 191, 193 of the pair of guide plates 132, so that as the deployment collar 10 is lowered towards the upper edges 25 of the guide plates 132, the upper end 122 of each guide plate 132 slots in between the flange plates 77, 79.
  • the correct positioning of the deployment collar 10 relative to the centralizer 101 may then be verified using the camera 9.
  • the latching clearance holes 58 in the guide plates 132 will be aligned with the clearance holes 83 in the flange plates 77, 79.
  • the latching mechanism 90 is used to temporarily secure the deployment collar 10 to the centralizer, as shown in Figure 17 , thereby forming the centralizer deployment assembly 50.
  • the latching mechanism pistons 70 When the latching mechanism pistons 70 are extended, these pass through the latching holes 58 in each guiding member 132 and through each of the clearance hole 83 in the flange plates 77, 79.
  • the top edge 181 of the movable wedge plate 136 is also shaped to accommodate the piston 70, but does not engage with the piston, so that the wedge plate is free to be driven downwards by the activating piston 63 once the wedging member release pin 80 has been withdrawn, for example by a remotely operated vehicle.
  • the force applied to the movable wedge plate 136 by the cylinder 73 could be sufficient to sheer through the pin.
  • the outer blade 134 then moves outwards with the meshed saw teeth providing a ratchet effect which, together with the ambient force of gravity on the wedge plate 136, prevents the outer blade from becoming disengaged with the bore 7 once the adjustable abutments 118 of the centralizer 101 have been fully extended, as shown in Figure 18 .
  • the four cameras 9 can also be used to make a visual check that each of the outer blades contact surfaces 56 is making a proper contact with the bore 7.
  • the pistons 75 can then be retracted, thereby releasing the deployment collar 10 from the centralizer 101.
  • the deployment collar can then be pulled up to the surface, and, if necessary, disengaged from the tubular member 5.
  • the centralizer 1, 101 will include four abutments 18, 118, however, it will be appreciated that the centralizer may include more than four abutments, or may include only two or three abutments, at least two of which are adjustable. If a centralizer includes only two abutments then these are preferably located on opposite sides of the centralizer at right angles or thereabouts to one another.
  • the present invention therefore, provides an improved centralizer, suitable for use in an oil or gas production installation, which minimises the clearance between inner tubular member and an outer bore such as a platform guide or outer tubular member or guide, and which, in particular, may be used to reduce to a minimum any conductor movement within a conductor guide.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Earth Drilling (AREA)

Claims (17)

  1. Centreur (1, 101) adapté pour le centrage d'un élément tubulaire (5) à l'intérieur d'un alésage sensiblement vertical (7), le centreur comprenant un corps principal (2, 102) adapté pour pouvoir être raccordé autour d'un élément tubulaire (5) à centrer, le corps principal définissant un axe longitudinal (4) du centreur, et une pluralité de butées s'étendant longitudinalement (18, 118) et espacées autour du corps principal (2, 102), chaque butée s'étendant radialement vers l'extérieur à partir du corps principal pour réaliser un contact de butée avec ledit alésage et au moins l'une desdites butées ayant un mécanisme d'ajustement (3, 103, 34, 134, 36, 136, 42) pour réaliser un contact de butée radialement ajustable avec ledit alésage, ledit mécanisme d'ajustement comprenant une lame externe radialement mobile (34, 134) pour réaliser ledit contact de butée, un élément de calage longitudinalement mobile (36, 136) situé entre la lame externe et le corps principal (2, 102) pour déplacer la lame externe radialement dans ledit contact de butée, au moins une monture de guidage (3, 103) pour guider ledit mouvement radial de la lame externe, et au moins une surface de rampe s'étendant longitudinalement (42), ladite surface de rampe étant inclinée par rapport audit axe (4), dans lequel :
    - la lame externe (34, 134) est contrainte de se déplacer dans une direction sensiblement radiale par ladite au moins une monture de guidage (3, 103) ; et
    - l'élément de calage et la lame externe sont tous deux relativement mobiles par rapport au corps principal et l'un par rapport à l'autre et l'élément de calage est contraint entre la lame externe et le corps principal (2, 102) de se déplacer dans une direction sensiblement longitudinale, l'élément de calage et ladite au moins une surface de rampe étant configurés pour venir en prise l'un avec l'autre de manière à ce que, lorsque l'élément de calage se déplace longitudinalement, l'élément de calage amène la lame externe à se déplacer radialement,
    caractérisé en ce que l'agencement de l'élément de calage (36, 136) entre le corps principal (2, 102) et la lame externe (34, 134) est tel que, lorsque le corps principal est orienté avec l'axe longitudinal (4) sensiblement vertical pour centrer ledit élément tubulaire (5) à l'intérieur dudit alésage (7), le poids de l'élément de calage est suffisant pour amener automatiquement l'élément de calage à tomber par rapport à la lame externe et au corps principal, moyennant quoi, en utilisation, l'élément de calage se déplace vers le bas entre le corps principal et la lame externe dans ladite direction sensiblement longitudinale sous l'effet de la pesanteur et ladite mise en prise dudit élément de calage mobile et de ladite surface de rampe amène la lame externe à se déplacer dans ladite direction radialement vers l'extérieur pour réaliser ledit contact de butée, le mouvement et la prise subséquente de la lame externe avec l'alésage étant ainsi entraînés par pesanteur.
  2. Centreur (1, 101) selon la revendication 1, dans lequel l'élément de calage (36, 136) et ladite surface de rampe (42) ont entre eux des surfaces d'accouplement (42, 52) incluant ladite au moins une surface de rampe, lesdites surfaces d'accouplement étant inclinées par rapport audit axe longitudinal (4) de telle sorte que ledit mouvement de l'élément de calage (36, 136) dans une première direction longitudinale amène ledit mouvement de la lame externe (34, 134) dans une direction radialement vers l'extérieur quand l'élément de calage se déplace par rapport à ladite surface de rampe, une pluralité de paires desdites surfaces d'accouplement inclinées existant, lesdites paires étant espacées longitudinalement et étant séparées par des paliers s'étendant sensiblement radialement dans chacune desdites surfaces d'accouplement.
  3. Centreur (1, 101) selon la revendication 2, dans lequel ladite au moins une monture de guidage comprend une paire de plaques de guidage et ladite pluralité de paires desdites surfaces d'accouplement inclinées et ladite pluralité de paliers de séparation, conjointement avec ladite paire desdites plaques de guidage, servent à retenir l'élément de calage sur le corps principal (2, 102).
  4. Centreur (1, 101) selon une quelconque revendication précédente, dans lequel au moins l'un de l'élément de calage (36, 136) et de la lame externe (34, 134) comprend un moyen de fixation (85) pour empêcher le mouvement de l'élément de calage dans une direction longitudinale dans laquelle l'élément de calage amène ou permet à la lame externe de se déplacer radialement vers l'intérieur, ledit moyen de fixation étant prévu sur des surfaces opposées (42, 52) entre l'élément de calage (36, 136) et la surface de rampe, lesdites surfaces opposées étant texturées avec un profil en dents de scie (85) de manière à ce que les surfaces opposées viennent en prise pour empêcher le mouvement de l'élément de calage dans ladite direction longitudinale dans laquelle l'élément de calage entraîne ou permet à la lame externe de se déplacer radialement vers l'intérieur mais n'empêche pas le mouvement dans une direction longitudinale opposée.
  5. Centreur (1, 101) selon la revendication 1 ou la revendication 2, dans lequel ladite au moins une monture de guidage (3, 103) comprend une paire de plaques de guidage (32, 132), lesdites plaques de guidage s'étendant radialement vers l'extérieur à partir du corps principal (2, 102), l'élément de calage et la lame externe étant montés entre la paire de plaques de guidage.
  6. Centreur (1, 101) selon la revendication 5, dans lequel la lame externe (34, 134) est montée sur la paire de plaques de guidage (32, 132) de manière à limiter l'ampleur du mouvement radial de la lame externe à partir d'une position rétractée, la plus proche du corps principal (2, 102), jusqu'à une position déployée, la plus éloignée du corps principal.
  7. Centreur (1, 101) selon la revendication 6, dans lequel la lame externe (34, 134) inclut une fente (82), et un ergot (87) porté par la paire de plaques de guidage (32, 132) s'étend à travers la fente de façon à monter de manière ajustable la lame externe sur lesdites plaques de guidage.
  8. Centreur (1, 101) selon la revendication 7, dans lequel ladite fente forme un angle vers le bas et radialement vers l'extérieur de telle sorte que lorsque le corps principal est orienté avec l'axe longitudinal (4) sensiblement vertical pour centrer ledit élément tubulaire (5) à l'intérieur dudit alésage (7), ledit mouvement radialement vers l'extérieur de la lame externe (34, 134) soit assisté par la pesanteur.
  9. Centreur (1, 101) selon une quelconque revendication précédente, dans lequel le centreur comprend en outre un moyen de libération d'élément de calage (13, 62, 78, 80) pouvant être raccordé audit élément de calage (36, 136), ledit moyen de libération retenant l'élément de calage dans une première position rétractée et empêchant l'élément de calage de se déplacer dans ladite direction longitudinale sous l'effet de la pesanteur.
  10. Centreur (1, 101) selon la revendication 9, lorsqu'elle est dépendante de l'une quelconque des revendications 5 à 8, dans lequel le moyen de libération d'élément de calage comprend un trou (78) dans l'élément de calage, un trou correspondant (62) dans au moins l'une desdites plaques de guidage et un ergot de libération d'élément de calage rétractable (80) s'étendant à travers lesdits trous dans l'élément de calage et au moins l'une desdites plaques de guidage.
  11. Centreur (1, 101) selon une quelconque revendication précédente, dans lequel le centreur comprend en outre un moyen de libération de lame externe (60, 60' 72, 72', 74, 75) pouvant être raccordé à la lame externe (34, 134), ledit moyen de libération de lame externe retenant la lame externe dans une première position rétractée et empêchant l'élément de calage de se déplacer dans une direction longitudinale sous l'effet de la pesanteur.
  12. Centreur (1, 101) selon la revendication 11, dans lequel l'élément de calage et la lame externe sont montés entre une paire de plaques de guidage (32, 132), et le moyen de libération de lame externe comprend un trou (72, 72') dans la lame externe, un trou correspondant (60, 60') dans au moins l'une des plaques de guidage (32, 132) et un ergot de libération de lame externe rétractable (74, 75) s'étendant à travers lesdits trous dans la lame externe et au moins l'une des plaques de guidage.
  13. Centreur (1,101) selon la revendication 5, dans lequel l'élément de calage (36, 136) et la lame externe (34, 134) sont tous deux montés de manière à pouvoir coulisser entre ladite paire de plaques de guidage (32, 132).
  14. Centreur (1, 101) selon la revendication 13, dans lequel l'élément de calage comprend un bord longitudinal plat (38) qui est en contact coulissant avec une surface externe (20) du corps principal (2, 102) et un second bord opposé radialement vers l'extérieur qui inclut une série de dites surfaces de rampe s'étendant longitudinalement (42), lesdites surfaces de rampe étant séparées par des paliers de séparation (44), et la lame externe (34, 134) comprend un bord radialement vers l'intérieur ayant une série de surfaces inclinées (52), lesdites surfaces inclinées étant séparées par des paliers de séparation (54) qui correspondent et viennent en prise avec lesdits surfaces de rampe (42) et paliers de séparation (44) de l'élément de calage (36, 136).
  15. Procédé d'utilisation d'un centreur (1, 101) pour centrer un élément tubulaire (5) à l'intérieur d'un alésage sensiblement vertical (7), le centreur étant selon l'une quelconque des revendications 1 à 14, le procédé comprenant les étapes suivantes :
    - fixation du corps principal (2, 102) du centreur sur l'élément tubulaire (5) devant être centré ;
    - insertion de l'élément tubulaire (5) dans l'alésage (7), l'alésage étant sensiblement vertical et présentant un espace entre le corps principal (2, 102) et l'alésage et les butées (18, 118) s'étendant partiellement à travers ledit espace de telle sorte que le centreur est libre de se déplacer axialement dans ledit alésage ;
    - orientation de l'élément tubulaire de telle sorte que l'axe longitudinal (4) du centreur est sensiblement vertical ; et
    - le fait de laisser l'élément de calage tomber automatiquement sous son propre poids par rapport au corps principal de telle sorte que l'élément de calage (36, 136) se déplace entre le corps principal et la lame externe dans ladite direction sensiblement longitudinale et ladite mise en prise dudit élément de calage mobile et de ladite au moins une surface de rampe (42) amenant ainsi la lame externe (34, 134) à se déplacer dans ladite direction radialement vers l'extérieur en contact avec l'alésage pour centrer l'élément tubulaire (5) à l'intérieur de l'alésage (7), le mouvement et la mise en prise subséquente de la lame externe avec l'alésage étant ainsi entraînés par pesanteur.
  16. Procédé selon la revendication 15, lorsqu'elle est dépendante de la revendication 9, dans lequel le procédé comprend, avant de permettre à l'élément de calage de tomber automatiquement sous son propre poids, l'étape d'utilisation du moyen de libération (13, 62, 78, 80) pour retenir ledit élément de calage (36, 136) dans une première position rétractée et empêcher l'élément de calage de se déplacer dans ladite direction longitudinale sous l'effet de la pesanteur.
  17. Procédé selon la revendication 15, lorsqu'elle est dépendante de la revendication 13, dans lequel l'élément de calage (36, 136) coulisse entre lesdites plaques de guidage quand l'élément de calage tombe sous son propre poids et la lame externe coulisse entre lesdites plaques de guidage quand la lame externe se déplace radialement vers l'extérieur.
EP12185143.0A 2011-09-20 2012-09-20 Centreur Not-in-force EP2573315B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GBGB1116236.9A GB201116236D0 (en) 2011-09-20 2011-09-20 Centralizer

Publications (3)

Publication Number Publication Date
EP2573315A2 EP2573315A2 (fr) 2013-03-27
EP2573315A3 EP2573315A3 (fr) 2015-11-18
EP2573315B1 true EP2573315B1 (fr) 2018-11-07

Family

ID=44937562

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12185143.0A Not-in-force EP2573315B1 (fr) 2011-09-20 2012-09-20 Centreur

Country Status (4)

Country Link
EP (1) EP2573315B1 (fr)
AU (1) AU2012227158A1 (fr)
DK (1) DK2573315T3 (fr)
GB (3) GB201116236D0 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2518417A (en) * 2013-09-20 2015-03-25 Hhr Entpr Ltd A device for protecting a conductor passing through a guide on a sea based oil drilling platform
CN111005377B (zh) * 2019-12-26 2021-07-27 黑龙江省八达路桥建设有限公司 一种钻孔桩施工用钻具扶持限位下降装置
CN115853501B (zh) * 2022-12-28 2023-06-30 基康仪器股份有限公司 一种可拆卸的柔性测斜仪定位导轮组件结构

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2277336B (en) * 1993-04-06 1996-07-24 Uwg Ltd Centraliser
US6513223B1 (en) * 2000-05-30 2003-02-04 Tesco Corporation Method for installing a centralizer retaining collar and outer sleeve
GB2381280B (en) 2001-10-23 2006-03-22 Uwg Ltd Centraliser
GB0218312D0 (en) * 2002-08-07 2002-09-11 Paramode Ltd An adjustable centralising device
US7104318B2 (en) * 2004-04-07 2006-09-12 Plexus Ocean Systems, Ltd. Self-contained centralizer system
GB2417505B (en) * 2004-08-28 2008-06-25 U W G Ltd Centraliser

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
GB2494991A (en) 2013-03-27
DK2573315T3 (en) 2019-01-28
GB201216828D0 (en) 2012-11-07
GB201216831D0 (en) 2012-11-07
AU2012227158A1 (en) 2013-04-04
EP2573315A3 (fr) 2015-11-18
GB201116236D0 (en) 2011-11-02
GB2494991B (en) 2015-12-09
GB2494994A (en) 2013-03-27
EP2573315A2 (fr) 2013-03-27

Similar Documents

Publication Publication Date Title
US5437518A (en) Device for mounting a flexible line comprising a curvature limiter
EP2238378B1 (fr) Outil de raccordement de conduites
EP2310614B1 (fr) Système de verrouillage pour éléments tubulaires verrouillés par friction
US11248447B2 (en) Moving tools on offshore structures with a walking carriage
EP2932013B1 (fr) Ensemble raccord sous-marin
EP2281997A2 (fr) Dispositif fendu pour le maintien d'un conduit tubulaire
US20150361634A1 (en) Assembly for mooring a pile with a mooring line and method implemented with said assembly
EP2573315B1 (fr) Centreur
GB2118657A (en) Connection of underwater lines
EP3853434B1 (fr) Système de connexion pour colonne montante de forage marin
EP3631266B1 (fr) Procédé et système de pose d'une canalisation sous-marine
MX2013001352A (es) Unidad de instalacion de linea de control.
GB2494993A (en) Deployment collar for a centralizer
GB2587324A (en) Subsea foundation
US9982495B1 (en) Tubular handling assembly and method
WO2015093969A1 (fr) Procédé et équipement pour des opérations dans ou à travers une structure tubulaire
EP3008368B1 (fr) Agencement, système et procédé de récupération de tête déposée

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CLAXTON ENGINEERING SERVICES LIMITED

RIC1 Information provided on ipc code assigned before grant

Ipc: E21B 17/10 20060101AFI20150624BHEP

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: E21B 17/10 20060101AFI20151015BHEP

17P Request for examination filed

Effective date: 20160517

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180418

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

GRAR Information related to intention to grant a patent recorded

Free format text: ORIGINAL CODE: EPIDOSNIGR71

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTC Intention to grant announced (deleted)
INTG Intention to grant announced

Effective date: 20180830

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1062263

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602012053111

Country of ref document: DE

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20190123

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1062263

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181107

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20181107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190307

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190207

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190307

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190208

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602012053111

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20190808

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190830

Year of fee payment: 8

Ref country code: FR

Payment date: 20190729

Year of fee payment: 8

Ref country code: DK

Payment date: 20190715

Year of fee payment: 8

Ref country code: NL

Payment date: 20190903

Year of fee payment: 8

Ref country code: NO

Payment date: 20190716

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20190703

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20190926

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190920

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190930

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190930

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190920

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190930

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602012053111

Country of ref document: DE

REG Reference to a national code

Ref country code: NO

Ref legal event code: MMEP

Ref country code: DK

Ref legal event code: EBP

Effective date: 20200930

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20201001

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200920

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120920

Ref country code: NO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200930

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210401

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200920

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200920

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107