EP2562430A1 - Method for washing an axial compressor - Google Patents

Method for washing an axial compressor Download PDF

Info

Publication number
EP2562430A1
EP2562430A1 EP11178656A EP11178656A EP2562430A1 EP 2562430 A1 EP2562430 A1 EP 2562430A1 EP 11178656 A EP11178656 A EP 11178656A EP 11178656 A EP11178656 A EP 11178656A EP 2562430 A1 EP2562430 A1 EP 2562430A1
Authority
EP
European Patent Office
Prior art keywords
compressor
nozzles
channel
cleaning
duct
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP11178656A
Other languages
German (de)
French (fr)
Inventor
Dennis Andiek
Thorsten Engler
Claus Grewe
Andreas Lüttenberg
Nicolas Savilius
Wilhelm Scheidtmann
Oliver Schneider
Bernd Vonnemann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP11178656A priority Critical patent/EP2562430A1/en
Publication of EP2562430A1 publication Critical patent/EP2562430A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/70Suction grids; Strainers; Dust separation; Cleaning
    • F04D29/701Suction grids; Strainers; Dust separation; Cleaning especially adapted for elastic fluid pumps
    • F04D29/705Adding liquids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/002Cleaning of turbomachines

Definitions

  • the invention relates to a method for washing an axially flow-through compressor, wherein in a compressor passage of the compressor, a cleaning liquid is injected through arranged in the channel wall or in the compressor blades openings.
  • the air sucked in by the compressors carries airborne particles and particles so that in continuous operation the compressors of gas turbines become dirty.
  • the suspended particles and particles are deposited on the compressor blades and on the channel wall defining the compressor channel. These deposits affect the aerodynamics of the compressor and thus lead to a reduced compressor efficiency.
  • a cleaning liquid is introduced upstream of the compressor input, either during operation of the gas turbine as on-line laundry or after operation as an offline laundry.
  • the cleaning fluid is usually injected through nozzles, creating a mist of small drops. These drops then hit the compressor blades or the channel walls and wash away the deposits as far as possible.
  • the invention is based on the finding that the cleaning effect of the drops is also heavily dependent on the location at which they are introduced into the compressor duct. Areas of the compressor duct farther from the nozzles are cleaned less than areas near the nozzles. This is where the invention starts.
  • the penetration depth of the injected cleaning liquid varies. This is preferably achieved in that the supply pressure of the cleaning liquid varies over time. By varying the supply pressure, it is possible to reach areas of the compressor channel which are located farther away from the injection nozzles, even in the case of online laundry.
  • the nozzles can bring the cleaning liquid into the compressor channel either as a full jet or as a fan jet.
  • Supply pressures of 10 bar to 2000 bar are possible with conventional nozzles, so that even at the high flow rates of compressors stationary gas turbine and the injection direction of the cleaning liquid may have a direction opposite to the flow direction in the compressor component.
  • nozzle exit speeds of 100 m / s to 295 m / s can be achieved, for example with a nozzle diameter of 0.4 mm and an ejected volume of 2.2 l / min.
  • the entire radial height of the flow channel can be reached by the drops during the cleaning process, whereby the compressor is cleaned efficiently. It is thus not necessary that a separate group of nozzles is provided for a desired radial penetration depth with respect to the gas turbine. It has been found that an axial compressor of a stationary gas turbine, in which often more than 15 compressor stages are present, cleaned by arranging only two nozzle rings, each having a plurality of circumferentially distributed nozzles over the entire axial length of the compressor duct can be. It is thus not necessary that a separate ring of cleaning nozzles for introducing the cleaning liquid into the compressor channel must be provided for each compressor stage.
  • the variant in which the pressure during the washing process is systematically varied, ie periodically fluctuates between a pressure maximum and a pressure minimum.
  • FIG. 1 shows a stationary gas turbine 10 in a longitudinal partial section.
  • the gas turbine 10 has inside a rotatably mounted about an axis of rotation 12 rotor 14, which is also referred to as a turbine runner.
  • a suction housing 16 follows along the rotor 14 a suction housing 16, an axial compressor 18, a toroidal annular combustion chamber 20 with a plurality of rotationally symmetrical mutually arranged burners 22, a turbine unit 24 and an exhaust housing 26th
  • the compressor 18 comprises an annular compressor duct 25 with compressor stages of rotor blade and vane rings following each other in cascade.
  • the rotor blades 14 arranged on the compressor blades 27 are with their free-ending blade tips 29 an outer channel wall 42 of the compressor passage 25 against. Further compressor blades 27 are attached as guide vanes to a vane carrier.
  • the compressor passage 25 opens via a compressor outlet diffuser 36 in a plenum 38.
  • the annular combustion chamber 20 is provided with its combustion chamber 28, which communicates with an annular hot gas duct 30 of the turbine unit 24. In the turbine unit 24 four successive turbine stages 32 are arranged.
  • a generator or a working machine (each not shown) is coupled.
  • the compressor 18 sucks through the intake housing 16 as a medium to be compressed ambient air 34 and compresses them.
  • the compressed air is guided through the compressor outlet diffuser 36 into the plenum 38, from where it flows into the burner 22.
  • Fuel also passes into the combustion space 28 via the burners 22.
  • the fuel is burned to a hot gas M with the addition of the compressed air.
  • the hot gas M then flows into the hot gas duct 30, where it relaxes to perform work on the turbine blades of the turbine unit 24.
  • the energy released during this time is absorbed by the rotor 14 and used on the one hand to drive the compressor 18 and on the other hand to drive a work machine or electric generator.
  • each ring of cleaning nozzles is connected to a supply line through which a cleaning agent, usually water and / or an ester, the nozzles of the respective ring can be supplied.
  • the nozzles are arranged such that they can introduce the cleaning agent in the direction of arrow 43 into the compressor channel 25.
  • the Indian FIG. 1 A ring of cleaning nozzles located further to the left injects the compressor channel 25 in one direction so that it has a flow component which is opposite to the main flow direction (from left to right) of the compressed medium flowing in the compressor channel 25. For the further right in FIG.
  • the invention thus relates to a method for washing an axially permeable compressor 18, in which injected into a compressor passage 25, a cleaning liquid arranged in a channel wall 42 of the compressor passage 25 or in the compressor blades 27 openings become.
  • a cleaning liquid arranged in a channel wall 42 of the compressor passage 25 or in the compressor blades 27 openings become.
  • the penetration depth of the injected cleaning liquid varies.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

The method involves injecting a cleaning fluid through openings into an annular compressor channel (25) of an axial compressor (18) by an injecting device, where the openings are arranged in an outer channel wall (42) of the compressor channel or in compressor vanes (27) i.e. guide vanes. A penetration depth of the injected cleaning fluid is varied. A supply pressure of the cleaning fluid is varied and pulsated. The injecting device is provided with components that are opposite to a main flow direction in the compressor.

Description

Die Erfindung betrifft ein Verfahren zum Waschen eines axial durchströmbaren Verdichters, bei dem in einen Verdichterkanal des Verdichters eine Reinigungsflüssigkeit durch in der Kanalwand oder in den Verdichterschaufeln angeordneten Öffnungen eingespritzt wird.The invention relates to a method for washing an axially flow-through compressor, wherein in a compressor passage of the compressor, a cleaning liquid is injected through arranged in the channel wall or in the compressor blades openings.

Trotz der Verwendung von Filtern im Ansaugtrakt von Gasturbinen führt die von den Verdichtern angesaugte Luft Schwebeteilchen und Partikel mit, so dass im fortgesetzten Betrieb die Verdichter von Gasturbinen verschmutzen. Im Detail lagern sich die Schwebeteilchen und Partikel an den Verdichterschaufeln und an der den Verdichterkanal begrenzenden Kanalwand ab. Diese Ablagerungen beeinträchtigen die Aerodynamik des Verdichters und führen somit zu einem verminderten Verdichterwirkungsgrad. Um diese Ablagerungen weitestgehend zu entfernen, wird - entweder während des Betriebs der Gasturbine als Online-Wäsche oder nach dem Betrieb als Offline-Wäsche - eine Reinigungsflüssigkeit stromauf des Verdichtereingangs eingebracht. Die Reinigungsflüssigkeit wird zumeist über Düsen eingespritzt, wodurch sich ein Nebel von kleinen Tropfen bildet. Diese Tropfen treffen dann auf die Verdichterschaufeln bzw. auf die Kanalwände und waschen die Ablagerungen weitestgehend fort.Despite the use of filters in the intake tract of gas turbines, the air sucked in by the compressors carries airborne particles and particles so that in continuous operation the compressors of gas turbines become dirty. In detail, the suspended particles and particles are deposited on the compressor blades and on the channel wall defining the compressor channel. These deposits affect the aerodynamics of the compressor and thus lead to a reduced compressor efficiency. In order to remove these deposits as far as possible, a cleaning liquid is introduced upstream of the compressor input, either during operation of the gas turbine as on-line laundry or after operation as an offline laundry. The cleaning fluid is usually injected through nozzles, creating a mist of small drops. These drops then hit the compressor blades or the channel walls and wash away the deposits as far as possible.

Zudem ist es aus der US 6,659,715 bekannt, die Reinigungsflüssigkeit durch im Verdichterkanal angeordnete Düsen einzubringen.Moreover, it is from the US 6,659,715 it is known to introduce the cleaning fluid through nozzles arranged in the compressor passage.

Die während der Online-Wäsche eingebrachten Reinigungstropfen verdampfen jedoch aufgrund der beim Verdichtungsprozess der angesaugten Luft auftretenden Erwärmung, ohne dass diese ihre Reinigungswirkung vollständig entfalten können.However, the introduced during the online laundry cleaning drops evaporate due to the occurring in the compression process of the sucked air heating, without these can fully develop their cleaning effect.

Aus diesem Grund existiert das Bestreben, ein Verfahren zum Waschen eines axial durchströmbaren Verdichters anzugeben, mit dem besonders effizient der Verdichterkanal zumindest teilweise von Ablagerungen befreit werden kann.For this reason, there is a desire to provide a method for washing an axially flow-through compressor, with the particularly efficient compressor passage can be at least partially freed from deposits.

Die vorgenannte Aufgabe wird mit einem Verfahren gemäß den Merkmalen des Anspruchs 1 gelöst. Vorteilhafte Ausgestaltungen und weitere Merkmale sind in den Unteransprüchen angegeben. Dabei sind die in den Unteransprüchen angegebenen Ausführungsformen in beliebiger Weise miteinander kombinierbar.The above object is achieved by a method according to the features of claim 1. Advantageous embodiments and further features are specified in the subclaims. The embodiments specified in the dependent claims can be combined with one another in any desired manner.

Der Erfindung liegt die Erkenntnis zugrunde, dass die Reinigungswirkung der Tropfen auch stark von dem Ort abhängig ist, an dem sie in den Verdichterkanal eingebracht werden. Von den Düsen weiter entfernt liegende Bereiche des Verdichterkanals werden weniger gereinigt als nahe den Düsen liegende Bereiche. Hier setzt die Erfindung an. Um auch weiter von den Düsen entfernt liegende Orte des Verdichterkanals reinigen zu können, ohne dass eine konstruktive Veränderung bestehender Anordnungen von Reinigungsdüsen erforderlich ist, wird vorgeschlagen, dass die Eindringtiefe der eingespritzten Reinigungsflüssigkeit variiert. Vorzugsweise wird dies erreicht, in dem der Versorgungsdruck der Reinigungsflüssigkeit zeitlich variiert. Durch die Variation des Versorgungsdrucks ist es möglich, selbst bei einer Onlinewäsche von den Einspritzdüsen weiter entfernt liegende Bereiche des Verdichterkanals zu erreichen. Dabei können die Düsen entweder als Vollstrahl oder als Fächerstrahl die Reinigungsflüssigkeit in den Verdichterkanal einbringen. Versorgungsdrücke von 10 bar bis 2000 bar sind mit herkömmlichen Düsen möglich, so dass selbst bei den hohen Strömungsgeschwindigkeiten von Verdichtern stationärer Gasturbinen auch die Einspritzrichtung der Reinigungsflüssigkeit eine der Strömungsrichtung im Verdichter entgegengesetzte Komponente aufweisen kann. Es ist somit also möglich, nicht nur stromab der Düsen gelegene Bereiche des Verdichterkanals zu reinigen, sondern auch stromauf gelegene Bereiche, jeweils bezogen auf die Hauptströmungsrichtung der angesaugten Luft im Verdichterkanal und auf den Eindüsort. Mit Hilfe von herkömmlichen Düsen lassen sich Düsenaustrittsgeschwindigkeiten von 100 m/s bis 295 m/s erreichen, beispielsweise bei einem Düsendurchmesser von 0,4 mm und einem ausgespritzten Volumen von 2,2 1/min.The invention is based on the finding that the cleaning effect of the drops is also heavily dependent on the location at which they are introduced into the compressor duct. Areas of the compressor duct farther from the nozzles are cleaned less than areas near the nozzles. This is where the invention starts. In order to be able to clean locations of the compressor duct which are further away from the nozzles, without requiring a constructional change of existing arrangements of cleaning nozzles, it is proposed that the penetration depth of the injected cleaning liquid varies. This is preferably achieved in that the supply pressure of the cleaning liquid varies over time. By varying the supply pressure, it is possible to reach areas of the compressor channel which are located farther away from the injection nozzles, even in the case of online laundry. The nozzles can bring the cleaning liquid into the compressor channel either as a full jet or as a fan jet. Supply pressures of 10 bar to 2000 bar are possible with conventional nozzles, so that even at the high flow rates of compressors stationary gas turbine and the injection direction of the cleaning liquid may have a direction opposite to the flow direction in the compressor component. Thus, it is thus possible to clean not only located downstream of the nozzle areas of the compressor duct, but also upstream areas, each based on the main flow direction of the intake air in the compressor duct and on the Eindüsort. With the aid of conventional nozzles, nozzle exit speeds of 100 m / s to 295 m / s can be achieved, for example with a nozzle diameter of 0.4 mm and an ejected volume of 2.2 l / min.

Mit Hilfe des erfindungsgemäßen Verfahrens kann während des Reinigungsvorgangs die gesamte radiale Höhe des Strömungskanals von den Tropfen erreicht werden, wodurch der Verdichter effizient gereinigt wird. Es ist somit nicht erforderlich, dass für eine gewünschte - in Bezug auf die Gasturbine radiale - Eindringtiefe eine separate Gruppe von Düsen vorgesehen ist. Es hat sich gezeigt, dass ein axialer Verdichter einer stationären Gasturbine, in dem häufig mehr als 15 Verdichterstufen vorhanden sind, durch das Anordnen von lediglich zwei Düsen-Kränzen mit jeweils einer Vielzahl von entlang des Umfangs verteilten Düsen über die gesamte axiale Länge des Verdichterkanals gereinigt werden kann. Es ist somit nicht erforderlich, dass für jede Verdichterstufe ein eigener Kranz von Reinigungsdüsen zum Einbringen der Reinigungsflüssigkeit in den Verdichterkanal vorgesehen sein muss.With the aid of the method according to the invention, the entire radial height of the flow channel can be reached by the drops during the cleaning process, whereby the compressor is cleaned efficiently. It is thus not necessary that a separate group of nozzles is provided for a desired radial penetration depth with respect to the gas turbine. It has been found that an axial compressor of a stationary gas turbine, in which often more than 15 compressor stages are present, cleaned by arranging only two nozzle rings, each having a plurality of circumferentially distributed nozzles over the entire axial length of the compressor duct can be. It is thus not necessary that a separate ring of cleaning nozzles for introducing the cleaning liquid into the compressor channel must be provided for each compressor stage.

Besonders bevorzugt ist die Variante, bei der der Druck während des Waschvorgangs systematisch variiert wird, also zwischen einem Druckmaximum und einem Druckminimum periodisch schwankt.Particularly preferred is the variant in which the pressure during the washing process is systematically varied, ie periodically fluctuates between a pressure maximum and a pressure minimum.

Weitere Vorteile und Merkmale der Erfindung werden anhand eines in der nachfolgenden Figurenbeschreibung aufgeführten Ausführungsbeispiels näher erläutert. Es zeigen:

Figur 1
einen Längsteilquerschnitt durch eine stationäre Gasturbine.
Further advantages and features of the invention will be explained in more detail with reference to an embodiment shown in the following description of the figures. Show it:
FIG. 1
a longitudinal partial cross section through a stationary gas turbine.

Figur 1 zeigt eine stationäre Gasturbine 10 in einem Längsteilschnitt. Die Gasturbine 10 weist im Innern einen um eine Rotationsachse 12 drehgelagerten Rotor 14 auf, der auch als Turbinenläufer bezeichnet wird. Entlang des Rotors 14 folgen aufeinander ein Ansauggehäuse 16, ein axialer Verdichter 18, eine torusartige Ringbrennkammer 20 mit mehreren rotationssymmetrisch zueinander angeordneten Brennern 22, eine Turbineneinheit 24 und ein Abgasgehäuse 26. FIG. 1 shows a stationary gas turbine 10 in a longitudinal partial section. The gas turbine 10 has inside a rotatably mounted about an axis of rotation 12 rotor 14, which is also referred to as a turbine runner. Follow along the rotor 14 a suction housing 16, an axial compressor 18, a toroidal annular combustion chamber 20 with a plurality of rotationally symmetrical mutually arranged burners 22, a turbine unit 24 and an exhaust housing 26th

Der Verdichter 18 umfasst einen ringförmig ausgebildeten Verdichterkanal 25 mit darin kaskadisch aufeinanderfolgenden Verdichterstufen aus Laufschaufel- und Leitschaufelkränzen. Die am Rotor 14 angeordneten Verdichterschaufeln 27 liegen mit ihren frei endenden Schaufelblattspitzen 29 einer äußeren Kanalwand 42 des Verdichterkanals 25 gegenüber. Weitere Verdichterschaufeln 27 sind als Leitschaufeln an einem Leitschaufelträger befestigt. Der Verdichterkanal 25 mündet über einen Verdichterausgangsdiffusor 36 in einem Plenum 38. Darin ist die Ringbrennkammer 20 mit ihrem Verbrennungsraum 28 vorgesehen, der mit einem ringförmigen Heißgaskanal 30 der Turbineneinheit 24 kommuniziert. In der Turbineneinheit 24 sind vier hintereinander geschaltete Turbinenstufen 32 angeordnet. Am Rotor 14 ist ein Generator oder eine Arbeitsmaschine (jeweils nicht dargestellt) angekoppelt.The compressor 18 comprises an annular compressor duct 25 with compressor stages of rotor blade and vane rings following each other in cascade. The rotor blades 14 arranged on the compressor blades 27 are with their free-ending blade tips 29 an outer channel wall 42 of the compressor passage 25 against. Further compressor blades 27 are attached as guide vanes to a vane carrier. The compressor passage 25 opens via a compressor outlet diffuser 36 in a plenum 38. Therein, the annular combustion chamber 20 is provided with its combustion chamber 28, which communicates with an annular hot gas duct 30 of the turbine unit 24. In the turbine unit 24 four successive turbine stages 32 are arranged. On the rotor 14, a generator or a working machine (each not shown) is coupled.

Im Betrieb der Gasturbine 10 saugt der Verdichter 18 durch das Ansauggehäuse 16 als zu verdichtendes Medium Umgebungsluft 34 an und verdichtet diese. Die verdichtete Luft wird durch den Verdichterausgangsdiffusor 36 in das Plenum 38 geführt, von wo aus es in die Brenner 22 einströmt. Über die Brenner 22 gelangt auch Brennstoff in den Verbrennungsraum 28. Dort wird der Brennstoff unter Zugabe der verdichteten Luft zu einem Heißgas M verbrannt. Das Heißgas M strömt anschließend in den Heißgaskanal 30, wo es sich arbeitsleistend an den Turbinenschaufeln der Turbineneinheit 24 entspannt. Die währenddessen freigesetzte Energie wird vom Rotor 14 aufgenommen und einerseits zum Antrieb des Verdichters 18 und andererseits zum Antrieb einer Arbeitsmaschine oder elektrischen Generators genutzt.During operation of the gas turbine 10, the compressor 18 sucks through the intake housing 16 as a medium to be compressed ambient air 34 and compresses them. The compressed air is guided through the compressor outlet diffuser 36 into the plenum 38, from where it flows into the burner 22. Fuel also passes into the combustion space 28 via the burners 22. There, the fuel is burned to a hot gas M with the addition of the compressed air. The hot gas M then flows into the hot gas duct 30, where it relaxes to perform work on the turbine blades of the turbine unit 24. The energy released during this time is absorbed by the rotor 14 and used on the one hand to drive the compressor 18 and on the other hand to drive a work machine or electric generator.

An den beiden mit dem Bezugszeichen 40 gekennzeichneten Stellen sind in der Kanalwand 42 über den Umfang des Verdichterkanals 25 gleichmäßig verteilt und in großer Anzahl (mehrere Dutzend) angeordnete Reinigungsdüsen (nicht dargestellt) angesiedelt. Jeder Kranz aus Reinigungsdüsen ist mit einer Versorgungsleitung verbunden, über die ein Reinigungsmittel, zumeist Wasser und/oder ein Ester, den Düsen des betreffenden Kranzes zugeführt werden kann. Die Düsen sind derartig angeordnet, dass diese das Reinigungsmittel jeweils in Pfeilrichtung 43 in den Verdichterkanal 25 einbringen können. Der in der Figur 1 weiter links angesiedelte Kranz aus Reinigungsdüsen spritzt so in eine Richtung in den Verdichterkanal 25 ein, dass diese eine Strömungskomponente aufweist, welche der Hauptströmungsrichtung (von links nach rechts) des im Verdichterkanal 25 strömenden verdichteten Mediums entgegengesetzt ist. Für den weiter rechts in Figur 1 angedeuteten Kranz aus Reinigungsdüsen erfolgt in die Einspritzung der Reinigungsflüssigkeit nahezu radial. Sie ist lediglich geringfügig gegenüber der Radialrichtung in Hauptströmungsrichtung geneigt. Die an den Positionen 40 angesiedelten Reinigungsdüsen können mit einem flüssigen Reinigungsmittel versorgt werden, dessen Druck während der Durchführung des Waschvorgangs variiert. Damit wird erreicht, dass die über die Düsen eingespritzten Tropfen mal weniger tief, mal tiefer in den Verdichterkanal 25 eindringen und unterschiedliche Bereiche erreichen. Mithin können auf unterschiedlichen Radien liegende Bereiche des Verdichterkanals 25 mit ein- und derselben Düse (Düsenanordnung) von Ablagerungen befreit werden, die sich während des üblichen Betriebs auf den Verdichterschaufeln 27 oder an den Kanalwänden 42 bilden. Durch die Variation des Versorgungsdrucks der eingespritzten Reinigungsflüssigkeit können auf weitere Reinigungsdüsen, beispielsweise an der nabenseitigen Begrenzung des Verdichterkanals 25, verzichtet werden.At the two points indicated by the reference numeral 40 are in the channel wall 42 over the circumference of the compressor duct 25 evenly distributed and arranged in large numbers (several dozen) arranged cleaning nozzles (not shown). Each ring of cleaning nozzles is connected to a supply line through which a cleaning agent, usually water and / or an ester, the nozzles of the respective ring can be supplied. The nozzles are arranged such that they can introduce the cleaning agent in the direction of arrow 43 into the compressor channel 25. The Indian FIG. 1 A ring of cleaning nozzles located further to the left injects the compressor channel 25 in one direction so that it has a flow component which is opposite to the main flow direction (from left to right) of the compressed medium flowing in the compressor channel 25. For the further right in FIG. 1 indicated wreath from cleaning nozzles takes place in the injection of cleaning fluid almost radially. It is only slightly inclined with respect to the radial direction in the main flow direction. The cleaning nozzles located at positions 40 can be supplied with a liquid detergent whose pressure varies during the performance of the washing process. This ensures that the injected via the nozzle drops sometimes less deep, sometimes penetrate deeper into the compressor passage 25 and reach different areas. Consequently, areas of the compressor duct 25 lying at different radii can be freed of deposits which form on the compressor blades 27 or on the channel walls 42 during normal operation on one and the same nozzle (nozzle arrangement). By varying the supply pressure of the injected cleaning liquid, it is possible to dispense with further cleaning nozzles, for example at the hub-side boundary of the compressor channel 25.

Ingesamt betrifft die Erfindung somit ein Verfahren zum Waschen eines axial durchströmbaren Verdichters 18, bei dem in einen Verdichterkanal 25 eine Reinigungsflüssigkeit durch in einer Kanalwand 42 des Verdichterkanals 25 oder in den Verdichterschaufeln 27 angeordnete Öffnungen eingespritzt werden. Um unterschiedliche Bereiche des Verdichterkanals 25 von Effizienz mindernden Ablagerungen zu befreien, ist vorgesehen, dass die Eindringtiefe der eingespritzten Reinigungsflüssigkeit variiert.Overall, the invention thus relates to a method for washing an axially permeable compressor 18, in which injected into a compressor passage 25, a cleaning liquid arranged in a channel wall 42 of the compressor passage 25 or in the compressor blades 27 openings become. In order to free different regions of the compressor channel 25 from efficiency-reducing deposits, it is provided that the penetration depth of the injected cleaning liquid varies.

Claims (4)

Verfahren zum Waschen eines axial durchströmbaren Verdichters (18),
bei dem in einen Verdichterkanal (25) des Verdichters (18) eine Reinigungsflüssigkeit durch in einer Kanalwand (42) des Verdichterkanals (25) oder in Verdichterschaufeln (27) angeordnete Öffnungen eingespritzt werden,
dadurch gekennzeichnet,
dass die Eindringtiefe der eingespritzten Reinigungsflüssigkeit variiert.
Method for washing an axially flow-through compressor (18),
in which a cleaning fluid is injected into a compressor duct (25) of the compressor (18) through openings arranged in a duct wall (42) of the compressor duct (25) or in compressor blades (27),
characterized,
that the penetration depth of the injected cleaning liquid varies.
Verfahren nach Anspruch 1,
bei dem der Versorgungsdruck der Reinigungsflüssigkeit variiert.
Method according to claim 1,
in which the supply pressure of the cleaning fluid varies.
Verfahren nach Anspruch 1 oder 2,
bei dem der Versorgungsdruck pulsiert.
Method according to claim 1 or 2,
where the supply pressure pulsates.
Verfahren nach Anspruch 1, 2 oder 3,
bei dem die Einspritzrichtung der Reinigungsflüssigkeit eine der Hauptströmungsrichtung im Verdichter (18) entgegengesetzte Komponente aufweist.
Method according to claim 1, 2 or 3,
in which the injection direction of the cleaning liquid has a component opposite to the main flow direction in the compressor (18).
EP11178656A 2011-08-24 2011-08-24 Method for washing an axial compressor Withdrawn EP2562430A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP11178656A EP2562430A1 (en) 2011-08-24 2011-08-24 Method for washing an axial compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP11178656A EP2562430A1 (en) 2011-08-24 2011-08-24 Method for washing an axial compressor

Publications (1)

Publication Number Publication Date
EP2562430A1 true EP2562430A1 (en) 2013-02-27

Family

ID=44582441

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11178656A Withdrawn EP2562430A1 (en) 2011-08-24 2011-08-24 Method for washing an axial compressor

Country Status (1)

Country Link
EP (1) EP2562430A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMI20132042A1 (en) * 2013-12-06 2015-06-07 Nuovo Pignone Srl METHODS FOR WASHING MOTORS WITH GAS TURBINES AND GAS TURBINE ENGINES
DE102015006082A1 (en) * 2015-05-09 2016-11-10 Man Diesel & Turbo Se Method for cleaning a compressor
DE102015006080A1 (en) * 2015-05-09 2016-11-10 Man Diesel & Turbo Se compressor
CN110056544A (en) * 2019-03-12 2019-07-26 马文德 A kind of compressor most preferably washes period acquisition methods
US10669884B2 (en) 2013-12-06 2020-06-02 Nuovo Pignone Srl Washing nozzles and gas turbine engines
IT201800021067A1 (en) * 2018-12-27 2020-06-27 Nuovo Pignone Tecnologie Srl STATOR AERODYNAMIC COMPONENTS WITH NOZZLES AND METHODS FOR CLEANING A TURBOMACHINE

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6659715B2 (en) 2002-01-17 2003-12-09 Siemens Aktiengesellschaft Axial compressor and method of cleaning an axial compressor
WO2004055334A1 (en) * 2002-12-13 2004-07-01 Gas Turbine Efficiency Ab A method for cleaning a stationary gas turbine unit during operation
WO2005028876A1 (en) * 2003-09-25 2005-03-31 Abb Research Ltd. Compressor cleaning system
EP1749976A2 (en) * 2005-08-04 2007-02-07 General Electric Company Washing device and method for a compressor
EP1908928A2 (en) * 2006-09-29 2008-04-09 Gas Turbine Efficiency AB Nozzle for online and offline washing of gas turbine compressors
EP2286933A1 (en) * 2009-08-21 2011-02-23 Gas Turbine Efficiency Sweden AB Staged compressor water wash system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6659715B2 (en) 2002-01-17 2003-12-09 Siemens Aktiengesellschaft Axial compressor and method of cleaning an axial compressor
WO2004055334A1 (en) * 2002-12-13 2004-07-01 Gas Turbine Efficiency Ab A method for cleaning a stationary gas turbine unit during operation
WO2005028876A1 (en) * 2003-09-25 2005-03-31 Abb Research Ltd. Compressor cleaning system
EP1749976A2 (en) * 2005-08-04 2007-02-07 General Electric Company Washing device and method for a compressor
EP1908928A2 (en) * 2006-09-29 2008-04-09 Gas Turbine Efficiency AB Nozzle for online and offline washing of gas turbine compressors
EP2286933A1 (en) * 2009-08-21 2011-02-23 Gas Turbine Efficiency Sweden AB Staged compressor water wash system

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10669885B2 (en) 2013-12-06 2020-06-02 Nuovo Pignone Srl Methods of washing gas turbine engines and gas turbine engines
WO2015082609A1 (en) * 2013-12-06 2015-06-11 Nuovo Pignone Srl Methods of washing gas turbine engines and gas turbine engines
US10669884B2 (en) 2013-12-06 2020-06-02 Nuovo Pignone Srl Washing nozzles and gas turbine engines
ITMI20132042A1 (en) * 2013-12-06 2015-06-07 Nuovo Pignone Srl METHODS FOR WASHING MOTORS WITH GAS TURBINES AND GAS TURBINE ENGINES
DE102015006080A1 (en) * 2015-05-09 2016-11-10 Man Diesel & Turbo Se compressor
DE102015006082B4 (en) * 2015-05-09 2019-05-29 Man Energy Solutions Se Method for cleaning a compressor
DE102015006082A1 (en) * 2015-05-09 2016-11-10 Man Diesel & Turbo Se Method for cleaning a compressor
IT201800021067A1 (en) * 2018-12-27 2020-06-27 Nuovo Pignone Tecnologie Srl STATOR AERODYNAMIC COMPONENTS WITH NOZZLES AND METHODS FOR CLEANING A TURBOMACHINE
WO2020135931A1 (en) * 2018-12-27 2020-07-02 Nuovo Pignone Tecnologie - S.R.L. Stator aerodynamic components with nozzles and methods for cleaning a turbomachine
CN113272523A (en) * 2018-12-27 2021-08-17 诺沃皮尼奥内技术股份有限公司 Stator aerodynamic component with nozzle and method for cleaning a turbomachine
JP2022514958A (en) * 2018-12-27 2022-02-16 ヌオーヴォ・ピニォーネ・テクノロジー・ソチエタ・レスポンサビリタ・リミタータ How to clean the stator aerodynamic components with nozzles and turbomachinery
CN113272523B (en) * 2018-12-27 2024-02-27 诺沃皮尼奥内技术股份有限公司 Stator aerodynamic component with nozzle and method for cleaning a turbomachine
CN110056544A (en) * 2019-03-12 2019-07-26 马文德 A kind of compressor most preferably washes period acquisition methods

Similar Documents

Publication Publication Date Title
EP2562430A1 (en) Method for washing an axial compressor
EP2054586B1 (en) Gas turbine
EP1706597B1 (en) Gas turbine with axially displaceable rotor
DE60023681T2 (en) COOLING THE HIGH PRESSURE BIN LEVEL OF A GAS TURBINE
DE602004000527T2 (en) Method for cooling hot turbine components by means of a partially cooled in an external heat exchanger air flow and so cooled turbine engine
DE602005000974T2 (en) Turbomachine with counter-rotating fan
JP2017110660A (en) System and method for in situ cleaning of internal components of gas turbine engine, and related plug assembly
DE202004021476U1 (en) Apparatus for cleaning a turbofan gas turbine engine
WO2006021520A1 (en) Injection of liquid into a gas turbine during a cooling phase
EP2565391B1 (en) Cleaning device of a exhaust gas turbine and corresponding exhaust gas turbine, power turbine and exhaust gas turbocharger
WO2009065465A2 (en) Apparatus and method for cleaning parts of a burner
EP0718483B1 (en) Steam injection in gas turbine
CH705324A1 (en) Axial-flow compressor with an injection device for injecting a liquid.
DE4433289A1 (en) Axial gas turbine
CH703654B1 (en) Means having a turbine and a diffuser.
EP1820938A1 (en) Cleaning elements on blade tips of an exhaust turbine
EP3074181A1 (en) Method and device for cleaning a jet engine
DE102010005421B4 (en) Device and method for cleaning a front seal of a jet engine
EP2781699B1 (en) Cleaning device of an exhaust gas turbine
EP1659277B1 (en) Device for water or steam injection into the working medium of a gas turbine
AT507450B1 (en) METHOD FOR REMOVING CONTAMINATION FROM THE DIFFUSER OF A TURBOCHARGER AND DEVICE FOR THEIR IMPLEMENTATION
DE2442638C2 (en) Cooling device for a gas turbine plant
EP2083149A1 (en) Exhaust gas turbine
DE4335598A1 (en) Preventing fouling and increasing power in gas turbine installation - cooling intake air to below zero by turbo cooling unit consisting of compressor, cooler and expansion turbine preceding gas turbine proper
DE102015006080A1 (en) compressor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20130828