EP2571622B1 - Séparateur à cyclone pourvu de deux sorties de gaz et procédé de séparation - Google Patents

Séparateur à cyclone pourvu de deux sorties de gaz et procédé de séparation Download PDF

Info

Publication number
EP2571622B1
EP2571622B1 EP10721542.8A EP10721542A EP2571622B1 EP 2571622 B1 EP2571622 B1 EP 2571622B1 EP 10721542 A EP10721542 A EP 10721542A EP 2571622 B1 EP2571622 B1 EP 2571622B1
Authority
EP
European Patent Office
Prior art keywords
gas
flow
gas outlet
separation chamber
cyclone separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP10721542.8A
Other languages
German (de)
English (en)
Other versions
EP2571622A1 (fr
Inventor
Wilson Kenzo Huziwara
Celso Murilo Dos Santos
Rogério MICHELAN
Emanuel Freire Sandes
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Petroleo Brasileiro SA Petrobras
Original Assignee
Petroleo Brasileiro SA Petrobras
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Petroleo Brasileiro SA Petrobras filed Critical Petroleo Brasileiro SA Petrobras
Publication of EP2571622A1 publication Critical patent/EP2571622A1/fr
Application granted granted Critical
Publication of EP2571622B1 publication Critical patent/EP2571622B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C3/00Apparatus in which the axial direction of the vortex flow following a screw-thread type line remains unchanged ; Devices in which one of the two discharge ducts returns centrally through the vortex chamber, a reverse-flow vortex being prevented by bulkheads in the central discharge duct
    • B04C3/06Construction of inlets or outlets to the vortex chamber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C5/00Apparatus in which the axial direction of the vortex is reversed
    • B04C5/12Construction of the overflow ducting, e.g. diffusing or spiral exits
    • B04C5/13Construction of the overflow ducting, e.g. diffusing or spiral exits formed as a vortex finder and extending into the vortex chamber; Discharge from vortex finder otherwise than at the top of the cyclone; Devices for controlling the overflow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C5/00Apparatus in which the axial direction of the vortex is reversed
    • B04C5/14Construction of the underflow ducting; Apex constructions; Discharge arrangements ; discharge through sidewall provided with a few slits or perforations

Definitions

  • This invention is concerned with equipment and methods for separating solid particles from gas-particle suspensions. More particularly, the invention relates to cyclone separators, in which a tangential force component is imparted to the gas-particle suspension.
  • Cyclone separators in various different constructional forms are used in a number of apparatuses for separating impurities contained in gaseous fluids, such as solid particles or dust, droplets of liquids or similar material.
  • Cyclone separators are also widely used for separating and for removing particles from the air or from process gases. They are also used as chemical reactors, heat exchangers and for drying granular materials and combustion of oil. In petroleum refineries, they are used for ensuring the continuity of the process for obtaining products, retaining a catalyst and impeding its emission into the atmosphere, preventing loss and pollution, so as to guarantee the continuity of the process.
  • the great applicability of cyclone separators is at least in part due to their low operating cost, easy maintenance and the possibility of withstanding severe temperature and pressure conditions.
  • Cyclone separators can be used in various different arrangements, in series or in parallel. In some processes, all of the gaseous fluid produced, which shall hereinafter be called gas-particle suspension, passes through the separator. In other processes, cyclone separators can be used as part of a waste gas cleaning system.
  • the particles are separated by a process of centrifugation of the gas-particle suspension.
  • This phenomenon occurs with the induction of a vortical flow inside the cyclone separator due to the significant tangential force component with which the suspension enters the cyclone chamber, which is generally of a conical-cylindrical shape.
  • the solid particles Being of greater density than the gases, the solid particles have a greater tendency to remain in the trajectory perpendicular to the vortical flow, due to centrifugal force and thus to collide with the walls of the chamber.
  • the particles lose speed and tend to separate from the flow, falling towards the bottom of the chamber, from where they are removed.
  • the gas separated is sucked out through the outlet pipe of the cyclone, after moving in several revolutions through the chamber and in a curve with an accentuated angle towards the outlet pipe in the upper part.
  • Cyclone separators of gas-particle suspensions are generally of the reverse flow type, which are the most conventional ones for this type of separation. However, unidirectional flow cyclones are also used, principally in applications where the concentration of particles in the suspension is low.
  • the gas outlet pipe In reverse flow cyclones, the gas outlet pipe, usually called the finder or vortex pipe, is fixed and located in the upper part of the cyclone. During operation, there is a need for the total reversal of the vortical flow of the gas so that it is sucked by the outlet pipe.
  • unidirectional flow cyclones also known as "uniflow" cyclones
  • the gas outlet pipe is located in the lower part of the cyclone separator, there consequently not being a need for reversal of the vortical flow.
  • the unidirectional flow separator typically has a separation zone length shorter than that of a separator with reverse flow, this being the reason why the unidirectional flow separator is usually efficient only in gas-particle suspensions with low concentrations of solids.
  • the flow reversal zone is the region in which the greatest loss of collection efficiency of the cyclone separator occurs, due to the instability existing at the flow reversal apex, which is the moment at which the vortical flow is reversed from descending to ascending. This results in lateral displacements of the vortical flow, which causes entrainment of solids previously separated and erosion of the cyclone separator walls.
  • Patent US 4,238,210 discloses a unidirectional cyclone separator which comprises an internal duct, which forms a flow path, with a central body provided with swirl-generating vanes extending outwardly.
  • the duct is enclosed by a collecting chamber and the vanes have collecting ends and channels which open through the wall of the duct to the inside of the collecting chamber. Downstream from the swirl-generating vanes, there are outlet slots which are transverse with respect to the gas flow.
  • this equipment is efficient only for suspensions with low concentrations of particles.
  • Patent application PI0803051-0 discloses a cyclone separator and a gas-particle separation method with two separation zones in sequence, one with reverse flow, in which a portion of the gas of the gas-particle suspension with a high concentration of solids is separated and a subsequent, unidirectional, flow separation zone in which the other portion of the gas of the suspension, with a low concentration of solids, is separated.
  • the cyclone separator is provided with two outlet pipes, one being fastened axially to the upper part and the other one being fastened axially to the lower part, generating the separation zones with reverse flow and unidirectional flow respectively.
  • the apparatus and method described below have advantages for the separation of gas-particle suspensions, using reverse flow cyclones, with respect to the devices and methods known in the prior art, for example, the apparatus and method described below prevents the problems of loss of collection efficiency and erosion in the region of reversal of the vortical flow from descending to ascending.
  • This invention relates to a cyclone separator for a gas-particle suspension.
  • the invention also relates to a separation method in which a separator as described herein is used.
  • a separator as described herein is used.
  • a gas-particle mixture or suspension may be a gas-solid mixture or suspension, a gas-liquid mixture or suspension, or a gas-solid-liquid mixture or suspension.
  • a cyclone separator for separating particles from a mixture of gas and particles, according to claim 1.
  • the mass flow rate of gas exiting via the reverse flow gas outlet is over 70% of the total mass flow rate of gas exiting from the cyclone separator.
  • the mass flow rate of gas exiting via the reverse flow gas outlet is over 95% of the total mass flow rate of gas exiting from the cyclone separator.
  • the diameter of the unidirectional gas flow outlet is less than 30% of the diameter of the reverse flow gas outlet.
  • the diameter of the unidirectional gas flow outlet is in the range of from 1% to 5% of the diameter of the reverse flow gas outlet.
  • the shape of a cross section of the reverse flow gas outlet perpendicular to the gas flow direction is circular; and/or the shape of a cross section of the unidirectional flow gas outlet perpendicular to the gas flow direction is circular.
  • the reverse flow gas outlet extends into the separation chamber so as to draw separated gas from inside the separation chamber; and/or the unidrectional flow gas outlet extends into the separation chamber so as to draw separated gas from inside the separation chamber.
  • the cyclone separator further comprises a solids outlet configured to allow particles, which have been separated from the gas, to exit from the separation chamber, the solids outlet optionally being aligned with the unidirectional flow gas outlet.
  • At least a part of the separation chamber has an axial centreline, and the inlet either:
  • At least a part of the separation chamber has an axial centreline, and the inlet is offset from the axial centreline.
  • the cyclone separator further comprises a second inlet configured to allow the mixture of particles and gas into the separation chamber.
  • At least a part of the separation chamber has an axial centreline and the second inlet is either:
  • the separation chamber has an inlet end
  • the gas exits the reverse flow gas outlet in a first exit flow direction; and the gas exits the unidirectional flow gas outlet in a second exit flow direction, the first exit flow direction being different to the second exit flow direction.
  • the first exit flow direction is substantially opposite to the second exit flow direction.
  • At least a portion of the separation chamber is radially symmetric about an axial centreline of the separation chamber.
  • the reverse flow gas outlet comprises a pipe having its centreline substantially aligned with the axial centreline of the separation chamber
  • the unidirectional flow gas outlet comprises a pipe having its centreline substantially aligned with the axial centreline of the separation chamber.
  • At least a portion of the inner wall of the separation chamber is frusto-conical.
  • a method of separating particles from a mixture of gas and particles using a cyclone separator as described herein there is provided a method of separating particles from a mixture of gas and particles using a cyclone separator as described herein.
  • the mass flow rate of gas removed through the reverse flow gas outlet is over 70% of the total mass flow rate of gas exiting from the cyclone separator.
  • the mass flow rate of gas removed through the reverse flow gas outlet is over 95% of the total mass flow rate of gas exiting from the cyclone separator.
  • the gas that is not removed through the reverse flow gas outlet is removed through the unidirectional flow gas outlet.
  • the position at which the flow direction is reversed is inside the unidirectional flow gas outlet.
  • the portion of gas removed via the reverse flow gas outlet is removed in a substantially opposite direction to the portion of gas removed via the unidirectional flow gas outlet.
  • the step of separating the mixture comprises centrifugal separation.
  • the method further comprises removing solids separated from the mixture.
  • the concentration of particles in the mixture provided to the separation chamber is greater than 1 gm -3 .
  • a reverse cyclone separator of gas-solid suspension which comprises a cyclone chamber, with at least one inlet, an annular space for the collection of separated particles and two outlet pipes, one pipe being fastened axially to the upper part of the cyclone chamber and the other pipe being fastened axially to the lower part of the chamber and with an inside diameter in the range between 1% and 5% of the inside diameter of the upper pipe, both pipes having an axial extension into the chamber.
  • a method of gas-particle separation using the separator described above which comprises the stages of letting the gas-particle suspension into the chamber by means of the inlet, sucking out the gas separated, by means of the two pipes at the same time and, through an annular space, removing the separated solid particles, characterised in that a fraction of gas in proportions exceeding 95% is sucked out by the upper pipe and the complementary fraction is sucked out by the lower pipe, so as to maintain the reversal apex inside the lower pipe and stabilise the vortical flow.
  • This method may stabilise the ascending vortical flow.
  • the descending flow may be stabilised by the wall of the cyclone chamber.
  • the method may also comprise imparting a tangential force component to the gas-particle suspension so as to separate the suspension.
  • the method may let the gas-solid suspension into the cyclone chamber by means of the (first) inlet and at least one additional inlet positioned symmetrically with the (first) inlet.
  • This invention discloses a cyclone separator for a gas-particle suspension. Also disclosed is a separation method in which the separator is capable of maintaining the stability of the ascending vortical flow during the separation process.
  • the cyclone separator comprises a cyclone chamber (1) (which may be referred to as a separation chamber (1)), with at least one inlet (11a), an annular space (13) for the collection of separated particles and two outlet pipes, one (upper) pipe (2) being fastened axially to the upper part of the cyclone chamber (1) and the other (lower) pipe (3) being fastened axially to the lower part of the chamber (1), both pipes having an axial extension into the chamber (1).
  • the lower pipe (3) (which may also be referred to as an unidirectional flow gas outlet (3)) has an inside diameter that is smaller, for example significantly and/or considerably smaller, than the inside diameter of the upper pipe (2) (which may also be referred to as an reverse flow gas outlet (2)).
  • the inside diameter of the lower pipe (3) may be in the range of from 0.1% to less than 50% of the inside diameter of the upper pipe (3).
  • the inside diameter of the lower pipe (3) may be in the range of from 1% to 40% of the inside diameter of the upper pipe (2).
  • the inside diameter of the lower pipe (3) may be in the range of from 2% to 35% of the inside diameter of the upper pipe (2).
  • the inside diameter of the lower pipe (3) may be in the range of from 5% to 30% of the inside diameter of the upper pipe (2).
  • the inside diameter of the lower pipe (3) may be in the range of from 10% to 25% of the inside diameter of the upper pipe (2), for example around 22.4%.
  • the inside diameter of the lower pipe (3) may be in the range of from 15 to 20% of the inside diameter of the upper pipe (2).
  • the upper pipe (2) and the lower pipe (3) may take any suitable shape, for example in cross section.
  • the cross sectional shape of the upper pipe (2) is circular and the cross sectional shape of the lower pipe (3) is circular.
  • any cross sectional shape may be used for the upper pipe (2) and the lower pipe (3).
  • the cross sectional shape could be a polygon, such as a regular polygon, for example a triangle, a square, a pentagon, or a hexagon.
  • the cross sectional shape may be irregular.
  • the cross sectional shape of the upper pipe (2) and the lower pipe (3) may be the same as each other or different to each other.
  • the cross sectional shape and/or dimension of one or both of the upper pipe (2) and the lower pipe (3) may be the same along its length, or may change along its length. Indeed, although the term "pipe” is used herein with regard to the upper pipe (2) and the lower pipe (3), it will be appreciated that any suitable outlets (for example gas outlets) configured to allow gas to exit the separation chamber (1) could be used at the location of the upper pipe (2) and the lower pipe (3).
  • the flow area of the lower pipe (3) may be less than 50% of the flow area of the upper pipe (2).
  • the flow area of the lower pipe (3) may be in the range of from 0.1% to 30% of the flow area of the upper pipe (2).
  • the flow area of the lower pipe (3) may be in the range of from 0.2% to 20% of the flow area of the upper pipe (2).
  • the flow area of the lower pipe (3) may be in the range of from 0.5% to 10% of the flow area of the upper pipe (2).
  • the flow area of the lower pipe (3) may be in the range of from 1% to 5% of the flow area of the upper pipe (2).
  • the flow area of the lower pipe (3) may be around 2.5% of the flow area of the upper pipe (2).
  • the mass flow rate of gas extracted through the upper pipe (2) may be greater than the mass flow rate of gas extracted through the lower pipe (3).
  • This may be achieved by any suitable means for example, it may be achieved by having the cross sectional area (which may be referred to as the flow area) of the upper pipe (2) (or reverse flow gas outlet) greater than the cross sectional area of the lower pipe (3) (or unidirectional flow gas outlet).
  • the cross sectional area of the upper pipe (2) may be significantly and/or considerably greater than the cross sectional area of the lower pipe (3). In this case, the vast majority of the gas (from which the particles have been separated) is extracted through the upper pipe (2), such that the cyclone separator acts as, or acts substantially as, a reverse flow cyclone separator.
  • the diameter of the lower pipe (3) may be less than 50% of the diameter of the upper pipe (2). In an embodiment, the diameter of the lower pipe (3) may be in the range of from 0.1% to 30% of the diameter of the upper pipe (2). In an embodiment, the diameter of the lower pipe (3) may be in the range of from 0.2% to 20% of the diameter of the upper pipe (2). In an embodiment, the diameter of the lower pipe (3) may be in the range of from 0.5% to 10% of the diameter of the upper pipe (2). In an embodiment, the diameter of the lower pipe (3) may be in the range of from 1% to 5% of the diameter of the upper pipe (2). In an embodiment, the diameter of the lower pipe (3) may be around 2.5% of the diameter of the upper pipe (2).
  • any suitable location along the respective outlet may be used.
  • the cross sectional area and/or diameter and/or shape at the entrance to the respective outlet may be used.
  • the cross-sectioned area and/or diameter and/or shape at the point along the respective outlet where the suction pressure acts on the exit may be used.
  • the method of gas-particle separation using the separator described above comprises the stages of letting the gas-particle suspension into the chamber (1) by means of the inlet (11a), and imparting a tangential force component to the gas-particle suspension.
  • the tangential force component of the gas-particle suspension may be provided by swirling, or rotating, the gas-particle suspension inside the chamber (1) by any suitable means.
  • the gas-particle suspension may be separated, or substantially separated, for example into a gaseous (or predominantly gaseous) phase or portion, and a particle (or predominantly particle) phase or portion.
  • the particle phase may be solid, liquid, or a mixture of solid and liquid.
  • the method may include removing (for example sucking out) the gas separated from the gas-particle suspension by means of the upper pipe (2) and the lower pipe (3).
  • the gas may be sucked out, or removed, from the chamber (1), from both the upper pipe (2) and the lower pipe (3) at the same time.
  • the separated particles (for example the solid phase, or portion) may be removed through a particles (or solids) outlet.
  • a solids outlet is shown as an annular solids outlet (13).
  • a higher fraction of gas may be removed, or sucked out, by the upper pipe (2). This may, for example, maintain the position of the reversal apex inside the lower pipe (3) and thereby stabilise the vortical flow.
  • more than 50% of the gas may be removed, or sucked out, by the upper pipe (2).
  • the remainder may be sucked out by the lower pipe (3).
  • the proportion of gas removed, or sucked out, by the upper pipe (2) is in the range of from 60% to 99%, the remainder being removed, or sucked out, by the lower pipe (3).
  • the proportion of gas removed, or sucked out, by the upper pipe (2) is in the range of from 70% to 98%, the remainder being removed, or sucked out, by the lower pipe (3).
  • the proportion of gas removed, or sucked out, by the upper pipe (2) is in the range of from 80% to 97%, the remainder being removed, or sucked out, by the lower pipe (3).
  • the proportion of gas removed, or sucked out, by the upper pipe (2) is in the range of from 90% to 96%, the remainder being removed, or sucked out, by the lower pipe (3).
  • the proportion of gas that is removed, or sucked out, by the upper pipe (2) exceeds 95%, with the remainder being removed, or sucked out by the lower pipe (3).
  • the relative portions removed from the two gas outlets described above may equate to the relative mass flow rates in the two outlets.
  • the upper pipe (2) is provided at the same end of the separation chamber (1) as the inlet (11a) of the two-phase mixture (which may also be referred to as a gas-particle suspension or mixture).
  • the separation chamber (1) may have a longitudinal axis, and the upper pipe (2) may be provided at, or towards, the same axial end of the separation chamber (1) as the inlet (11a).
  • the lower pipe (3) may be provided at an end of the separation chamber (1) that is opposite (for example at the opposite end on a longitudinal axis of the separation chamber (1)) to the inlet (11a).
  • the upper pipe (2) in operation, receives a portion of the gas whose direction has been reversed inside the separation chamber (1).
  • the upper pipe (2) may be referred to as a reverse flow gas outlet (2), as stated above.
  • the upper pipe (2) may be referred to as an upper outlet (2) or a first gas outlet (2).
  • the lower pipe (3) in operation, is configured to receive a portion of the gas from the separation chamber (1) whose direction has not been reversed in the separation chamber (1).
  • the lower pipe (3) may be configured such that the gas-particle suspension flows from the inlet (11a) to the lower pipe (3) without having its direction (for example axial direction) reversed, with at least some of the particles being separated from the gas-particle suspension as it flows from the inlet (11a) to the lower pipe (3).
  • the lower pipe (3) may be referred to as a unidirectional flow gas outlet (3), as stated above.
  • the lower pipe (3) may be referred to as a lower outlet (3) or as a second gas outlet (3).
  • the reversal of the vortical flow from descending towards the lower pipe (3) to ascending towards the upper pipe (2) can be controlled so as to be far removed from the internal walls of the separation chamber (1).
  • the apex (or position) of the reversal of the vortical flow from descending towards the lower pipe (3) to ascending towards the upper pipe (2) may be inside the lower pipe (3), or near to the entrance of the lower pipe (3). This may be achieved, for example, by setting the relative diameters and/or areas of the upper pipe (2) and the lower pipe (3) to be in the proportions described herein.
  • the position or apex of the reversal of the vortical flow may be controlled in embodiments of the present invention by controlling the relative fraction of gas removed by the upper pipe (2) and the lower pipe (3) (for example the relative mass flow rates through the the upper pipe (2) and the lower pipe (3)) to be in the proportions described herein.
  • the present invention can reduce entrainment, by the gas, of solid particles that have already been separated from the gas-particle suspension.
  • An additional, or alternative, advantage is that by controlling the apex (or position) of the reversal of the vortical flow to be far away from the internal walls of the separation chamber (1), erosion of the separation chamber internal walls can be reduced or prevented.
  • This gas-particle separation apparatus and method of the present invention is suitable for separating suspensions with a wide range of concentrations of solid.
  • the method may be particularly suitable for separating suspensions with concentrations of solid exceeding 1 g/m 3 .
  • the method and apparatus of the present invention is capable of being used individually or as a stage of equipment which has multiple cyclone separators connected together, for example in series.
  • the cyclone separator of the present invention may be provided with one inlet (11a) through which the gas-particle suspension enters into the separation chamber (1).
  • Other embodiments may have more than one inlet through which the gas-particle suspension enters the separation chamber (1).
  • Fig. 1 shows an example of the present invention which has one inlet (11a) and an additional inlet (11b).
  • Fig.2 also shows such an embodiment.
  • the additional inlet (11 b) is positioned with its axis diametrically opposite to the axis of the first inlet (11a).
  • the additional inlet (11b) is positioned to be diametrically opposite to, or symmetric with, the first inlet (11a).
  • the apparatus and method of the present invention have a number of advantages over the prior art.
  • the apparatus and method of the present invention have the following advantages at least:

Landscapes

  • Cyclones (AREA)

Claims (15)

  1. Séparateur à cyclone pour séparer des particules d'un mélange de gaz et de particules, ledit séparateur à cyclone comprenant :
    une chambre de séparation (1) dans laquelle les particules sont séparées du gaz ;
    une entrée configurée pour fournir le mélange de particules et de gaz à la chambre de séparation ;
    une sortie de gaz d'écoulement inverse (2) positionnée pour recevoir une partie du gaz, de laquelle les particules ont été séparées, de la chambre de séparation, la direction de cette partie du gaz ayant été inversée dans la chambre de séparation, la sortie de gaz d'écoulement inverse s'étend dans la chambre de séparation de manière à aspirer le gaz séparé de l'intérieur de la chambre de séparation ; et
    une sortie de gaz d'écoulement unidirectionnel (3) positionnée pour recevoir une autre partie du gaz, de laquelle les particules ont été séparées, de la chambre de séparation, la direction de cette partie du gaz n'ayant pas été inversée dans la chambre de séparation,
    caractérisé en ce que :
    la section d'écoulement de la sortie de gaz d'écoulement inverse est plus grande que la section d'écoulement de la sortie de gaz d'écoulement unidirectionnel, de sorte que, en fonctionnement, le débit massique du gaz sortant par la sortie de gaz d'écoulement inverse est supérieur au débit massique du gaz sortant par la sortie de gaz d'écoulement unidirectionnel.
  2. Séparateur à cyclone selon la revendication 1, dans lequel :
    en fonctionnement, le débit massique du gaz sortant par la sortie de gaz d'écoulement inverse dépasse 70 % du débit massique total du gaz sortant du séparateur à cyclone ; ou
    en fonctionnement, le débit massique du gaz sortant par la sortie de gaz d'écoulement inverse dépasse 95 % du débit massique total du gaz sortant du séparateur à cyclone.
  3. Séparateur à cyclone selon l'une quelconque des revendications précédentes, dans lequel :
    le diamètre de la sortie d'écoulement de gaz unidirectionnel est inférieur à 30 % du diamètre de la sortie de gaz d'écoulement inverse ; et/ou
    le diamètre de la sortie d'écoulement de gaz unidirectionnel est dans la plage de 1 % à 5 % du diamètre de la sortie de gaz d'écoulement inverse.
  4. Séparateur à cyclone selon l'une quelconque des revendications précédentes, dans lequel :
    la forme d'une section transversale de la sortie de gaz d'écoulement inverse perpendiculaire à la direction d'écoulement de gaz est circulaire ; et/ou
    la forme d'une section transversale de la sortie de gaz d'écoulement unidirectionnel perpendiculaire à la direction d'écoulement de gaz est circulaire ; et/ou
    la sortie de gaz d'écoulement unidirectionnel s'étend dans la chambre de séparation de manière à aspirer le gaz séparé de l'intérieur de la chambre de séparation ; et/ou
    le séparateur à cyclone comprend en outre une sortie de solides configurée pour permettre aux particules, qui ont été séparées du gaz, de sortir de la chambre de séparation, les sorties de solides étant, optionnellement, alignées avec la sortie de gaz d'écoulement unidirectionnel.
  5. Séparateur à cyclone selon l'une quelconque des revendications précédentes, dans lequel au moins une partie de la chambre de séparation a une ligne centrale axiale, et l'entrée :
    soit est sensiblement parallèle à la ligne centrale axiale ;
    soit est sensiblement perpendiculaire à la ligne centrale axiale ; ou
    soit forme une volute autour de la ligne centrale axiale.
  6. Séparateur à cyclone selon l'une quelconque des revendications précédentes, dans lequel :
    au moins une partie de la chambre de séparation a une ligne centrale axiale, et l'entrée est décalée par rapport à la ligne centrale axiale ; et/ou
    au moins une partie de la paroi interne de la chambre de séparation est conique tronquée.
  7. Séparateur à cyclone selon l'une quelconque des revendications précédentes, comprenant en outre une deuxième entrée configurée pour permettre au mélange des particules et du gaz d'entrer dans la chambre de séparation ;
    dans lequel, optionnellement, au moins une partie de la chambre de séparation a une ligne centrale axiale et la deuxième entrée :
    soit est sensiblement parallèle à la ligne centrale axiale ,
    soit est sensiblement perpendiculaire à la ligne centrale axiale ;
    soit forme une volute autour de la ligne centrale axiale.
  8. Séparateur à cyclone selon l'une quelconque des revendications précédentes, dans lequel :
    la chambre de séparation a une extrémité d'entrée ;
    l'entrée et la sortie de gaz d'écoulement inverse sont prévues au niveau de ladite extrémité d'entrée ; et
    la sortie de gaz d'écoulement unidirectionnel est prévue à une extrémité de la chambre de séparation qui est à l'opposé de l'extrémité d'entrée.
  9. Séparateur à cyclone selon l'une quelconque des revendications précédentes, dans lequel :
    le gaz quitte la sortie de gaz d'écoulement inverse dans une première direction d'écoulement de sortie ; et
    le gaz quitte la sortie de gaz d'écoulement unidirectionnel dans une deuxième direction d'écoulement de sortie, la première direction d'écoulement de sortie étant différente de la deuxième direction d'écoulement de sortie ;
    dans lequel, optionnellement, la première direction d'écoulement de sortie est sensiblement opposée à la deuxième direction d'écoulement de sortie.
  10. Séparateur à cyclone selon l'une quelconque des revendications précédentes, dans lequel au moins une partie de la chambre de séparation est radialement symétrique autour d'une ligne centrale axiale de la chambre de séparation ;
    dans lequel optionnellement :
    la sortie de gaz d'écoulement inverse comprend un tuyau dont la ligne centrale est sensiblement alignée avec la ligne centrale axiale de la chambre de séparation, et/ou
    la sortie de gaz d'écoulement unidirectionnel comprend un tuyau dont la ligne centrale est sensiblement alignée avec la ligne centrale axiale de la chambre de séparation.
  11. Procédé de séparation des particules d'un mélange de gaz et de particules en utilisant le séparateur à cyclone selon l'une quelconque des revendications 1 à 10.
  12. Procédé de séparation des particules d'un mélange de gaz et de particules, ledit procédé comprenant :
    la fourniture du mélange à une chambre de séparation (1) ;
    l'inversion de la direction d'écoulement d'une partie du gaz ;
    l'écoulement d'une autre partie du gaz sans inversion de sa direction d'écoulement ;
    le retrait de la partie de gaz dont la direction n'a pas été inversée à travers une sortie de gaz d'écoulement unidirectionnel (3), dans lequel la sortie de gaz d'écoulement inverse s'étend dans la chambre de séparation de manière à aspirer le gaz séparé de l'intérieur de la chambre de séparation ; et
    le retrait de la partie de gaz dont la direction a été inversée à travers une sortie de gaz d'écoulement inverse (2),
    caractérisé en ce que :
    la section d'écoulement de la sortie de gaz d'écoulement inverse est plus grande que la section d'écoulement de la sortie de gaz d'écoulement unidirectionnel, et le débit massique du gaz retiré à travers la sortie de gaz d'écoulement inverse est supérieur au débit massique du gaz retiré à travers la sortie de gaz d'écoulement unidirectionnel.
  13. Procédé de séparation des particules d'un mélange de gaz et de particules selon la revendication 12, dans lequel :
    le débit massique du gaz retiré à travers la sortie de gaz d'écoulement inverse dépasse 70 % du débit massique total du gaz sortant du séparateur à cyclone ; ou
    le débit massique du gaz retiré à travers la sortie de gaz d'écoulement inverse dépasse 95 % du débit massique total du gaz sortant du séparateur à cyclone.
  14. Procédé de séparation des particules d'un mélange de gaz et de particules selon l'une quelconque des revendications 12 et 13, dans lequel :
    le gaz qui n'est pas retiré à travers la sortie de gaz d'écoulement inverse est retiré à travers la sortie de gaz d'écoulement unidirectionnel ; et/ou
    la position à laquelle la direction d'écoulement est inversée est à l'intérieur de la sortie de gaz d'écoulement unidirectionnel ; et/ou
    la partie de gaz retirée à travers la sortie de gaz d'écoulement inverse est retirée dans une direction sensiblement opposée à celle de la partie de gaz retirée à travers la sortie de gaz d'écoulement unidirectionnel ; et/ou
    l'étape de séparation du mélange comprend une séparation centrifuge ; et/ou
    le procédé comprend en outre le retrait des solides séparés du mélange.
  15. Procédé de séparation des particules d'un mélange de gaz et de particules selon l'une quelconque des revendications 11 à 14, dans lequel la concentration de particules dans le mélange fourni à la chambre de séparation est supérieure à 1 gm-3
EP10721542.8A 2010-05-21 2010-05-21 Séparateur à cyclone pourvu de deux sorties de gaz et procédé de séparation Active EP2571622B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/GB2010/001022 WO2011144884A1 (fr) 2010-05-21 2010-05-21 Séparateur à cyclone pourvu de deux sorties de gaz et procédé de séparation

Publications (2)

Publication Number Publication Date
EP2571622A1 EP2571622A1 (fr) 2013-03-27
EP2571622B1 true EP2571622B1 (fr) 2015-04-15

Family

ID=43513665

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10721542.8A Active EP2571622B1 (fr) 2010-05-21 2010-05-21 Séparateur à cyclone pourvu de deux sorties de gaz et procédé de séparation

Country Status (4)

Country Link
EP (1) EP2571622B1 (fr)
ES (1) ES2538831T3 (fr)
PT (1) PT2571622E (fr)
WO (1) WO2011144884A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EA201991201A1 (ru) * 2019-06-14 2020-12-30 Скандсиб Холдингс Лтд Циклонный испаритель и связанный с ним метод отделения

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2816490A (en) * 1952-09-24 1957-12-17 Nichols Engineering And Res Co Apparatus for treating liquid mixtures for separation of solid particles and gases
SE327329B (fr) * 1968-10-31 1970-08-17 Celleco Ab
FR2033507A5 (en) * 1969-02-26 1970-12-04 Kloeckner Humboldt Deutz Ag Removal of dust from industrial gases
US3720314A (en) * 1970-11-09 1973-03-13 Aerodyne Dev Corp Classifier for fine solids
EP0163656B1 (fr) * 1983-10-06 1990-01-10 Conoco Specialty Products Inc. Separateur cyclone
US4927298A (en) * 1988-02-22 1990-05-22 Tuszko Wlodzimier J Cyclone separating method and apparatus
BRPI0803051B1 (pt) * 2008-06-30 2019-01-15 Petroleo Brasileiro S/A Petrobras separador ciclônico de suspensão gás-sólido e método de separação

Also Published As

Publication number Publication date
PT2571622E (pt) 2015-06-17
ES2538831T3 (es) 2015-06-24
EP2571622A1 (fr) 2013-03-27
WO2011144884A1 (fr) 2011-11-24

Similar Documents

Publication Publication Date Title
US8657932B2 (en) Cyclone separator and separation method
US6129775A (en) Terminal insert for a cyclone separator
US5186836A (en) Co-current cyclone separator and its applications
JP3435515B2 (ja) 並流サイクロン分離器およびその適用方法
CN108786285B (zh) 一种气液分离装置
EP2247388B1 (fr) Système et procédé de séparation destinés à séparer un mélange de fluides à l'aide de ce système de séparation
EP0360360B1 (fr) Tube séparateur à vortex
EP0346328B1 (fr) Hydrocyclones
EP2571622B1 (fr) Séparateur à cyclone pourvu de deux sorties de gaz et procédé de séparation
EP1534437B1 (fr) Separateur tubulaire a turbulence
US10792677B2 (en) Cyclone with guide vanes
WO2012073213A1 (fr) Séparateur à cyclone dynamique, à écoulement axial et ayant une configuration variable
US11850605B2 (en) Apparatus and method to separate and condition multiphase flow
US20180154375A1 (en) Cyclone separator
EA006032B1 (ru) Малогабаритный высокоэффективный сепаратор сцв-5
CN111451008B (zh) 双层壳体式高效旋风分离器
CN107073486B (zh) 包括由优化的管单元相连的两个气旋分离器的气旋分离装置
EP3463674B1 (fr) Cyclone pour la séparation de particules présentes dans un fluide
FI80836B (fi) Tvaotas eller flertas cyklonavskiljare eller sorterare.
GB2613378A (en) Cyclone device
CA2382059A1 (fr) Insert terminal pour separateur cyclone
BRPI0805325A2 (pt) separador ciclÈnico reverso de suspensão gás-sólido e método de separação

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20121221

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20141113

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 721646

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150515

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602010023952

Country of ref document: DE

Effective date: 20150528

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20150515

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2538831

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20150624

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20150415

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 721646

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150415

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150415

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150715

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150415

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150415

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150415

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150815

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150415

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150415

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602010023952

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150415

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150415

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150415

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150531

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150415

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150531

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150415

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150415

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150415

Ref country code: RO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150415

26N No opposition filed

Effective date: 20160118

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150715

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150715

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150521

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150615

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150415

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150415

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150415

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150415

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150415

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100521

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150415

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150415

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150415

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150415

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150521

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150415

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150415

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230706

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20240308

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240604

Year of fee payment: 15