EP2573244B1 - Sound absorbing material - Google Patents

Sound absorbing material Download PDF

Info

Publication number
EP2573244B1
EP2573244B1 EP12006446.4A EP12006446A EP2573244B1 EP 2573244 B1 EP2573244 B1 EP 2573244B1 EP 12006446 A EP12006446 A EP 12006446A EP 2573244 B1 EP2573244 B1 EP 2573244B1
Authority
EP
European Patent Office
Prior art keywords
polymer
use according
fibres
woven fabric
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12006446.4A
Other languages
German (de)
French (fr)
Other versions
EP2573244A1 (en
Inventor
Peter Dr. Rutsch
Robert Dr. Groten
Samuel Keith Black
Anke Dr. Bold
Frank Jestel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Carl Freudenberg KG
Original Assignee
Carl Freudenberg KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carl Freudenberg KG filed Critical Carl Freudenberg KG
Priority to EP12006446.4A priority Critical patent/EP2573244B1/en
Publication of EP2573244A1 publication Critical patent/EP2573244A1/en
Application granted granted Critical
Publication of EP2573244B1 publication Critical patent/EP2573244B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/14Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic yarns or filaments produced by welding
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/005Synthetic yarns or filaments
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/14Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic yarns or filaments produced by welding
    • D04H3/153Mixed yarns or filaments

Definitions

  • the present invention relates to the field of textile products and their applications in the field of sound insulation, in particular the soundproofing in vehicles, aircraft and trains, in the construction industry and in small appliances.
  • the invention relates to a sound absorption material of a nonwoven fabric containing at least two polymers, wherein the melting point of at least one first polymer is above the melting point of at least one second polymer, and a process for its preparation.
  • the invention further relates to the use of such a sound absorbing material for the production of lining parts used in the interior of automobiles and the use of this nonwoven fabric for producing a composite material.
  • Nonwovens are textile fabrics made of individual fibers and can be obtained by a wide variety of manufacturing processes, such as carding (dry laid), meltblowing (spunbonding) or aerodynamic nonwoven laying (air laying).
  • melt spinning a polymeric substance is heated in an extruder and pressed by spinning pumps through a spinneret.
  • the polymer emerges from the nozzle plate as a filament (continuous filament) in molten form, is cooled by an air flow and stretched from the melt.
  • the air stream conveys the endless filaments onto a conveyor belt, which is designed as a sieve.
  • the threads can be fixed to form a fiber fabric.
  • the solidification of the fiber fabric can be done by heated rollers (calender), by a vapor stream, by hot air or by mechanical or chemical bonding.
  • calender heated rollers
  • one of the two rolls may be engraved, which may consist of dots, short rectangles or diamond-like surfaces.
  • Nonwovens are used for a variety of purposes. Nonwoven fabrics with high strength can be used alone or as a reinforcing layer in fiber composites. In the packaging field, single-layer constructions are usually made using meltblown or meltblown-like material structures, i. Fiber structures used from only one domain. Nonwoven fabrics are also used as sound absorption materials.
  • a suitable sound absorbing material is the choice not only by the sound absorption ability but also by other factors, such as. As price, weight, thickness, fire resistance, etc. influenced.
  • sound damping felts, foams, Pressfasem, glass powder or "stone powder” and recycled materials are used. These can, for example, be treated with the hammer mill and synthetic resin and thermo-treated in order to adapt the properties of the materials to the respective fields of application.
  • the present invention seeks to broaden the conventional field of nonwoven applications by imparting sound insulating properties in combination with a small thickness, making them particularly suitable for use in demanding environments such as the interior of automobiles.
  • Sound absorption materials of the type mentioned are basically known.
  • the sound absorption is based on a disturbance or redirection of the sound energy.
  • the energy can be converted into heat on the one hand or there is a reflection of the energy.
  • the expert speaks at a power diversion of insulation. The sound is thus damped.
  • Also suitable for sound insulation are synthetic mineral fibers, open-cell foams, porous inorganic bulk materials or natural fibers.
  • a small material thickness is advantageous, as this reduces the space requirement.
  • the suppliers are asked for car accessories to make the lining parts such that they are designed to save space.
  • these parts should be recyclable, high color and lightfastness, in particular a high heat-fastness, a low tendency to fouling, high abrasion resistance, moisture resistance, flame resistance, Having cleanability and good H mayverform stressess- or thermoforming capabilities. It is also of great interest to increase the sound insulation in terms of comfort for the automobile occupants.
  • the automotive sector it is customary to produce sound absorption materials as composite materials from a textile carrier with a damping layer and optionally a cover layer.
  • the absorption property is achieved in particular by combining the textile carrier with the soundproofing layer.
  • microfiber nonwovens made of melt spun nonwoven composite filaments which are at least 80% split into elementary filaments and solidified. These nonwovens are in the DE 100 09 281 A1 described and have multi-component endless filaments. Their preparation comprises the following steps: First, multicomponent continuous filaments are spun, drawn and deposited directly into a nonwoven. Subsequently, a pre-consolidation and the deposited web is then split by means of high-pressure fluid jets in elementary filaments and solidified. Such soundproofing layers have a uniform thickness and an isotropic thread distribution and show excellent soundproofing properties.
  • the invention therefore an object of the invention to provide a sound absorbing material and a method for its production, which avoids the disadvantages mentioned above. In particular, it should be easy, inexpensive and time-saving can be produced.
  • This object is achieved according to the invention with a sound absorption material a nonwoven fabric containing at least two polymers wherein the melting point of at least one first polymer is above the melting point of at least one second polymer and wherein the first polymer is in the form of elemental segments distributed in a matrix of the second polymer.
  • nonwovens of the abovementioned type have outstanding sound absorption properties.
  • such nonwovens show an airborne sound absorption coefficient ⁇ (0), measured in the impedance tube according to DIN EN ISO 10354-1, of ⁇ 0.8 at a frequency of 1000 Hz to 4000 Hz.
  • Sound absorption tests have shown that the sound absorption material according to the invention is particularly suitable for sound insulation in the sound frequency range of 100 to 5000 Hz.
  • the sound absorption materials according to the invention show excellent sound absorption properties even at low thicknesses.
  • Practical experiments have shown that the sound absorbing materials according to the invention already at a thickness of the nonwoven fabric of 0.01 mm to 1 mm, preferably from 0.05 mm to 0.5 mm, in particular from 0.1 mm to 0.2 mm, the above achieved airborne sound absorption levels and singular values.
  • the thickness of the sound absorbing materials according to the invention may vary.
  • the sound absorbing materials according to the invention have a thickness of 0.01 mm to 1 mm, more preferably from 0.05 mm to 0.5 mm, in particular from 0.1 mm to 0.2 mm.
  • the air permeability of the sound absorption materials according to the invention measured according to DIN EN ISO 9237 at 20 cm 2 and 50 Pa vary.
  • the sound absorption materials according to the invention an air permeability measured according to DIN EN ISO 9237 at a basis weight of 100 g / m 2 of 20 l / m 2 sec to 120 l / m 2 sec, more preferably from 40 l / m 2 sec to 100 l / m 2 sec, in particular from 60 l / m 2 sec to 90 l / m 2 sec, on.
  • the nonwoven fabric may have a low basis weight and still exhibit good sound absorption properties.
  • the basis weight of the nonwoven fabric can vary widely and be selected, for example, according to the requirements of a composite material.
  • the basis weight is from 30 g / m 2 to 400 g / m 2 , more preferably from 35 g / m 2 to 200 g / m 2 , even more preferably from 40 g / m 2 to 150 g / m 2 , especially from 40 g / m 2 to 120 g / m 2 .
  • the nonwoven fabric is characterized by further advantageous properties, such as a good hot workability or thermoformability. Because of this, it can be processed very easily and adapted to a wide variety of room requirements.
  • the nonwoven fabric is extremely stable at room temperature.
  • the nonwoven fabric may have a film-like character over the fused domains, but without the weaknesses of a film or paper. So it is easily possible to design the surface of the nonwoven fabric smooth and wet-strength.
  • Such a nonwoven fabric may be considered a "fiber reinforced film”.
  • the nonwoven fabric can have a high strength with low weight. This allows easy processing and handling. Furthermore, a high strength is very advantageous when using the sound absorption material according to the invention as a lining part for the interior of automobiles, in particular as a car roof, doormat, door trim, pillar trim, parcel shelf and / or trunk lining and wheel housing lining.
  • the nonwoven fabric is characterized by isotropic mechanical properties, such as an isotropic ratio of maximum tensile force or additional tensile force Machine to transverse direction, off.
  • Isotropy in the sense of the invention denotes the independence of a property from the direction.
  • Isotropic strength properties are advantageous in particular for the use of the nonwoven fabric as a reinforcing layer, since in this way a particularly uniform stabilization is achieved.
  • Maximum tensile force is the force that must be used to rupture a fiber layer.
  • tear propagation force is meant the force that is necessary to tear down an already cracked fiber layer or further tear. The higher these values are, the more stable a situation is.
  • the maximum tensile force is measured in the machine direction or transversely to the machine direction.
  • the machine direction is understood to mean the direction under which the fibers are deposited longitudinally on a conveyor belt moving in the longitudinal direction.
  • the direction transverse thereto or orthogonal thereto is the transverse direction.
  • the nonwoven fabric is further characterized by excellent strength properties.
  • the tear propagation force measured in accordance with ASTM D5733 in the machine and / or transverse direction can be 10 N to 190 N, preferably 60 N to 180 N, in particular 120 N to 180 N.
  • the maximum tensile force measured according to ASTM D5034 in the machine and / or transverse direction may be 70 to 400 N / 50 mm, preferably 100 to 350 N / 50 mm, in particular 150 to 300 N / 50 mm.
  • a nonwoven fabric with particularly good strength properties can be obtained if it is used in its production multicomponent fibers comprising a first polymer component and a second polymer component, wherein the first polymer component in a first zone and the second polymer component in a second zone over the cross-section of the multicomponent fibers, both polymer components extending in the length direction of the multicomponent fibers, the first polymer component having a melting point above the melting point of the second polymer component, and wherein the first zone is the first polymer component in the form of at least two separable elementary segments.
  • PIE fibers hollow-PIE fibers, core / sheath fibers, multilobal fibers, islands-in-sea fibers or side-by-side fibers have proven particularly suitable. Very particular preference is given to PIE fibers, which preferably comprise 4, 6, 8, 10, 14, 16, 18 or 32 elementary segments.
  • the multicomponent fibers may be formed as staple fibers. Preferably, the multicomponent fibers are formed as continuous filaments and composed of at least two polymers.
  • PIE fibers are understood as meaning fibers of elementary segments which are arranged in the form of cake pieces or circular segments in cross section.
  • the effect of reflowing a PIE fiber is the incorporation of stable pie-shaped segments that function as reinforcing filaments in the polymer matrix. As a result, a stabilization is achieved in the manner of a reinforced concrete. In the case of PIE filaments in particular, a marked change in the geometry of the original filament structure is noticeable.
  • the cake-piece-shaped segments have a very small diameter in cross-section and therefore the matrix can prevail in a particularly large number.
  • the alternating arrangement of the individual core segments in the fibers causes a particularly homogeneous distribution of the various polymers. This leads to an extremely uniform melting with formation of the matrix.
  • the sheaths be made of the lower melting polymer.
  • the cores are embedded in the matrix polymer matrix in the form of stable circular segments.
  • the multicomponent fibers may comprise two or more polymers, provided that at least one polymer has a higher melting point than at least one further polymer. Practical experiments have shown that already with the use of two polymers (bicomponent fibers) nonwovens having a stable matrix structure can be obtained.
  • the nonwoven fabric is characterized in that it comprises at least two polymers, wherein the melting point of at least one first polymer is above the melting point of at least one second polymer.
  • the first polymer is in the form of elemental segments distributed in a matrix of the second polymer.
  • the difference between the melting point of the first and second polymers can vary widely. Conveniently, the difference is at least 15 ° C, in particular at least 20 ° C. Preferably, polymers having a temperature difference of from 15 ° C to 450 ° C, more preferably from 15 ° C to 200 ° C, even more preferably from 20 ° C to 150 ° C, especially from 70 ° C to 150 ° C are used.
  • thermoplastic polymers in particular selected from the group consisting of nylon 6, nylon 6.6, nylon 6.10, nylon 6.11, nylon 6-12, polypropylene or polyethylene.
  • polymers are selected from the group consisting of polyester, polyamide, thermoplastic copolyetherester elastomers, polyolefins, polyacrylates and thermoplastic liquid crystals.
  • Copolyetheresterelastomeren from long-chain and short-chain ester monomers. If elemental segments of polyethylene terephthalate are used, they can preferably be produced from recyclable polyethylene terephthalate.
  • thermoplastic polymers polyamides, polyvinyl acetates, saponified polyvinyl acetates, saponified ethylene vinyl acetates and other hydrophilic polymers.
  • elastic polymers can also be used. These polymers are preferably selected from the group consisting of: styrene / butadiene copolymers, elastic polypropylene, polyethylene, metallocene-catalyzed ⁇ -olefin homopolymers, as well as copolymers having a density of less than 0.89 g / cm 3 .
  • styrene / butadiene copolymers preferably selected from the group consisting of: styrene / butadiene copolymers, elastic polypropylene, polyethylene, metallocene-catalyzed ⁇ -olefin homopolymers, as well as copolymers having a density of less than 0.89 g / cm 3 .
  • amorphous polyalphaolefins having a density of less than 0.89 g / cm 3 ethylene vinyl acetate, and ethylene-propylene rubber and propylene-1-butene copolymer and ter
  • the multicomponent fibers comprise polypropylene, polyethylene, polyamide, syndiotaticians polystyrene, polyester, and / or mixtures of these polymers, preferably polyethylene terephthalate.
  • the first polymer is selected from the group consisting of: polyester, preferably polyethylene terephthalate and / or the second polymer selected from the group consisting of: polypropylene, polyethylene, polyamide and / or polyester, preferably polyethylene terephthalate.
  • the sheath or the sea is preferably formed from the second, matrix-producing polymer.
  • Preferred polymers for the matrix are Copolyester, polypropylene, polyamide, polyethylene, linear low-pressure polyethylene having an ⁇ -olefin monomer content greater than 10 wt .-%, ethylene copolymer with at least one vinyl monomer or ethylene copolymer with unsaturated aliphatic carboxylic acids.
  • the nonwoven fabric is characterized in that the nonwoven fabric is a film-like molten polymer matrix. This contains unmelted elementary segments, which may be circular-segment-shaped or cake-piece-shaped, multilobal or circular in cross-section.
  • the weight ratio of the first polymer to the second polymer in the nonwoven fabric can vary within wide limits, as long as it is ensured that the first polymer in the nonwoven fabric is in the form of elementary filaments which are distributed in a matrix of the second polymer.
  • the weight ratio of first polymer to second polymer in the nonwoven fabric is 50%: 50%, preferably 70% to 30%, more preferably 60% to 40%.
  • the proportion of the matrix in the nonwoven fabric from 1 wt .-% to 60 wt .-%, preferably from 5 wt .-% to 50 wt .-%, in particular from 10 wt .-% to 40 wt .-%.
  • a nonwoven fabric having a particularly good flexural strength can be obtained.
  • the nonwoven fabric is treated with impregnating agents, in particular flame retardants or hydrophilizing and hydrophobing reagents.
  • the nonwoven fabric is sprayed or impregnated with an aqueous flame retardant.
  • the nonwoven fabric is eminently suitable for the production of composites because its surface structure is e.g.
  • the choice of polymers and plasma or corona treatment of the surface can be easily matched to the other composite components.
  • the very dense surface structure also allows the application of adhesive components such. the application of thermoplastic polymers, preferably polyethylene, copolyester or polyamide, for example in the form of solid adhesive powder via appropriate devices.
  • the nonwoven fabric can be heat-set at least at the surface via the adhesive components, resulting in stabilization of the nonwoven fabric.
  • the treatment can be carried out on one or both sides, preferably on one side, and preferably takes place after impregnation with binders.
  • the solid adhesive powder can be fixed by heat in the same processing step.
  • the nonwoven fabric which is initially flame-retarded, is provided with powder-based polyethylene-based adhesive and heat-set (for example Schaetti Fix® adhesives from Schaetti AG, Zurich or others).
  • Another object of the invention is the use of a composite material comprising at least a first layer containing the nonwoven fabric described above, and a second layer which may be formed as a spacer layer and preferably a fiber composite, in particular a scrim, a nonwoven fabric, a film and / or a film, as a soundproofing material.
  • the second layer is formed as a fiber composite with a thickness (uncompressed) of 0.5 to 5, preferably from 0.8 to 3, in particular from 1 to 2 cm.
  • the respective layers of the nonwoven fabric may be bonded together in various ways depending on the materials used. Practical experiments have shown that particularly strong composites are obtained when the first and second layers are cohesively bonded together by means of a binder.
  • the thickness and composition of the fiber composite may vary widely depending on the particular application of the composite.
  • the fiber composite contains textile fiber waste, such as preferably cellulose fibers, hemp, flax, cotton, bast, sisal, kenaf and / or plastics, preferably polyolefins, in particular polyethylene and / or polypropylene and / or their copolymers or metals.
  • the fiber waste preferably comprises a binder or a low-melting binder fiber for stabilization and fixation.
  • the composite material according to the invention can be joined by coating the nonwoven fabric with the fiber composite by laminating and / or laminating the nonwoven fabric, if appropriate using a binder and / or pressure and / or temperature. Also conceivable is the extrusion of a film-forming polymer melt or the application of a thermoplastic material in powder form with subsequent thermal fixation.
  • the method is characterized by the fact that multi-component fibers are connected by applying a pressure of at least 40 N / mm, and at a temperature of at least 100 ° C so flat that at least a first Polymer is distributed in the form of elementary segments in a matrix of at least one second polymer.
  • PIE fibers preferably PIE filaments, preferably with 30-50% polyamide content and 70-50% polyester content, preferably at pressures between 50 and 80 N / mm and temperatures between 130 ° C and 180 ° C, in particular by means of a roller combination of a smooth steel roller and a rough steel roller (roughness 40 microns) are solidified.
  • the multicomponent fibers can be prepared by methods known to those skilled in the art. Particularly preferred according to the invention is the melt spinning technology.
  • a polymeric substance can be heated under pressure in an extruder and pressed through a die to form endless filaments.
  • the continuous filaments After exiting the extrusion die, the continuous filaments may be drawn and positioned by means of dynamic laydown methods on a conveyor belt, deflecting them transversely to form a fiber layer.
  • An advantage of a transversely deflected positioning of the continuous filaments is that this increases the isotropy of the mechanical properties of the nonwoven fabric.
  • the sound absorption material produced by the method according to the invention is characterized in that it comprises a polymer matrix.
  • the method described above makes it possible to use energy-intensive mechanical consolidation technologies, e.g. Hydroentanglement, to dispense. Furthermore, it is characterized by the fact that it is inexpensive and fast.
  • the temperature and the pressure with which the solidification of the multicomponent fibers takes place can vary within wide limits and is expediently adapted to the respectively used polymer components in the multicomponent fiber. It is essential here that at the selected temperature and pressure, a substantially complete melting of the first polymer but not of the second polymer takes place.
  • the surface connection of the multi-component fibers is carried out by Applying at a temperature of 100 to 300 ° C, preferably from 100 to 250 ° C, more preferably from 110 to 200 ° C, in particular from 120 to 180 ° C.
  • rollers in particular calenders
  • rollers are expediently used.
  • rollers with a smooth or only slightly roughened surface are expediently used.
  • the surface has a surface roughness of 20 to 60 .mu.m, in particular from 30 to 45 .mu.m.
  • the nonwoven fabric is impregnated with binders.
  • Suitable binders are in particular acrylates and aminoplasts (phenolic resins, melamine resins), styrene-butadiene copolymers, NBR binder systems and / or polyurethanes.
  • the nonwoven fabric it is expedient to increase the surface energy of the nonwoven fabric by corona and / or plasma treatment.
  • the plasma or corona treatment is preferably carried out in such a way that the surface is given a surface energy according to ISO 9000 of more than 38 dyn, preferably 38 to 70 dyn, in particular 40 to 60 dyn. It is advantageous that the surface can be made hydrophilic without adding chemicals.
  • Conceivable is the antistatic finish of the surface, as well as its inspiration with care substances. Also conceivable and advantageous is the subsequent finishing of the nonwoven fabric with additives selected from the group consisting of: color pigments, permanently acting antistatic agents, flame retardants and / or the hydrophobic properties influencing additives. Particularly preferred is the use of flame retardants. It is also conceivable equipment with hydrophilic or antistatic spin finishes, as well as their Buffalo with care substances. It is also conceivable additives for surface modification already in the continuous film production in an extruder to enter. Also with a coloring no subsequent coloring is necessary, since pigments already with the Endlosfilêtrzeugung can be introduced into an extruder.
  • the nonwoven fabric may be subjected to a chemical-type bonding or finishing such as an anti-pilling treatment, a hydrophilization, an antistatic treatment, a refractory-improving treatment and / or a tactile property-changing property, a treatment Mechanical type such as roughening, sanforizing, sanding or a treatment in the tumbler and / or a treatment to change the appearance such as dyeing or printing.
  • a chemical-type bonding or finishing such as an anti-pilling treatment, a hydrophilization, an antistatic treatment, a refractory-improving treatment and / or a tactile property-changing property, a treatment Mechanical type such as roughening, sanforizing, sanding or a treatment in the tumbler and / or a treatment to change the appearance such as dyeing or printing.
  • the fiber titres of the multicomponent fibers preferably have independently of one another values of from 1 dtex to 4 dtex, preferably from 1.5 to 3 dtex, more preferably from 2 dtex to 3 dtex.
  • polyethylene terephthalate and polyamide are coextruded in a known manner with a perforation throughput of 0.76 g / L min and aerodynamically stretched to form 16 PIE filaments.
  • the proportion of polyamide is between 30 and 50 wt .-%.
  • the endless filaments are placed on top of it
  • Dynamic deposition is understood to mean that the orientation of the filaments to be deposited in the transverse direction can be influenced in a targeted manner. This is followed by solidification of the continuous filaments by a rough steel roller under pressure and heat.
  • the steel roller has temperatures between 130 ° C and 180 ° C at a line pressure between 50 N / mm and 80 N / mm (roughness of 40 microns) on.
  • the endless filaments By subjecting the endless filaments to pressure and temperature, the polyamide is fused and the polyethylene terephthalate is distributed in the form of cross-section cake-like elementary filaments in a matrix of the polyamide. In this case, a spunbonded fabric having a basis weight of 105 g / m 2 is obtained.
  • Table 1 Working Example 1, 105 g / m ⁇ sup> 2 ⁇ / sup> PET / PA nonwoven fabric, PIE filaments, mech. Properties. Kamétemp. calender pressure PA-share Weight thickness LD 20cm 2/50 Pa LD Tomb Tensile MD Stretching MD Grab Tensile CD Stretching CD Trap Tear MD Trap Tear CD EN29073 angel.
  • polyethylene terephthalate and a low melting co-polyester are coextruded in a known manner at a hole throughput of 0.8 g / L min and aerodynamically stretched to form core / sheath filaments.
  • the proportion of co-polyethylene terephthalate is 20 wt .-%.
  • the Endless filaments are then dynamically deposited on a conveyor belt. Dynamic deposition is understood to mean that the orientation of the filaments to be deposited in the transverse direction can be influenced in a targeted manner. This is followed by solidification of the continuous filaments by a rough steel roller under pressure and heat.
  • the steel roller has a temperature of 130 ° C at a line pressure of 80 N / mm (roughness of 40 microns) on.
  • the polyethylene terephthalate is distributed in the form of elementary filaments in a matrix of co-polyethylene terephthalate.
  • a post-treatment in a hot-air oven at a temperature of 160 ° C.
  • a spunbonded fabric having a basis weight of 100 g / m 2 is obtained. This results in a nonwoven fabric with dense structure and low porosity at characteristic mechanical values (HZK, WRK, MD: CD ratio).
  • Embodiment 2 Embodiment 2, 105 g / m ⁇ sup> 2 ⁇ / sup> PET / CoPET nonwoven fabric, SC filaments, mech. Properties. bonding component bonding component Weight thickness LD 5cm 2 / 50Pa Tensile MD Stretching MD Tensile CD Stretching CD Tear MD Tear CD EN 29073 angel.
  • polyethylene terephthalate and polyethylene or polypropylene are coextruded in a known manner with a perforation throughput of 0.65 g / L min and aerodynamically stretched.
  • the endless filaments are then dynamically deposited on a conveyor belt.
  • Dynamic deposition is understood to mean that the orientation of the filaments to be deposited in the transverse direction can be influenced in a targeted manner. This is followed by solidification of the continuous filaments by a rough steel roller under pressure and heat. The steel roller has temperatures between 125 ° C and 132 ° C.
  • the polyolefin is fused and the polyethylene terephthalate distributed in the form of cross-section cake-like elementary filaments in a matrix of polyolefin.
  • This spunbonded nonwovens are obtained with a basis weight of 100 - 105 g / m 2 .
  • the spunbonded nonwovens have a dense structure, as well as a low porosity, with characteristic mechanical values (maximum tensile force (HZK), tear propagation force (WRK), machine direction (MD): transverse direction (CD) ratio).
  • HZK maximum tensile force
  • WRK tear propagation force
  • MD machine direction
  • CD transverse direction
  • Example 3 100-105 g / m ⁇ sup> 2 ⁇ / sup> PET / polyolefin nonwoven fabrics, PIE filaments, mech. Properties. bonding component bonding component Weight thickness LD 20cm 2/50 Pa LD Tomb Tensile MD Stretching MD Grab Tensile CD Stretching CD Trap Tear MD Trap Tear CD EN 29073 angel.
  • polyethylene terephthalate and polyamide are coextruded in a known manner with a perforation throughput of 0.76 g / L min and aerodynamically stretched to form 16 PIE filaments.
  • the proportion of polyamide is 30% by weight.
  • the endless filaments are then dynamically deposited on a conveyor belt. Dynamic deposition is understood to mean that the orientation of the filaments to be deposited in the transverse direction can be influenced in a targeted manner. This is followed by solidification of the continuous filaments by a rough steel roller under pressure and heat.
  • the steel roller has temperatures of 130 ° C at a line pressure of 50 N / mm (roughness of 40 microns) on.
  • the polyamide By subjecting the endless filaments to pressure and temperature, the polyamide is fused and the polyethylene terephthalate in the form of in cross-section cake-piece elementary filaments distributed in a matrix of the polyamide.
  • This spunbonded nonwovens are obtained with a basis weight of 40 - 105 g / m 2 .
  • Table 5 Exemplary embodiment 1, sound absorption coefficient (alpha cabin) compared to Evolon 100® Third center frequency Evo100 ®
  • Example 1 1087 rayls Example 1 1613 rayls set* 30/80/130 50/80/130 30/50/180 Sound absorption coefficient [Hz] 200 0.07 0.03 0 0 250 0.05 0.02 0.03 0.05 315 0.02 0.04 0.06 0.04 400 0.09 0.07 0.09 0.09 500 0.1 0.1 0.13 0.07 630 0.12 0.24 0.2 0.19 800 0.34 0.35 0.34 0.36 1000 0.51 0.53 0.53 0.66 1250 0.77 0.73 0.78 0.73 1600 0.79 0.77 0.84 0.77 2000 0.84 0.91 0.96 0.88 2500 0.86 0.88 1 0.82 3150 0.85 0.88 0.87 0.79 4000 0.89 0.89 0.77 0.74 5000 0.87 0.88 0.86 0.8 * Embodiment 1; PA share [%]; Calender pressure [N / cm]; Calender temperature [° C]
  • FIG. 3 is the sound absorption coefficient (alpha cabin) of a spunbonded nonwoven according to the invention, which was prepared according to Embodiment 1, shown in comparison to Evolon 100®.
  • PETIPA PET / CoPET
  • the various materials are subjected to a test in the impedance tube based on DIN EN ISO 10354: 1.
  • the corresponding measured values are in FIG. 4 played.
  • the sound absorption coefficient of a spunbonded nonwoven fabric according to the invention made of PIE filaments (PET / PA) according to embodiments 2 and 4 is compared with a spunbonded nonwoven fabric of SC filaments (PET / CoPET).
  • the fiber dependence of the sound absorption coefficient is measured in the impedance tube according to DIN EN ISO 10345-1.
  • the effect of the PIE fiber geometry which is advantageous in terms of an increased degree of sound absorption, is shown in direct comparison to a SC spunbonded nonwoven.
  • the density of the two different binder fiber polymers is in the same range ( ⁇ 1.1 g / cm 3 ).
  • Example 1 To determine the tensile properties of the base materials of Example 1 under elevated temperature variants are tested based on ASTM D5034 at a test temperature of 160 ° C to maximum tensile strength and maximum tensile elongation at break. The corresponding results are shown in Table 6.
  • thermoformability In order to evaluate the deformation properties under heat (thermoformability), fixed specimens of the substrates are deformed in a simple test setup (OTI test) by means of a circular stamp heated to 160 ° C. (ball diameter 9 cm, absolute specimen size 24 cm diameter, freely deformable specimen size 20 cm ).

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Nonwoven Fabrics (AREA)

Description

Technisches GebietTechnical area

Die vorliegende Erfindung betrifft das Gebiet der Textilerzeugnisse und deren Anwendungen im Schallschutzbereich, insbesondere der Schalldämpfung in Fahrzeugen, Flugzeugen und Zügen, in der Baubranche und in kleinen Geräten.The present invention relates to the field of textile products and their applications in the field of sound insulation, in particular the soundproofing in vehicles, aircraft and trains, in the construction industry and in small appliances.

Die Erfindung betrifft ein Schallabsorptionsmaterial aus einem Vliesstoff, der mindestens zwei Polymere enthält, wobei der Schmelzpunkt mindestens eines ersten Polymers über dem Schmelzpunkt mindestens eines zweiten Polymers liegt, sowie ein Verfahren zu dessen Herstellung. Die Erfindung betrifft ferner die Verwendung eines derartigen Schallabsorptionsmaterials für die Herstellung von Auskleidungsteilen, die im Innenbereich von Automobilen eingesetzt werden sowie die Verwendung dieses Vliesstoffs zur Herstellung eines Verbundwerkstoffs.The invention relates to a sound absorption material of a nonwoven fabric containing at least two polymers, wherein the melting point of at least one first polymer is above the melting point of at least one second polymer, and a process for its preparation. The invention further relates to the use of such a sound absorbing material for the production of lining parts used in the interior of automobiles and the use of this nonwoven fabric for producing a composite material.

Vliesstoffe sind textile Flächengebilde aus einzelnen Fasern und können mit den verschiedensten Herstellungsverfahren, wie Kardieren (dry laid), Schmelzspinnen / Meltblown (spunbonding) oder auch aerodynamischem Vlieslegen (air laying) gewonnen werden.Nonwovens are textile fabrics made of individual fibers and can be obtained by a wide variety of manufacturing processes, such as carding (dry laid), meltblowing (spunbonding) or aerodynamic nonwoven laying (air laying).

Beim Schmelzspinnen wird eine polymere Substanz in einem Extruder erhitzt und mittels Spinnpumpen durch eine Spinndüse gepresst. Das Polymer tritt aus der Düsenplatte als Faden (Endlosfilament) in geschmolzener Form aus, wird durch einen Luftstrom abgekühlt und aus der Schmelze gestreckt. Der Luftstrom befördert die Endlosfilamente auf ein Förderband, das als Sieb ausgebildet ist. Durch eine Absaugung unter dem Siebband können die Fäden unter Bildung eines Fasergeleges fixiert werden. Die Verfestigung des Fasergeleges kann durch beheizte Walzen (Kalander), durch einen Dampfstrom, durch heiße Luft oder durch mechanische bzw. chemische Bindung erfolgen. Bei der Verfestigung durch Kalander kann eine der beiden Walzen mit einer Gravur versehen sein, die aus Punkten, kurzen Rechtecken oder diamantähnlichen Flächen bestehen kann.In melt spinning, a polymeric substance is heated in an extruder and pressed by spinning pumps through a spinneret. The polymer emerges from the nozzle plate as a filament (continuous filament) in molten form, is cooled by an air flow and stretched from the melt. The air stream conveys the endless filaments onto a conveyor belt, which is designed as a sieve. By suction under the wire, the threads can be fixed to form a fiber fabric. The solidification of the fiber fabric can be done by heated rollers (calender), by a vapor stream, by hot air or by mechanical or chemical bonding. When solidified by calender, one of the two rolls may be engraved, which may consist of dots, short rectangles or diamond-like surfaces.

Vliesstoffe werden zu den verschiedensten Zwecken eingesetzt. Vliesstoffe mit hoher Festigkeit können alleine bzw. auch als Verstärkungslage in Faserverbundwerkstoffen verwendet werden. Im Verpackungsbereich werden üblicherweise einlagige Aufbauten unter Verwendung von Meltblown oder meltblownartigen Materialstrukturen, d.h. Faserstrukturen aus nur einer Domäne verwendet. Auch als Schallabsorptionsmaterialien finden Vliesstoffe Verwendung.Nonwovens are used for a variety of purposes. Nonwoven fabrics with high strength can be used alone or as a reinforcing layer in fiber composites. In the packaging field, single-layer constructions are usually made using meltblown or meltblown-like material structures, i. Fiber structures used from only one domain. Nonwoven fabrics are also used as sound absorption materials.

Auf der Suche nach einem geeigneten Schallabsorptionsmaterial wird die Wahl nicht nur durch die Schallabsorptionsfähigkeit sondern auch durch andere Faktoren, wie z. B. Preis, Gewicht, Dicke, Feuerbeständigkeit, etc. beeinflusst. Üblicherweise kommen als Schalldämpfstoffe Filze, Schäume, Preßfasem, Glaspulver oder "Steinpulver" und wiederverwertete Stoffe zum Einsatz. Diese können beispielsweise mit der Hammermühle und Kunstharz behandelt und thermofiziert werden, um die Eigenschaften der Materialien an die jeweiligen Einsatzgebiete anzupassen.In the search for a suitable sound absorbing material is the choice not only by the sound absorption ability but also by other factors, such as. As price, weight, thickness, fire resistance, etc. influenced. Usually used as sound damping felts, foams, Pressfasem, glass powder or "stone powder" and recycled materials are used. These can, for example, be treated with the hammer mill and synthetic resin and thermo-treated in order to adapt the properties of the materials to the respective fields of application.

Mit der vorliegenden Erfindung soll insbesondere das herkömmliche Anwendungsgebiet von Vliesstoffen ausgeweitet werden, indem diesen schalldämmende Eigenschaften in Kombination mit einer geringen Dicke verliehen werden, sodass sie sich besonders für den Einsatz in räumlich anspruchsvollen Bereichen, wie den Innenbereich von Automobilen eignen.In particular, the present invention seeks to broaden the conventional field of nonwoven applications by imparting sound insulating properties in combination with a small thickness, making them particularly suitable for use in demanding environments such as the interior of automobiles.

Stand der TechnikState of the art

Schallabsorptionsmaterialien der eingangs genannten Art sind grundsätzlich bekannt. Im Prinzip basiert die Schallabsorption auf einer Störung bzw. Umleitung der Schallenergie. Hierzu kann die Energie zum einen in Wärme umgewandelt werden oder es erfolgt eine Reflektion der Energie. Der Fachmann spricht bei einer Energieumlenkung von Dämmung. Der Schall wird also gedämpft.Sound absorption materials of the type mentioned are basically known. In principle, the sound absorption is based on a disturbance or redirection of the sound energy. For this purpose, the energy can be converted into heat on the one hand or there is a reflection of the energy. The expert speaks at a power diversion of insulation. The sound is thus damped.

Üblicherweise werden zur Schalldämmung reflektierende Materialien/Wandungen verwendet, wie z. B. Kapselwandungen, Trennwände oder Schallschirme, die in den Ausbreitungsweg der Schallenergie eingreifen. Konventionelle Schallabsorptionsmaterialien wandeln auf Grund ihrer porösen Struktur die Schallenergie im mittel- bis hochfrequenten Bereich in Wärme um.Usually reflective materials / walls are used for sound insulation, such as. B. capsule walls, partitions or screens, which engage in the propagation path of the sound energy. Due to their porous structure, conventional sound absorption materials convert the sound energy into heat in the medium to high-frequency range.

Ebenfalls geeignet für die Schalldämmung sind künstliche Mineralfasern, offenzellige Schaumstoffe, poröse anorganische Schüttgüter oder Naturfasern.Also suitable for sound insulation are synthetic mineral fibers, open-cell foams, porous inorganic bulk materials or natural fibers.

Im Zuge der steigenden Ansprüche an Schallabsorptionsmaterialien müssen diese Materialien nicht nur in der Lage sein den Schall zu dämpfen, sondern sie müssen auch weiteren Anforderungen hinsichtlich Feuerbeständigkeit, Dicke, Gewicht, Hydrophobie, etc. und Materialbeschaffenheit genügen.In the course of increasing demands on sound absorbing materials, these materials must not only be able to dampen the sound, but they must also meet other requirements in terms fire resistance, thickness, weight, hydrophobicity, etc. and material properties.

Besonders im Hinblick auf die Raumakustik ist eine geringe Materialdicke von Vorteil, da hierdurch der Raumbedarf verringert wird. Insbesondere im Automobilbereich werden die Zulieferer für Autozubehör aufgefordert, die Auskleidungsteile derart zu gestalten, dass diese raumsparend ausgestaltet sind.Especially with regard to the room acoustics, a small material thickness is advantageous, as this reduces the space requirement. Especially in the automotive sector, the suppliers are asked for car accessories to make the lining parts such that they are designed to save space.

Darüber hinaus sollen diese Teile recyclingfähig sein, eine hohe Farb- und Lichtechtheit, insbesondere eine hohe Heißlichtechtheit, eine geringe Verschmutzungsneigung, eine hohe Abriebbeständigkeit, Feuchtigkeitsbeständigkeit, Flammbeständigkeit, Reinigbarkeit und gute Heißverformbarkeits- bzw. Tiefziehfähigkeiten besitzen. Auch von großem Interesse ist es den Schallschutz im Hinblick auf Komfort für die Automobil-Insassen zu erhöhen.In addition, these parts should be recyclable, high color and lightfastness, in particular a high heat-fastness, a low tendency to fouling, high abrasion resistance, moisture resistance, flame resistance, Having cleanability and good Heißverformbarkeits- or thermoforming capabilities. It is also of great interest to increase the sound insulation in terms of comfort for the automobile occupants.

Im Automobilbereich ist es üblich Schallabsorptionsmaterialien als Verbundwerkstoffe aus einem textilen Träger mit einer Dämpfungslage und ggf. einer Decklage herzustellen. Dabei wird die Absorptionseigenschaft insbesondere durch Kombination des textilen Trägers mit der Schallschutzlage erreicht.In the automotive sector, it is customary to produce sound absorption materials as composite materials from a textile carrier with a damping layer and optionally a cover layer. In this case, the absorption property is achieved in particular by combining the textile carrier with the soundproofing layer.

Ein guter Schallschutz kann mit Mikrofaservliesstoffen aus schmelzgesponnen, zu einem Vlies abgelegten Verbundfilamenten, welche zumindest zu 80 % zu Elementarfilamenten gesplittet und verfestigt sind, erzielt werden. Diese Vliesstoffe sind in der DE 100 09 281 A1 beschrieben und weisen Mehrkomponenten-Endlos-Filamente auf. Ihre Herstellung umfasst folgende Schritte: Zunächst werden Mehrkomponenten-Endlos-Filamente ersponnen, verstreckt und unmittelbar zu einem Vlies abgelegt. Anschließend erfolgt eine Vorverfestigung und das abgelegte Vlies wird daraufhin mittels Hochdruck-Fluidstrahlen in Elementar-Filamente gesplittet und verfestigt. Derartige Schallschutzlagen weisen eine gleichmäßige Dicke sowie eine isotrope Fadenverteilung auf und zeigen hervorragende schalldämmende Eigenschaften.Good soundproofing can be achieved with microfiber nonwovens made of melt spun nonwoven composite filaments which are at least 80% split into elementary filaments and solidified. These nonwovens are in the DE 100 09 281 A1 described and have multi-component endless filaments. Their preparation comprises the following steps: First, multicomponent continuous filaments are spun, drawn and deposited directly into a nonwoven. Subsequently, a pre-consolidation and the deposited web is then split by means of high-pressure fluid jets in elementary filaments and solidified. Such soundproofing layers have a uniform thickness and an isotropic thread distribution and show excellent soundproofing properties.

Andere Vliesstoffe werden in der US2008/085679 beschrieben.Other nonwovens are used in the US2008 / 085679 described.

Nachteilig an diesen Schallabsorptionsmaterialien ist, dass ihr Herstellungsverfahren zeit- und kostenintensiv ist.A disadvantage of these sound absorption materials is that their production process is time-consuming and expensive.

Darstellung der ErfindungPresentation of the invention

Der Erfindung lag daher die Aufgabe zugrunde, ein Schallabsorptionsmaterial und ein Verfahren zu dessen Herstellung anzugeben, das die oben genannten Nachteile vermeidet. Insbesondere soll es einfach, kostengünstig und zeitsparend hergestellt werden können.The invention therefore an object of the invention to provide a sound absorbing material and a method for its production, which avoids the disadvantages mentioned above. In particular, it should be easy, inexpensive and time-saving can be produced.

Diese Aufgabe wird erfindungsgemäß gelöst mit einem Schallabsorptionsmaterial aus einem Vliesstoff, welcher mindestens zwei Polymere enthält, wobei der Schmelzpunkt mindestens eines ersten Polymers über dem Schmelzpunkt mindestens eines zweiten Polymers liegt und wobei das erste Polymer in Form von Elementarsegmenten vorliegt, die in einer Matrix aus dem zweiten Polymer verteilt sind.This object is achieved according to the invention with a sound absorption material a nonwoven fabric containing at least two polymers wherein the melting point of at least one first polymer is above the melting point of at least one second polymer and wherein the first polymer is in the form of elemental segments distributed in a matrix of the second polymer.

Überraschenderweise wurde erfindungsgemäß gefunden, dass Vliesstoffe der oben genannten Art hervorragende Schallabsorptionseigenschaften aufweisen. Insbesondere zeigen derartige Vliesstoffe einen Luftschallabsorptionsgrad α(0), gemessen im Impedanzrohr nach DIN EN ISO 10354-1, von ≥0,8 bei einer Frequenz von 1000 Hz bis 4000 Hz.Surprisingly, it has been found according to the invention that nonwovens of the abovementioned type have outstanding sound absorption properties. In particular, such nonwovens show an airborne sound absorption coefficient α (0), measured in the impedance tube according to DIN EN ISO 10354-1, of ≥ 0.8 at a frequency of 1000 Hz to 4000 Hz.

Schallabsorptionsversuche haben ergeben, dass das erfindungsgemäße Schallabsorptionsmaterial sich insbesondere zum Schallschutz im Schallfrequenzbereich von 100 bis 5000 Hz eignet.Sound absorption tests have shown that the sound absorption material according to the invention is particularly suitable for sound insulation in the sound frequency range of 100 to 5000 Hz.

Insbesondere wurde überraschend gefunden, dass die erfindungsgemäßen Schallabsorptionsmaterialien bereits bei geringen Dicken hervorragende Schallabsorptionseigenschaften zeigen. Praktische Versuche haben ergeben, dass die erfindungsgemäßen Schallabsorptionsmaterialien bereits bei einer Dicke des Vliesstoffes von 0,01 mm bis 1 mm, vorzugsweise von 0,05 mm bis 0,5 mm, insbesondere von 0,1 mm bis 0,2 mm, die oben genannten Luftschallabsorptionsgrade und Einzahl-Werte erreichen können.In particular, it has surprisingly been found that the sound absorption materials according to the invention show excellent sound absorption properties even at low thicknesses. Practical experiments have shown that the sound absorbing materials according to the invention already at a thickness of the nonwoven fabric of 0.01 mm to 1 mm, preferably from 0.05 mm to 0.5 mm, in particular from 0.1 mm to 0.2 mm, the above achieved airborne sound absorption levels and singular values.

In Abhängigkeit von den erwünschten Schallabsorptionseigenschaften kann die Dicke der erfindungsgemäßen Schallabsorptionsmaterialien variieren. Vorzugsweise weisen die erfindungsgemäßen Schallabsorptionsmaterialien eine Dicke von 0,01 mm bis 1 mm, noch bevorzugter von 0,05 mm bis 0,5 mm, insbesondere von 0,1 mm bis 0,2 mm, auf.Depending on the desired sound absorption properties, the thickness of the sound absorbing materials according to the invention may vary. Preferably, the sound absorbing materials according to the invention have a thickness of 0.01 mm to 1 mm, more preferably from 0.05 mm to 0.5 mm, in particular from 0.1 mm to 0.2 mm.

Ebenso kann die Luftdurchlässigkeit der erfindungsgemäßen Schallabsorptionsmaterialien gemessen nach DIN EN ISO 9237 bei 20 cm2 und 50 Pa variieren. Vorzugsweise weisen die erfindungsgemäßen Schallabsorptionsmaterialien eine Luftdurchlässigkeit gemessen nach DIN EN ISO 9237 bei einem Flächengewicht von 100 g/m2 von 20 l/m2sec bis 120 l/m2sec, noch bevorzugter von 40 l/m2sec bis 100 l/m2sec, insbesondere von 60 l/m2sec bis 90 l/m2sec, auf.Likewise, the air permeability of the sound absorption materials according to the invention measured according to DIN EN ISO 9237 at 20 cm 2 and 50 Pa vary. Preferably, the sound absorption materials according to the invention an air permeability measured according to DIN EN ISO 9237 at a basis weight of 100 g / m 2 of 20 l / m 2 sec to 120 l / m 2 sec, more preferably from 40 l / m 2 sec to 100 l / m 2 sec, in particular from 60 l / m 2 sec to 90 l / m 2 sec, on.

Dementsprechend kann der Vliesstoff ein geringes Flächengewicht aufweisen und dennoch gute Schallabsorptionseigenschaften zeigen. Nichtsdestotrotz kann das Flächengewicht des Vliesstoffs in weiten Bereichen schwanken und beispielsweise gemäß den Anforderungen an einen Verbundwerkstoff ausgewählt werden. Vorzugsweise beträgt das Flächengewicht 30 g/m2 bis 400 g/m2, noch bevorzugter von 35 g/m2 bis 200 g/m2, noch bevorzugter von 40 g/m2 bis 150 g/m2, insbesondere von 40 g/m2 bis 120 g/m2.Accordingly, the nonwoven fabric may have a low basis weight and still exhibit good sound absorption properties. Nevertheless, the basis weight of the nonwoven fabric can vary widely and be selected, for example, according to the requirements of a composite material. Preferably, the basis weight is from 30 g / m 2 to 400 g / m 2 , more preferably from 35 g / m 2 to 200 g / m 2 , even more preferably from 40 g / m 2 to 150 g / m 2 , especially from 40 g / m 2 to 120 g / m 2 .

Darüber hinaus zeichnet sich der Vliesstoff durch weitere vorteilhafte Eigenschaften, wie eine gute Heißverformbarkeit bzw. Tiefziehfähigkeit, aus. Aufgrund dessen kann er besonders einfach verarbeitet und an die verschiedensten Raumanforderungen angepasst werden. Dabei ist der Vliesstoff bei Raumtemperatur äußerst stabil.In addition, the nonwoven fabric is characterized by further advantageous properties, such as a good hot workability or thermoformability. Because of this, it can be processed very easily and adapted to a wide variety of room requirements. The nonwoven fabric is extremely stable at room temperature.

Der Vliesstoff kann über die verschmolzenen Domänen einen folien- bzw. papierartigen Charakter aufweisen, jedoch ohne die Schwächen einer Folie oder eines Papieres. So ist es auf einfache Weise möglich die Oberfläche des Vliesstoffs glatt und nassfest auszugestalten. Ein derartiger Vliesstoff kann als "faserverstärkte Folie" angesehen werden.The nonwoven fabric may have a film-like character over the fused domains, but without the weaknesses of a film or paper. So it is easily possible to design the surface of the nonwoven fabric smooth and wet-strength. Such a nonwoven fabric may be considered a "fiber reinforced film".

Der Vliesstoff kann bei geringem Gewicht eine hohe Festigkeit aufweisen. Dies ermöglicht eine leichte Verarbeitung und Handhabung. Ferner ist eine hohe Festigkeit sehr vorteilhaft beim Einsatz des erfindungsgemäßen Schallabsorptionsmaterials als Auskleidungsteil für den Innenbereich von Automobilen, wie insbesondere als Autohimmel, Fußmatte, Türverkleidung, Säulenverkleidung, Hutablage und/oder Kofferraumauskleidung sowie Radkastenauskleidung.The nonwoven fabric can have a high strength with low weight. This allows easy processing and handling. Furthermore, a high strength is very advantageous when using the sound absorption material according to the invention as a lining part for the interior of automobiles, in particular as a car roof, doormat, door trim, pillar trim, parcel shelf and / or trunk lining and wheel housing lining.

Der Vliesstoff zeichnet sich darüber hinaus durch isotrope mechanische Eigenschaften, wie beispielsweise ein isotropes Verhältnis von Höchstzugkraft oder Weitereißkraft in Maschinen- zu Querrichtung, aus. Isotropie im Sinne der Erfindung bezeichnet die Unabhängigkeit einer Eigenschaft von der Richtung. Isotrope Festigkeitseigenschaften sind insbesondere für den Einsatz des Vliesstoffs als Verstärkungslage vorteilhaft, da hierdurch eine besonders gleichmäßige Stabilisierung erzielt wird.In addition, the nonwoven fabric is characterized by isotropic mechanical properties, such as an isotropic ratio of maximum tensile force or additional tensile force Machine to transverse direction, off. Isotropy in the sense of the invention denotes the independence of a property from the direction. Isotropic strength properties are advantageous in particular for the use of the nonwoven fabric as a reinforcing layer, since in this way a particularly uniform stabilization is achieved.

Unter isotropem Maschinenrichtung/Querrichtungs-Verhättnis der Höchstzugkraft und/oder Weiterreißkraft im Sinne der Erfindung wird verstanden, dass das Maschinenrichtung/Querrichtungs-Verhältnis der Höchstzugkraft und/oder Weiterreißkraft im Bereich von 0,7 bis 1,6, vorzugsweise von 0,8 bis 1,5, insbesondere von 0,9 bis 1,1, liegt.Under isotropic machine direction / Querrichtungs Verhättnis the maximum tensile force and / or tear propagation force in the context of the invention is understood that the machine direction / transverse direction ratio of the maximum tensile force and / or tearing force in the range of 0.7 to 1.6, preferably from 0.8 to 1.5, in particular from 0.9 to 1.1, is located.

Unter Höchstzugkraft wird die Kraft verstanden, die aufgewendet werden muss, um eine Faserlage zu zerreißen. Unter Weiterreißkraft wird die Kraft verstanden, die notwendig ist um eine bereits eingerissene Faserlage weiter einzureißen oder weiter zu zerreißen. Je höher diese Werte sind, desto stabiler ist eine Lage. Die Höchstzugkraft wird gemessen in Maschinenrichtung oder quer zur Maschinenrichtung. Unter Maschinenrichtung wird die Richtung verstanden, unter der die Fasern in Längsrichtung auf einem sich in Längsrichtung bewegenden Förderband abgelegt werden. Die Richtung quer hierzu bzw. orthogonal hierzu ist die Querrichtung.Maximum tensile force is the force that must be used to rupture a fiber layer. By tear propagation force is meant the force that is necessary to tear down an already cracked fiber layer or further tear. The higher these values are, the more stable a situation is. The maximum tensile force is measured in the machine direction or transversely to the machine direction. The machine direction is understood to mean the direction under which the fibers are deposited longitudinally on a conveyor belt moving in the longitudinal direction. The direction transverse thereto or orthogonal thereto is the transverse direction.

Der Vliesstoff zeichnet sich ferner durch hervorragende Festigkeitseigenschaften aus. So kann die Weiterreißkraft gemessen nach ASTM D5733 in Maschinen- und/oder Querrichtung 10 N bis 190 N, vorzugsweise 60 N bis 180 N, insbesondere 120 N bis 180 N betragen. Die Höchstzugkraft gemessen nach ASTM D5034 in Maschinen- und/oder Querrichtung kann 70 bis 400 N /50 mm, vorzugsweise 100 bis 350 N /50 mm, insbesondere 150 bis 300 N /50 mm, betragen.The nonwoven fabric is further characterized by excellent strength properties. Thus, the tear propagation force measured in accordance with ASTM D5733 in the machine and / or transverse direction can be 10 N to 190 N, preferably 60 N to 180 N, in particular 120 N to 180 N. The maximum tensile force measured according to ASTM D5034 in the machine and / or transverse direction may be 70 to 400 N / 50 mm, preferably 100 to 350 N / 50 mm, in particular 150 to 300 N / 50 mm.

Praktische Versuche haben gezeigt, dass ein Vliesstoff mit besonders guten Festigkeitseigenschaften gewonnen werden kann, wenn bei seiner Herstellung Mehrkomponentenfasern eingesetzt werden, die eine erste Polymerkomponente und eine zweite Polymerkomponente umfassen, wobei die erste Polymerkomponente in einer ersten Zone und die zweite Polymerkomponente in einer zweiten Zonen über den Querschnitt der Mehrkomponentenfasern angeordnet ist, wobei sich beide Polymerkomponenten in Längenrichtung der Mehrkomponentenfasern erstrecken, wobei die erste Polymerkomponente einen Schmelzpunkt oberhalb des Schmelzpunkts der zweiten Polymerkomponente aufweist und wobei die erste Zone die erste Polymerkomponente in Form von mindestens zwei trennbaren Elementarsegmenten umfasst. Als besonders geeignet haben sich PIE-Fasern, Hollow-PIE-Fasern, Kem/Mantel-Fasern, multilobale Fasern, Islands-in-Sea-Fasern oder Side by Side-Fasem erwiesen. Ganz besonders bevorzugt sind PIE-Fasern, die vorzugsweise 4, 6, 8, 10, 14, 16, 18 oder 32 Elementarsegmente umfassen. Die Mehrkomponentenfasern können als Stapelfasern ausgebildet sein. Vorzugsweise sind die Mehrkomponentenfasern als Endlosfilamente ausgebildet und aus mindestens zwei Polymeren aufgebaut.Practical experiments have shown that a nonwoven fabric with particularly good strength properties can be obtained if it is used in its production multicomponent fibers comprising a first polymer component and a second polymer component, wherein the first polymer component in a first zone and the second polymer component in a second zone over the cross-section of the multicomponent fibers, both polymer components extending in the length direction of the multicomponent fibers, the first polymer component having a melting point above the melting point of the second polymer component, and wherein the first zone is the first polymer component in the form of at least two separable elementary segments. PIE fibers, hollow-PIE fibers, core / sheath fibers, multilobal fibers, islands-in-sea fibers or side-by-side fibers have proven particularly suitable. Very particular preference is given to PIE fibers, which preferably comprise 4, 6, 8, 10, 14, 16, 18 or 32 elementary segments. The multicomponent fibers may be formed as staple fibers. Preferably, the multicomponent fibers are formed as continuous filaments and composed of at least two polymers.

Unter PIE-Fasern werden Fasern aus Elementarsegementen verstanden, welche im Querschnitt kuchenstückförmig bzw. kreissegmentförmig angeordnet sind.PIE fibers are understood as meaning fibers of elementary segments which are arranged in the form of cake pieces or circular segments in cross section.

Der Effekt beim Aufschmelzen einer PIE-Faser bzw. kuchenstückartigen Faser ist die Einbindung stabiler kuchenstückförmiger Segmente, die als Verstärkungsfäden in der Polymermatrix fungieren. Hierdurch wird eine Stabilisierung nach Art eines Stahlbetons erreicht. Dabei fällt vor allem bei PIE-Endlosfilamenten eine deutliche Geometrieveränderung der ursprünglichen Filamentstruktur auf.The effect of reflowing a PIE fiber is the incorporation of stable pie-shaped segments that function as reinforcing filaments in the polymer matrix. As a result, a stabilization is achieved in the manner of a reinforced concrete. In the case of PIE filaments in particular, a marked change in the geometry of the original filament structure is noticeable.

Besonders vorteilhaft bei der Verwendung von PIE-Fasern ist, dass die kuchenstückförmigen Segmente im Querschnitt einen sehr geringen Durchmesser aufweisen und die Matrix daher besonders zahlreich durchsetzen können. Darüber hinaus wird durch die alternierende Anordnung der einzelnen Kernsegmente in den Fasern eine besonders homogene Verteilung der verschiedenen Polymere bewirkt. Dies führt dazu, dass ein äußerst gleichmäßiges Aufschmelzen unter Ausbildung der Matrix erfolgt.Particularly advantageous in the use of PIE fibers is that the cake-piece-shaped segments have a very small diameter in cross-section and therefore the matrix can prevail in a particularly large number. In addition, the alternating arrangement of the individual core segments in the fibers causes a particularly homogeneous distribution of the various polymers. This leads to an extremely uniform melting with formation of the matrix.

Bei der Verwendung von Kern/Mantel-Fasern ist es bevorzugt, wenn die Mäntel aus dem niedriger schmelzenden Polymer bestehen. Auf diese Weise werden die Kerne in Form stabiler kreisförmiger Segmente in die Matrix aus dem Mantelpolymer eingebettet. Vorteilhaft beim Einsatz der Kern/Mantel-Fasern ist, dass sich aufgrund des kreisförmigen Querschnitts der Kernsegmente eine besonders dichte Struktur, analog einer Kugelpackung, ausbildet.When using core / sheath fibers, it is preferred that the sheaths be made of the lower melting polymer. In this way, the cores are embedded in the matrix polymer matrix in the form of stable circular segments. An advantage of the use of the core / sheath fibers is that due to the circular cross section of the core segments, a particularly dense structure, analogous to a spherical packing, is formed.

Die Mehrkomponentenfasern können zwei oder mehrere Polymere umfassen, sofern mindestens ein Polymer einen höheren Schmelzpunkt als mindestens ein weiteres Polymer aufweist. Praktische Versuche haben ergeben, dass bereits bei der Verwendung von zwei Polymeren (Bikomponentenfasem) Vliesstoffe mit einer stabilen Matrixstruktur erhalten werden können.The multicomponent fibers may comprise two or more polymers, provided that at least one polymer has a higher melting point than at least one further polymer. Practical experiments have shown that already with the use of two polymers (bicomponent fibers) nonwovens having a stable matrix structure can be obtained.

Strukturell zeichnet sich der Vliesstoff dadurch aus, dass er mindestens zwei Polymere umfasst, wobei der Schmelzpunkt mindestens eines ersten Polymers Ober dem Schmelzpunkt mindestens eines zweiten Polymers liegt. Das erste Polymer liegt in Form von Elementarsegmenten vor, welche in einer Matrix aus dem zweiten Polymer verteilt sind.Structurally, the nonwoven fabric is characterized in that it comprises at least two polymers, wherein the melting point of at least one first polymer is above the melting point of at least one second polymer. The first polymer is in the form of elemental segments distributed in a matrix of the second polymer.

Die Differenz zwischen dem Schmelzpunkt des ersten und zweiten Polymers kann in weiten Bereichen variieren. Zweckmäßigerweise beträgt die Differenz mindestens 15 °C, insbesondere mindestens 20 °C. Vorzugsweise werden Polymere mit einer Temperaturdifferenz von 15 °C bis 450 °C, noch bevorzugter von 15 °C bis 200 °C, noch bevorzugter von 20 °C bis 150 °C, insbesondere von 70 °C bis 150 °C eingesetzt.The difference between the melting point of the first and second polymers can vary widely. Conveniently, the difference is at least 15 ° C, in particular at least 20 ° C. Preferably, polymers having a temperature difference of from 15 ° C to 450 ° C, more preferably from 15 ° C to 200 ° C, even more preferably from 20 ° C to 150 ° C, especially from 70 ° C to 150 ° C are used.

Als Polymere können die verschiedensten Materialien eingesetzt werden. Bevorzugte Kombinationen für Mehrkomponentenfasern umfassen vor allem thermoplastische Polymere, insbesondere ausgewählt aus der Gruppe bestehend aus Nylon 6, Nylon 6.6, Nylon 6.10, Nylon 6.11, Nylon 6-12, Polypropylen oder Polyethylen. Weitere mögliche Polymere sind ausgewählt aus der Gruppe bestehend aus Polyester, Polyamid, thermoplastischen Copolyetheresterelastomeren, Polyolefinen, Polyacrylaten und thermoplastischen Flüssigkristallen. Auch denkbar ist der Einsatz von Copolyetheresterelastomeren aus langkettigen und kurzkettigen Estermonomeren. Werden Elementarsegmente aus Polyethylenterephthalat eingesetzt, so können diese bevorzugt aus recyclebaren Polyethylenterphthalat hergestellt werden.As polymers, a wide variety of materials can be used. Preferred combinations for multicomponent fibers include, in particular, thermoplastic polymers, in particular selected from the group consisting of nylon 6, nylon 6.6, nylon 6.10, nylon 6.11, nylon 6-12, polypropylene or polyethylene. Further possible polymers are selected from the group consisting of polyester, polyamide, thermoplastic copolyetherester elastomers, polyolefins, polyacrylates and thermoplastic liquid crystals. Also conceivable is the use of Copolyetheresterelastomeren from long-chain and short-chain ester monomers. If elemental segments of polyethylene terephthalate are used, they can preferably be produced from recyclable polyethylene terephthalate.

Durch Wahl der verwendeten Polymere kann das Benetzungsverhalten des Vliesstoffs beeinflusst werden. Zu diesem Zweck werden insbesondere folgende thermoplastische Polymere eingesetzt: Polyamide, Polyvinylacetate, verseifte Polyvinylacetate, verseifte Ethylenvinylacetate und weitere hydrophile Polymere.By choosing the polymers used, the wetting behavior of the nonwoven fabric can be influenced. For this purpose, in particular the following thermoplastic polymers are used: polyamides, polyvinyl acetates, saponified polyvinyl acetates, saponified ethylene vinyl acetates and other hydrophilic polymers.

Alternativ können auch elastische Polymere eingesetzt werden. Diese Polymere werden vorzugsweise ausgewählt aus der Gruppe bestehend aus: Styrol/Butadien Copolymeren, elastischem Polypropylen, Polyethylen, Metallocen-katalysierten α-Olefin-Homopolymeren, sowie Copolymeren mit einer Dichte von weniger als 0,89 g/cm3. Darüber hinaus ist die Verwendung von amorphen Polyalphaolefinen mit einer Dichte von weniger als 0,89 g/cm3, Ethylenvinylacetat, sowie Ethylen-Propylenkautschuk und Propylen-1-Buten- Copolymer und Terpolymere denkbar.Alternatively, elastic polymers can also be used. These polymers are preferably selected from the group consisting of: styrene / butadiene copolymers, elastic polypropylene, polyethylene, metallocene-catalyzed α-olefin homopolymers, as well as copolymers having a density of less than 0.89 g / cm 3 . In addition, the use of amorphous polyalphaolefins having a density of less than 0.89 g / cm 3 , ethylene vinyl acetate, and ethylene-propylene rubber and propylene-1-butene copolymer and terpolymers is conceivable.

Gemäß einer besonders bevorzugten Ausführungsform der Erfindung enthalten die Mehrkomponentenfasern Polypropylen, Polyethylen, Polyamid, syndiotatkisches Polystyrol, Polyester, und/oder Mischungen aus diesen Polymeren, vorzugsweise Polyethylenterephthalat.According to a particularly preferred embodiment of the invention, the multicomponent fibers comprise polypropylene, polyethylene, polyamide, syndiotatisches polystyrene, polyester, and / or mixtures of these polymers, preferably polyethylene terephthalate.

Gemäß einer weiteren bevorzugten Ausführungsform der Erfindung wird das erste Polymer aus der Gruppe bestehend aus: Polyester, vorzugsweise Polyethylenterephthalat ausgewählt und/oder das zweite Polymer aus der Gruppe bestehend aus: Polypropylen, Polyethylen, Polyamid und/oder Polyester, vorzugsweise Polyethylenterephthalat.According to a further preferred embodiment of the invention, the first polymer is selected from the group consisting of: polyester, preferably polyethylene terephthalate and / or the second polymer selected from the group consisting of: polypropylene, polyethylene, polyamide and / or polyester, preferably polyethylene terephthalate.

Werden als Mehrkomponentenfasern Kern/Mantel-Fasern oder Islands-in-Sea-Fasern eingesetzt, so wird der Mantel bzw. die Sea vorzugsweise aus dem zweiten, matrixerzeugenden Polymer gebildet. Bevorzugte Polymere für die Matrix sind Copolyester, Polypropylen, Polyamid, Polyethylen, lineares Niederdruck-Polyethylen mit einem α-Olefinmonomeranteil größer als 10 Gew.-%, Ethylencopolymer mit mindestens einem Vinylmonomer oder Ethylencopolymer mit ungesättigten aliphatischen Carboxylsäuren.If core / sheath fibers or islands-in-sea fibers are used as the multicomponent fibers, then the sheath or the sea is preferably formed from the second, matrix-producing polymer. Preferred polymers for the matrix are Copolyester, polypropylene, polyamide, polyethylene, linear low-pressure polyethylene having an α-olefin monomer content greater than 10 wt .-%, ethylene copolymer with at least one vinyl monomer or ethylene copolymer with unsaturated aliphatic carboxylic acids.

Der Vliesstoff zeichnet sich dadurch aus, dass im Vliesstoff eine filmähnlich aufgeschmolzene Polymermatrix vorliegt. Diese enthält ungeschmolzene Elementarsegmente, die im Querschnitt kreissegmentförmig bzw. kuchenstückförmig, multilobal oder kreisförmig aufgebaut sein können.The nonwoven fabric is characterized in that the nonwoven fabric is a film-like molten polymer matrix. This contains unmelted elementary segments, which may be circular-segment-shaped or cake-piece-shaped, multilobal or circular in cross-section.

Elementarsegmente eines kreissegmentförmigen Querschnitts zeigen eine etwa 1,75-mal größere Oberfläche als ein Elementarsegment mit einem runden Querschnitt. Aufgrund der größeren Oberfläche wird eine größere Adhäsionsfläche ausgebildet.Elementary segments of a circular segmental cross-section show an approximately 1.75 times larger surface area than an elementary segment with a circular cross-section. Due to the larger surface area, a larger adhesion surface is formed.

Das Gewichtsverhältnis von erstem Polymer zu zweitem Polymer im Vliesstoff kann in weiten Bereichen schwanken, sofern gewährleistet ist, dass im Vliesstoff das erste Polymer in Form von Elementarfilamenten vorliegt, welche in einer Matrix aus dem zweiten Polymer verteilt sind. Vorzugsweise beträgt das Gewichtsverhältnis von erstem Polymer zu zweitem Polymer im Vliesstoff 50 %: 50 %, vorzugsweise 70% bis 30%, noch bevorzugter 60% zu 40%.The weight ratio of the first polymer to the second polymer in the nonwoven fabric can vary within wide limits, as long as it is ensured that the first polymer in the nonwoven fabric is in the form of elementary filaments which are distributed in a matrix of the second polymer. Preferably, the weight ratio of first polymer to second polymer in the nonwoven fabric is 50%: 50%, preferably 70% to 30%, more preferably 60% to 40%.

Bevorzugterweise beträgt der Anteil der Matrix im Vliesstoff von 1 Gew.-% bis 60 Gew.-%, vorzugsweise von 5 Gew.-% bis 50 Gew.-%, insbesondere von 10 Gew.-% bis 40 Gew.-%. Bei diesen Matrixanteilen kann ein Vliesstoff mit einer besonders guten Biegesteifigkeit erhalten werden.Preferably, the proportion of the matrix in the nonwoven fabric from 1 wt .-% to 60 wt .-%, preferably from 5 wt .-% to 50 wt .-%, in particular from 10 wt .-% to 40 wt .-%. In these matrix fractions, a nonwoven fabric having a particularly good flexural strength can be obtained.

Vorzugsweise wird der Vliesstoff mit Imprägnierungsmitteln, insbesondere Flammschutzmitteln bzw. Hydrophilierungs- und Hydrophobierungsreagenzien behandelt. In einer besonders vorteilhaften Ausführung wird der Vliesstoff mit einem wässrigen Flammschutzmittel besprüht bzw. imprägniert.Preferably, the nonwoven fabric is treated with impregnating agents, in particular flame retardants or hydrophilizing and hydrophobing reagents. In a particularly advantageous embodiment, the nonwoven fabric is sprayed or impregnated with an aqueous flame retardant.

Der Vliesstoff eignet sich hervorragend für die Herstellung von Verbundwerkstoffen, da seine Oberflächenstruktur z.B. Ober die Wahl der Polymere sowie durch Plasma- bzw. Coronabehandlung der Oberfläche auf einfache Weise auf die weiteren Verbundkomponenten abgestimmt werden kann. Die sehr dichte Oberflächenstruktur erlaubt zudem das Aufbringen von Klebekomponenten wie z.B. das Aufbringen von thermoplastischen Polymeren, vorzugsweise Polyethylen, Copolyester oder Polyamid, beispielsweise in Form von festem Klebstoffpulver über entsprechende Vorrichtungen. Durch Erhitzen kann der Vliesstoff zumindest an der Oberfläche über die Klebekomponenten thermofixiert werden, was zu einer Stabilisierung des Vliesstoffs führt. Die Behandlung kann einseitig oder beidseitig, vorzugsweise einseitig, durchgeführt werden und findet vorzugsweise nach einer Imprägnierung mit Bindemitteln statt. Das feste Klebstoffpulver kann im gleichen Verarbeitungsschritt durch Hitzeeinwirkung fixiert werden. In einer vorteilhaften Ausführung wird der zunächst flammgeschützte Vliesstoff mit pulverförmigem Klebstoff auf Polyethylen Basis versehen und thermofixiert (z.B. Klebstoffe Schaetti Fix® der Firma Schaetti AG, Zürich oder andere).The nonwoven fabric is eminently suitable for the production of composites because its surface structure is e.g. The choice of polymers and plasma or corona treatment of the surface can be easily matched to the other composite components. The very dense surface structure also allows the application of adhesive components such. the application of thermoplastic polymers, preferably polyethylene, copolyester or polyamide, for example in the form of solid adhesive powder via appropriate devices. By heating, the nonwoven fabric can be heat-set at least at the surface via the adhesive components, resulting in stabilization of the nonwoven fabric. The treatment can be carried out on one or both sides, preferably on one side, and preferably takes place after impregnation with binders. The solid adhesive powder can be fixed by heat in the same processing step. In an advantageous embodiment, the nonwoven fabric, which is initially flame-retarded, is provided with powder-based polyethylene-based adhesive and heat-set (for example Schaetti Fix® adhesives from Schaetti AG, Zurich or others).

Ein weiterer Gegenstand der Erfindung ist die Verwendung eines Verbundwerkstoffs umfassend mindestens eine erste Lage, die den oben beschriebenen Vliesstoff enthält, sowie eine zweite Lage, die als Distanzlage ausgebildet sein kann und vorzugsweise einen Faserverbund, insbesondere einen Mullstoff, einen Vliesstoff, einen Film und/oder eine Folie aufweist, als Schallschutzmaterial.Another object of the invention is the use of a composite material comprising at least a first layer containing the nonwoven fabric described above, and a second layer which may be formed as a spacer layer and preferably a fiber composite, in particular a scrim, a nonwoven fabric, a film and / or a film, as a soundproofing material.

Gemäß einer bevorzugten Ausführungsform der Erfindung ist die zweite Lage als Faserverbund mit einer Dicke (unkomprimiert) von 0,5 bis 5, vorzugsweise von 0,8 bis 3, insbesondere von 1 bis 2 cm ausgebildet. Die jeweiligen Lagen des Vliesstoffs können in Abhängigkeit von den verwendeten Materialien auf verschiedene Arten und Weisen miteinander verbunden werden. Praktische Versuche haben ergeben, dass besonders feste Verbunde erhalten werden, wenn die erste und zweite Lage stoffschlüssig und mittels eines Bindemittels miteinander verbunden vorliegen.According to a preferred embodiment of the invention, the second layer is formed as a fiber composite with a thickness (uncompressed) of 0.5 to 5, preferably from 0.8 to 3, in particular from 1 to 2 cm. The respective layers of the nonwoven fabric may be bonded together in various ways depending on the materials used. Practical experiments have shown that particularly strong composites are obtained when the first and second layers are cohesively bonded together by means of a binder.

Die Dicke und Zusammensetzung des Faserverbunds kann in Abhängigkeit von dem jeweiligen Einsatzzweck des Verbundwerkstoffs in weiten Bereichen variieren. Vorzugsweise enthält der Faserverbund textilen Faserabfall, wie vorzugsweise Zellulosefasern, Hanf, Flachs, Baumwolle, Bast, Sisal, Kenaf und/oder Kunststoffe, vorzugsweise Polyolefine, insbesondere Polyethylen und/oder Polypropylen und/oder deren Copolymere oder Metalle. Darüber hinaus umfasst der Faserabfall vorzugsweise ein Bindemittel oder eine niedrigschmelzende Bindefaser zur Stabilisierung und Fixierung.The thickness and composition of the fiber composite may vary widely depending on the particular application of the composite. Preferably, the fiber composite contains textile fiber waste, such as preferably cellulose fibers, hemp, flax, cotton, bast, sisal, kenaf and / or plastics, preferably polyolefins, in particular polyethylene and / or polypropylene and / or their copolymers or metals. In addition, the fiber waste preferably comprises a binder or a low-melting binder fiber for stabilization and fixation.

Der erfindungsgemäße Verbundwerkstoff kann durch Beschichten des Vliesstoffs mit dem Faserverbund durch Laminieren und/oder Kaschieren des Vliesstoffs, ggf. unter Verwendung eines Bindemittels und/oder Druck und/oder Temperatur verbunden werden. Ebenfalls denkbar ist das Aufextrudieren einer folienbildenden polymeren Schmelze oder das Aufbringen eines thermoplastischen Materials in Pulverform mit anschließender thermischer Fixierung.The composite material according to the invention can be joined by coating the nonwoven fabric with the fiber composite by laminating and / or laminating the nonwoven fabric, if appropriate using a binder and / or pressure and / or temperature. Also conceivable is the extrusion of a film-forming polymer melt or the application of a thermoplastic material in powder form with subsequent thermal fixation.

Das erfindungsgemäße Schallabsorptionsmaterial kann über ein Verfahren, umfassend die folgenden Verfahrensschritte hergestellt werden:

  • Bereitstellen von Mehrkomponentenfasern, welche mindestens zwei Polymere mit unterschiedlichen Schmelzpunkten enthalten,
  • flächiges Verbinden der Mehrkomponentenfasern mit einer komprimierenden Wärmebehandlung bei einer Temperatur von 100 °C bis 300 °C, sowie einem Druck von 40 N/mm bis 150 N/mm, derart, dass mindestens ein erstes Polymer in Form von Elementarsegmenten in einer Matrix aus mindestens einem zweiten Polymer verteilt wird.
The sound absorbing material according to the invention can be produced by a process comprising the following process steps:
  • Providing multicomponent fibers containing at least two polymers having different melting points,
  • laminating the multicomponent fibers with a compressing heat treatment at a temperature of 100 ° C to 300 ° C, and a pressure of 40 N / mm to 150 N / mm, such that at least a first polymer in the form of elementary segments in a matrix of at least a second polymer is distributed.

Das Verfahren zeichnet sich dadurch aus, dass Mehrkomponentenfasern durch Beaufschlagen mit einem Druck von mindestens 40 N/mm, sowie mit einer Temperatur von mindestens 100 °C derart flächig verbunden werden, dass mindestens ein erstes Polymer in Form von Elementarsegmenten in einer Matrix aus mindestens einem zweiten Polymer verteilt wird. Hierdurch kann ein Vliesstoff mit einer hohen Biegesteifigkeit, einer geringen Haftreibung sowie einer dichten Struktur bei geringer Porosität erhalten werden.The method is characterized by the fact that multi-component fibers are connected by applying a pressure of at least 40 N / mm, and at a temperature of at least 100 ° C so flat that at least a first Polymer is distributed in the form of elementary segments in a matrix of at least one second polymer. As a result, a nonwoven fabric having a high flexural rigidity, a low stiction and a dense structure at low porosity can be obtained.

Praktische Versuche haben gezeigt, dass Vliesstoffe mit besonders guten Schallabsorptionseigenschaften erhalten werden können, wenn PIE Fasern, vorzugsweise PIE-Filamente, vorzugsweise mit 30 - 50 % Polyamid Anteil und 70 - 50% Polyester Anteil, vorzugsweise bei Drücken zwischen 50 und 80 N/mm und Temperaturen zwischen 130°C und 180°C, insbesondere mittels einer Walzenkombination aus einer glatten Stahlwalze und einer rauhen Stahlwalze (Rauhtiefe 40 µm) verfestigt werden.Practical experiments have shown that nonwovens with particularly good sound absorption properties can be obtained when PIE fibers, preferably PIE filaments, preferably with 30-50% polyamide content and 70-50% polyester content, preferably at pressures between 50 and 80 N / mm and temperatures between 130 ° C and 180 ° C, in particular by means of a roller combination of a smooth steel roller and a rough steel roller (roughness 40 microns) are solidified.

Die Mehrkomponentenfasern können durch dem Fachmann bekannte Art und Weise hergestellt werden. Erfindungsgemäß besonders bevorzugt ist die Schmelzspinritechnologie.The multicomponent fibers can be prepared by methods known to those skilled in the art. Particularly preferred according to the invention is the melt spinning technology.

Zur Herstellung der Mehrkomponentenfasern kann eine polymere Substanz unter Druck in einem Extruder erhitzt und durch eine Düse gepresst werden, wobei Endlosfilamente entstehen. Nach Austritt aus der Extrusionsdüse können die Endlosfilamente verstreckt und mittels dynamischer Legeverfahren auf einem Förderband unter Bildung einer Faserlage in Querrichtung abgelenkt positioniert werden. Vorteilhaft an einer in Querrichtung abgelenkten Positionierung der Endlosfilamente ist, dass sich hierdurch die Isotropie der mechanischen Eigenschaften des Vliesstoffs erhöht.To produce the multicomponent fibers, a polymeric substance can be heated under pressure in an extruder and pressed through a die to form endless filaments. After exiting the extrusion die, the continuous filaments may be drawn and positioned by means of dynamic laydown methods on a conveyor belt, deflecting them transversely to form a fiber layer. An advantage of a transversely deflected positioning of the continuous filaments is that this increases the isotropy of the mechanical properties of the nonwoven fabric.

Gemäß einer besonders bevorzugten Ausführungsform der Erfindung werden als Mehrkomponentenfasern, Fasern eingesetzt, die eine erste Polymerkomponente und eine zweite Polymerkomponente umfassen, wobei

  • die erste Polymerkomponente in einer ersten Zone und die zweite Polymerkomponente in einer zweiten Zonen über den Querschnitt der Mehrkomponentenfasern angeordnet ist, wobei
  • sich beide Polymerkomponenten in Längenrichtung der Mehrkomponentenfasern erstrecken, wobei
  • die erste Polymerkomponente einen Schmelzpunkt oberhalb des Schmelzpunkts der zweiten Polymerkomponente aufweist und wobei die erste Zone die erste Polymerkomponente in Form von mindestens zwei trennbaren Elementarsegmenten umfasst.
According to a particularly preferred embodiment of the invention are used as multicomponent fibers, fibers comprising a first polymer component and a second polymer component, wherein
  • the first polymer component in a first zone and the second polymer component in a second zone across the cross section of Multi-component fibers is arranged, wherein
  • Both polymer components extend in the length direction of the multicomponent fibers, wherein
  • the first polymer component has a melting point above the melting point of the second polymer component, and wherein the first zone comprises the first polymer component in the form of at least two separable elemental segments.

Das mit dem erfindungsgemäßen Verfahren hergestellte Schallabsorptionsmaterial zeichnet sich dadurch aus, dass es eine Polymermatrix umfasst. Diese enthält ungeschmolzene Elementarsegmente, vorzugsweise Elementarendlosfilamente, die im Querschnitt kreissegmentförmig bzw. kuchenstückförmig, kreisförmig oder multilobal aufgebaut sein können.The sound absorption material produced by the method according to the invention is characterized in that it comprises a polymer matrix. This contains unmelted elementary segments, preferably Elementarendlosfilamente, which may be constructed in cross-section circular segment or cake piece, circular or multilobal.

Das oben beschriebene Verfahren ermöglicht es auf energieintensive mechanische Verfestigungstechnologien, wie z.B. Wasserstrahlverfestigung, zu verzichten. Ferner zeichnet es sich dadurch aus, dass es kostengünstig und schnell ist.The method described above makes it possible to use energy-intensive mechanical consolidation technologies, e.g. Hydroentanglement, to dispense. Furthermore, it is characterized by the fact that it is inexpensive and fast.

Die Temperatur und der Druck, mit der die Verfestigung der Mehrkomponentenfasern erfolgt, kann in weiten Bereichen variieren und wird zweckmäßigerweise an die jeweils verwendeten Polymerkomponenten in den Mehrkomponentenfaser angepasst. Wesentlich hierbei ist, dass bei gewählter Temperatur und Druck ein im Wesentlichen vollständiges Aufschmelzen des ersten Polymers nicht jedoch des zweiten Polymers erfolgt.The temperature and the pressure with which the solidification of the multicomponent fibers takes place can vary within wide limits and is expediently adapted to the respectively used polymer components in the multicomponent fiber. It is essential here that at the selected temperature and pressure, a substantially complete melting of the first polymer but not of the second polymer takes place.

Praktische Versuche haben gezeigt, dass Vliesstoffe mit einer geringen Drapierbarkeit erhalten werden, wenn der Druck auf Werte von 45 bis 140 N/mm, vorzugsweise 50 bis 100 N/mm, noch bevorzugter 55 bis 90 N/mm, noch bevorzugter 60 bis 90 N/mm, insbesondere 70 bis 90 N/mm, eingestellt wird.Practical experiments have shown that nonwoven fabrics having a low drapability are obtained when the pressure is set at values of 45 to 140 N / mm, preferably 50 to 100 N / mm, more preferably 55 to 90 N / mm, still more preferably 60 to 90 N / mm, in particular 70 to 90 N / mm.

Zweckmäßigerweise erfolgt das flächige Verbinden der Mehrkomponentenfasern durch Beaufschlagen mit einer Temperatur von 100 bis 300 °C, vorzugsweise von 100 bis 250 °C, noch bevorzugter von 110 bis 200 °C, insbesondere von 120 bis 180 °C.Appropriately, the surface connection of the multi-component fibers is carried out by Applying at a temperature of 100 to 300 ° C, preferably from 100 to 250 ° C, more preferably from 110 to 200 ° C, in particular from 120 to 180 ° C.

Das Beaufschlagen mit Druck und Temperatur kann auf die dem Fachmann bekannte Art und Weise erfolgen. Zweckmäßigerweise werden hierzu Walzen, insbesondere Kalander, eingesetzt. Insbesondere geeignet sind Walzen mit glatter oder lediglich leicht aufgerauter Oberfläche. Vorzugsweise weist die Oberfläche eine Rautiefe von 20 bis 60 µm, insbesondere von 30 bis 45 µm auf.The application of pressure and temperature can be carried out in the manner known to those skilled in the art. For this purpose, rollers, in particular calenders, are expediently used. Particularly suitable are rollers with a smooth or only slightly roughened surface. Preferably, the surface has a surface roughness of 20 to 60 .mu.m, in particular from 30 to 45 .mu.m.

Gemäß einer bevorzugten Ausführungsform der Erfindung wird der Vliesstoff mit Bindemitteln imprägniert. Geeignete Bindemittel sind insbesondere Acrylate und Aminoplaste (Phenolharze, Melaminharze), Styrol-Butadien Copolymere, NBR Bindersysteme und/oder Polyurethane.According to a preferred embodiment of the invention, the nonwoven fabric is impregnated with binders. Suitable binders are in particular acrylates and aminoplasts (phenolic resins, melamine resins), styrene-butadiene copolymers, NBR binder systems and / or polyurethanes.

Für manche Anwendungen des Vliesstoffs ist es zweckmäßig die Oberflächenenergie des Vliesstoffes durch Corona- und/oder Plasmabehandlung zu erhöhen. Dabei erfolgt die Plasma- oder Coronabehandlung vorzugsweise derart, dass der Oberfläche eine Oberflächenenergie gemäß ISO 9000 von mehr als 38 dyn, vorzugsweise 38 bis 70 dyn, insbesondere 40 bis 60 dyn, verliehen wird. Hierbei ist vorteilhaft, dass die Oberfläche hydrophil gestaltet werden kann, ohne Chemikalien beizumengen.For some applications of the nonwoven fabric it is expedient to increase the surface energy of the nonwoven fabric by corona and / or plasma treatment. The plasma or corona treatment is preferably carried out in such a way that the surface is given a surface energy according to ISO 9000 of more than 38 dyn, preferably 38 to 70 dyn, in particular 40 to 60 dyn. It is advantageous that the surface can be made hydrophilic without adding chemicals.

Denkbar ist die antistatische Ausrüstung der Oberfläche, sowie ihre Versehung mit Pflegesubstanzen. Ebenfalls denkbar und vorteilhaft ist die nachträgliche Ausrüstung des Vliesstoffs mit Additiven ausgewählt aus der Gruppe bestehend aus: Farbpigmente, permanent wirkende Antistatika, Flammschutzmittel und/oder die hydrophoben Eigenschaften beeinflussenden Zusätzen. Besonders bevorzugt ist der Einsatz von Flammtschutzmittel. Denkbar ist auch die Ausrüstung mit hydrophilen oder antistatischen Spinnpräparationen, sowie ihre Versehung mit Pflegesubstanzen. Es ist auch denkbar Additive zur Oberflächenmodifikation bereits bei der Endlosfilamenterzeugung in einen Extruder einzugeben. Auch bei einer Färbung ist keine nachträgliche Färbung nötig, da Pigmente bereits bei der Endlosfilamenterzeugung in einen Extruder eingebracht werden können.Conceivable is the antistatic finish of the surface, as well as its inspiration with care substances. Also conceivable and advantageous is the subsequent finishing of the nonwoven fabric with additives selected from the group consisting of: color pigments, permanently acting antistatic agents, flame retardants and / or the hydrophobic properties influencing additives. Particularly preferred is the use of flame retardants. It is also conceivable equipment with hydrophilic or antistatic spin finishes, as well as their Providence with care substances. It is also conceivable additives for surface modification already in the continuous film production in an extruder to enter. Also with a coloring no subsequent coloring is necessary, since pigments already with the Endlosfilamenterzeugung can be introduced into an extruder.

Des Weiteren kann der Vliesstoff einer Bindung oder Veredelung chemischer Art unterzogen werden, wie beispielsweise einer Anti-Pilling-Behandlung, einer Hydrophilierung, einer antistatischen Behandlung, einer Behandlung zur Verbesserung der Feuerfestigkeit und/oder zur Veränderung der taktilen Eigenschaften oder des Glanzes, einer Behandlung mechanischer Art wie Aufrauhen, Sanforisieren, Schmirgeln oder einer Behandlung im Tumbler und/oder einer Behandlung zur Veränderung des Aussehens wie Färben oder Bedrucken.Further, the nonwoven fabric may be subjected to a chemical-type bonding or finishing such as an anti-pilling treatment, a hydrophilization, an antistatic treatment, a refractory-improving treatment and / or a tactile property-changing property, a treatment Mechanical type such as roughening, sanforizing, sanding or a treatment in the tumbler and / or a treatment to change the appearance such as dyeing or printing.

Wie oben bereits erläutert ist es mit dem erfindungsgemäßen Verfahren möglich, Vliesstoffe mit einer dichten Struktur und geringen Porosität herzustellen, die bei geringem Gewicht eine hohe Festigkeit aufweisen. Vorzugsweise weisen die Fasertiter der Mehrkomponentenfasern unabhängig voneinander Werte von 1 dtex bis 4 dtex, vorzugsweise von 1,5 bis 3 dtex, noch bevorzugter von 2 dtex bis 3 dtex, auf.As already explained above, it is possible with the method according to the invention to produce nonwovens with a dense structure and low porosity, which have high strength at low weight. The fiber titres of the multicomponent fibers preferably have independently of one another values of from 1 dtex to 4 dtex, preferably from 1.5 to 3 dtex, more preferably from 2 dtex to 3 dtex.

Es gibt nun verschiedene Möglichkeiten, die Lehre der vorliegenden Erfindung auf vorteilhafte Weise auszugestalten und weiterzubilden. Dazu ist einerseits auf die nachgeordneten Ansprüche, andererseits auf die nachfolgende Erläuterung bevorzugter Ausführungsbeispiele der Erfindung anhand der Zeichnung sowie der Tabellen zu verweisen.There are now various possibilities for embodying and developing the teaching of the present invention in an advantageous manner. For this purpose, on the one hand to the subordinate claims, on the other hand to refer to the following explanation of preferred embodiments of the invention with reference to the drawings and the tables.

Kurzbeschreibung der ZeichnungBrief description of the drawing

In der Zeichnung zeigen

Fig. 1
eine Rasterelektronenmikroskopische(REM)-Aufnahme des Faserquerschnitts des im Ausführungsbeispiel 1, Beispiel 8 hergestellten Vliesstoffs (Kern/Mantel-Filamente / PET/PE) bei 500-facher Vergrößerung
Fig. 2
eine Rasterelektronenmikroskopische(REM)-Aufnahme des Faserquerschnitts eines im Ausführungsbeispiel 2 hergestellten Vliesstoffs (PIE-Filamente / PET/PA) bei 1000-facher Vergrößerung
Fig. 3
den Schallabsorptionsgrad (Alpha Kabine) eines erfindungsgemäßen Spinnvlieses, das gemäß Ausführungsbeispiel 1 hergestellt wurde, im Vergleich zu Evolon 100®
Fig. 4
den Schallabsorptionsgrad eines erfindungsgemäßen Spinnvlieses aus PIE-Filamenten (PET/PA) gemäß den Ausführungsbeispielen 2 und 4 im Vergleich zu einem Spinnvlieses aus SC -Filamenten (PET/CoPET)
Fig. 5
die Polymerabhängigkeit des Schallabsorptionsgrades gemessen im Impedanzrohr nach DIN EN ISO 10345-1
Fig. 6
die Gewichtsabhängigkeit des Schallabsorptionsgrades wird gemessen im Impedanzrohr nach DIN EN ISO 10345-1.
In the drawing show
Fig. 1
a scanning electron micrograph (SEM) of the fiber cross section of the nonwoven fabric produced in Example 1, Example 8 (core / sheath filaments / PET / PE) at 500-fold magnification
Fig. 2
a scanning electron micrograph (SEM) image of the Fiber cross section of a nonwoven fabric produced in Example 2 (PIE filaments / PET / PA) at 1000 times magnification
Fig. 3
the degree of sound absorption (alpha cabin) of a spunbonded nonwoven according to the invention, which was prepared according to Embodiment 1, compared to Evolon 100®
Fig. 4
the degree of sound absorption of a spunbonded nonwoven of PIE filaments (PET / PA) according to the invention in accordance with embodiments 2 and 4 in comparison to a spunbonded nonwoven fabric of SC filaments (PET / CoPET)
Fig. 5
the polymer dependence of the sound absorption coefficient measured in the impedance tube according to DIN EN ISO 10345-1
Fig. 6
the weight dependence of the sound absorption coefficient is measured in the impedance tube according to DIN EN ISO 10345-1.

Ausführung der ErfindungEmbodiment of the invention

Im Folgenden wird die Erfindung anhand der folgenden Ausführungsbeispiele näher erläutert.In the following the invention will be explained in more detail with reference to the following embodiments.

Ausführungsbeispiel 1:Embodiment 1 Herstellung eines Spinnvlieses aus PIE-Filamenten (PET/PA)Production of a Spunbonded Nonwoven from PIE Filaments (PET / PA)

Zur Herstellung der PIE-Filamente werden Polyethylenterephthalat und Polyamid in bekannter Weise mit einem pro Lochdurchsatz von 0,76 g/L min coextrudiert und aerodynamisch verstreckt, wobei 16 PIE-Filamente entstehen. Der Anteil an Polyamid liegt zwischen 30 und 50 Gew.-%. Die Endlosfilamente werden darauf auf einemTo produce the PIE filaments, polyethylene terephthalate and polyamide are coextruded in a known manner with a perforation throughput of 0.76 g / L min and aerodynamically stretched to form 16 PIE filaments. The proportion of polyamide is between 30 and 50 wt .-%. The endless filaments are placed on top of it

Förderband dynamisch abgelegt. Unter dynamischem Ablegen wird verstanden, dass sich die Orientierung der abzulegenden Filamente in Querrichtung gezielt beeinflussen lässt. Darauf erfolgt eine Verfestigung der Endlosfilamente durch eine raue Stahlwalze unter Druck und Wärme. Die Stahlwalze weist Temperaturen zwischen 130 °C und 180 °C bei einem Liniendruck zwischen 50 N/mm und 80 N/mm (Rautiefe von 40 µm) auf. Durch das Beaufschlagen der Endlosfilamente mit Druck und Temperatur wird das Polyamid verschmolzen und das Polyethylenterephthalat in Form von im Querschnitt kuchenstückartigen Elementarfilamenten in einer Matrix aus dem Polyamid verteilt. Hierbei wird ein Spinnvlies mit einem Flächengewicht von 105 g/m2 erhalten. Es entsteht ein Spinnvlies mit dichter Struktur und geringer Porosität bei charakteristischen mechanischen Werten (HZK, WRK, MD:CD Verhältnis). Die Parameter des Versuchs sind in Tabelle 1 dargestellt. Tabelle 1: Ausführungsbeispiel 1, 105 g/m2 PET/PA Vliesstoff, PIE-Filamente, mech. Eigenschaften. Kalandetemp. Kalanderdruck PA-Anteil Gewicht Dicke LD 20cm2/50 Pa LD Grab Tensile MD Dehnung MD Grab Tensile CD Dehnung CD Trap Tear MD Trap Tear CD EN29073 angel. DINEN ISO9073-2 DINEN ISO9237 ASTM D5034 ASTM D5034 ASTM D5034 ASTM D5034 ASTM D5733 ASTM D5733 °C Nmm % g/m2 mm l/m2sec rayls N50mm % N50mm % N N 130 50 30 103,9 0,2 89 562 224,9 43,7 174,2 41,3 186 163,9 130 80 30 104,7 0,22 81 617 252,5 47,8 205 50,1 185,4 170,3 180* 80 30 106,6 0,14 27 1852 3192 46,4 272,2 48,5 90,7 90,6 180* 50 30 106,7 0,15 31 1613 321,8 46,1 206,3 52,3 86,7 84,7 180* 50 50 104,4 0,15 31 1613 273,8 41,6 226,5 44,7 69,2 63,7 180* 80 50 106,3 0,15 25 2000 295,9 40,9 221,1 40,4 54,2 55,6 130 80 50 105,7 0,17 46 1087 244,6 43,6 180 39,9 174,9 155,7 130 50 50 106 0,2 65 769 233,2 44,3 179,1 42,6 87 90 Conveyor belt stored dynamically. Dynamic deposition is understood to mean that the orientation of the filaments to be deposited in the transverse direction can be influenced in a targeted manner. This is followed by solidification of the continuous filaments by a rough steel roller under pressure and heat. The steel roller has temperatures between 130 ° C and 180 ° C at a line pressure between 50 N / mm and 80 N / mm (roughness of 40 microns) on. By subjecting the endless filaments to pressure and temperature, the polyamide is fused and the polyethylene terephthalate is distributed in the form of cross-section cake-like elementary filaments in a matrix of the polyamide. In this case, a spunbonded fabric having a basis weight of 105 g / m 2 is obtained. The result is a spunbonded fabric with dense structure and low porosity at characteristic mechanical values (HZK, WRK, MD: CD ratio). The parameters of the experiment are shown in Table 1. Table 1: Working Example 1, 105 g / m <sup> 2 </ sup> PET / PA nonwoven fabric, PIE filaments, mech. Properties. Kalandetemp. calender pressure PA-share Weight thickness LD 20cm 2/50 Pa LD Tomb Tensile MD Stretching MD Grab Tensile CD Stretching CD Trap Tear MD Trap Tear CD EN29073 angel. DINEN ISO9073-2 DIN ISO9237 ASTM D5034 ASTM D5034 ASTM D5034 ASTM D5034 ASTM D5733 ASTM D5733 ° C Nmm % g / m 2 mm l / m 2 sec rayls N50mm % N50mm % N N 130 50 30 103.9 0.2 89 562 224.9 43.7 174.2 41.3 186 163.9 130 80 30 104.7 0.22 81 617 252.5 47.8 205 50.1 185.4 170.3 180 * 80 30 106.6 0.14 27 1852 3192 46.4 272.2 48.5 90.7 90.6 180 * 50 30 106.7 0.15 31 1613 321.8 46.1 206.3 52.3 86.7 84.7 180 * 50 50 104.4 0.15 31 1613 273.8 41.6 226.5 44.7 69.2 63.7 180 * 80 50 106.3 0.15 25 2000 295.9 40.9 221.1 40.4 54.2 55.6 130 80 50 105.7 0.17 46 1087 244.6 43.6 180 39.9 174.9 155.7 130 50 50 106 0.2 65 769 233.2 44.3 179.1 42.6 87 90

Ausführungsbeispiel 2:Embodiment 2: Herstellung eines Spinnvlieses aus Kem/Mantel-Filamenten (PET/Co-PET)Production of a spunbonded nonwoven made of core / sheath filaments (PET / Co-PET)

Zur Herstellung der Kerrn/Mantel-Filamente werden Polyethylenterephthalat und ein niedrig schmelzender Co-Polyester in bekannter Weise mit einem pro Lochdurchsatz von 0,8 g/L min coextrudiert und aerodynamisch verstreckt, wobei Kern/Mantel-Filamente entstehen. Der Anteil an Co-Polyethylenterephthalat beträgt 20 Gew.-%. Die Endlosfilamente werden darauf auf einem Förderband dynamisch abgelegt. Unter dynamischem Ablegen wird verstanden, dass sich die Orientierung der abzulegenden Filamente in Querrichtung gezielt beeinflussen lässt. Darauf erfolgt eine Verfestigung der Endlosfilamente durch eine raue Stahlwalze unter Druck und Wärme. Die Stahlwalze weist eine Temperatur von 130 °C bei einem Liniendruck von 80 N/mm (Rauhtiefe von 40 µm) auf. Durch das Beaufschlagen der Endlosfilamente mit Druck und Temperatur wird das Polyethylenterephthalat in Form von Elementarfilamenten in einer Matrix aus Co-Polyethylenterephtalat verteilt Anschließend erfolgt eine Nachbehandlung im Heißluftofen bei einer Temperatur von 160 °C.
Hierbei wird ein Spinnvlies mit einem Flächengewicht von 100 g/m2 erhalten. Hierdurch entsteht ein Vliesstoff mit dichter Struktur und geringer Porosität bei charakteristischen mechanischen Werten (HZK, WRK, MD:CD Verhältnis). Die Parameter des Ausführungsbeispiels sind in Tabelle 2 dargestellt Tabelle 2: Ausführungsbeispiel 2, 105 g/m2 PET/CoPET Vliesstoff, SC-Filamente, mech. Eigenschaften. Bindekomponente Bindekomponente Gewicht Dicke LD 5cm2/50Pa Tensile MD Dehnung MD Tensile CD Dehnung CD Tear MD Tear CD EN 29073 angel. DIN EN ISO 9073-2 DIN EN ISO 9237 EN 29073 T3 EN 29073 T3 EN 29073 T3 EN 29073 T3 internal internal % g/m2 mm l/m2sec N/50mm % N/50mm % N N Copolyester 20 105 0,19 112 304 47 292 45 152 148
To produce the Kerrn / sheath filaments, polyethylene terephthalate and a low melting co-polyester are coextruded in a known manner at a hole throughput of 0.8 g / L min and aerodynamically stretched to form core / sheath filaments. The proportion of co-polyethylene terephthalate is 20 wt .-%. The Endless filaments are then dynamically deposited on a conveyor belt. Dynamic deposition is understood to mean that the orientation of the filaments to be deposited in the transverse direction can be influenced in a targeted manner. This is followed by solidification of the continuous filaments by a rough steel roller under pressure and heat. The steel roller has a temperature of 130 ° C at a line pressure of 80 N / mm (roughness of 40 microns) on. By applying the continuous filaments with pressure and temperature, the polyethylene terephthalate is distributed in the form of elementary filaments in a matrix of co-polyethylene terephthalate. Subsequently, a post-treatment in a hot-air oven at a temperature of 160 ° C.
Here, a spunbonded fabric having a basis weight of 100 g / m 2 is obtained. This results in a nonwoven fabric with dense structure and low porosity at characteristic mechanical values (HZK, WRK, MD: CD ratio). The parameters of the embodiment are shown in Table 2 Table 2: Embodiment 2, 105 g / m <sup> 2 </ sup> PET / CoPET nonwoven fabric, SC filaments, mech. Properties. bonding component bonding component Weight thickness LD 5cm 2 / 50Pa Tensile MD Stretching MD Tensile CD Stretching CD Tear MD Tear CD EN 29073 angel. DIN EN ISO 9073-2 DIN EN ISO 9237 EN 29073 T3 EN 29073 T3 EN 29073 T3 EN 29073 T3 internal internal % g / m 2 mm l / m 2 sec N / 50mm % N / 50mm % N N copolyester 20 105 0.19 112 304 47 292 45 152 148

Ausführungsbeispiel 3:Embodiment 3 Herstellung eines Spinnvlieses aus PIE-Filamenten (PET/Polyolefin)Production of a Spunbonded Nonwoven from PIE Filaments (PET / Polyolefin)

Zur Herstellung der PIE-Filamente werden Polyethylenterephthalat und Polyethylen bzw. Polypropylen in bekannter Weise mit einem pro Lochdurchsatz von 0,65 g/L min coextrudiert und aerodynamisch verstreckt. Die Endlosfilamente werden darauf auf einem Förderband dynamisch abgelegt. Unter dynamischem Ablegen wird verstanden, dass sich die Orientierung der abzulegenden Filamente in Querrichtung gezielt beeinflussen lässt. Darauf erfolgt eine Verfestigung der Endlosfilamente durch eine raue Stahlwalze unter Druck und Wärme. Die Stahlwalze weist Temperaturen zwischen 125 °C und 132 °C auf. Durch das Beaufschlagen der Endlosfilamente mit Druck und Temperatur wird das Polyolefin verschmolzen und das Polyethylenterephthalat in Form von im Querschnitt kuchenstückartigen Elementarfilamenten in einer Matrix aus Polyolefin verteilt. Hierbei werden Spinnvliese mit einem Flächengewicht von 100 - 105 g/m2 erhalten. Die Spinnvliese weisen eine dichte Struktur, sowie eine geringe Porosität, bei charakteristischen mechanischen Werten (Höchstzugkraft (HZK), Weiterreißkraft (WRK), Maschinenrichtung (MD):Querrichtung (CD) Verhältnis) auf.
Die Parameter des Ausführungsbeispiels sind in Tabelle 3 dargestellt. Tabelle 3: Ausführungsbeispiel 3, 100 - 105 g/m2 PET/Polyolefin Vliesstoffe, PIE-Filamente, mech. Eigenschaften. Bindekomponente Bindekomponente Gewicht Dicke LD 20cm2/50 Pa LD Grab Tensile MD Dehnung MD Grab Tensile CD Dehnung CD Trap Tear MD Trap Tear CD EN 29073 angel. DINEN ISO9073-2 DINEN ISO 9237 ASTM D5034 ASTM D5034 ASTM D5034 ASTM D5034 ASTM D5733 ASTM D5733 % g/m2 mm l/m2sec rayls N/50mm % N50mm % N N Polyethylen 40 100 0,19 69 725 299 % 69 280 72 152 148 Polypropylen 38 105 17 46 1087 324 57 375 101 185,4 91
To produce the PIE filaments, polyethylene terephthalate and polyethylene or polypropylene are coextruded in a known manner with a perforation throughput of 0.65 g / L min and aerodynamically stretched. The endless filaments are then dynamically deposited on a conveyor belt. Dynamic deposition is understood to mean that the orientation of the filaments to be deposited in the transverse direction can be influenced in a targeted manner. This is followed by solidification of the continuous filaments by a rough steel roller under pressure and heat. The steel roller has temperatures between 125 ° C and 132 ° C. By applying the continuous filaments with pressure and Temperature, the polyolefin is fused and the polyethylene terephthalate distributed in the form of cross-section cake-like elementary filaments in a matrix of polyolefin. This spunbonded nonwovens are obtained with a basis weight of 100 - 105 g / m 2 . The spunbonded nonwovens have a dense structure, as well as a low porosity, with characteristic mechanical values (maximum tensile force (HZK), tear propagation force (WRK), machine direction (MD): transverse direction (CD) ratio).
The parameters of the embodiment are shown in Table 3. Example 3, 100-105 g / m <sup> 2 </ sup> PET / polyolefin nonwoven fabrics, PIE filaments, mech. Properties. bonding component bonding component Weight thickness LD 20cm 2/50 Pa LD Tomb Tensile MD Stretching MD Grab Tensile CD Stretching CD Trap Tear MD Trap Tear CD EN 29073 angel. DINEN ISO9073-2 DIN EN ISO 9237 ASTM D5034 ASTM D5034 ASTM D5034 ASTM D5034 ASTM D5733 ASTM D5733 % g / m 2 mm l / m 2 sec rayls N / 50mm % N50mm % N N polyethylene 40 100 0.19 69 725 299 % 69 280 72 152 148 polypropylene 38 105 17 46 1087 324 57 375 101 185.4 91

Ausführungsbeispiel 4:Embodiment 4 Herstellung eines Spinnvlieses aus PIE-Filamenten (PET/PA)Production of a Spunbonded Nonwoven from PIE Filaments (PET / PA)

Zur Herstellung der PIE-Filamente werden Polyethylenterephthalat und Polyamid in bekannter Weise mit einem pro Lochdurchsatz von 0,76 g/L min coextrudiert und aerodynamisch verstreckt, wobei 16 PIE-Filamente entstehen. Der Anteil an Polyamid liegt bei 30 Gew.%. Die Endlosfilamente werden darauf auf einem Förderband dynamisch abgelegt. Unter dynamischem Ablegen wird verstanden, dass sich die Orientierung der abzulegenden Filamente in Querrichtung gezielt beeinflussen lässt. Darauf erfolgt eine Verfestigung der Endlosfilamente durch eine raue Stahlwalze unter Druck und Wärme. Die Stahlwalze weist Temperaturen von 130 °C bei einem Liniendruck von 50 N/mm (Rautiefe von 40 µm) auf.
Durch das Beaufschlagen der Endlosfilamente mit Druck und Temperatur wird das Polyamid verschmolzen und das Polyethylenterephthalat in Form von im Querschnitt kuchenstückartigen Elementarfilamenten in einer Matrix aus dem Polyamid verteilt. Hierbei werden Spinnvliese mit einem Flächengewicht von 40 - 105 g/m2 erhalten.
To produce the PIE filaments, polyethylene terephthalate and polyamide are coextruded in a known manner with a perforation throughput of 0.76 g / L min and aerodynamically stretched to form 16 PIE filaments. The proportion of polyamide is 30% by weight. The endless filaments are then dynamically deposited on a conveyor belt. Dynamic deposition is understood to mean that the orientation of the filaments to be deposited in the transverse direction can be influenced in a targeted manner. This is followed by solidification of the continuous filaments by a rough steel roller under pressure and heat. The steel roller has temperatures of 130 ° C at a line pressure of 50 N / mm (roughness of 40 microns) on.
By subjecting the endless filaments to pressure and temperature, the polyamide is fused and the polyethylene terephthalate in the form of in cross-section cake-piece elementary filaments distributed in a matrix of the polyamide. This spunbonded nonwovens are obtained with a basis weight of 40 - 105 g / m 2 .

Es entstehen Spinnvliese mit dichter Struktur und geringer Porosität bei charakteristischen mechanischen Werten (HZK, WRK, MD:CD Verhältnis). Die Parameter des Versuchs sind in Tabelle 4 dargestellt. Tabelle 4: Ausführungsbeispiel 4, 40 - 105 g/m2 PET/PA Vliesstoffe, PIE-Filamente, mech. Eigenschaften. Bindekomponente Bindekomponente Gewicht Dicke LD 20cm2/50 Pa LD Grab Tensile MD Dehnung MD Grab Tensile CD Dehnung CD Trap Tear MD Trap Tear CD EN29073 argel. DINEN ISO9073-2 DINEN ISO9237 ASTM D5034 ASTM D5034 ASTM D5034 ASTM D5034 ASTM D5733 ASTM D5733 % g/m2 mm l/m2sec rayls N/50mm % N50mm % N N Polyamid 30 105 0,15 50 1000 423 60 381 62 90 90 Polyamid 30 80 0,2 736 68 323 46 304 59 93 93 Polyamid 30 60 0,15 1122 45 234 42 222 51 63 68 Polyamid 30 40 0,09 1660 30 145 37 135 47 29 33 The result is spunbonded nonwovens with dense structure and low porosity at characteristic mechanical values (HZK, WRK, MD: CD ratio). The parameters of the experiment are shown in Table 4. Table 4: Embodiment 4, 40 - 105 g / m <sup> 2 </ sup> PET / PA nonwoven fabrics, PIE filaments, mech. Properties. bonding component bonding component Weight thickness LD 20cm 2/50 Pa LD Tomb Tensile MD Stretching MD Grab Tensile CD Stretching CD Trap Tear MD Trap Tear CD EN29073 argel. DINEN ISO9073-2 DIN ISO9237 ASTM D5034 ASTM D5034 ASTM D5034 ASTM D5034 ASTM D5733 ASTM D5733 % g / m 2 mm l / m 2 sec rayls N / 50mm % N50mm % N N polyamide 30 105 0.15 50 1000 423 60 381 62 90 90 polyamide 30 80 0.2 736 68 323 46 304 59 93 93 polyamide 30 60 0.15 1122 45 234 42 222 51 63 68 polyamide 30 40 0.09 1660 30 145 37 135 47 29 33

Ausführungsbeispiel 5:Embodiment 5: Vergleich des Schallabsorptionsgrades eines Spinnvlieses aus PIE-Filamenten (PETIPA) mit einem Mikrofaser Spinnvlies (Evolon®)Comparison of the sound absorption coefficient of a spunbonded nonwoven made of PIE filaments (PETIPA) with a microfiber spunbonded nonwoven (Evolon®)

Zur Ermittlung des Schallabsorptionsgrades ausgewählter Varianten des Ausführungsbeispieles 1 im Vergleich zu einem Evolon® Mikrofaserspinnvlies gleichen Gewichtes werden die verschiedenen Materialien einem alpha - Kabinen Test basierend auf ISO 20354:2003 unterzogen. Die entsprechenden Messwerte sind in Tabelle 5 wiedergegeben. Tabelle 5: Ausführungsbeispiel 1, Schallabsorptionsgrad (Alpha Kabine) im Vergleich zu Evolon 100® Terz-Mittenfrequenz Evo100® Beispiel 1 617 rayls Beispiel 1 1087 rayls Beispiel 1 1613 rayls set* 30/80/130 50/80/130 30/50/180 Schallabsorptionsgrad [Hz]

Figure imgb0001
200 0,07 0,03 0 0 250 0,05 0,02 0,03 0,05 315 0,02 0,04 0,06 0,04 400 0,09 0,07 0,09 0,09 500 0,1 0,1 0,13 0,07 630 0,12 0,24 0,2 0,19 800 0,34 0,35 0,34 0,36 1000 0,51 0,53 0,53 0,66 1250 0,77 0,73 0,78 0,73 1600 0,79 0,77 0,84 0,77 2000 0,84 0,91 0,96 0,88 2500 0,86 0,88 1 0,82 3150 0,85 0,88 0,87 0,79 4000 0,89 0,89 0,77 0,74 5000 0,87 0,88 0,86 0,8 * Ausführungsbeispiel 1 ; PA Anteil [%]; Kalanderdruck [N/cm]; Kalandertemperatur [°C] In order to determine the degree of sound absorption of selected variants of embodiment 1 in comparison to an Evolon® microfiber spunbond of the same weight, the various materials are subjected to an alpha-cabin test based on ISO 20354: 2003. The corresponding measured values are shown in Table 5. Table 5: Exemplary embodiment 1, sound absorption coefficient (alpha cabin) compared to Evolon 100® Third center frequency Evo100 ® Example 1 617 rayls Example 1 1087 rayls Example 1 1613 rayls set* 30/80/130 50/80/130 30/50/180 Sound absorption coefficient [Hz]
Figure imgb0001
200 0.07 0.03 0 0 250 0.05 0.02 0.03 0.05 315 0.02 0.04 0.06 0.04 400 0.09 0.07 0.09 0.09 500 0.1 0.1 0.13 0.07 630 0.12 0.24 0.2 0.19 800 0.34 0.35 0.34 0.36 1000 0.51 0.53 0.53 0.66 1250 0.77 0.73 0.78 0.73 1600 0.79 0.77 0.84 0.77 2000 0.84 0.91 0.96 0.88 2500 0.86 0.88 1 0.82 3150 0.85 0.88 0.87 0.79 4000 0.89 0.89 0.77 0.74 5000 0.87 0.88 0.86 0.8
* Embodiment 1; PA share [%]; Calender pressure [N / cm]; Calender temperature [° C]

In Figur 3 ist der Schallabsorptionsgrad (Alpha Kabine) eines erfindungsgemäßen Spinnvlieses, das gemäß Ausführungsbeispiel 1 hergestellt wurde, im Vergleich zu Evolon 100® dargestellt.In FIG. 3 is the sound absorption coefficient (alpha cabin) of a spunbonded nonwoven according to the invention, which was prepared according to Embodiment 1, shown in comparison to Evolon 100®.

Ausführungsbeispiel 6:Embodiment 6: Vergleich des Schallabsorptionsgrades eines Spinnvlieses aus PIE-FilamentenComparison of the sound absorption coefficient of a spunbonded nonwoven made of PIE filaments (PETIPA) mit einem Spinnvlieses aus SC -Filamenten (PET/CoPET)(PETIPA) with a spunbonded nonwoven made of SC filaments (PET / CoPET)

Zur Ermittlung des Schallabsorptionsgrades einer ausgewählten Variante des Ausführungsbeispieles 4 (105 gsm PETIPA PIE) im Vergleich zum Ausführungsbeispiel 2 (100 gsm PET/CoPET SC) werden die verschiedenen Materialien einem Test im Impedanzrohr basierend auf DIN EN ISO 10354:1 unterzogen. Die entsprechenden Messwerte sind in Figur 4 wiedergegeben. In dieser Abbildung wird der Schallabsorptionsgrad eines erfindungsgemäßen Spinnvlieses aus PIE-Filamenten (PET/PA) gemäß den Ausführungsbeispielen 2 und 4 mit einem Spinnvlieses aus SC - Filamenten (PET/CoPET) verglichen. Die Faserabhängigkeit des Schallabsorptionsgrades wird gemessen im Impedanzrohr nach DIN EN ISO 10345-1.To determine the degree of sound absorption of a selected variant of embodiment 4 (105 gsm PETIPA PIE) in comparison to embodiment 2 (100 gsm PET / CoPET SC), the various materials are subjected to a test in the impedance tube based on DIN EN ISO 10354: 1. The corresponding measured values are in FIG. 4 played. In this figure, the sound absorption coefficient of a spunbonded nonwoven fabric according to the invention made of PIE filaments (PET / PA) according to embodiments 2 and 4 is compared with a spunbonded nonwoven fabric of SC filaments (PET / CoPET). The fiber dependence of the sound absorption coefficient is measured in the impedance tube according to DIN EN ISO 10345-1.

Hierbei zeigt sich die hinsichtlich eines erhöhten Schallabsorptionsgrades vorteilhafte Wirkung der PIE Fasergeometrie im direkten Vergleich zu einem SC Spinnvlies. Die Dichte der beiden verschiedenen Bindefaserpolymere liegt dabei im gleichen Bereich (~1,1 g/cm3).In this case, the effect of the PIE fiber geometry, which is advantageous in terms of an increased degree of sound absorption, is shown in direct comparison to a SC spunbonded nonwoven. The density of the two different binder fiber polymers is in the same range (~ 1.1 g / cm 3 ).

Ausführungsbeispiel 7:Embodiment 7: Vergleich des Schallabsorptionsgrades von Spinnvliesen aus PIE-Filamenten mit verschiedenen BindekomponentenComparison of the sound absorption coefficient of spunbonded nonwovens made of PIE filaments with different binding components

Zur Ermittlung des Schallabsorptionsgrades der Varianten des Ausführungsbeispieles 3 (105 gsm PET/Polyolefin PIE) im Vergleich zu einer ausgewählten vergleichbaren Variante des Ausführungsbeispiel 4 (105 gsm PET/PA PIE) werden die verschiedenen Materialien einem Test im Impedanzrohr basierend auf DIN EN ISO 10354:1 unterzogen. Die entsprechenden Messwerte sind in Figur 5 wiedergegeben.To determine the degree of sound absorption of the variants of embodiment 3 (105 gsm PET / polyolefin PIE) in comparison to a selected comparable variant of embodiment 4 (105 gsm PET / PA PIE), the various materials are subjected to a test in the impedance tube based on DIN EN ISO 10354: 1 subjected. The corresponding measured values are in FIG. 5 played.

Hierbei zeigt sich die hinsichtlich eines erhöhten Schallabsorptionsgrades vorteilhafte Wirkung der PIE Fasergeometrie in Kombination mit Polyamid als Bindekomponente im direkten Vergleich zu Polyolefinhaltigen Spinnvlies vor allem in höheren Frequenzbereichen.Here, the advantageous effect of the PIE fiber geometry in combination with polyamide as binding component in terms of an increased degree of sound absorption is shown direct comparison to polyolefin-containing spunbonded fabric, especially in higher frequency ranges.

Ausführungsbeispiel 8:Embodiment 8: Vergleich des Schallabsorptionsgrades von Spinnvliesen aus PIE-Filamenten mit verschiedenen FlächengewichtenComparison of the sound absorption coefficient of spunbonded nonwovens made of PIE filaments with different basis weights

Zur Ermittlung des Schallabsorptionsgrades der Varianten des Ausführungsbeispieles 4 (40 - 105 gsm PET/PA PIE) werden die verschiedenen Materialien einem Test im Impedanzrohr basierend auf DIN EN ISO 10354:1 unterzogen. Die entsprechenden Messwerte sind in Figur 6 wiedergegeben.To determine the degree of sound absorption of the variants of embodiment 4 (40-105 gsm PET / PA PIE), the various materials are subjected to a test in the impedance tube based on DIN EN ISO 10354: 1. The corresponding measured values are in FIG. 6 played.

Hierbei zeigt sich die hinsichtlich eines erhöhten Schallabsorptionsgrades vorteilhafte Wirkung der PIE Fasergeometrie in Kombination mit Polyamid als Bindekomponente im direkten Vergleich zu Polyolefinhaltigen Spinnvlies vor allem in höheren Frequenzbereichen deutlich.Here, the advantageous with regard to an increased degree of sound absorption effect of PIE fiber geometry in combination with polyamide as a binding component in direct comparison with polyolefin-containing spunbonded especially in higher frequency ranges clearly.

Ausführungsbeispiel 9:Embodiment 9: Hitzeabhängiger Zug- und Verformungstest an PET/PA Vliesstoffen aus PIE-FilamentenHeat Dependent Tensile and Deformation Test on PET / PA nonwoven fabrics made from PIE filaments

Zur Ermittlung der Zugeigenschaften der Basismaterialien aus Ausführungsbeispiel 1 unter erhöhter Temperatur werden Varianten in Anlehnung an ASTM D5034 bei einer Prüftemperatur von 160°C auf Höchstzugkraft und Höchstzugkraftdehnung getestet. Die entsprechenden Ergebnisse sind in Tabelle 6 wiedergegeben. Um die Verformungseigenschaften unter Hitze (Tiefziehfähigkeit) zu bewerten, werden fixierte Prüflinge der Substrate in einem einfachen Versuchsaufbau (OTI Test) mittels eines auf 160°C aufgeheizten runden Stempels verformt (Kugeldurchmesser 9 cm, absolute Prüflingsgröße 24 cm Durchmesser, frei verformbare Prüflingsgröße 20 cm). Dabei werden die Weglänge bis zur Beschädigung in cm, die bei einer Verformung von 5% auftretende Kraft in N, sowie die zur Verformung maximal aufzuwendende Kraft in N als Messgrößen zur Bewertung der Materialeigenschaften herangezogen. Eine große Weglänge bei 160°C bei entsprechender (niedriger) Kraft bedeuted demnach positive Verformungseigenschaften unter Hitzeeinwirkung (Tiefziehfähigkeit). Entsprechende Messwerte sind in Tabelle 6 wiedergegeben. Tabelle 6: Hitzeabhängiger Zug- und Verformungstest an Basismaterialien des Ausführungsbeispieles 1, Versuchstemperatur 160°C. Versuchsbedingungen Grab Tensile Dehnung Grab Tensile Dehnung Verformungstest MD MD CD CD PA-Anteil Kalanderdruck Kalande rtemperatur ASTM D5034 ASTM D5034 ASTM D5034 ASTM D5034 OTI Strecke OTI M5% OTI max.Kraft Prüftemp. 160°C 160°C 160°C 160°C 160°C 160°C 160°C % N/mm °C N % N % cm N N 30 50 130 155,9 49,4 170,9 49.5 10,26 262,8 1655 30 80 130 158,2 46,6 152 48,5 10,8 248 1853 30 80 180* 148,1 36,7 145,5 42 11,06 267,5 2016 30 50 180* 167,9 42,4 153,9 42,7 11,02 279,1 2005 50 50 180* 138,6 35,2 131,5 39,1 10,44 255,9 1731 50 80 180* 141,5 33,3 130,9 36,3 10,12 262,3 1629 50 80 130 145,6 40 135,8 41,9 10,66 246,6 1778 50 50 130 147,9 40 156,2 47,2 10,36 249,6 1683 To determine the tensile properties of the base materials of Example 1 under elevated temperature variants are tested based on ASTM D5034 at a test temperature of 160 ° C to maximum tensile strength and maximum tensile elongation at break. The corresponding results are shown in Table 6. In order to evaluate the deformation properties under heat (thermoformability), fixed specimens of the substrates are deformed in a simple test setup (OTI test) by means of a circular stamp heated to 160 ° C. (ball diameter 9 cm, absolute specimen size 24 cm diameter, freely deformable specimen size 20 cm ). there the path length up to the damage in cm, the force in N at a deformation of 5%, as well as the maximum force to be applied for deformation in N are used as parameters for the evaluation of the material properties. A long path length at 160 ° C with corresponding (lower) force therefore means positive deformation properties under heat (thermoformability). Corresponding measured values are shown in Table 6. Table 6: Heat-dependent tensile and deformation test on base materials of the embodiment 1, test temperature 160 ° C. test conditions Grab Tensile strain Grab Tensile strain Crush test MD MD CD CD PA-share calender pressure Calender temperature ASTM D5034 ASTM D5034 ASTM D5034 ASTM D5034 OTI track OTI M5% OTI max.force Prüftemp. 160 ° C 160 ° C 160 ° C 160 ° C 160 ° C 160 ° C 160 ° C % N / mm ° C N % N % cm N N 30 50 130 155.9 49.4 170.9 49.5 10.26 262.8 1655 30 80 130 158.2 46.6 152 48.5 10.8 248 1853 30 80 180 * 148.1 36.7 145.5 42 11.06 267.5 2016 30 50 180 * 167.9 42.4 153.9 42.7 11.02 279.1 2005 50 50 180 * 138.6 35.2 131.5 39.1 10.44 255.9 1731 50 80 180 * 141.5 33.3 130.9 36.3 10.12 262.3 1629 50 80 130 145.6 40 135.8 41.9 10.66 246.6 1778 50 50 130 147.9 40 156.2 47.2 10.36 249.6 1683

Claims (14)

  1. Use of a non-woven fabric comprising at least two polymers, where the melting point of at least one first polymer is above the melting point of at least one second polymer, and where the first polymer takes the form of elemental segments distributed in a matrix made of the second polymer, as acoustic absorption material, where the thickness of the non-woven fabric is from 0.01 mm to 1 mm, preferably from 0.05 mm to 0.5 mm, in particular from 0.1 mm to 0.2 mm, characterized in that the permeability of the non-woven fabric to air is from 20 to 100 l/m2sec, measured in accordance with DIN EN ISO 9237, for a weight per unit area of 100 g/m2, 20 cm2 and 50 Pa.
  2. Use according to Claim 1, characterize in that the airborne acoustic absorption coefficient α(0) of the non-woven fabric, measured in an impedance tube in accordance with DIN EN ISO 10354-1, for a weight per unit area of 100 g/m2, is ≥ 0.6 at a frequency of from 1000 Hz to 4000 Hz.
  3. Use according to one or more of Claims 1 to 2, characterized in that the proportion of the matrix in the non-woven fabric is in the range from 1% by weight to 60% by weight, preferably from 5% by weight to 50% by weight, in particular from 10% by weight to 40% by weight.
  4. Use according to one or more of Claims 1 to 3, characterized in that the difference between the melting points of the first and second polymer is at least 15°C, preferably at least 20°C.
  5. Use according to one or more of Claims 1 to 4, characterized in that, distributed in a matrix made of the second polymer in the non-woven fabric there are elemental segments made of a first polymer, their cross section having the shape of a segment of a circle or of a sector of a circle, or having the shape of a circle or having multilobal shape.
  6. Use according to one or more of Claims 1 to 5, characterized in that the non-woven fabric has been impregnated with at least one binder selected in particular from acrylates and aminoplastics (phenolic resins, melamine resins), styrenebutadiene copolymers, NBR binder systems and/or polyurethanes, and has been provided with a flame retardant.
  7. Use according to one or more of Claims 1 to 6, characterized in that the non-woven fabric has, on at least one side, at least one adhesive component in powder form, preferably made of a thermoplastic polymer, in particular of polyethylene, copolyester or polyamide, and/or has been provided with a flame retardant.
  8. Use according to one or more of Claims 1 to 7, characterized in that the weight per unit area of the non-woven fabric is from 30 g/m2 to 400 g/m2, preferably from 35 g/m2 to 200 g/m2, more preferably from 40 g/m2 to 150 g/m2, in particular from 40 g/m2 to 120 g/m2.
  9. Use according to one or more of Claims 1 to 8 for the production of cladding components for the interior region of automobiles, preferably automobile roof linings, mats, door cladding, column cladding, parcel shelves and/or boot lining, or else wheelhousing lining, and/or for sound deadening in vehicles, aircraft and trains, in the construction sector and in small devices, in particular in the acoustic frequency range from 100 to 5000 Hz.
  10. Use according to one or more of Claims 1 to 9, characterized in that the acoustic absorption material is produced by a process comprising the following steps:
    - provision of multicomponent fibres which comprise at least two polymers with different melting points,
    - surface bonding of the multicomponent fibres by compressive heat treatment at a temperature of from 100°C to 300°C and at a pressure of from 40 N/mm to 150 N/mm, in such a way that at least one first polymer in the form of elemental segments is distributed in a matrix made of at least one second polymer.
  11. Use according to one or more of Claims 1 to 10, characterized in that the multicomponent fibres comprise a first polymer component and a second polymer component, where
    - the arrangement has the first polymer component in a first zone and the second polymer component in a second zone across the cross section of the multicomponent fibres, where
    - both polymer components extend in a longitudinal direction of the multicomponent fibres, where
    - the melting point of the first polymer component is above the melting point of the second polymer component, and where the first zone comprises the first polymer component in the form of at least two separable elemental segments.
  12. Use according to Claim 11, characterized in that multicomponent fibres are PIE fibres, hollow-PIE fibres, core/sheath fibres, multilobal fibres or side-by-side fibres, where these are composed of at least two polymers with different melting points.
  13. Use according to one of more of Claims 10 to 12, characterized in that the surface bonding of the multicomponent fibres is carried out via exposure to a pressure of from 40 N/mm to 100 N/mm, preferably from 60 N/mm to 80 N/mm, in particular from 50 N/mm to 90 N/mm.
  14. Use according to one or more of Claims 10 to 13, characterized in that the surface bonding of the multicomponent fibres is carried out via exposure to a temperature above 100 °C, preferably from 100°C to 300°C, more preferably from 110°C to 200°C, in particular from 120°C to 180°C.
EP12006446.4A 2011-09-20 2012-09-14 Sound absorbing material Active EP2573244B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP12006446.4A EP2573244B1 (en) 2011-09-20 2012-09-14 Sound absorbing material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP11007649.4A EP2573243B1 (en) 2011-09-20 2011-09-20 Non-woven material with a matrix containing elementary filaments
EP12006446.4A EP2573244B1 (en) 2011-09-20 2012-09-14 Sound absorbing material

Publications (2)

Publication Number Publication Date
EP2573244A1 EP2573244A1 (en) 2013-03-27
EP2573244B1 true EP2573244B1 (en) 2015-02-18

Family

ID=46826217

Family Applications (3)

Application Number Title Priority Date Filing Date
EP11007649.4A Active EP2573243B1 (en) 2011-09-20 2011-09-20 Non-woven material with a matrix containing elementary filaments
EP12765995.1A Active EP2758580B1 (en) 2011-09-20 2012-09-11 Non-woven material with a matrix containing elementary filaments
EP12006446.4A Active EP2573244B1 (en) 2011-09-20 2012-09-14 Sound absorbing material

Family Applications Before (2)

Application Number Title Priority Date Filing Date
EP11007649.4A Active EP2573243B1 (en) 2011-09-20 2011-09-20 Non-woven material with a matrix containing elementary filaments
EP12765995.1A Active EP2758580B1 (en) 2011-09-20 2012-09-11 Non-woven material with a matrix containing elementary filaments

Country Status (2)

Country Link
EP (3) EP2573243B1 (en)
WO (1) WO2013041193A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014110585A1 (en) * 2014-07-28 2016-01-28 Bundesdruckerei Gmbh Data sheet and method for its production and a value and / or security document
CN110462124B (en) * 2017-03-28 2023-01-31 曼·胡默尔有限公司 Spunbonded nonwoven material, object comprising a spunbonded nonwoven material, filter medium, filter element and use thereof
US11541829B2 (en) 2020-06-18 2023-01-03 Freudenberg Performance Materials Lp Acoustical baffle
CN114622341A (en) * 2020-12-15 2022-06-14 浙江青昀新材料科技有限公司 Polyethylene non-woven fabric and application thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009085679A1 (en) * 2007-12-28 2009-07-09 3M Innovative Properties Company Composite nonwoven fibrous webs and methods of making and using the same

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4039711A (en) * 1971-06-07 1977-08-02 The Kendall Company Non-woven fabrics
US20050039836A1 (en) * 1999-09-03 2005-02-24 Dugan Jeffrey S. Multi-component fibers, fiber-containing materials made from multi-component fibers and methods of making the fiber-containing materials
DE10009281C1 (en) 2000-02-28 2001-03-22 Freudenberg Carl Fa Sound-damping fleece especially suited for vehicle interior cladding, is made of fine melt-spun fibers, split to microfilaments following pre-solidification
US20030041953A1 (en) * 2001-08-31 2003-03-06 Bba Nonwovens Simpsonville, Inc. Method of making a bonded nonwoven web
KR100561275B1 (en) * 2002-10-12 2006-03-14 에스케이케미칼주식회사 Fiber board with thermally-treated surface
US7452832B2 (en) * 2003-12-15 2008-11-18 E.I. Du Pont De Nemors And Company Full-surface bonded multiple component melt-spun nonwoven web
US7438777B2 (en) 2005-04-01 2008-10-21 North Carolina State University Lightweight high-tensile, high-tear strength bicomponent nonwoven fabrics
WO2008149737A1 (en) * 2007-05-31 2008-12-11 Toray Industries, Inc. Nonwoven fabric for cylindrical bag filter, process for producing the same, and cylindrical bag filter therefrom
DE102007049031A1 (en) * 2007-10-11 2009-04-16 Fiberweb Corovin Gmbh polypropylene blend

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009085679A1 (en) * 2007-12-28 2009-07-09 3M Innovative Properties Company Composite nonwoven fibrous webs and methods of making and using the same

Also Published As

Publication number Publication date
EP2573243B1 (en) 2015-02-11
EP2573244A1 (en) 2013-03-27
WO2013041193A1 (en) 2013-03-28
EP2758580A1 (en) 2014-07-30
EP2758580B1 (en) 2016-11-02
EP2573243A1 (en) 2013-03-27

Similar Documents

Publication Publication Date Title
DE60031546T2 (en) COMPOSITE NONWOVEN MATERIAL
EP0942057B2 (en) Adhesive tape for bundling cables
EP0435001B1 (en) Laminat
DE102005006234B4 (en) Self-supporting, airborne sound absorbing engine compartment trim for motor vehicles
EP2573244B1 (en) Sound absorbing material
EP1261766B1 (en) Sound absorbing material
EP2115201B1 (en) High-strength, light non-woven of spunbonded non-woven, method for the production and use thereof
EP1707666A1 (en) Synthetic leather, production method thereof and use thereof
EP1304410B1 (en) Laminate with improved properties
EP3052688B1 (en) Fabric sheet with high thermal stability
WO2010066894A2 (en) Method for producing laid fibre fabrics, and laid fibre fabrics and their use
DE102015009370A1 (en) Aerogelvliesstoff
DE60005527T2 (en) HYDRODYNAMICALLY GROUNDED CARRIER RAILS AND THEIR USE
WO1997019813A1 (en) Flat composite insulating system and method of producing said system
DE102004030393A1 (en) Production of 3-dimensional molded fleece, used as thermal insulation or reinforcement, involves molding mechanically consolidated fleece in z-direction by treating one side with high-pressure fluid jets on small-mesh perforated screen
EP1927639B1 (en) Technical non-woven adhesive tape
DE10007556C2 (en) Carrier component for molded parts
EP2183418B1 (en) Method for the production of a tear propagation-resistant textile sheet material, tear propagation-resistant textile sheet material and use thereof
DE19952432B4 (en) laminate
DE102004022464A1 (en) Lining panel for automotive body component e.g. hood or trunk lid has a coating of vertically presented polyester pole fibres
WO2005021853A2 (en) Thermoformable supporting component
WO2004008059A1 (en) Ballistic protective textile
DE19955730C2 (en) Hydrodynamically connected carrier webs and their use
DE19935408A1 (en) Two or three layer laminates of synthetic non-woven fabric and woven glass fabric or scrim, for use in bituminized roofing webs and sealing membranes, in which the layers are bonded by needling and consolidated with a binder
EP3297871B1 (en) Firewall

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20130926

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

17Q First examination report despatched

Effective date: 20140103

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140825

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 710720

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150315

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012002273

Country of ref document: DE

Effective date: 20150402

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150218

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150218

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150518

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150218

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150218

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150618

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150519

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150218

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150218

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150218

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150218

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150218

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150218

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150218

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502012002273

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150218

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150218

26N No opposition filed

Effective date: 20151119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150218

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150914

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150914

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150930

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150218

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150218

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120914

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150930

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150218

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150218

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150218

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 710720

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170914

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170914

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230912

Year of fee payment: 12

Ref country code: NL

Payment date: 20230921

Year of fee payment: 12

Ref country code: GB

Payment date: 20230920

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230922

Year of fee payment: 12

Ref country code: DE

Payment date: 20230928

Year of fee payment: 12