EP2567160B1 - Verfahren und system zur regulierung einer wärmepumpe mit thermoelektrischen modulen - Google Patents

Verfahren und system zur regulierung einer wärmepumpe mit thermoelektrischen modulen Download PDF

Info

Publication number
EP2567160B1
EP2567160B1 EP11723546.5A EP11723546A EP2567160B1 EP 2567160 B1 EP2567160 B1 EP 2567160B1 EP 11723546 A EP11723546 A EP 11723546A EP 2567160 B1 EP2567160 B1 EP 2567160B1
Authority
EP
European Patent Office
Prior art keywords
thermoelectric
exchanger
units
heat pump
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11723546.5A
Other languages
English (en)
French (fr)
Other versions
EP2567160A1 (de
Inventor
Benjamin David
Julien Ramousse
Mehdi Ait Ameur
Lingai Luo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Acome SCOP
Original Assignee
Acome SCOP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Acome SCOP filed Critical Acome SCOP
Publication of EP2567160A1 publication Critical patent/EP2567160A1/de
Application granted granted Critical
Publication of EP2567160B1 publication Critical patent/EP2567160B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B21/00Machines, plants or systems, using electric or magnetic effects
    • F25B21/02Machines, plants or systems, using electric or magnetic effects using Peltier effect; using Nernst-Ettinghausen effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2321/00Details of machines, plants or systems, using electric or magnetic effects
    • F25B2321/02Details of machines, plants or systems, using electric or magnetic effects using Peltier effects; using Nernst-Ettinghausen effects
    • F25B2321/021Control thereof

Definitions

  • the present invention relates to heating or cooling installations, and relates to a control system of a thermoelectric type heat pump, that is to say comprising thermoelectric modules also called Peltier effect cells (CEP).
  • thermoelectric type heat pump that is to say comprising thermoelectric modules also called Peltier effect cells (CEP).
  • CEP Peltier effect cells
  • the CEP each typically have two faces, one of which is of a first type called “cold” and the other of a second type called “hot", a heat transfer can be exerted from one side to the other depending on the direction of an electric current injected into the cell.
  • Thermoelectric heat pumps can be advantageously reversible. It is indeed possible to switch from a heating mode operation, in which the thermoelectric units take heat from one of the circuits (source side, in this case on the cold side) to transfer them to the other circuits ( useful side, in this case in the hot face), to a cooling mode operation, in which the thermoelectric units are fed with a reverse electric current, so as to take the calories in the opposite direction to that of the heating mode (in this case , the source side is connected to the hot side and the useful side to the cold side), for example to cool a living room in summer by evacuating outward heat.
  • a heating mode operation in which the thermoelectric units take heat from one of the circuits (source side, in this case on the cold side) to transfer them to the other circuits ( useful side, in this case in the hot face)
  • a cooling mode operation in which the thermoelectric units are fed with a reverse electric current, so as to take the calories in the opposite direction to that of the heating mode (in this case , the
  • thermoelectric heat pumps A disadvantage of thermoelectric heat pumps is that the real coefficient of performance (COP) of the thermoelectric modules degrades significantly when the operating conditions change and especially when the difference Fluid temperatures flowing in both circuits increase. Also, it is not envisaged this day to reach a COP higher than 4, contrary to the last traditional heat pumps which meet a great commercial success. As a reminder, these traditional heat pumps use a closed circuit in which a refrigerant such as a hydrofluorocarbon undergoes a compression / expansion cycle between a condenser and an evaporator.
  • a refrigerant such as a hydrofluorocarbon undergoes a compression / expansion cycle between a condenser and an evaporator.
  • thermoelectric heat pump it is known, by the document JP2001330339 A , to use in a refrigeration system an electrical switch control circuit to configure the connection of the thermoelectric modules, so as to vary the supply voltage of the modules.
  • the exchanger device can be modular and configured according to the power requirements for the improvement of the COP.
  • this system for cold production is not usable for home heating applications that generally require a heat input power of a few kilowatts to 25 kW.
  • DE102007053381B3 to use a control system of a thermoelectric heat pump comprising two heat exchange circuits.
  • thermoelectric module improves the operation of a heat pump by optimally feeding the thermoelectric modules.
  • the actual coefficient of performance (COP) is then maintained at a high level.
  • This system has a power supply unit with several switching configurations, whereby the management of the power supply configurations allows the thermoelectric modules to operate closer to the ideal operating point, with the obtaining of a Overall COP of the heat pump higher.
  • the heat pump equipped with such a control system has a large number of power modes.
  • the figure 1 of the patent application FR 09 59196 thus describes a system controlling four thermoelectric units hydraulically connected in parallel.
  • thermoelectric heat pump
  • thermoelectric heat pump control system which optimally utilizes thermoelectric modules.
  • the heat pump has thermoelectric units whose configuration (usually in parallel between two circuits) is modifiable as needed and allows the use of a cascade configuration to optimize the performance of the heat pump.
  • Configuration of the configurations is advantageously obtained using a plurality of valves and an automation unit. It is therefore permissible to adjust, typically using analytical modeling that covers a wide range of heat transfer requirements, the operating mode of the heat pump with increased accuracy. Indeed, if a modeling makes it possible to precisely determine the optimal intensity to be supplied to a thermoelectric unit for any operating condition, it is very advantageous to be able to configure thermoelectric units in cascade in order to maintain an optimal COP for given temperature conditions. This is particularly the case when there is a lower power demand than the optimal power generated by a single unit.
  • valves can be used to switch between a cascaded configuration and a parallel configuration and / or to disconnect the power supply of the cascaded units, knowing that to meet a high power requirement a parallel parallel connection is required. at least a portion of the thermoelectric units is necessary to maintain an optimal COP.
  • the second exchanger of the input unit is connected to a first exchanger separate from the first exchanger of the input unit and, in the same way, the first exchanger of the unit. output is connected to a second separate exchanger of the second exchanger of the output unit.
  • the fluid leaving the second exchanger of the input unit must necessarily then flow into the first exchanger of another unit cascaded with the input unit, before returning to the second exchanger. This produces at least one closed loop which is isolated from the nipples of the first and second circuits.
  • the cascading configuration can use a large number of identical units, which provides a wider range of operation.
  • the thermoelectric units each have 10 CEPs
  • a cascade association of five of these units with a feed stream selected to optimize the COP may correspond to the equivalent input of two CEPs
  • similar cascading association of ten units may correspond to the equivalent contribution of a CEP.
  • the advantage of using identical thermoelectric units is the modularity of the system and the possibility of assembling these thermoelectric units more easily in a support and fluid connection structure of the heat pump.
  • control device is furthermore adapted to parameterize a configuration in parallel in which the first exchangers of the plurality of thermoelectric units of the first group and / or of at least one thermoelectric unit of the same nature as the thermoelectric units of the first group and which may belong to a second group, are connected to the first circuit and the second exchangers of the same units thermoelectric devices are connected to the second circuit, whereby first exchangers can be connected to the first circuit in parallel and second exchangers can be connected to the second circuit in parallel.
  • thermoelectric units and the associated supply units can be further increased by such selective operation as required.
  • the present invention also aims to provide a thermoelectric heat pump with several thermoelectric units whose operation can be managed closer to the real needs in heat transfer.
  • Such a heat pump can be in the form of a device connecting to the urban electrical network and can be directly installed in a building by connecting to an existing central heating system or nine forming the first circuit, such as a floor heating system, and a heat exchange system with the external environment forming the second circuit.
  • the exchange system with the outside can be inter alia network type or tank buried in the ground, or exchange system with air or a body of water.
  • thermoelectric units that can be associated in many configurations (cascade, parallel and mixed associations) depending on the power demand, thanks to a fluid circulation network (for example water) equipped with valves controlled centrally.
  • the controller is adapted to parameterize a number of thermoelectric units cascaded together from 0 to N, where N is an integer greater than or equal to two, and greater than or equal to four in preferred embodiments.
  • the design of the heat pump can be simplified by integrating a large number of thermoelectric modules, for example greater than or equal to two, into each of the heat transfer units.
  • thermoelectric units for example less than 15 and preferably less than or equal to twelve
  • CEPs per unit eg greater than or equal to 4
  • the modularity is particularly advantageous when it is necessary to provide a contribution or a low power supplement (maintaining optimal operation). In In effect, it is sufficient to cascade several of the thermoelectric units of the heat pump to provide the required input or supplement.
  • Another object of the present invention is to propose a method of controlling a thermoelectric heat pump making it possible to adapt the level of electrical consumption to the actual needs for heat transfer.
  • the power supply of the thermoelectric units of the first group is further controlled and a heat transfer fluid is circulated in identical or symmetrical conduits of the first and second exchangers of each electrically powered thermoelectric unit, so as to maintain a difference in substantially constant temperature between the faces of the thermoelectric modules of said first group.
  • thermoelectric units are activated differently depending on the power demand.
  • the exchangers can each have a single input and a single output and it is understood that at least one pair of valves is associated with each exchanger can be connected to another exchanger.
  • the communication with the main circuits is cut off thanks to the two pairs of associated valves, and the two valves formed in the two direct connection pipes are thus opened. the respective inputs and outputs of the two exchangers.
  • solenoid valves or similar valves connected to an automation unit no human intervention is necessary when moving from one configuration to another.
  • the heat transfer between two exchangers of an electrically unpowered thermoelectric unit is reduced at least in a heating mode of the reversible thermoelectric heat pump.
  • This lowering can be obtained by stopping a circulation of the coolant at one or more of the thermoelectric units, for example those which are not electrically powered. In the heating mode of the heat pump, this minimizes the adverse heat loss by entropy. Indeed, heat is diffused from the fluid flowing in the thermoelectric units not electrically powered to the ambient environment.
  • an actuator may be provided to lower the thermal conductivity of the interface between the coolant and the exchange surface, the actuator for example to separate or bring closer the heat exchange zones of the thermoelectric modules.
  • thermoelectric modules 3 for heat transfer.
  • the control system 2 has a power supply unit 10, corresponding here to a modular system with multiple DC outputs, connected for example to a source of alternating current typically 230V. Several modular systems with multiple DC outputs can also be used.
  • the thermoelectric modules 3 are arranged in groups of six in respective thermoelectric units 41, 44, 45, 46 which define a heat exchanger system 4 of the heat pump. Of course, the number of thermoelectric modules 3 is not fixed and can be variable, for example and not limited to between two and ten per thermoelectric unit 41, 44, 45, 46.
  • the heat pump equipped with control 2 shown in the figure 1 is reversible thanks to the possibility of reversing the supply current for all or part of the thermoelectric units 41, 44, 45, 46.
  • each of the thermoelectric units 41, 42, 43, 44, 45, 46 comprises a first exchanger 41a, 42a, 43a, 44a, 45a, 46a connectable to a first circuit C1 for heat exchange, as well as a second exchanger 41b, 42b, 43b, 44b, 45b, 46b can be connected to a second circuit C2 heat exchange.
  • One or more thermoelectric modules 3 make it possible to transfer heat between the two exchangers.
  • one or more thermoelectric units may be arranged in an intermediate position between a so-called input unit 41 and an output unit 44, without necessarily being connected to the circuits C1 and C2.
  • thermoelectric units 42 and 43 could only operate in a cascade configuration between the input unit 41 and the output unit 44, the valves V5-V8 and V11-V14 and the connection lines to the respective N1-N4 nipples being in this case suppressed.
  • a closed loop fluid circulation is allowed by a pair of intermediate pipes connecting the first exchanger 44a of the output unit at the first exchanger 41b of the input unit 41.
  • the calories of a fluid coolant are taken from the first circuit C1 ( figure 2 ) to which the first exchanger 41a of the input unit 41 is connected and the useful zone is heated using the second circuit C2 ( figure 2 ) to which is connected the second exchanger 44b of the output unit 44.
  • the control system 2 may more generally comprise a plurality of valves V1-V20, as can be seen on the figure 2 .
  • a device of the control system 2 controls these valves V1-V20 to set the fluid supply configuration of the exchanger system 4.
  • the control system 2 makes it possible to manage the power supply supplied at the respective outputs S1 and S2 to optimize the cascade operation of the thermoelectric units 41 and 44.
  • Each of the outputs S1 and S2 of the power supply unit 10 may be associated with a rectified low-voltage supply circuit.
  • the power supply unit 10 thus delivers a rectified current in full alternation with an optimized power.
  • the frequency obtained may be of the order of 100 Hz for example.
  • the voltage may be higher.
  • the thermoelectric units 45, 46 may optionally form a second group whose mode of operation is different from the units 41-44 of the first group. It is understood that the thermoelectric units 45, 46 may be part of a conventional system which would be associated with the group of thermoelectric units 41-44 can operate in cascade.
  • thermoelectric units 41, 42, 43, 44 of the first group may be greater than two and it is understood that the manner of supplying the additional units 42 and 43 may be identical or similar to the power supply illustrated in FIG. figure 1 for thermoelectric units 41 and 44. More generally, it is thus possible to widen the range of operating points that can be obtained without using too many thermoelectric units 41, 42, 43, 44, 45, 46.
  • the heat pump uses at least one circulation of a coolant such as water.
  • a coolant such as water.
  • Each of the thermoelectric units 41, 44, 45, 46 comprises a first exchanger 41a, 44a, 45a, 46a and a second exchanger 41b, 44b, 45b, 46b located opposite the first.
  • the respective heat transfer fluids circulate in channels to provide heat exchange with the planar outer face of the corresponding exchanger 45a, 45b.
  • the first exchanger 45a has a fluid inlet E1 located on the right side of the thermoelectric unit 45 and an oppositely arranged output O1.
  • the second exchanger 45b has a fluid inlet E2 on the left side and an opposite outlet 02.
  • thermoelectric modules 3 when electrically powered, allow a heat transfer between the two exchangers 45a, 45b in a direction that is dictated by the power supply direction of the current.
  • a motor valve v1 stops the flow of the first fluid in the first exchanger 45a and a motor valve v2 stops the circulation of the second fluid in the second exchanger 45b.
  • the figure 6 illustrates thus the use of motor-valves v1, v2 each adapted to selectively cut the circulation of coolant in circuit portions of a thermoelectric unit 45.
  • the motor gates v1, v2 are each adapted to close the fluid communication with the exchanger 45a, 45b. It is understood that the circulation of the first and second fluids can, however, continue through other parts of a circuit. This can be achieved for example by using motor-valves v1, v2 which interrupt or short-circuit only a sinuous circulation in the exchanger 45a, 45b, while a longitudinal or external circulation to the exchanger 45a, 45b is permitted.
  • thermoelectric unit 45 refers to the example of the thermoelectric unit 45
  • thermoelectric unit 46 shown on the figure 1 can be equipped in a similar way with at least one valve motor.
  • the other units may have valves V1-V6, V7-V12 and V13-V18 also to interrupt or short circuit the sinuous circulation in the corresponding exchangers.
  • the advantage of short circuit circuits formed at the level of thermoelectric units 41, 42, 43, 44, 45, 46 is to satisfy more closely the specific needs parameterized for the heat pump, with an optimization of the coefficient of performance (COP), especially when in a dwelling or similar room equipped with the heat pump, heat transfer needs vary from place to place.
  • COP coefficient of performance
  • the motor gates v1, v2 are closed in particular when there is no particular need for heat transfer by the circuit C1 or C2 of corresponding heat exchange. Closing the motor-valves v1, v2 is advantageous in the heating mode of the heat pump, in order to avoid thermal coupling between the faces of the thermoelectric modules 3 that are not powered, and therefore heat exchanges in the opposite direction to those desired. These entropy losses of the exchanger system 4 can thus be avoided.
  • the heat pump can be equipped with any means apparatus for varying, at one or more of the thermoelectric units 41, 42, 43, 44, 45, 46, a heat transfer coefficient between the two heat exchangers.
  • a device provided with the motor-valves v1, v2 or arranged differently thus makes it possible to modify the heat exchange conditions.
  • the entropic effect is favorable since one seeks to evacuate heat from the ambient environment. Therefore, it is possible to use a thermal coupling / decoupling device configured to stop the heat-dissipating hydraulic circulation and / or locally increase the thermal resistance by other known means, in the heating mode, and to circulate the heat transfer fluid. and / or locally lowering the thermal resistance by any other known means, in the cooling mode.
  • the heat pump may be particularly suitable for low temperature heating and cooling applications for the home.
  • the heat pump may be in the form of a housing or apparatus with a front panel control panel (not shown).
  • a control interface 6 and the exchanger system 4 are for example arranged in the housing.
  • the heat pump is typically intended for heating residential or professional premises, but also to cool these premises through the use of thermoelectric modules 3.
  • the thermoelectric heat pump is therefore preferably reversible.
  • Several rooms of a living space can be heated, respectively refreshed, using heat exchange loops connected to the housing.
  • the living quarters in question are typically single-family dwellings ranging from a few-room apartment to a single-family house.
  • the power is typically provided between three and thirty kilowatts of maximum heating power, without the latter value is an upper limit.
  • thermoelectric module 3 The circulation of heat transfer fluid (s) is carried out through pipes in thermal contact with the faces of the same type of thermoelectric modules 3 of the same type. It is understood that the heat transfer between the two circuits C1, C2 can be achieved using any suitable heat transfer circuit configuration. Whatever the configuration adopted, the face of the thermoelectric module 3 which pumps heat is typically at a temperature colder than the face which evacuates heat. A set temperature can be entered via a programming module or comparable device of the heat pump, which module is for example connected to the control interface 6 and is part of the control device. The temperature of the face of the thermoelectric module 3 which pumps the The heat and the set temperature form a couple of parameters that determine how to obtain a maximum coefficient of performance (COP).
  • COP maximum coefficient of performance
  • the supply current is preferably a full alternating rectified alternating current.
  • the optimum DC voltage is multiplied by a correction coefficient to determine the amplitude of the corresponding AC voltage. For example, for a sinusoidal alternating current, the optimal DC voltage is multiplied by a coefficient equal to ⁇ 2.
  • the thermal heating requirement is used here as a reference to determine the number of PECs or thermoelectric modules 3 required in the heat pump because this need is greater than that of the cooling thermal requirement, which would result in a smaller and therefore insufficient number of PELs. for heating.
  • thermoelectric units 41, 44, 45, 46 of the heat pump With reference to the figure 1 , there is shown a control diagram of the thermoelectric units 41, 44, 45, 46 of the heat pump.
  • the control system 2 comprises a connection 7 to an electric power source 8 and a power supply unit 10 adapted to supply said thermoelectric units 41, 44, 45, 46 from the electric power source 8.
  • the electric power source 8 provides an AC power supply.
  • the current source can then be the urban network (at 230 V as is the case in many European countries in particular).
  • Several protection fuses F are provided in the power supply unit 10.
  • the number of thermoelectric modules 3 represented is twenty-four in the example illustrated in FIG. figure 1 but this number can of course be different, for example higher to meet the heating power requirements.
  • the control system 2 can select a heating mode from among a plurality of heating modes.
  • the selection of the operating mode involves an adjustment of the fluid supply configuration of the thermoelectric units 41, 44, 45, 46.
  • This setting enables the range of heating modes capable of covering the variety of thermal needs in a dwelling or similar room, these modes being able to be distinguished with respect to each other by a different number of active thermoelectric modules 3 and / or at a supply voltage U1, U2, U3, U4 across the terminals of the thermoelectric units 41, 44, 45, 46.
  • thermoelectric units 41, 44, 45, 46 makes it possible to produce any useful thermal power greater than the optimal power supplied by a single thermoelectric unit while maintaining the same performances, for a torque "fluid temperature useful / temperature of the source fluid "given.
  • this temperature difference that governs the COP of the module 3.
  • thermoelectric modules 3 of different units that operate at the same intensity and provide the same useful heat flow.
  • the optimal number of modules 3 to be associated then corresponds to the ratio between the desired useful heat flow and the optimal heat flow generated by a single thermal module 3 for the given operating conditions.
  • thermoelectric modules 3 it is furthermore possible to produce a useful thermal power that is advantageously less than the optimum power supplied by a single thermoelectric unit, by cascading a combination between at least two thermoelectric units 41, 42 , 43, 44 ( figures 1 and 2 ).
  • a useful thermal power that is advantageously less than the optimum power supplied by a single thermoelectric unit, by cascading a combination between at least two thermoelectric units 41, 42 , 43, 44 ( figures 1 and 2 ).
  • thermoelectric modules 3 present in the heat pump.
  • the parallel and / or cascade connection must then be effectively managed: when the power requirement drops, it is then sufficient to electrically disconnect the necessary number of thermoelectric modules 3 to maintain the optimal COP (by cutting the power supply to minus one of the units for example) or to activate a cascade operation of thermoelectric units 41, 42, 43, 44 in which the supply level is adjusted for optimum operation of the corresponding thermoelectric modules 3.
  • control system 2 allows a rigorous management in order to cover the entire range of useful thermal power required by connection-disconnections of the thermoelectric units and cascading, parallel or cascading-parallel association of the units.
  • thermoelectric 41, 42, 43, 44 Once the combination of thermoelectric units 41, 42, 43, 44, 45, 46 parametrized, it remains only to provide an optimal intensity to the thermoelectric modules 3.
  • the power supply unit 10 will now be described in more detail in connection with the figure 1 .
  • the power supply unit 10 has a plurality of output connections S1, S2, S3, S4 for transmitting a supply voltage to each of the thermoelectric units 41, 44, 45, 46.
  • the control device may be provided in association with the control device a switching device or other means for changing the power supply voltages.
  • the control device comprises an ECU electronic control unit connected to the control interface 6 and for example to change the state of the switches of the switching device.
  • the controller and the power supply unit 10 may be formed in respective housings connected to each other.
  • the electronic control unit ECU can be used to change the configuration of the switching device in a heating mode by controlling the state of switches.
  • a non-limiting example of control of a power supply unit 10 with four outputs S1, S2, S3, S4 is disclosed in the patent application FR 09 59196 (the figure 1 of this document shows an embodiment applicable for the unit 10).
  • a rectified alternating low-voltage can be provided in particular to the two thermo-electric units 41, 42.
  • Servo-feedback with at least one appropriate switch or similar voltage control element can be implemented by collecting information representative of a need for heating by the ECU electronic control unit.
  • the information representative of the heating need is for example one or more characteristic temperatures of the two heat exchange circuits and the set temperature.
  • Such a control is for example present for each of the thermoelectric units 41, 44, 45, 46.
  • the output connections S3, S4, and possibly the output connections S1, S2, may each be associated with a current-reversing device.
  • This inverter device can be actuated by the control device.
  • the reversible nature of the power supplied to the thermoelectric units 45, 46 makes it easy to switch from the heating mode to the cooling mode. At least for one of these thermoelectric units 45, 46 with a supply reversal, it is optionally possible to provide a higher heating power. Less power can also be obtained by using only one of the outputs S3, S4 to selectively supply one or the other of the thermoelectric units 45, 46.
  • thermoelectric units 41, 42, 43, 44 For the cascade configuration of the thermoelectric units 41, 42, 43, 44, it is expected that the currents may be different for the units thus associated, so as to maintain a substantially identical temperature difference between the faces of each of the thermoelectric modules 3 component of the system.
  • the voltage across each of the thermoelectric units 41, 42, 43, 44 is therefore different.
  • a device known per se adapted to vary the current using for example a variable electrical resistance
  • a device known per se adapted to vary the current using for example a variable electrical resistance
  • the two tables below is a numerical example showing the gain in COP with a variation of the intensity supplied to thermoelectric units configured in cascade.
  • the intensities are determined according to the analytical model and the input variables which may be the outside temperature of the air (outside the building equipped with the heat pump), the thermal resistance or the insulation coefficient of the building, the set temperature, which determine the thermal power to be supplied.
  • Another input data is the thermal resistance and the emissivity of the floor when the transfer loop or loops are integrated into a floor of the building. This then makes it possible to determine the temperature necessary for the fluid circulating in the useful transfer loops.
  • the model takes into account a "water law” type law to estimate the power required to provide at the level of the exchanger system 4.
  • the water law can take into account the thermal losses of the housing or building to estimate the power to provide that makes it possible to compensate for such thermal losses.
  • the set of configurations is modeled for example in the form of a correspondence table making it possible to connect the power requirement to a configuration and the supply of power supply current (s) and possibly of the circulation flow (s). fluid.
  • a complete mapping of these configurations and possible operating modes, depending on the fluid temperature regime (commonly called the water regime, then taking into account the water temperature pair - useful power) to which we will operate the pump, can be stored in a memory of the control system 2 and can be operated using an algorithm ECU electronic control unit.
  • the best configuration can be determined with, in particular, data representative of the specific currents in the case of a cascade association between at least two thermoelectric units 41, 44, 45, 46. The optimal operation can then be to be activated.
  • the exchangers 41a-41b, 44a-44b, 45a-45b, 46a-46b units 41, 44, 45, 46 are preferably designed to homogenize the temperature on the surface of the thermoelectric modules 3.
  • an exchanger design can be used with two pipes arranged symmetrically with each other with respect to a plane normal to the exchange surface portion of the exchanger which is opposite one or several faces of a thermoelectric module 3. This design is described in Figures 3a-3b of the document WO 2006/070096 . More generally, it is possible to use double-flow heat exchangers making it possible to obtain a substantially homogeneous temperature at the level of the exchange surface with the thermoelectric module or modules 3.
  • the two exchangers 45a, 45b of the same thermoelectric unit 45 as represented in FIG. figure 6 may have a single-flow design with a single input E1 or E2 and a single output O1 or O2, using Tickelman loops of the same geometry in the pair of exchangers 45a-45b.
  • a constant temperature gradient is then obtained for the thermoelectric unit 45 and it is then possible to obtain a homogenization of the differential ⁇ T with such loops when they are designed as cross current.
  • the cross flow design is for example carried out with the input E1 of the first exchanger 45a in correspondence with the output 02 of the second exchanger 45b and the input E2 of the second exchanger 45b corresponding to the output O1 of the first exchanger 45a. It is understood that there is here also a symmetry of the pipes between the exchangers and it is preferable to use pipes which are identical from one exchanger to another.
  • thermocouples 41, 42, 43, 44 that can be configured in cascade and the circulation of the coolant in identical or symmetrical conduits of the first and second exchangers 41a-41b, 42a-42b, 43a-43b, 44a-44b associated, it It is permitted to maintain a substantially constant temperature difference between the faces of the thermoelectric modules 3 of said first group.
  • the power supply for the other thermoelectric units 45 and 46 can of course be adjusted according to the heat transfer requirements.
  • the heat pump can be slaved in a simple and economical way, the control device for regulating the ambient temperature of one or more premises by minimizing the number of CEP and / or the supply voltage of these CEP.
  • the supply voltage u of the CEP is equal to the supply voltage U of said unit divided by 6.
  • thermoelectric units 41, 42, 43, 44 here four in number, which can operate both in a parallel association and a cascading association.
  • the embodiment illustrated in figure 2 allows to respond to a complete modularity of the thermoelectric heat pump.
  • the control device sets the desired number ( 0 to N) of units to be cascaded according to heat transfer requirements.
  • N integer greater than or equal to two and for example greater than or equal to four
  • the control device sets the desired number ( 0 to N) of units to be cascaded according to heat transfer requirements.
  • the part of the exchanger system 4 illustrated is connected to four feeders N1, N2, N3, N4 of which two feeders N1-N2 are part of the first circuit C1 and two other feeders N3-N4 are part of the second circuit C2.
  • the N3 feeder is connected upstream of the zone for useful heat exchange (the side to be heated when the pump is operating in heating mode) and the N4 feeder is connected downstream of this zone.
  • the nurse N2 is connected upstream of the zone for the heat exchange with the source (the side where calories are taken in the heating mode) and the nurse N1 is connected downstream of this zone.
  • the control system 2 comprises pumping members P1, P5 for circulating a heat transfer fluid in each of the two circuits C1, C2.
  • the pumps are typically placed between one of the two nipples and the circuit portion external to the housing or apparatus enclosing the thermoelectric units 41, 42, 43, 44, 45, 46.
  • the pumps may be conventional or may be circulating devices. variable speed.
  • the diagram of the fluidic connections shown in figure 2 shows a pumping member P1 used by the first circuit C1 to circulate the coolant in the zone for heat exchange with the source and then at least in the first exchanger 41a of the input unit 41.
  • An organ P5 pump is similarly used by the second circuit C2 to circulate the coolant at least in the second heat exchanger 44b of the output unit 44 and then convey it into the area for useful heat exchange.
  • Valves V1-V20 which are for example solenoid valves, are here in number greater than or equal to four times the number of thermoelectric units 41, 42, 43, 44.
  • valves V3-V4, V9-V10 and V15-V16 remain in the closed state and only the two main pumps P1, P5 operate.
  • the four N1-N4 feeders are fully open, so as to supply all exchangers directly, via the lines connecting the nipples to the thermoelectric units.
  • this number of pipes is for example 4N.
  • a unit of the exchanger system 4 can easily be isolated since it is sufficient to close the respective valves of the four pipes connecting the exchangers of this unit to the nipples.
  • the valve or valves connecting an exchanger adjacent to the exchanger of the unit that is to be isolated must be closed.
  • unit 44 could be isolated by closing valves V15-V18 and V19.
  • the switching device 20 would be controlled in order not to electrically power the CEP or the CEP of this thermoelectric unit 44.
  • the pump P1 allows the passage into the first exchanger 41a of the input unit 41 of the fluid having taken calories at the source. Only valves V3-V4, V9-V10, V15-V16 and V19-V20 are open. Through the staged heat transfers made between the different units 41, 42, 43, 44, it is the fluid circulated in the outlet loop by the pump P5 which ultimately transmits calories in the exchange part of the side. useful.
  • the pumping members P2, P3 and P4 each make it possible to circulate a coolant in a closed loop that passes through neither the first exchanger 41a of the input unit 41 nor the second exchanger 44b of the output unit 44.
  • the intermediate closed loops are formed by combining a first exchanger 42a, 43a, 44a with a second exchanger 41b, 42b, 43b.
  • thermoelectric units configured in cascade can easily vary, the insulation mechanism of a previously described thermoelectric unit remaining applicable for a selective disconnection of the supply of fluid and electricity of one of the thermoelectric units 41, 42, 43, 44.
  • thermoelectric units 41-42 and 43-44 each using the cascade association.
  • This mixed combination makes it possible to use the pumps P1 and P5 to feed heat exchangers 41a, 42b, 43a, 44b belonging to separate thermoelectric units 41, 42, 43, 44.
  • the valves V7-V8, V11-V12 and V19-V20 are open for this purpose.
  • the rest of the exchangers are supplied with fluid thanks to the pumps P2 and P4 of two intermediate loops which ensure the cascade between the units 41 and 42 and the units 43 and 44.
  • Only the valves V3, V4, V15 and V16 allow the circulation of the fluid to the adjacent exchanger, namely the circulation between the exchanger 41b and 42a and between the exchanger 43b and 44a.
  • the electronic control unit ECU can use different analog inputs, for example provided using first temperature sensors 31 and second temperature sensors 32.
  • the first sensors 31 deliver for example signals representative of characteristic temperatures of the two heat exchange circuits, such as the flow and return temperatures of the coolant in the emitter circuit C1, the temperatures of start and return of the heat transfer fluid in the external circuit C2.
  • the second temperature sensors 32 make it possible to measure the temperature outside the dwelling or similar room equipped with the heat pump, as well as the ambient temperature of the dwelling. More generally, the set of temperature sensors 31, 32 is provided to provide sufficient information for an estimation of the conditions in which the heat transfer is carried out.
  • a CAN converter from the ECU electronic control unit is used to collect the different inputs.
  • the exploitation of the corresponding information can be performed at the electronic control unit ECU of the control device.
  • the temperature setpoint (it may be a desired ambient temperature) indicated by the user is taken into account so as to determine the temperature that should be reached in the heat transfer fluid circuits to meet the user's request.
  • the knowledge of the overall heat resistance of the exchanger and preferably of the temperature and the overall thermal resistance of the habitat can allow a correlation between a set temperature set directly by a user and the actual need for heat transfer.
  • servocontrol of a parameter representative of the heat transfer requirement for example an average water temperature obtained from the temperatures measured by two of the sensors 31, can be implemented by using a corresponding setpoint parameter.
  • This setpoint parameter takes into account the setpoint temperature set by the user.
  • the difference between the reference parameter and the corresponding parameter estimated in real time is calculated by using the measurements of the sensors 31, 32.
  • An algorithm of the ECU electronic control unit is provided. to perform this calculation and perform a correlation, according to said temperature setpoint and the signals delivered by all the first and second temperature sensors 31, 32, between heat transfer requirements and a single optimal operating mode. For this, calculating the deviation from the setpoint parameter allows the room thermostat to deliver the heating or cooling command.
  • the operating mode was thus determined using the algorithm of the electronic control unit ECU to maximize the coefficient of performance of the heat pump.
  • the algorithm typically calculates in this case two parameters such as the heating power and the average temperature of water (or similar heat transfer fluid) of that of the circuits which is heat emitter. This pair of parameters makes it possible, for example by using a correspondence table, to find the number of thermoelectric modules 3 optimal for the need as well as the optimal current for these thermoelectric modules 3. The choice of the power supply mode is then in the configuration that is closest to the optimization parameters thus determined.
  • the algorithm can thus, using the correspondence table, select one of the predetermined operating points of the modules 3, as a function of the setpoint parameter and the signals delivered by the set of temperature sensors 31, 32.
  • a suitable configuration of valves V1-V20 and pumps P1-P5 can be set according to the selected operating point.
  • the number of thermoelectric modules 3 in operation can advantageously evolve dynamically to meet a large number of couples (amount of heat for heating / average water temperature of the transmitter circuit) and (amount of heat for cooling / average temperature of the circuit water transmitter). Since this torque varies as a function of time and the design of the overall system integrating the heat pump, the process of determination by the algorithm of the number of thermoelectric modules 3 in operation must be repeated regularly, with a simultaneous determination of the mode of operation. optimal supply of this determined number of modules 3 which satisfies the real need for the minimum power consumption.
  • thermoelectric modules 3 supplied is directly related to the number of thermoelectric units in operation. Indeed, all the modules 3 of a thermoelectric unit operate in the same way. It is understood in this case that there can be for example half of the modules 3 of the same thermoelectric unit in operation and the other stopped.
  • the electronic control unit ECU shown on the figure 1 may comprise a parameterization module for setting a defined number of predetermined operating modes of the heat pump, so as to define different configurations each, in order to better correspond to a specific need for heat transfer.
  • the operating modes are parameterized by the parameterization module as a function, on the one hand, of a number of thermoelectric modules 3 which are activated, and on the other hand of supply voltages each associated with the thermoelectric modules 3 which are enabled.
  • control device can advantageously configure the means of adjusting the supply voltage of the units and the plurality of valves V1-V20 so as to select a heating mode with a number of thermoelectric modules 3 (by a selective supply of units 41-46) sufficient to meet the transfer requirements of heat, and deliver a supply current just sufficient to optimize the COP.
  • thermoelectric module 3 considered has a maximum COP (cf. figure 5 of the patent application FR 09 59196 , illustrating an example of modeling called "law of water" in the case where the coolant is water).
  • COP maximum COP
  • the graph of the figure 7 thus reflects a mapping of the heat pump that can be advantageously used with the water law which defines the evolution of the fluid temperature torque T / useful power P. It is understood that for any of the points of operation forming the water law, it is possible to determine the optimum configuration of the thermoelectric units 41, 42, 43, 44, 45, 46. It is visible on the figure 7 that the selection of a configuration in the wide range of A1-A12 configurations makes it possible to maintain the performance of the heat pump at a high level (with a high COP) for any useful power requirement.
  • the water law will typically require the A1-A6 configurations to be used only in the case of low requirements, ie for a fluid temperature / useful power pair with low values.
  • a need corresponding to a power P less than that which can be obtained with a single unit (configuration A7) could be optimally satisfied with one of the configurations A1-A6.
  • Such a need corresponds to a power for example less than 120 W and a desired temperature of the useful side not exceeding by more than 10 ° C the temperature of the source side (with a source side temperature typically of the order of 285 K).
  • the power supply unit 10 supplies, from the electric power source 8, the thermoelectric units 41, 42, 43, 44 which have been judiciously associated as described above.
  • the voltage delivered at each of the output connections S1, S2, S3, S4 of the power supply unit 10 is then suitably adjusted, by the means of the unit 10 to change the power supply of each thermoelectric units 41, 42, 43, 44, 45, 46. It is thus possible to obtain the desired power output.
  • a selection step 65 the adjustment means of the supply voltage of the thermoelectric units 41, 42, 43, 44 are controlled as a function of the preceding step 64 (ie in correspondence with the selected operating mode) .
  • the selected power mode makes it possible to select different currents between the thermoelectric units 41, 42, 43, 44 associated in cascade, so that the temperature differential remains constant between the faces. each of the PIUs.
  • the control device is capable of controlling the valves V1-V20 and the pumping members P1-P5. A setpoint temperature change will be taken into account by the device which will immediately adjust the operating mode.
  • thermoelectric units 41, 42, 43, 44 are in operation.
  • the control system 2 may also have a variable speed circulation device that allows for example to lower the flow in operating modes that generate more pressure losses, for example in the case of a circulation in cascade in several thermoelectric units 41, 42, 43, 44. This allows to lower the power consumption of the pumping means.
  • the ECU electronic control unit may include a management algorithm of data representative of the fluid velocity and electrical consumption data of the pumping means for selecting the flow rate in the respective loops.
  • the characteristics related to the convective transfer can thus be evaluated according to the traffic speeds and the management algorithm can then set the most interesting speed to improve the performance of the heat pump. For example, when thermoelectric units are disconnected from the exchanger system 4 (no more fluid supply or power supply), the management algorithm can control a change in fluid circulation speed after a global comparative analysis. performance of the heat pump.
  • One of the advantages of the invention is to optimize the use of the exchanger system 4 in the case in particular where the desired power output is less than the optimal power generated by a single thermoelectric unit.
  • the operator can be provided with a means of optimizing the power consumption of the heat pump while using thermoelectric modules 3 which may be identical (modular system).
  • the optimization is automated to ensure efficient operation of the heat pump.
  • the speed of response and the flexibility of the control system 2 are also advantages of such a heat pump.
  • control system 2 is not limited to the particular examples described in connection with the figures 1 and 2 and can use different types of servo means for controlling a switching device or other means for adjusting the voltage, as a function of signals and / or data representative of one or more setpoint temperatures and one or more temperatures measured.
  • the power supply unit 10 may be in various forms and may have physically separate power supplies and / or be connected to a plurality of power sources. For example, it is possible to use, depending on the operating conditions, at least one current of an urban network and / or the current supplied by additional equipment with photovoltaic cells or converting into electricity an external energy.
  • the thermal coupling / decoupling between the sources supplying the The exchangers of the thermoelectric units 41, 42, 43, 44 can be used in a heat pump only in combination with the selective supply of these thermoelectric units 41, 42, 43, 44.
  • the setting of the voltage delivered by each of the output connections S1, S2, S3, S4 is optional and can be removed.
  • the control device allows a selective setting of the number of thermoelectric modules 3 and activates a suitable configuration of the thermal coupling / decoupling device associated with the thermoelectric units 40, 41, 42, 43, 44.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Control Of Temperature (AREA)
  • Other Air-Conditioning Systems (AREA)

Claims (15)

  1. Thermoelektrische Wärmepumpe, die zwei Wärmeaustauschkreisläufe (C1, C2) und mehrere thermoelektrische Einheiten (41, 42, 43, 44) zur Wärmeübertragung einer ersten Gruppe umfasst, die jeweils Folgendes umfassen:
    - einen ersten Wärmeaustauscher (41 a, 42a, 43a, 44a);
    - einen zweiten Wärmeaustauscher (41 b, 42b, 43b, 44b); und
    - mindestens ein thermoelektrisches Modul (3), das ausgebildet ist, Wärme zwischen den zwei Wärmeaustauschern zu übertragen;
    dadurch gekennzeichnet, dass sie ein Steuersystem (2) umfasst, das mindestens eine Stromversorgungseinheit (10) umfasst, die es erlaubt, jede der thermoelektrischen Einheiten (41, 42, 43, 44) mit Strom zu versorgen;
    dass die mehreren thermoelektrischen Einheiten (41, 42, 43, 44) eine Eingangseinheit (41) umfassen, deren erster Wärmeaustauscher (41 a) mit einem ersten Kreislauf (C1) der zwei Kreisläufe verbunden ist, und eine Ausgangseinheit (44), deren zweiter Wärmeaustauscher (44b) mit einem zweiten Kreislauf (C2) der zwei Kreisläufe verbunden ist, wobei das Steuersystem (2) mehrere Schieber (V1-V20) umfasst, die mit einer Steuervorrichtung assoziiert sind, die geeignet ist, um eine Kaskadenkonfiguration zu parametrieren, bei der der zweite Wärmeaustauscher (41 b) der Eingangseinheit mit einem ersten Wärmeaustauscher (42a; 44a) der mehreren thermoelektrischen Einheiten verbunden ist, und der erste Wärmeaustauscher (44a) der Ausgangseinheit (44) mit einem zweiten Wärmeaustauscher (41b; 43b) der mehreren thermoelektrischen Einheiten verbunden ist,
    und dass die Steuervorrichtung eine elektronische Steuereinheit (ECU) umfasst, die Folgendes umfasst:
    - Mittel zum Parametrieren einer definierten Anzahl vorbestimmter Betriebspunkte der thermoelektrischen Module (3) der Wärmepumpe; und
    - einen Algorithmus, der ausgebildet ist, einen der vorbestimmten Betriebspunkte für die thermoelektrischen Module der ersten Gruppe auszuwählen und es zu erlauben, einen Wärmetransfer zu aktivieren, der durch die Kaskadenkonfiguration in Abhängigkeit von der Auswahl des Betriebspunkts erzeugt wird.
  2. Thermoelektrische Wärmepumpe nach Anspruch 1, wobei die mehreren thermoelektrischen Einheiten (41, 42, 43, 44) der ersten Gruppe außerdem mindestens eine Zwischeneinheit (42, 43) umfassen, die Folgendes aufweist:
    - einen ersten Wärmeaustauscher (42a, 43a), der in der Kaskadenkonfiguration mit einem zweiten Wärmeaustauscher (41 b, 42b) einer anderen Einheit (41, 42) der mehreren thermoelektrischen Einheiten verbunden ist; und
    - einen zweiten Wärmeaustauscher (42b, 43b), der in der Kaskadenkonfiguration mit einem ersten Wärmeaustauscher (43a, 44a) einer anderen Einheit (43, 44) der mehreren thermoelektrischen Einheiten verbunden ist.
  3. Thermoelektrische Wärmepumpe nach Anspruch 1 oder 2, die außerdem mehrere andere thermoelektrische Einheiten (45, 46) zur Wärmeübertragung einer zweiten Gruppe umfasst, die jeweils Folgendes umfassen:
    - einen ersten Wärmeaustauscher (45a, 46a);
    - einen zweiten Wärmeaustauscher (45b, 46b);
    - mindestens ein thermoelektrisches Modul (3), das ausgebildet ist, Wärme zwischen den zwei Wärmeaustauschern zu übertragen;
    wobei die Steuervorrichtung ausgebildet ist, die Gruppen thermoelektrischer Einheiten in mindestens einer parallelen Konfiguration funktionieren zu lassen, die ausgewählt ist aus:
    - einer Konfiguration, bei der alle thermoelektrischen Einheiten, die elektrisch versorgt werden, zueinander parallel sind; und
    - einer Konfiguration, bei der ein Teil der thermoelektrischen Einheiten, die elektrisch versorgt sind, in einer Kaskadenkonfiguration im Inneren der ersten Gruppe thermoelektrischer Einheiten ist.
  4. Thermoelektrische Wärmepumpe nach Anspruch 1 oder 2, wobei die Steuervorrichtung außerdem ausgebildet ist, eine Konfiguration parallel zu parametrieren, in der die ersten Wärmeaustauscher (41 a, 42a, 43a, 44a; 45a, 46a) der mehreren thermoelektrischen Einheiten (41, 42, 43, 44) der ersten Gruppe und/oder mindestens eine thermoelektrische Einheit (45, 46) derselben Art wie die thermoelektrischen Einheiten der ersten Gruppe, und die zu einer zweiten Gruppe gehören können, mit dem ersten Kreislauf (C1) verbunden sind, und die zweiten Wärmeaustauscher (41 b, 42b, 43b, 44b; 45b, 46b) derselben thermoelektrischen Einheiten mit dem zweiten Kreislauf (C2) verbunden sind, so dass die ersten Wärmeaustauscher (41 a, 42a, 43a, 44a; 45a, 46a) mit dem ersten Kreislauf (C1) parallel verbunden werden können und die zweiten Wärmeaustauscher (41 b, 42b, 43b, 44b; 45b, 46b) mit dem zweiten Kreislauf (C2) parallel verbunden werden können.
  5. Thermoelektrische Wärmepumpe nach einem der vorhergehenden Ansprüche, die Folgendes umfasst:
    - erste Pumporgane (P1, P5), die ausgebildet sind, um eine Wärmeträgerflüssigkeit, die von dem ersten Kreislauf (C1) verwendet wird, mindestens in dem ersten Wärmeaustauscher (41 a) der Eingangseinheit (41) zirkulieren zu lassen, und um eine Wärmeträgerflüssigkeit, die von dem zweiten Kreislauf (C2) verwendet wird, mindestens in dem zweiten Wärmeaustauscher (44b) der Ausgangseinheit (44) zirkulieren zu lassen; und
    - zweite Pumporgane (P2, P3, P4), die ausgebildet sind, um in der Kaskadenkonfiguration eine Wärmeträgerflüssigkeit in einer geschlossenen Schleife zirkulieren zu lassen, die weder den ersten Wärmeaustauscher (41 a) der Eingangseinheit (41) noch den zweiten Wärmeaustauscher (44b) der Ausgangseinheit (44) durchquert, wobei die geschlossene Schleife mindestens einen ersten Wärmeaustauscher (42a, 43a, 44a) und mindestens einen zweiten Wärmeaustauscher (41 b, 42b, 43b) der mehreren thermoelektrischen Einheiten, die die erste Gruppe bilden, umfasst.
  6. Thermoelektrische Wärmepumpe nach einem der vorhergehenden Ansprüche, die eine Gesamtheit von Temperatursensoren (31, 32) umfasst, die ausgebildet sind, um insbesondere Signale, die für charakteristische Temperaturen der zwei Wärmeaustauschkreisläufe (C1, C2) repräsentativ sind, zu liefern, wobei die Steuervorrichtung mit einer Eingabevorrichtung einer Solltemperatur verbunden ist, wobei der Algorithmus der Steuervorrichtung ausgebildet ist, einen der vorbestimmten Betriebspunkte in Abhängigkeit von der Solltemperatur und Signale, die von der Einheit von Temperatursensoren geliefert werden, auszuwählen, wobei eine Konfiguration der mehreren Schieber (V1-V20) anschließend in Abhängigkeit von dem ausgewählten Betriebspunkt parametriert wird.
  7. Thermoelektrische Wärmepumpe nach Anspruch 9, wobei die Steuervorrichtung ausgebildet ist, die Stromversorgung und eine hydraulische Versorgung jeder der thermoelektrischen Einheiten (41, 42, 43, 44, 45, 46) in Abhängigkeit von der Konfiguration, die für die mehreren Schieber (V1-V20) parametriert ist, zu ändern.
  8. Thermoelektrische Wärmepumpe nach Anspruch 9 oder 10, wobei der Algorithmus ausgebildet ist, in Abhängigkeit von der Solltemperatur und den Signalen, die von der Einheit von Temperatursensoren (31, 32) geliefert werden, zwischen den Wärmeübertragungserfordernissen und einem einzigen Betriebsmodus eine wechselseitige Beziehung herzustellen, so dass der Betriebsmodus ausgewählt wird, der den Leistungskoeffizienten der Wärmepumpe maximiert.
  9. Thermoelektrische Wärmepumpe nach einem der vorhergehenden Ansprüche, wobei die Stromversorgungseinheit (10) Mittel zum Einstellen umfasst, um in der Kaskadenkonfiguration unterschiedliche Ströme zu der Eingangseinheit und der Ausgangseinheit zu liefern.
  10. Thermoelektrische Wärmepumpe nach einem der vorhergehenden Ansprüche, wobei die elektronische Steuereinheit (ECU) ein Parametrierungsmodul umfasst, um eine definierte Anzahl vorbestimmter Betriebsmodi der Wärmepumpe zu parametrieren, die unterschiedliche Wärmetransferleistungserfordernisse decken, wobei das Parametrierungsmodul den Algorithmus und die Mittel zum Parametrieren einer definierten Anzahl vorbestimmter Betriebspunkte der thermoelektrischen Module (3) der Wärmepumpe umfasst, wobei der Algorithmus das Auswählen eines der Betriebsmodi der Wärmepumpe derart erlaubt, dass die elektrische Gesamtleistung, die von den thermoelektrischen Modulen verbraucht wird, minimiert wird, während die Wärmeübertragungserfordernisse gedeckt werden.
  11. Thermoelektrische Wärmepumpe nach einem der vorhergehenden Ansprüche, wobei jede der thermoelektrischen Einheiten (41, 42, 43, 44) der ersten Gruppe mindestens einen Schieber (v1, v2) umfasst, der ausgebildet ist, selektiv die Zirkulation der Wärmeträgerflüssigkeit in den Wärmeaustauschern der thermoelektrischen Einheit zu unterbrechen.
  12. Thermoelektrische Wärmepumpe nach einem der vorhergehenden Ansprüche, wobei die Steuervorrichtung ausgebildet ist, eine Anzahl thermoelektrischer Einheiten (41, 42, 43, 44) in Kaskade untereinander von 0 bis N zu parametrieren, wobei N eine Ganzzahl größer oder gleich zwei und bei den bevorzugten Ausführungsformen größer oder gleich vier ist.
  13. Verfahren zum Steuern einer thermoelektrischen Wärmepumpe, bei dem man eine Wärmeträgerflüssigkeit jeweils in zwei Wärmeaustauschkreisläufen (C1, C2) einer thermoelektrischen Wärmepumpe zirkulieren lässt, die mehrere thermoelektrische Einheiten (41, 42, 43, 44) zur Wärmeübertragung umfasst, die eine erste Gruppe bilden und jeweils Folgendes umfassen:
    - einen ersten Wärmeaustauscher (41 a, 42a, 43a, 44a);
    - einen zweiten Wärmeaustauscher (41 b, 42b, 43b, 44b);
    - mindestens ein thermoelektrisches Modul (3), das ausgebildet ist, Wärme zwischen den zwei Wärmeaustauschern zu übertragen;
    wobei das Verfahren die Schritte umfasst, die aus Folgendem bestehen:
    - Verbinden eines ersten Wärmeaustauschers (41 a) einer Eingangseinheit (41) der mehreren thermoelektrischen Einheiten mit einem ersten Kreislauf (C1) der zwei Kreisläufe;
    - Verbinden eines zweiten Wärmeaustauschers (44b) einer Ausgangseinheit (44) der mehreren thermoelektrischen Einheiten mit einem zweiten Kreislauf (C2) der zwei Kreisläufe;
    - ausgehend von einer Stromquelle (8), Versorgen mindestens der Eingangseinheit (41) und der Ausgangseinheit (44) der thermoelektrischen Einheiten (41, 42, 43, 44) durch mindestens eine Stromversorgungseinheit (10), die mehrere Ausgangsanschlüsse (S1, S2, S3, S4, S5) umfasst, und/oder mindestens einer thermoelektrischen Einheit (45, 46) zur Wärmeübertragung, die zu einer zweiten Gruppe gehört;
    - Eingeben einer Solltemperatur;
    - durch eine Gesamtheit von Temperatursensoren (31, 32) Liefern von Signalen, die für charakteristische Temperaturen der zwei Wärmeaustauschkreisläufe (C1, C2) repräsentativ sind;
    - Auswahl eines vorbestimmten Betriebsmodus der Wärmepumpe, um Wärmeübertragungserfordernisse zu decken, wobei jeder der Betriebsmodi, die ausgewählt werden können, aus einer Verwendung der thermoelektrischen Module (3) der Wärmepumpe bei vorbestimmten Betriebspunkten resultiert; und
    - zum Erlauben einer Verwendung der thermoelektrischen Module der ersten Gruppe bei Betriebspunkten, die die verbrauchte elektrische Leistung minimieren, während gleichzeitig zum Decken der Wärmetransfererfordernisse beigetragen wird, Übertragen der Wärme durch eine Kaskadenkonfiguration, bei der der zweite Wärmeaustauscher (41 b) der Eingangseinheit (41) mit einem ersten Wärmeaustauscher (42a; 44a) der mehreren thermoelektrischen Einheiten verbunden ist, und der erste Wärmeaustauscher (44a) der Ausgangseinheit (44) mit einem zweiten Wärmeaustauscher (41 b; 43b) der mehreren thermoelektrischen Einheiten verbunden ist.
  14. Steuerverfahren nach Anspruch 13, wobei man die Stromversorgung der thermoelektrischen Einheiten (41, 42, 43, 44) der ersten Gruppe steuert und eine Wärmeträgerflüssigkeit in identischen oder symmetrischen Kanalisationen des ersten und des zweiten Wärmeaustauschers (41a-41b, 42a-42b, 43a-43b, 44a-44b) jeder mit Strom versorgten thermoelektrischen Einheit derart zirkulieren lässt, dass ein im Wesentlichen konstanter Temperaturunterschied zwischen den Flächen der thermoelektrischen Module (3) der ersten Gruppe beibehalten wird.
  15. Steuerverfahren nach Anspruch 13 oder 14, das die folgenden Schritte umfasst:
    - Schließen von zwei Schiebern (V1, V2), die an den zweiten Wärmeaustauscher (41 b) der Eingangseinheit (41) angeschlossen sind, um den zweiten Wärmeaustauscher (41 b) der Eingangseinheit von dem zweiten Kreislauf (C2) zu trennen;
    - Schließen von zwei Schiebern (V5, V6; V17, V18), die an einen ersten bestimmten Wärmeaustauscher (42a; 44a) der mehreren thermoelektrischen Einheiten, der von dem ersten Wärmeaustauscher (41 a) der Eingangseinheit unterschiedlich ist, angeschlossen sind, um den ersten bestimmten Wärmeaustauscher (42a; 44a) von dem ersten Kreislauf (C1) zu trennen;
    - Öffnen von zwei Schiebern (V3, V4), die an den zweiten Wärmeaustauscher (41 b) der Eingangseinheit (41) angeschlossen sind, um eine Wärmeträgerflüssigkeit zwischen dem ersten bestimmten Wärmeaustauscher (42a; 44a) und dem zweiten Wärmeaustauscher (41 b) der Eingangseinheit (41) zirkulieren zu lassen; und
    - optional, wenn die erste Gruppe mindestens drei thermoelektrische Einheiten umfasst, Öffnen von zwei Schiebern (V15, V16), die an den ersten Wärmeaustauscher (44a) der Ausgangseinheit (44) angeschlossen sind, um eine Wärmeträgerflüssigkeit zwischen einem zweiten Wärmeaustauscher der ersten Gruppe, der von dem zweiten Wärmeaustauscher (44b) der Ausgangseinheit (44) unterschiedlich ist, und dem ersten Wärmeaustauscher (44a) der Ausgangseinheit (44) zirkulieren zu lassen.
EP11723546.5A 2010-05-03 2011-05-02 Verfahren und system zur regulierung einer wärmepumpe mit thermoelektrischen modulen Active EP2567160B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1053420A FR2959557B1 (fr) 2010-05-03 2010-05-03 Procede et systeme de controle d'une pompe a chaleur a modules thermoelectriques
PCT/FR2011/050990 WO2011138547A1 (fr) 2010-05-03 2011-05-02 Procede et systeme de controle d'une pompe a chaleur a modules thermoelectriques

Publications (2)

Publication Number Publication Date
EP2567160A1 EP2567160A1 (de) 2013-03-13
EP2567160B1 true EP2567160B1 (de) 2016-04-20

Family

ID=43558203

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11723546.5A Active EP2567160B1 (de) 2010-05-03 2011-05-02 Verfahren und system zur regulierung einer wärmepumpe mit thermoelektrischen modulen

Country Status (4)

Country Link
EP (1) EP2567160B1 (de)
ES (1) ES2573409T3 (de)
FR (1) FR2959557B1 (de)
WO (1) WO2011138547A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015014687B4 (de) * 2015-11-12 2021-10-07 Audi Ag Verfahren und Kühlsystem zur Erzeugung eines Kühlluftstromes mittels thermoelektrischer Elemente

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR959196A (de) 1947-01-03 1950-03-25
US2928253A (en) * 1958-04-07 1960-03-15 Whirlpool Co Thermoelectric apparatus for cooling and heating liquids
JP2001330339A (ja) 2000-05-19 2001-11-30 Gac Corp ペルチェ冷却ユニットおよび冷却装置
FR2879728B1 (fr) * 2004-12-22 2007-06-01 Acome Soc Coop Production Module de chauffage et de rafraichissement autonome
DE102006004756B4 (de) * 2005-07-29 2015-10-15 Herbert Wolf Peltier-Wärmeaustauscher in modularer Bauweise
DE102007053381B3 (de) * 2007-11-09 2009-04-02 Meiko Maschinenbau Gmbh & Co.Kg Geschirrspülmaschine mit Latentwärmespeicher

Also Published As

Publication number Publication date
ES2573409T3 (es) 2016-06-07
EP2567160A1 (de) 2013-03-13
FR2959557B1 (fr) 2012-05-25
FR2959557A1 (fr) 2011-11-04
WO2011138547A1 (fr) 2011-11-10

Similar Documents

Publication Publication Date Title
CA2697871A1 (fr) Installation de chauffage/climatisation a pompe a chaleur, comportant un boitier repartiteur de fluide caloporteur avec couplage a une pluralite de circuits de captage et de distribution de chaleur
US8200373B2 (en) Energy production and consumption matching system
EP3404334B1 (de) Energiespeicherverfahren und -anlage, die einen wasserboiler umfasst
CA2629234A1 (fr) Procede de controle du stockage d'energie thermique dans le sol et dispositif associe
US20170257061A1 (en) User-Preference Driven Control Of Electrical And Thermal Output From A Photonic Energy Device
EP3798532B1 (de) Thermodynamische maschine und alternative betriebsverfahren dafür
FR2964727A1 (fr) Systeme thermique a faible puissance pour l'habitat
FR2977656A1 (fr) Systeme d'echange thermique et procede de regulation d'une puissance thermique developpee par un tel systeme d'echange thermique
EP3065021A1 (de) Warmwasserheizsystem mit dedizierter fotovoltaikanlage
EP2312227A1 (de) Mechanisch gesteuerte reversible Zweistrom-Ventilationsanlage und Brauchwarmwassererzeugung
FR3018593A1 (fr) Chauffe-eau joule regulable en puissance
EP2567160B1 (de) Verfahren und system zur regulierung einer wärmepumpe mit thermoelektrischen modulen
EP2336679B1 (de) Verfahren und Kontrolsystem einer Wärmepumpe mit thermoelektrischen Modulen
EP3225937B1 (de) Vorrichtung für gebäude, die ein speicherelement für ein thermisch wiederaufladbares fluid enthält
WO2012143638A2 (fr) Dispositif échangeur pour pompe à chaleur thermoélectrique réversible
EP2629023B1 (de) Thermische Anlage und thermische Konditionierung eines Raums sowie Erzeugung von sanitärem Warmwasser
EP2863130A1 (de) Anlage zur Wärmeregulierung eines Gebäudes
EP2149760B1 (de) System zur Stromversorgung und -steuerung für eine thermodynamische Vorrichtung
EP3816524B1 (de) Vorrichtung zur wassererhitzung
EP3650762B1 (de) Kontrollverfahren einer thermischen leistung zum einspritzen in ein heizsystem, und dieses verfahren nutzendes heizsystem
WO2021110791A1 (fr) Systeme de distribution d'eau
WO2018006183A1 (fr) Reseau de distribution d'energie thermique
CA3150655A1 (fr) Systeme d'appoint pour un reseau de distribution d'energie thermique basse temperature
EP3273170B1 (de) Anlage zur heisswasserbereitung mit einem thermodynamischen schaltkreis, der über fotovoltaikzellen gespeist wird
FR3001029A1 (fr) Systeme de regulation dans une installation de climatisation a detente directe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20121017

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ACOME SOCIETE COOPERATIVE ET PARTICIPATIVE SOCIETE

17Q First examination report despatched

Effective date: 20141027

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20151104

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 792908

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2573409

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20160607

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602011025582

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160531

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 792908

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160420

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160822

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160721

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602011025582

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160531

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160531

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20160720

26N No opposition filed

Effective date: 20170123

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160720

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160502

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: THERMACOME, FR

Effective date: 20180112

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110502

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160502

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20180625

Year of fee payment: 8

Ref country code: DE

Payment date: 20180514

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20180515

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602011025582

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190502

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191203

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20200925

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190503

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230417

Year of fee payment: 13