EP2555984B1 - Petaloid base for a self-standing container and container therefor - Google Patents

Petaloid base for a self-standing container and container therefor Download PDF

Info

Publication number
EP2555984B1
EP2555984B1 EP11717204.9A EP11717204A EP2555984B1 EP 2555984 B1 EP2555984 B1 EP 2555984B1 EP 11717204 A EP11717204 A EP 11717204A EP 2555984 B1 EP2555984 B1 EP 2555984B1
Authority
EP
European Patent Office
Prior art keywords
base
container
foot
formations
central
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP11717204.9A
Other languages
German (de)
French (fr)
Other versions
EP2555984A2 (en
Inventor
Mikael Quasters
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Petainer Lidkoeping AB
Original Assignee
Petainer Lidkoeping AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Petainer Lidkoeping AB filed Critical Petainer Lidkoeping AB
Publication of EP2555984A2 publication Critical patent/EP2555984A2/en
Application granted granted Critical
Publication of EP2555984B1 publication Critical patent/EP2555984B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D23/00Details of bottles or jars not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D1/00Containers having bodies formed in one piece, e.g. by casting metallic material, by moulding plastics, by blowing vitreous material, by throwing ceramic material, by moulding pulped fibrous material, by deep-drawing operations performed on sheet material
    • B65D1/02Bottles or similar containers with necks or like restricted apertures, designed for pouring contents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D1/00Containers having bodies formed in one piece, e.g. by casting metallic material, by moulding plastics, by blowing vitreous material, by throwing ceramic material, by moulding pulped fibrous material, by deep-drawing operations performed on sheet material
    • B65D1/02Bottles or similar containers with necks or like restricted apertures, designed for pouring contents
    • B65D1/0223Bottles or similar containers with necks or like restricted apertures, designed for pouring contents characterised by shape
    • B65D1/0261Bottom construction
    • B65D1/0284Bottom construction having a discontinuous contact surface, e.g. discrete feet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D1/00Containers having bodies formed in one piece, e.g. by casting metallic material, by moulding plastics, by blowing vitreous material, by throwing ceramic material, by moulding pulped fibrous material, by deep-drawing operations performed on sheet material
    • B65D1/12Cans, casks, barrels, or drums
    • B65D1/14Cans, casks, barrels, or drums characterised by shape
    • B65D1/16Cans, casks, barrels, or drums characterised by shape of curved cross-section, e.g. cylindrical

Definitions

  • This invention relates to self-standing containers, more specifically to a petaloid base , according to the preamble of claim 1, for such a container.
  • Such containers may be blow-moulded of plastics material such as polyethylene terephthalate (PET).
  • the generic term 'PET' includes compositions that predominantly contain polyethylene terephthalate - but may also including other materials.
  • a suitable composition may comprise approximately 95% polyethylene terephthalate and 5% nylon.
  • these materials may be mixed, or provided in different layers, for example via multilayer injection moulding and overmoulding.
  • Blow-moulded PET containers have long been used as bottles for beverages. More recently, they have been proposed for use as kegs for transporting, storing and dispensing beverages such as beer. An example of such a keg is disclosed in WO 2007/064277 .
  • the term 'petaloid' refers to a multi-footed base shape whose feet are disposed in an angularly-spaced arrangement around the base, the resulting shape resembling the petals of a flower when viewed from under the container in use.
  • the container usually has a cylindrical side wall of circular horizontal cross-section, in which case the feet typically lie on a contact circle that is concentric with, and whose diameter is smaller than, the circular cross-section of the side wall. The feet act together to provide a stable multi-point support for the container.
  • the container may be used for storing, transporting and dispensing effervescent beverages such as beer.
  • the beverage itself may be carbonated, or a propellant gas may be injected into the container at superatmospheric pressure to force the beverage out of the container.
  • a propellant gas may be injected into the container at superatmospheric pressure to force the beverage out of the container.
  • Such a container needs to withstand these internal pressures under a range of environmental conditions. As well as withstanding internal pressures, the container needs to survive rough handling during transportation of the container.
  • WO 2006/000408 A1 describes a container with an ovoid or cylindrical wall and a hemispherical bottom type continuing that wall from which originate feet spaced from one another.
  • the ratio of the weight of the wall to the weight of the bottom is at least 4.
  • the invention resides in a petaloid base of a blow-moulded self-standing container, the base having a spheroidal underlying base contour and a plurality of spheroidal foot formations that interrupt and project from the underlying base contour to define a corresponding plurality of feet, wherein the foot formations radiate from a central protrusion and the foot formations are ovoid.
  • the elongate foot formations have respective longitudinal axes, which axes lie in planes extending radially from a central axis of the base. Those axes of the foot formations suitably extend outwardly and upwardly in conical relation from the central axis of the base.
  • the feet are spheroidal, it will be understood that their contact with a planar surface on which the base can rest is via a convex surface. Preferably therefore, contact between a given foot and that planar surface is via a point on the curved surface of that foot.
  • the underlying base contour is preferably substantially hemispherical.
  • the contour may, for example, be that of an oblate spheroid whose polar axis coincides with a central axis of the base.
  • the foot formations are ovoid (partially egg-shaped), in which case the contact points of the feet are most conveniently defined by the widest part of the cross-section of each foot formation being offset inwardly toward an inner end of the foot formation.
  • the foot formations taper to a greater extent at their radially outer portions than their radially inner portions with respect to the central axis of the base.
  • the base comprises formations, such as foot formations, whose shapes are substantially rotationally symmetrical about an axis.
  • shapes such as spheroids, ellipsoids and ovoids that define the foot formations are preferably substantially rotationally symmetrical about an axis.
  • the material used to form these structures can be minimised.
  • the internal capacity of the base, as well as its strength can be maximised.
  • Each foot formation may have an elliptical, preferably ovate intersection with the underlying base contour. To reduce stress concentration, the intersection is preferably of concave cross section.
  • the foot formations radiate from a central protrusion. That protrusion may be approximately polygonal, with a number of sides corresponding to the number of foot formations.
  • the foot formations are suitably separated by valleys, that may for example radiate from apices of the polygonal protrusion.
  • each foot formation may have an enlarged central region from which the foot formation tapers inwardly across an inner portion to an inner end.
  • the inner portions of the foot formations suitably lie in segmented relation around the base.
  • each foot formation tapers from the enlarged central region outwardly across an outer portion to an outer end of the foot formation.
  • the inventive concept extends to a blow-moulded container such as a keg or a bottle having the base of the invention.
  • the container is constructed by blow-moulding a preform, ideally made of PET.
  • the container has an average pressure resistance to material usage ratio of greater than 3 MPa / kg. More preferably, the average pressure resistance to material usage ratio is greater than 3.75 MPa / kg. Also, preferably, the container has a capacity to material usage ratio of over 40 litres / kg. More preferably, the container has a capacity to material usage ratio of over 80 litres / kg.
  • a container 10 in this example of the invention comprises a hollow body of blow-moulded PET.
  • the body of the container 10 is of circular horizontal section, the radius of that circle extending orthogonally from a central longitudinal axis 12 that extends centrally through the closed base 14 of the container 10.
  • Above the base 14, but not shown in Figures 1 and 2 is a substantially cylindrical side wall surmounted by a neck portion.
  • the side wall is integral with and terminates at its lower end in the base 14; in turn, the side wall is integral with and terminates at its upper end in the neck portion at the top of the container 10.
  • the fundamental or underlying shape of the base 14 is a slightly flattened hemisphere, that hemisphere being rotationally symmetrical about the central longitudinal axis 12 of the container 10. More generally, the underlying shape of the base 14 is an oblate spheroid, being a rotationally symmetric ellipsoid having a diameter on its polar axis (coinciding with the central longitudinal axis 12) that is shorter than the diameter of the equatorial circle whose plane bisects it. This approximately hemispherical shape maximises resistance to internal pressure, reduces stress concentrations to resist cracking, and also maximises internal volume while minimising material usage.
  • the base 14 further includes integrally-moulded blister-like feet disposed in a petaloid arrangement around the base, the feet being defined in this example by five hollow ovoid foot formations 16 that radiate equi-angularly from a relatively shallow generally pentagonal convex protrusion 18 on the central longitudinal axis 12. More generally, the foot formations 16 are elongate ellipsoids in the form of prolate spheroids, a prolate spheroid being a spheroid whose diameter along its polar axis is greater than its equatorial diameter.
  • the polar axes 20 of the spheroidal foot formations 16 extend outwardly and upwardly in equi-angularly spaced radially-disposed planes from the central longitudinal axis 12 of the container 10.
  • the polar axes 20 of the foot formations 16 lie on a virtual frusto-conical surface surrounding the central longitudinal axis 12.
  • Circumferentially adjacent pairs of foot formations 16 are separated by valleys 22 that radiate equi-angularly from the apices 24 of the pentagonal central protrusion 18.
  • the valley floors follow the spheroidal shape of the base 14 and open at their outer ends to an outer portion of the base 14 that lies radially outwardly beyond the foot formations 16.
  • each foot formation 16 and the central protrusion 18 are joined via a transition portion that curves smoothly without distinct transitions or discontinuities.
  • a foot formation 16, the smoothly curving transition portion and the central protrusion 18 together define a sinuous cross section.
  • the convex central protrusion 18 has a radius of curvature r that is smaller than the general radius of curvature R of the spheroidal base 14: thus R > r . Moreover, the convex central protrusion 18 extends to a level beyond - and thus, in use, below - the lowermost apex of the underlying base contour. Also, the convex central protrusion 18 extends to a level within - and thus, in use, above - the extent of the foot formations 16.
  • the foot formations 16 bulge outwardly from the underlying spheroidal contour of the base 14 by virtue of an ovoid convex wall.
  • the convex wall of each foot formation 16 is surrounded by a concave transition zone 26 in the shape of an ovate ring.
  • the transition zone 26 extends smoothly into the spheroidal wall of the base with a large radius of curvature to reduce stress concentration and hence to minimise stress cracking.
  • the transition zones 26 of circumferentially adjacent foot formations 16 partially define the valley 22 between those foot formations 16.
  • Each foot formation 16 is generally elliptical (in this example, ovate) in underneath plan view, reaching a maximum width in an enlarged central region 28 between its inner end 30 and its outer end 32.
  • each foot formation 16 tapers in opposite directions from the widest part of the central region 28: along an inner portion 34 moving inwardly toward the central longitudinal axis 12 to the inner end 30; and along an outer portion 36 moving outwardly away from the central longitudinal axis 12 to the outer end 32.
  • the inwardly-tapering inner portions 34 of the foot formations 16 fit closely between their neighbours around the circular base 14 like segments of an orange. These inner portions 34 of the foot formations 16 alternate with, and are separated by, narrow inner sections 38 of the valleys 22, which may be approximately parallel but, in this example, widen slightly as they extend outwardly from the pentagonal central protrusion 18. However where they extend outwardly into their outer sections 40 beyond the widest part of the foot formations 16, the valleys 22 widen near-exponentially between the tapering outer portions 36 of the foot formations 16 until they reach a maximum width between the outer ends 32 of adjacent foot formations 16.
  • each foot formation 16 extends to a level beyond - and thus, in use, below - the lowermost apex of the base 14 defined by the central pentagonal protrusion 18.
  • the foot formations 16 all extend to the same level.
  • each foot formation 16 defines a contact point 42 that will lie stably upon a flat support surface (not shown) orthogonal to the central longitudinal axis 12 of the container 10.
  • FIG. 1 shows that the foot formations are somewhat egg-shaped with the widest part of their cross-sections offset slightly inwardly and downwardly toward their inner ends 30.
  • the contact points 42 of the foot formations 16 are equi-spaced on and around a contact circle centred on the central longitudinal axis 12 of the container 10.
  • k is preferably between 3.6 and 5.5, more preferably between 4.0 and 5.3, still more preferably between 4.2 and 5.0 and typically 4.7. This may be contrasted with typical PET bottles on the market whose corresponding ratio k is typically 2.5 to 3.5.
  • the relatively large value for k in the invention stems from a relatively small value for x. This is advantageous because a small contact circle creates a small - and hence inherently stiff - diaphragm between the contact points 42.
  • the result is a central area within the contact circle between the contact points 42 of the foot formations 16 that is quite rigid and hence resistant to movement during internal pressure, up to burst pressure.
  • the rigidity of the area within the contact circle is enhanced by the undulating wall section defined by the inner portions 34 of the foot formations 16, the valleys 22 between them, and the central protrusion 18.
  • Stiffness within the contact circle is important not just for a high burst pressure but also for stability. This is because the lowest point on the central longitudinal axis (the lowermost apex of the base 14 defined by the central pentagonal protrusion 18) will tend to be pushed down under internal pressure. If that lowest point moves so far as to contact a supporting surface in use, the container cannot rest stably on the contact points 42 of the foot formations 16.
  • the stiffness of the base shape of the invention means that compared to previously known designs, the distance from the central apex of the base to a supporting surface is relatively small, to the benefit of stability and capacity relative to the height of the container.
  • any one foot formation 16 end-on i.e. from the side of the container 10 looking inwardly towards the central longitudinal axis 12
  • the contour of that foot formation 16 describes a substantially constant convex radius between the concave radii of the transition zones 26 to each side.
  • a conventional petaloid base typically has flatter surfaces defining a V-shaped valley between the feet, to the detriment of material usage and stress concentration. Stress concentrations create areas of a container that are particularly vulnerable to rupture under high internal pressure.
  • the arrangement of the base 14 of the present invention is particularly suited to containers for dispensing liquids under pressure.
  • the increased value for k makes the base stiffer and hence better suited for retaining stability whilst the container is subject to high internal pressure.
  • the convex central protrusion 18 positioned axially lower than would otherwise be possible for a container that is subject to high internal pressure. This can maximise the quantity of beverage that can be practically dispensed from the container 10. This advantage is discussed with reference to Figure 12 in which is shown the same sectional side view of the container base 14 of Figure 3 , together with a beverage dispensing tube 120.
  • the container is used as a beer keg 10 that is provided with a closure assembly that is sealed on to the tubular neck of the keg 10 in a push-fit arrangement.
  • the tube 120 is coupled to the closure assembly (not shown) and extends from it along the central longitudinal axis 12 into the base of the keg 10.
  • the axially lower end of the tube 120 extends into the central protrusion 18.
  • the end of the tube 120 sits within the central protrusion 18 and hangs just inside the apex of the central protrusion 18, thereby providing an annular gap through which a beverage can pass from the keg 10 into the tube 120 or visa-versa.
  • the shape of the central protrusion 18 also enables the axially lower end of the tube 120 to be correctly located and retained within the central protrusion during fitting and use.
  • the keg 10 In use, when dispensing a beverage, the keg 10 is maintained in an upright position.
  • the closure assembly allows a pressurised gas to be introduced into the headspace of the keg 10 to force the beverage out through the tube 120.
  • the central protrusion 18 As the axially lowermost end of the tube 120 is located within the central protrusion 18, and the central protrusion 18 is disposed at a relatively low axial position within the keg 10, this ensures that almost all of the beverage within the keg 10 can be extracted from it.
  • the tube 120 would need to bend away from the central longitudinal axis 12 at its lower end. Although this may marginally increase the amount of beverage that can be dispensed from the keg 10, this can complicate process of fitting the closure assembly and tube 120 to the keg 10.
  • inserting a bent tube 120 into the keg 10 can require a complicated automated fitting process.
  • the bending of the tube 120 away from the central longitudinal axis 12 can subject the closure assembly to which the tube 120 is attached at its axially upper end to uneven forces. This can reduce the reliability of the closure assembly, which is of particular concern when the keg 10 is subject to high internal pressure.
  • the petaloid base of the invention may be applied to a wide range of containers such as bottles and kegs.
  • Figures 4(a), 4(b) and 4(c) and Figures 5(a), 5(b) and 5(c) show a five-footed base of the invention applied, respectively, to a bottle 44 of 0.33 litre capacity, which may typically be used for carbonated soft drinks, and a keg 46 of 20 litres capacity, which may typically be used for beer.
  • These drawings show features omitted from Figures 1 and 2 , namely a substantially cylindrical side wall 48 surmounted by a neck portion 50.
  • the side wall 48 is integral with and terminates at its lower end in the base 14; in turn, the side wall 48 is integral with and terminates at its upper end in the neck portion 50 at the top of the container.
  • Figure 10 shows a further five-footed base of the invention applied to a keg 104 of 18-litre capacity with a non-cylindrical side wall 108.
  • the side wall 108 is convex, rotationally symmetrical about the central longitudinal axis of the keg 104 and so generally follows the shape of an ovoid.
  • the side wall curves smoothly into the spheroidal underlying contour of the base of the present invention.
  • the side wall curves smoothly into the concave neck of the keg 104.
  • FIG. 11 is an enlarged side view of a plastics preform for blow moulding into the container as shown in Figure 10 .
  • a variant of the base of the invention shown in Figures 6(a), 6(b) and 6(c) is applied to a bottle 52 of 1.5 litres capacity.
  • This variant has seven foot formations 54 instead of five, with a generally heptagonal central protrusion 56 between them.
  • seven-footed base variants can be applied to any size of container, such as bottles of 0.33 litres, 0.5 litres, 1 litre, 1.5 litres or larger, and kegs of 20 litres or other capacities.
  • An odd number of feet is preferred for optimum stability, there being at least three feet (in which case the central protrusion is generally triangular) but preferably not more than seven feet; five or seven feet are considered optimal.
  • the table below sets out a volume comparison between a conventional base and a base in accordance with the invention, assuming in this instance that the base defines five feet. Volumes in the table are expressed in millilitres (ml). The volume refers to the internal volume of the base, defined as the portion of the container below the cylindrical side wall of the container. It will be noted that the base of the invention has a volume approximately five times greater than the volume of a conventional petaloid container base, to the benefit of compactness and material usage for a given container capacity.
  • Container with five feet Conventional base of the invention 20 litre keg, dia 235 mm 128 (20%) 634 0.33 litre bottle, dia 60 mm 2.7 (18%) 15 0.5 litre bottle, dia 65 mm 3.5 (18%) 19 1.0 litre bottle, dia 80 mm 6.5 (18%) 36 1.5 litre bottle, dia 95 mm 11 (20%) 55
  • Container with five feet Radial projection of foot formations beyond radius of underlying base contour Diameter of contact circle 20 litre keg, dia 235 mm 18.1 mm 99.9 mm 0.33 litre bottle, dia 60 mm 5.3 mm 28.6 mm 0.5 litre bottle, dia 65 mm 5.5 mm 31.0 mm 1.0 litre bottle, dia 80 mm 7.1 mm 38.1 mm 1.5 litre bottle, dia 95 mm
  • Figures 7 to 9 provide additional dimensional information relating to a 20-litre keg having a five-footed base 14.
  • Figures 10 and 11 respectively show dimensional information relating to an 18-litre keg 104 having a five-footed base and its preform 106.
  • Figure 8 shows a partial sectional side view through the petaloid base of the 20-litre keg of Figure 7 , taken along section line VIII-VIII.
  • the resulting section plane intersects a foot formation 16 at its contact point 42, and is parallel to and is radially-spaced at a distance of 50 mm from the central longitudinal axis 12 of the keg 10.
  • Figure 9 is a partial sectional side view through the petaloid base of the 20-litre keg of Figure 7 , taken along section line IX-IX.
  • the resulting section plane is aligned with the central longitudinal axis 12 of the keg 10, and intersects the same foot formation 16 as shown in Figure 8 at its contact point 42.
  • the view shown in Figure 9 corresponds to the view shown in Figure 3 , but provides the following additional dimensional information relating to the 20-litre keg: RADIUS DATA Radius of underlying base contour 135.0 mm Radius of convex central protrusion 35.0 mm Radius of concave transition zone between the convex central protrusion and the radially inner end of a foot formation 12.0 mm Radius of a foot formation at a position on the inner portion adjacent the radially inner end 35.0 mm Radius of a foot formation at a position on the inner portion between the radially inner end and the central region of the foot formation 43.0 mm Radius of a foot formation at a position on the central region between the contact circle and the inner portion 50.0 mm Radius of a foot formation at a position on the central region that is radially inner of and adjacent to the contact circle 20.5 mm Radius of a foot formation at a position on the central region that is radially outer of and adjacent to the contact circle 24.0 mm Radius of
  • DISTANCE DATA Distance along central longitudal axis between convex central protrusion and plane containing the contact circle 3.0 mm Axial depth of convex central protrusion along central longitudinal axis 4.5 mm Distance along central longitudinal axis from underlying base contour to plane containing the contact circle 8.0 mm Distance along axis aligned with central longitudinal axis from transition zone (between central protrusion and a foot formation) to plane containing the contact circle 7.5 mm Axial depth of the base portion (i.e. axial distance from plane containing the contact circle to axially lower end of cylindrical side wall) 91.2 mm Radial length from central longitudinal axis to transition between base contour and foot formation 84.66 mm
  • Figure 10 provides additional dimensional data corresponding to the 18 litre keg 104: Convex radius of underlying base contour 135.0 mm Diameter of body at widest point 287.0 mm Convex radius of body contour 352.0 mm Convex radius of contour between body and neck 185.0 mm Concave radius of neck contour 65.0 mm Diameter of neck 65.0 mm Total axial length 490.0 mm Axial length from base to neck collar 472.0 mm Axial length from keg opening, to beverage fill point (FP) mark - denoting an 18 litre fill from a level base 112.5 mm
  • Figure 11 provides additional dimension data corresponding to the preform 106 of the 18 litre keg 104 of Figure 10: Total axial length 195.0 mm Axial length from base to neck collar 177.0 mm Axial thickness of base 6.0 mm Thickness of each cylindrical side wall 11.0 mm Axia
  • the improved petaloid base shape of the invention has various additional advantages. Its softly-curving shape with an absence of sharp radii is beneficial to resist stress cracking. Also, importantly, its surface area is less than equivalent known designs. Thus, for a given amount of resin, the invention allows a thicker wall and hence a stronger base. Alternatively it is possible to reduce weight and material usage while maintaining the strength of the base. A strong base is particularly important in applications where the containers are subjected to elevated internal pressure and/or elevated temperature, such as carbonated soft drinks, beer and hot-fill or pasteurised liquids.

Description

  • This invention relates to self-standing containers, more specifically to a petaloid base , according to the preamble of claim 1, for such a container. Such containers may be blow-moulded of plastics material such as polyethylene terephthalate (PET).
  • As will be understood in the art, the generic term 'PET' includes compositions that predominantly contain polyethylene terephthalate - but may also including other materials. For example, a suitable composition may comprise approximately 95% polyethylene terephthalate and 5% nylon. As is known in the art, these materials may be mixed, or provided in different layers, for example via multilayer injection moulding and overmoulding.
  • Blow-moulded PET containers have long been used as bottles for beverages. More recently, they have been proposed for use as kegs for transporting, storing and dispensing beverages such as beer. An example of such a keg is disclosed in WO 2007/064277 .
  • The example of WO 2007/064277 is given for background reference only: the broad concept of this invention is not limited to any particular use, material or method of manufacture of a container. However the invention has particular advantages in the context of thin-walled blow-moulded containers of the type apt to be manufactured from PET. It is in that context that the invention will be described in this specification.
  • Early PET containers had a plain hemispherical base and were rendered self-standing by the attachment of a separate base moulding to the base. Whilst a hemispherical base is simple, light and strong in isolation, the addition of a separate base moulding increases material and production costs and may hinder recycling.
  • To make a PET container self-standing without recourse to a separate base moulding, it is now well known to provide the container with an integrally-moulded petaloid base.
  • The term 'petaloid' refers to a multi-footed base shape whose feet are disposed in an angularly-spaced arrangement around the base, the resulting shape resembling the petals of a flower when viewed from under the container in use. The container usually has a cylindrical side wall of circular horizontal cross-section, in which case the feet typically lie on a contact circle that is concentric with, and whose diameter is smaller than, the circular cross-section of the side wall. The feet act together to provide a stable multi-point support for the container.
  • There is continual pressure in the art of containers to reduce material and production costs and to ease recycling. Not only has this led to the adoption of one-piece containers with petaloid bases, but efforts continue to improve the petaloid base so that containers can be produced more economically while still performing reliably during storage, transportation and use. It is particularly desirable to reduce the amount of material necessary to give the container sufficient integrity and stability for commercial use. Even a small saving of material per container has a massive effect on the cost of production when reproduced across potentially tens to thousands of millions of containers per annum.
  • The correct trade off between the amount of material used and the integrity of the container is especially important when the container is to be used as a pressurised vessel. For example, the container may be used for storing, transporting and dispensing effervescent beverages such as beer. The beverage itself may be carbonated, or a propellant gas may be injected into the container at superatmospheric pressure to force the beverage out of the container. Such a container needs to withstand these internal pressures under a range of environmental conditions. As well as withstanding internal pressures, the container needs to survive rough handling during transportation of the container.
  • WO 2006/000408 A1 describes a container with an ovoid or cylindrical wall and a hemispherical bottom type continuing that wall from which originate feet spaced from one another. The ratio of the weight of the wall to the weight of the bottom is at least 4.
  • It is against this background that the present invention has been devised. From one aspect, the invention resides in a petaloid base of a blow-moulded self-standing container, the base having a spheroidal underlying base contour and a plurality of spheroidal foot formations that interrupt and project from the underlying base contour to define a corresponding plurality of feet, wherein the foot formations radiate from a central protrusion and the foot formations are ovoid. To define feet with minimal usage of material, the elongate foot formations have respective longitudinal axes, which axes lie in planes extending radially from a central axis of the base. Those axes of the foot formations suitably extend outwardly and upwardly in conical relation from the central axis of the base.
  • As the feet are spheroidal, it will be understood that their contact with a planar surface on which the base can rest is via a convex surface. Preferably therefore, contact between a given foot and that planar surface is via a point on the curved surface of that foot. To maximise the capacity and strength of the container while minimising material usage, the underlying base contour is preferably substantially hemispherical. The contour may, for example, be that of an oblate spheroid whose polar axis coincides with a central axis of the base. For similar reasons, the foot formations are ovoid (partially egg-shaped), in which case the contact points of the feet are most conveniently defined by the widest part of the cross-section of each foot formation being offset inwardly toward an inner end of the foot formation. In other words, the foot formations taper to a greater extent at their radially outer portions than their radially inner portions with respect to the central axis of the base.
  • Preferably, the base comprises formations, such as foot formations, whose shapes are substantially rotationally symmetrical about an axis. For example, shapes such as spheroids, ellipsoids and ovoids that define the foot formations are preferably substantially rotationally symmetrical about an axis. Advantageously, if these shapes that form the base are rotationally symmetrical, the material used to form these structures can be minimised. At the same time the internal capacity of the base, as well as its strength can be maximised.
  • Each foot formation may have an elliptical, preferably ovate intersection with the underlying base contour. To reduce stress concentration, the intersection is preferably of concave cross section.
  • To strengthen the base, the foot formations radiate from a central protrusion. That protrusion may be approximately polygonal, with a number of sides corresponding to the number of foot formations.
  • The foot formations are suitably separated by valleys, that may for example radiate from apices of the polygonal protrusion. To minimise material usage,
  • In plan view, each foot formation may have an enlarged central region from which the foot formation tapers inwardly across an inner portion to an inner end. In that case, the inner portions of the foot formations suitably lie in segmented relation around the base. To minimise material usage, it is preferred that in plan view, each foot formation tapers from the enlarged central region outwardly across an outer portion to an outer end of the foot formation.
  • The inventive concept extends to a blow-moulded container such as a keg or a bottle having the base of the invention. The container is constructed by blow-moulding a preform, ideally made of PET.
  • Preferably, where the material used is PET, the container has an average pressure resistance to material usage ratio of greater than 3 MPa / kg. More preferably, the average pressure resistance to material usage ratio is greater than 3.75 MPa / kg. Also, preferably, the container has a capacity to material usage ratio of over 40 litres / kg. More preferably, the container has a capacity to material usage ratio of over 80 litres / kg.
  • In order that the invention may be more readily understood, reference will now be made, by way of example, to the accompanying drawings in which:
    • Figure 1 is a plan view from underneath a container having a petaloid base in accordance with the invention;
    • Figure 2 is a side view of the petaloid base of the container shown in Figure 1;
    • Figure 3 is a sectional side view through the petaloid base of the container shown in Figure 1;
    • Figures 4(a), 4(b) and 4(c) are, respectively, an underneath plan view, a side view and a perspective view of a container having a base as shown in Figures 1 to 3, embodied in this example as a bottle of 0.33 litre capacity;
    • Figures 5(a), 5(b) and 5(c) are, respectively, an underneath plan view, a side view and a perspective view of another container having a base as shown in Figures 1 to 3, embodied in this example as a keg of 20 litres capacity;
    • Figures 6(a), 6(b) and 6(c) are, respectively, an underneath plan view, a side view and a perspective view of another container having a base in accordance with the invention, embodied in this example as a bottle of 1.5 litres capacity, the base of this example being a variant having seven feet;
    • Figure 7 is the underneath plan view of the container as shown in Figure 1 marked in this instance with section lines referred to in Figures 8 and 9;
    • Figure 8 is an enlarged partial sectional side view through the petaloid base of the container of Figure 7, taken along section line VIII-VIII;
    • Figure 9 is an enlarged partial sectional side view through the petaloid base of the container of Figure 7, taken along section line IX-IX;
    • Figure 10 is a side view of a container having a five-footed petaloid base as shown in Figures 1 to 3, embodied in this example as a keg having a non-cylindrical side wall, and of 18-litre capacity;
    • Figure 11 is a side view of a plastics preform for blow moulding into the 18-litre capacity keg as shown in Figure 10; and
    • Figure 12 is an enlarged sectional side view of the container base as shown in Figure 3, together with a beverage dispensing tube within the container.
  • Referring firstly to Figures 1 and 2 of the drawings, a container 10 in this example of the invention comprises a hollow body of blow-moulded PET. The body of the container 10 is of circular horizontal section, the radius of that circle extending orthogonally from a central longitudinal axis 12 that extends centrally through the closed base 14 of the container 10. Above the base 14, but not shown in Figures 1 and 2, is a substantially cylindrical side wall surmounted by a neck portion. The side wall is integral with and terminates at its lower end in the base 14; in turn, the side wall is integral with and terminates at its upper end in the neck portion at the top of the container 10.
  • The fundamental or underlying shape of the base 14 is a slightly flattened hemisphere, that hemisphere being rotationally symmetrical about the central longitudinal axis 12 of the container 10. More generally, the underlying shape of the base 14 is an oblate spheroid, being a rotationally symmetric ellipsoid having a diameter on its polar axis (coinciding with the central longitudinal axis 12) that is shorter than the diameter of the equatorial circle whose plane bisects it. This approximately hemispherical shape maximises resistance to internal pressure, reduces stress concentrations to resist cracking, and also maximises internal volume while minimising material usage.
  • In accordance with the invention, the base 14 further includes integrally-moulded blister-like feet disposed in a petaloid arrangement around the base, the feet being defined in this example by five hollow ovoid foot formations 16 that radiate equi-angularly from a relatively shallow generally pentagonal convex protrusion 18 on the central longitudinal axis 12. More generally, the foot formations 16 are elongate ellipsoids in the form of prolate spheroids, a prolate spheroid being a spheroid whose diameter along its polar axis is greater than its equatorial diameter.
  • The polar axes 20 of the spheroidal foot formations 16 extend outwardly and upwardly in equi-angularly spaced radially-disposed planes from the central longitudinal axis 12 of the container 10. Thus, the polar axes 20 of the foot formations 16 (see Figure 2) lie on a virtual frusto-conical surface surrounding the central longitudinal axis 12.
  • Circumferentially adjacent pairs of foot formations 16 are separated by valleys 22 that radiate equi-angularly from the apices 24 of the pentagonal central protrusion 18. The valley floors follow the spheroidal shape of the base 14 and open at their outer ends to an outer portion of the base 14 that lies radially outwardly beyond the foot formations 16. Furthermore, each foot formation 16 and the central protrusion 18 are joined via a transition portion that curves smoothly without distinct transitions or discontinuities. Thus, as shown in Figure 3, a foot formation 16, the smoothly curving transition portion and the central protrusion 18 together define a sinuous cross section.
  • Also as shown in Figure 3, the convex central protrusion 18 has a radius of curvature r that is smaller than the general radius of curvature R of the spheroidal base 14: thus R > r. Moreover, the convex central protrusion 18 extends to a level beyond - and thus, in use, below - the lowermost apex of the underlying base contour. Also, the convex central protrusion 18 extends to a level within - and thus, in use, above - the extent of the foot formations 16.
  • The foot formations 16 bulge outwardly from the underlying spheroidal contour of the base 14 by virtue of an ovoid convex wall. The convex wall of each foot formation 16 is surrounded by a concave transition zone 26 in the shape of an ovate ring. The transition zone 26 extends smoothly into the spheroidal wall of the base with a large radius of curvature to reduce stress concentration and hence to minimise stress cracking. The transition zones 26 of circumferentially adjacent foot formations 16 partially define the valley 22 between those foot formations 16.
  • Each foot formation 16 is generally elliptical (in this example, ovate) in underneath plan view, reaching a maximum width in an enlarged central region 28 between its inner end 30 and its outer end 32. Thus, each foot formation 16 tapers in opposite directions from the widest part of the central region 28: along an inner portion 34 moving inwardly toward the central longitudinal axis 12 to the inner end 30; and along an outer portion 36 moving outwardly away from the central longitudinal axis 12 to the outer end 32.
  • In underneath plan view, the inwardly-tapering inner portions 34 of the foot formations 16 fit closely between their neighbours around the circular base 14 like segments of an orange. These inner portions 34 of the foot formations 16 alternate with, and are separated by, narrow inner sections 38 of the valleys 22, which may be approximately parallel but, in this example, widen slightly as they extend outwardly from the pentagonal central protrusion 18. However where they extend outwardly into their outer sections 40 beyond the widest part of the foot formations 16, the valleys 22 widen near-exponentially between the tapering outer portions 36 of the foot formations 16 until they reach a maximum width between the outer ends 32 of adjacent foot formations 16.
  • Thus, moving along the valleys 22 from the central longitudinal axis 12 toward the outer diameter of the base 14, the gap between the foot formations 16 increases. In contrast, in a previously-known petaloid base such as that disclosed in EP 0671331 , this gap decreases.
  • Viewed now from the side, the foot formations 16 extend to a level beyond - and thus, in use, below - the lowermost apex of the base 14 defined by the central pentagonal protrusion 18. The foot formations 16 all extend to the same level. Thus, at that level, each foot formation 16 defines a contact point 42 that will lie stably upon a flat support surface (not shown) orthogonal to the central longitudinal axis 12 of the container 10.
  • Figure 2 shows that the foot formations are somewhat egg-shaped with the widest part of their cross-sections offset slightly inwardly and downwardly toward their inner ends 30.
  • The contact points 42 of the foot formations 16 are equi-spaced on and around a contact circle centred on the central longitudinal axis 12 of the container 10. The diameter (x) of the contact circle relates to the side wall diameter (Dy) of the container 10 in a ratio as follows: 0.5 x Dy = k
    Figure imgb0001
  • In accordance with the invention, k is preferably between 3.6 and 5.5, more preferably between 4.0 and 5.3, still more preferably between 4.2 and 5.0 and typically 4.7. This may be contrasted with typical PET bottles on the market whose corresponding ratio k is typically 2.5 to 3.5. The relatively large value for k in the invention stems from a relatively small value for x. This is advantageous because a small contact circle creates a small - and hence inherently stiff - diaphragm between the contact points 42.
  • The result is a central area within the contact circle between the contact points 42 of the foot formations 16 that is quite rigid and hence resistant to movement during internal pressure, up to burst pressure. The rigidity of the area within the contact circle is enhanced by the undulating wall section defined by the inner portions 34 of the foot formations 16, the valleys 22 between them, and the central protrusion 18.
  • Stiffness within the contact circle is important not just for a high burst pressure but also for stability. This is because the lowest point on the central longitudinal axis (the lowermost apex of the base 14 defined by the central pentagonal protrusion 18) will tend to be pushed down under internal pressure. If that lowest point moves so far as to contact a supporting surface in use, the container cannot rest stably on the contact points 42 of the foot formations 16. The stiffness of the base shape of the invention means that compared to previously known designs, the distance from the central apex of the base to a supporting surface is relatively small, to the benefit of stability and capacity relative to the height of the container.
  • Viewing any one foot formation 16 end-on (i.e. from the side of the container 10 looking inwardly towards the central longitudinal axis 12), the contour of that foot formation 16 describes a substantially constant convex radius between the concave radii of the transition zones 26 to each side. A conventional petaloid base typically has flatter surfaces defining a V-shaped valley between the feet, to the detriment of material usage and stress concentration. Stress concentrations create areas of a container that are particularly vulnerable to rupture under high internal pressure.
  • The arrangement of the base 14 of the present invention is particularly suited to containers for dispensing liquids under pressure. In particular, the increased value for k makes the base stiffer and hence better suited for retaining stability whilst the container is subject to high internal pressure. Furthermore, by increasing the value of k, it is possible to have the convex central protrusion 18 positioned axially lower than would otherwise be possible for a container that is subject to high internal pressure. This can maximise the quantity of beverage that can be practically dispensed from the container 10. This advantage is discussed with reference to Figure 12 in which is shown the same sectional side view of the container base 14 of Figure 3, together with a beverage dispensing tube 120.
  • In this context, the container is used as a beer keg 10 that is provided with a closure assembly that is sealed on to the tubular neck of the keg 10 in a push-fit arrangement. The tube 120 is coupled to the closure assembly (not shown) and extends from it along the central longitudinal axis 12 into the base of the keg 10. The axially lower end of the tube 120 extends into the central protrusion 18. The end of the tube 120 sits within the central protrusion 18 and hangs just inside the apex of the central protrusion 18, thereby providing an annular gap through which a beverage can pass from the keg 10 into the tube 120 or visa-versa. The shape of the central protrusion 18 also enables the axially lower end of the tube 120 to be correctly located and retained within the central protrusion during fitting and use.
  • In use, when dispensing a beverage, the keg 10 is maintained in an upright position. The closure assembly allows a pressurised gas to be introduced into the headspace of the keg 10 to force the beverage out through the tube 120. As the axially lowermost end of the tube 120 is located within the central protrusion 18, and the central protrusion 18 is disposed at a relatively low axial position within the keg 10, this ensures that almost all of the beverage within the keg 10 can be extracted from it.
  • It may be possible to further increase the amount of beverage that can be practically extracted from the keg 10 by extending the tube 120 into one of the foot formations 16. In such an arrangement, the tube 120 would need to bend away from the central longitudinal axis 12 at its lower end. Although this may marginally increase the amount of beverage that can be dispensed from the keg 10, this can complicate process of fitting the closure assembly and tube 120 to the keg 10. In particular, inserting a bent tube 120 into the keg 10 can require a complicated automated fitting process. Furthermore, the bending of the tube 120 away from the central longitudinal axis 12 can subject the closure assembly to which the tube 120 is attached at its axially upper end to uneven forces. This can reduce the reliability of the closure assembly, which is of particular concern when the keg 10 is subject to high internal pressure.
  • The petaloid base of the invention may be applied to a wide range of containers such as bottles and kegs. Figures 4(a), 4(b) and 4(c) and Figures 5(a), 5(b) and 5(c) show a five-footed base of the invention applied, respectively, to a bottle 44 of 0.33 litre capacity, which may typically be used for carbonated soft drinks, and a keg 46 of 20 litres capacity, which may typically be used for beer. These drawings show features omitted from Figures 1 and 2, namely a substantially cylindrical side wall 48 surmounted by a neck portion 50. The side wall 48 is integral with and terminates at its lower end in the base 14; in turn, the side wall 48 is integral with and terminates at its upper end in the neck portion 50 at the top of the container.
  • Figure 10 shows a further five-footed base of the invention applied to a keg 104 of 18-litre capacity with a non-cylindrical side wall 108. In this example, the side wall 108 is convex, rotationally symmetrical about the central longitudinal axis of the keg 104 and so generally follows the shape of an ovoid. At its axially lower end portion, the side wall curves smoothly into the spheroidal underlying contour of the base of the present invention. At its axially upper end portion, which tapers to a greater extent than the axially lower end portion, the side wall curves smoothly into the concave neck of the keg 104. The convex side wall 108 is shaped in this way to maximise internal pressure resistance, maximise the internal capacity of the keg 104 and minimise material usage. Figure 11 is an enlarged side view of a plastics preform for blow moulding into the container as shown in Figure 10.
  • Other variations of the invention are possible without departing from the inventive concept. For example, a variant of the base of the invention shown in Figures 6(a), 6(b) and 6(c) is applied to a bottle 52 of 1.5 litres capacity. This variant has seven foot formations 54 instead of five, with a generally heptagonal central protrusion 56 between them. Like the five-footed base variant, seven-footed base variants can be applied to any size of container, such as bottles of 0.33 litres, 0.5 litres, 1 litre, 1.5 litres or larger, and kegs of 20 litres or other capacities.
  • An odd number of feet is preferred for optimum stability, there being at least three feet (in which case the central protrusion is generally triangular) but preferably not more than seven feet; five or seven feet are considered optimal.
  • To put the invention into context but without limiting its broadest scope as defined in the claims, various dimensional characteristics will now be given by way of example.
  • Firstly, the table below sets out a volume comparison between a conventional base and a base in accordance with the invention, assuming in this instance that the base defines five feet. Volumes in the table are expressed in millilitres (ml). The volume refers to the internal volume of the base, defined as the portion of the container below the cylindrical side wall of the container. It will be noted that the base of the invention has a volume approximately five times greater than the volume of a conventional petaloid container base, to the benefit of compactness and material usage for a given container capacity.
    Container with five feet Conventional base Base of the invention
    20 litre keg, dia 235 mm 128 (20%) 634
    0.33 litre bottle, dia 60 mm 2.7 (18%) 15
    0.5 litre bottle, dia 65 mm 3.5 (18%) 19
    1.0 litre bottle, dia 80 mm 6.5 (18%) 36
    1.5 litre bottle, dia 95 mm 11 (20%) 55
  • Secondly, the following dimensions help to define the base shape for each of the above capacities of container:
    Container with five feet Radius of underlying base contour Radius of transition from underlying base contour to side wall
    20 litre keg, dia 235 mm 135.0 mm 49.6 mm
    0.33 litre bottle, dia 60 mm 34.5 mm 19.1 mm
    0.5 litre bottle, dia 65 mm 37.4 mm 20.7 mm
    1.0 litre bottle, dia 80 mm 46.0 mm 25.4 mm
    1.5 litre bottle, dia 95 mm 54.6 mm 30.2 mm
    Container with five feet Radial projection of foot formations beyond radius of underlying base contour Diameter of contact circle
    20 litre keg, dia 235 mm 18.1 mm 99.9 mm
    0.33 litre bottle, dia 60 mm 5.3 mm 28.6 mm
    0.5 litre bottle, dia 65 mm 5.5 mm 31.0 mm
    1.0 litre bottle, dia 80 mm 7.1 mm 38.1 mm
    1.5 litre bottle, dia 95 mm 8.4 mm 45.3 mm
    Container with five feet Length of foot formations along polar axis* Width of foot formations across polar axis*
    20 litre keg, dia 235 mm 80.2 mm 59.5 mm
    0.33 litre bottle, dia 60 mm 22.9 mm 15.6 mm
    0.5 litre bottle, dia 65 mm 24.8 mm 16.9 mm
    1.0 litre bottle, dia 80 mm 30.6 mm 20.8 mm
    1.5 litre bottle, dia 95 mm 36.3 mm 24.7 mm
    *Including transition zone
    Container with seven feet Radius of underlying base contour Radius of transition from underlying base contour to side wall
    20 litre keg, dia 235 mm 135.0 mm 49.6 mm
    0.33 litre bottle, dia 60 mm 34.2 mm 18.9 mm
    0.5 litre bottle, dia 65 mm 37.3 mm 20.7 mm
    1.0 litre bottle, dia 80 mm 46.2 mm 25.6 mm
    1.5 litre bottle, dia 95 mm 54.6 mm 30.2 mm
    Container with seven feet Radial projection of foot formations beyond radius of underlying base contour Diameter of contact circle
    20 litre keg, dia 235 mm 18.1 mm 99.9 mm
    0.33 litre bottle, dia 60 mm 5.3 mm 28.5 mm
    0.5 litre bottle, dia 65 mm 5.8 mm 31.0 mm
    1.0 litre bottle, dia 80 mm 7.2 mm 38.5 mm
    1.5 litre bottle, dia 95 mm 8.4 mm 45.4 mm
    Container with seven feet Length of foot formations along polar axis* Width of foot formations across polar axis*
    20 litre keg, dia 235 mm 78.9 mm 54.8 mm
    0.33 litre bottle, dia 60 mm 22.4 mm 14.0 mm
    0.5 litre bottle, dia 65 mm 24.4 mm 15.3 mm
    1.0 litre bottle, dia 80 mm 30.3 mm 19.0 mm
    1.5 litre bottle, dia 95 mm 35.7 mm 22.4 mm
    *Including transition zone
    Radius of transition zone (five feet) Radius of transition zone (seven feet)
    20 litre keg, dia 235 mm 12.0 mm 8.0 mm
    0.33 litre bottle, dia 60 mm 3.15 mm 1.88 mm
    0.5 litre bottle, dia 65 mm 3.44 mm 2.05 mm
    1.0 litre bottle, dia 80 mm 4.26 mm 2.54 mm
    1.5 litre bottle, dia 95 mm 5.0 mm 3.0 mm
  • Figures 7 to 9 provide additional dimensional information relating to a 20-litre keg having a five-footed base 14. Figures 10 and 11 respectively show dimensional information relating to an 18-litre keg 104 having a five-footed base and its preform 106.
  • Figure 8 shows a partial sectional side view through the petaloid base of the 20-litre keg of Figure 7, taken along section line VIII-VIII. The resulting section plane intersects a foot formation 16 at its contact point 42, and is parallel to and is radially-spaced at a distance of 50 mm from the central longitudinal axis 12 of the keg 10.
  • At this section of the foot formation 16, its contour is a substantially constant convex radius of 23.0 mm between the concave radii of 12.0 mm of the transition zones 26 to each side.
  • Figure 9 is a partial sectional side view through the petaloid base of the 20-litre keg of Figure 7, taken along section line IX-IX. The resulting section plane is aligned with the central longitudinal axis 12 of the keg 10, and intersects the same foot formation 16 as shown in Figure 8 at its contact point 42. The view shown in Figure 9 corresponds to the view shown in Figure 3, but provides the following additional dimensional information relating to the 20-litre keg:
    RADIUS DATA
    Radius of underlying base contour 135.0 mm
    Radius of convex central protrusion 35.0 mm
    Radius of concave transition zone between the convex central protrusion and the radially inner end of a foot formation 12.0 mm
    Radius of a foot formation at a position on the inner portion adjacent the radially inner end 35.0 mm
    Radius of a foot formation at a position on the inner portion between the radially inner end and the central region of the foot formation 43.0 mm
    Radius of a foot formation at a position on the central region between the contact circle and the inner portion 50.0 mm
    Radius of a foot formation at a position on the central region that is radially inner of and adjacent to the contact circle 20.5 mm
    Radius of a foot formation at a position on the central region that is radially outer of and adjacent to the contact circle 24.0 mm
    Radius of a foot formation at a position on the central region between the contact circle and the outer portion 32.0 mm
    Radius of a foot formation at a position on the outer portion between the radially outer end and the central region of the foot formation 27.75 mm
    Radius of a foot formation at a position on the outer portion adjacent the radially outer end of the foot formation 120.0mm
    Radius of concave transition zone between underlying base contour and radially outer end of a foot formation 12.0 mm
    Radius of transition from underlying base contour to side wall 49.6 mm
  • These radius measurements are also applicable to points on other foot formations 16 of the container 10. These points typically lie within any one of the planes aligned with both the central longitudinal axis 12 of the container and a polar axis of a given foot formation 16.
    DISTANCE DATA
    Distance along central longitudal axis between convex central protrusion and plane containing the contact circle 3.0 mm
    Axial depth of convex central protrusion along central longitudinal axis 4.5 mm
    Distance along central longitudinal axis from underlying base contour to plane containing the contact circle 8.0 mm
    Distance along axis aligned with central longitudinal axis from transition zone (between central protrusion and a foot formation) to plane containing the contact circle 7.5 mm
    Axial depth of the base portion (i.e. axial distance from plane containing the contact circle to axially lower end of cylindrical side wall) 91.2 mm
    Radial length from central longitudinal axis to transition between base contour and foot formation 84.66 mm
  • In addition to dimensional data, the following data derives from pressure tests indicating the typical burst pressure of the 20-litre keg 10 having a five footed petaloid base 14 according to the present invention. By way of comparison, pressure tests were also carried out on a conventional petaloid base under similar conditions. The values represent the burst pressure in bar.
    Test Conventional Base burst pressure (bar) Base of the invention burst pressure (bar)
    1 9.29 9.55
    2 7.68 9.04
    3 9.09 8.59
    4 8.92 9.57
    5 8.8 9.29
    6 5.99 7.78
    7 5.96 8.69
    8 6.25 8.08
    9 9.14 9.31
    10 8.82 8.33
    AVG 7.99 8.82
    MAX 9.29 9.57
    MIN 5.96 7.78
    DIFF 3.33 1.79
  • Thus, it can be seen that the average burst pressure of the 20-litre keg having a five-footed base is approximately 8.8 bar = 880 kPa. Furthermore, the material usage of the 20 litre keg corresponds to 0.234 kg of PET. Accordingly, ratios directed to the pressure resistance, capacity and material usage can be derived for this 20-litre keg: Average pressure resistance to material usage ratio = 3.76 MPa / kg Capacity to material usage ratio = 85 litres / kg
    Figure imgb0002
  • It will be understood that similar ratios can be extrapolated for containers of different shapes and sizes, but also incorporating the base 14 according to the present invention. Figure 10 provides additional dimensional data corresponding to the 18 litre keg 104:
    Convex radius of underlying base contour 135.0 mm
    Diameter of body at widest point 287.0 mm
    Convex radius of body contour 352.0 mm
    Convex radius of contour between body and neck 185.0 mm
    Concave radius of neck contour 65.0 mm
    Diameter of neck 65.0 mm
    Total axial length 490.0 mm
    Axial length from base to neck collar 472.0 mm
    Axial length from keg opening, to beverage fill point (FP) mark - denoting an 18 litre fill from a level base 112.5 mm
    Figure 11 provides additional dimension data corresponding to the preform 106 of the 18 litre keg 104 of Figure 10:
    Total axial length 195.0 mm
    Axial length from base to neck collar 177.0 mm
    Axial thickness of base 6.0 mm
    Thickness of each cylindrical side wall 11.0 mm
    Axial length of cylindrical neck portion below neck collar 15.0 mm
    Axial length of neck portion from below neck collar to cylindrical side wall (including cylindrical neck portion and frustoconical neck portion) 57.3 mm
    Diameter of cylindrical neck portion 64.2 mm
    Diameter of cylindrical side wall 77.0 mm
    Internal bore diameter of the preform 55.0 mm
    Diameter of the neck collar 81.0 mm
  • The approximate burst pressure of this 18-litre keg having a five-footed base is approximately 14 bar = 1400 kPa. The material usage of the 18-litre keg corresponds to 0.468 kg of PET. Accordingly, ratios directed to the pressure resistance, capacity and material usage can be derived for this 18-litre keg: Average pressure resistance to material usage ratio = 3 MPa / kg . Capacity to material usage ratio = 41 litres / kg .
    Figure imgb0003
  • For a base with five feet, the following ratios apply in these examples:
    • For 20-litre keg:
      • Length of foot formations along polar axis/width of foot formations across polar axis = 1.35
      • Diameter of contact circle/ width of foot formations across polar axis = 1.68
      • Radius of underlying base contour/diameter of side wall = 0.57 Radius of underlying base contour/radius of transition from underlying base contour to side wall = 2.72
      • Radial projection of foot formations beyond radius of underlying base contour/radius of underlying base contour = 1.13
    • For bottles of various capacities:
      • Length of foot formations along polar axis/width of foot formations across polar axis = 1.47
      • Diameter of contact circle/ width of foot formations across polar axis = 1.83
      • Radius of underlying base contour/diameter of side wall = 0.58 Radius of underlying base contour/radius of transition from underlying base contour to side wall = 1.81
      • Radial projection of foot formations beyond radius of underlying base contour/radius of underlying base contour = 1.15
  • Similarly, for a base with seven feet, the following ratios apply in these examples:
    • For 20-litre keg:
      • Length of foot formations along polar axis/width of foot formations across polar axis = 1.44
      • Diameter of contact circle/ width of foot formations across polar axis = 1.82
      • Radius of underlying base contour/diameter of side wall = 0.57 Radius of underlying base contour/radius of transition from underlying base contour to side wall = 2.72
      • Radial projection of foot formations beyond radius of underlying base contour/radius of underlying base contour = 1.13
    • For bottles of various capacities:
      • Length of foot formations along polar axis/width of foot formations across polar axis = 1.59
      • Diameter of contact circle/ width of foot formations across polar axis = 2.03
      • Radius of underlying base contour/diameter of side wall = 0.57
      • Radius of underlying base contour/radius of transition from underlying base contour to side wall = 1.8
      • Radial projection of foot formations beyond radius of underlying base contour/radius of underlying base contour = 1.15
  • It will be apparent from the foregoing description that the improved petaloid base shape of the invention has various additional advantages. Its softly-curving shape with an absence of sharp radii is beneficial to resist stress cracking. Also, importantly, its surface area is less than equivalent known designs. Thus, for a given amount of resin, the invention allows a thicker wall and hence a stronger base. Alternatively it is possible to reduce weight and material usage while maintaining the strength of the base. A strong base is particularly important in applications where the containers are subjected to elevated internal pressure and/or elevated temperature, such as carbonated soft drinks, beer and hot-fill or pasteurised liquids.

Claims (15)

  1. A petaloid base (14) of a blow-moulded self-standing container (10), the base (14) having a spheroidal underlying base contour and a plurality of spheroidal foot formations (16) that interrupt and project from the underlying base contour to define a corresponding plurality of feet (16); characterised in that:
    the foot formations (16) radiate from a central protrusion (18);
    the foot formations (16) are ovoid; and
    the foot formations (16) have respective longitudinal axes (20), which axes lie in planes extending radially from a central axis (12) of the base, wherein:
    the longitudinal axes (20) of the foot formations extend outwardly and upwardly in conical relation from the central axis (12) of the base.
  2. The base (14) of Claim 1, wherein the underlying base contour is an oblate spheroid whose polar axis coincides with a central axis (12) of the base (14); and/or the underlying base contour is substantially hemispherical.
  3. The base of Claim 1 or Claim 2, wherein the foot formations (16) are elongate ellipsoids and/or prolate spheroids.
  4. The base (14) of Claim 3, wherein the widest part of the cross-section of each foot formation (16) is offset inwardly toward an inner end of the foot formation (16).
  5. The base (14) of any preceding claim, wherein the the longitudinal axes (20) of the foot formations meet at the central axis (12) of the base (14) at a position axially below the base (14).
  6. The base (14) of any preceding claim, wherein each foot formation (16) has an elliptical intersection with the underlying base contour, the intersection ideally being ovate and/or of concave cross section.
  7. The base (14) of any preceding claim, wherein the central protrusion (18):
    has a radius of curvature that is smaller than the radius of curvature of the underlying base curve; and/or
    extends to a level beyond the lowermost apex of the underlying base contour.
  8. The base (14) of any preceding claim, wherein a foot formation (16) and the central protrusion (18) are joined via a smoothly curving transition portion, wherein ideally:
    the foot formation (16), the smoothly curving transition portion and the central protrusion (18) together define a sinuous cross section; and/or
    the transition portion defines a curve whose curvature is converse to the curvature of at least one of the foot formations (16) and central protrusion (18).
  9. The base (14) of any preceding claim, wherein:
    the central protrusion (18) is substantially convex with respect to the exterior of the container (10); and/or
    the central protrusion (18) defines a recess with respect to the interior of the container, the recess being arranged to locate and retain a free end of a fluid delivery tube within the container (10); and/or
    the central protrusion (18) is generally polygonal, with a number of sides corresponding to the number of foot formations (16).
  10. The base (14) of any preceding claim, wherein the foot formations (16) are separated by valleys (22) preferably with:
    the valleys (22) radiating from apices of a generally polygonal central protrusion (18), the polygon having a number of sides corresponding to the number of foot formations (16).
  11. The base (14) of Claim 10, wherein the valleys (22) widen moving outwardly across the base, ideally with:
    each valley (22) having an inner and an outer section and the walls of the valley (22) diverging more sharply in the outer section than in the inner section, and ideally with the walls of the valley (22) diverging in both the inner and the outer sections of the valley.
  12. The base (14) of any preceding claim, wherein in plan view, each foot formation (16) has an enlarged central region that tapers inwardly across an inner portion to an inner end of the foot formation (16) preferably with:
    each foot formation tapering from the enlarged central region outwardly across an outer portion to an outer end of the foot formation (16).
  13. A blow-moulded self-standing container (10) having a base (14) as defined in any preceding claim.
  14. The container (10) of Claim 13, wherein the foot formations (16) of the base (14) define respective contact points that together are spaced around a contact circle whose diameter (x) relates to a side wall diameter (Dy) of the container (10) as: 0.5 x Dy = k
    Figure imgb0004
    where k is between 3.6 and 5.5, preferably between 4.0 and 5.3, more preferably between 4.2 and 5.0.
  15. The container (10) of Claim 13 or Claim 14, comprising a fluid delivery tube (120) aligned with a central longitudinal axis of the container (10), the tube (120) extending between the base (14) of the container (10) and an opening of the container (10).
EP11717204.9A 2010-04-06 2011-04-06 Petaloid base for a self-standing container and container therefor Not-in-force EP2555984B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB1005717A GB2479360A (en) 2010-04-06 2010-04-06 Petaloid Container Base with Reduced Diameter Contact Circle
PCT/EP2011/055383 WO2011124626A2 (en) 2010-04-06 2011-04-06 Self-standing container

Publications (2)

Publication Number Publication Date
EP2555984A2 EP2555984A2 (en) 2013-02-13
EP2555984B1 true EP2555984B1 (en) 2016-08-24

Family

ID=42228918

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11717204.9A Not-in-force EP2555984B1 (en) 2010-04-06 2011-04-06 Petaloid base for a self-standing container and container therefor

Country Status (16)

Country Link
US (1) US20130062306A1 (en)
EP (1) EP2555984B1 (en)
JP (1) JP5641267B2 (en)
CN (1) CN103003161B (en)
AU (1) AU2011237887B2 (en)
BR (1) BR112012025471A2 (en)
DK (1) DK2555984T3 (en)
ES (1) ES2602135T3 (en)
GB (2) GB2479360A (en)
HU (1) HUE033351T2 (en)
PL (1) PL2555984T3 (en)
PT (1) PT2555984T (en)
RU (1) RU2598995C9 (en)
UA (1) UA109276C2 (en)
WO (1) WO2011124626A2 (en)
ZA (1) ZA201208013B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3005035B1 (en) * 2013-04-24 2016-01-15 Sidel Participations CONTAINER PROVIDED WITH A DOUBLE ARCHE DEFORMABLE BOTTOM
FR3007392B1 (en) * 2013-06-25 2016-02-05 Sidel Participations RECIPIENT MINI PETALOIDE GROOVE
US10710765B2 (en) * 2013-07-23 2020-07-14 Graham Packaging Company, L.P. Base for hot-fill plastic containers
GB201401457D0 (en) 2014-01-28 2014-03-12 Petainer Large Container Ip Ltd Improved self-standing container
TWD167046S (en) * 2014-06-30 2015-04-11 深圳市景田食品飲料有限公&#x5 Beverage bottle (136)
US11077979B2 (en) 2014-08-01 2021-08-03 The Coca-Cola Company Small carbonated beverage packaging with enhanced shelf life properties
WO2016100483A1 (en) * 2014-12-19 2016-06-23 The Coca-Cola Company Carbonated beverage bottle bases and methods of making the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59178214U (en) * 1983-05-18 1984-11-28 三菱樹脂株式会社 Synthetic resin thin wall bottle
US20060118560A1 (en) * 2004-12-03 2006-06-08 Schur Warren M Water shedding designs for receptacle bottoms

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2391582A (en) * 1944-05-02 1945-12-25 Ralph Walsh Spray control valve
GB840634A (en) * 1957-05-15 1960-07-06 Baguley S Sons 1932 Ltd J Improvements in or relating to hot water cylinders
US3038627A (en) * 1960-05-31 1962-06-12 Specialties Dev Corp High-pressure container safety means
FR1493309A (en) * 1966-09-20 1967-08-25 Frohn Plastic Gmbh Kunststoffw Bottle-shaped container
US3870181A (en) * 1973-02-12 1975-03-11 Monsanto Co Molecularly oriented bottle
USD257463S (en) * 1977-08-17 1980-10-28 Ball Corporation Beverage container
USD254957S (en) * 1977-08-17 1980-05-13 Ball Corporation Beverage container
JPS5821374Y2 (en) * 1979-01-10 1983-05-06 株式会社吉野工業所 Biaxially stretched synthetic resin thin wall bottle
JPS55110415U (en) * 1979-01-26 1980-08-02
JPS5821373Y2 (en) * 1979-01-10 1983-05-06 株式会社吉野工業所 Biaxially stretched synthetic resin thin wall bottle
US4313545A (en) * 1979-02-13 1982-02-02 The Nippon Aluminum Mfg. Co., Ltd. Metallic pressure vessel with thin wall
NL8006687A (en) * 1979-12-13 1981-07-16 Shigeto Aoki SOIL CONSTRUCTION FOR PLASTIC HOLDERS.
USD267233S (en) * 1980-04-18 1982-12-14 Katashi Aoki Bottle
US4318489A (en) * 1980-07-31 1982-03-09 Pepsico, Inc. Plastic bottle
USD269761S (en) * 1980-08-12 1983-07-19 Plastona (John Waddington) Limited Can or the like
USD270332S (en) * 1980-08-28 1983-08-30 Plastona (John Waddington) Limited Can or the like
US4368825A (en) * 1980-11-28 1983-01-18 Standard Oil Company (Indiana) Self-standing bottle structure
AU90611S (en) * 1982-12-29 1985-07-18 Suntory Kabushiki Kaisha Suntory Ltd A bottle
BR8705767A (en) * 1986-02-14 1988-02-09 Norderney Investments Ltd IMPROVEMENTS IN / OR RELATING TO PLASTIC MATERIAL CONTAINERS
US5205434A (en) * 1992-06-09 1993-04-27 Constar Plastics, Inc. Footed container
US5454481A (en) * 1994-06-29 1995-10-03 Pan Asian Plastics Corporation Integrally blow molded container having radial base reinforcement structure
JP3612775B2 (en) * 1995-03-28 2005-01-19 東洋製罐株式会社 Heat-resistant pressure-resistant self-supporting container and manufacturing method thereof
JP3676426B2 (en) * 1995-05-25 2005-07-27 北海製罐株式会社 Polyethylene terephthalate resin bottle
US6276546B1 (en) * 1996-12-20 2001-08-21 Ball Corporation Plastic container for carbonated beverages
US6296471B1 (en) * 1998-08-26 2001-10-02 Crown Cork & Seal Technologies Corporation Mold used to form a footed container and base therefor
US6112924A (en) * 1998-09-10 2000-09-05 Bcb Usa, Inc. Container with base having cylindrical legs with circular feet
US6085924A (en) * 1998-09-22 2000-07-11 Ball Corporation Plastic container for carbonated beverages
CN1611421A (en) * 2003-10-27 2005-05-04 巫有发 Improved container
SI1527999T1 (en) * 2003-10-31 2008-04-30 Nestle Waters Man & Technology A container for product with less packaging material
JP2006000408A (en) * 2004-06-17 2006-01-05 Samii Kk Pinball machine
WO2006000408A1 (en) * 2004-06-23 2006-01-05 NESTLE WATERS MANAGEMENT & TECHNOLOGY (Société Anonyme) A container for liquid with a lightweight bottom
JP4986105B2 (en) * 2005-09-21 2012-07-25 株式会社吉野工業所 Heat-resistant and pressure-resistant plastic bottle made of polyester resin
USD532307S1 (en) * 2005-10-11 2006-11-21 Nestle Waters Management And Technology Bottle
CZ2006528A3 (en) * 2006-08-25 2008-03-05 Mušálek@Oto Plastic-made foldable bottle
US20100072167A1 (en) * 2008-09-25 2010-03-25 Dickie Robert G Collapsible bottle
US20120132676A1 (en) * 2010-11-30 2012-05-31 Reginal Rhodes Liquid dispenser
USD701763S1 (en) * 2011-05-20 2014-04-01 Petainer Lidköping AB Container attachment and container

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59178214U (en) * 1983-05-18 1984-11-28 三菱樹脂株式会社 Synthetic resin thin wall bottle
US20060118560A1 (en) * 2004-12-03 2006-06-08 Schur Warren M Water shedding designs for receptacle bottoms

Also Published As

Publication number Publication date
GB2479360A (en) 2011-10-12
ES2602135T3 (en) 2017-02-17
UA109276C2 (en) 2015-08-10
RU2598995C2 (en) 2016-10-10
EP2555984A2 (en) 2013-02-13
ZA201208013B (en) 2014-03-26
CN103003161A (en) 2013-03-27
GB2479451B (en) 2012-12-26
WO2011124626A2 (en) 2011-10-13
AU2011237887B2 (en) 2016-01-28
DK2555984T3 (en) 2016-12-05
HUE033351T2 (en) 2017-11-28
US20130062306A1 (en) 2013-03-14
RU2598995C9 (en) 2016-11-20
GB201105839D0 (en) 2011-05-18
JP5641267B2 (en) 2014-12-17
PT2555984T (en) 2016-11-16
BR112012025471A2 (en) 2023-12-05
GB201005717D0 (en) 2010-05-19
JP2013523549A (en) 2013-06-17
PL2555984T3 (en) 2017-02-28
RU2012147015A (en) 2014-05-20
WO2011124626A3 (en) 2011-12-01
GB2479451A (en) 2011-10-12
AU2011237887A1 (en) 2012-11-15
CN103003161B (en) 2016-03-30

Similar Documents

Publication Publication Date Title
EP2555984B1 (en) Petaloid base for a self-standing container and container therefor
US7051892B1 (en) Water bottle for a dispenser
AU660545B2 (en) Freestanding plastic container for pressurized fluids
US10246210B2 (en) Container having a petaloid base and groove
US10202221B2 (en) Combined petaloid base of a container
CN105905387B (en) Container with the small-flowered shape bottom with transverse concave groove
US20070007234A1 (en) Synthetic resin bottle
JP4826379B2 (en) Plastic container
EP3638593B1 (en) Container having a bottom base provided with notches
CA2219135A1 (en) Plastic container for carbonated beverages
US20160340072A1 (en) Self-standing container
US20160288946A1 (en) Container having a bottom provided with a stepped arch
CN110740941B (en) Container bottom base with double concave arch
JP4992329B2 (en) Plastic container
JP7455081B2 (en) plastic bottle
RU73854U1 (en) BOTTLE
JP2018030629A (en) Plastic bottle and filling body
JP6862720B2 (en) Plastic bottles and fillers
JP2018030643A (en) Plastic bottle and filling body

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20121105

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602011029594

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: B65D0001020000

Ipc: B65D0001160000

RIC1 Information provided on ipc code assigned before grant

Ipc: B65D 1/16 20060101AFI20131129BHEP

17Q First examination report despatched

Effective date: 20140416

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160304

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 822828

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160915

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602011029594

Country of ref document: DE

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: MICHELI AND CIE SA, CH

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

Ref country code: PT

Ref legal event code: SC4A

Ref document number: 2555984

Country of ref document: PT

Date of ref document: 20161116

Kind code of ref document: T

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20161108

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20161128

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 822828

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160824

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161124

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160824

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160824

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160824

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160824

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2602135

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20170217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160824

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160824

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20160402748

Country of ref document: GR

Effective date: 20170130

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160824

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: RO

Payment date: 20170327

Year of fee payment: 7

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602011029594

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160824

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160824

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161124

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20170324

Year of fee payment: 7

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20170414

Year of fee payment: 7

Ref country code: FR

Payment date: 20170427

Year of fee payment: 7

Ref country code: DK

Payment date: 20170424

Year of fee payment: 7

Ref country code: GR

Payment date: 20170427

Year of fee payment: 7

Ref country code: IE

Payment date: 20170425

Year of fee payment: 7

26N No opposition filed

Effective date: 20170526

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160824

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20170420

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20170403

Year of fee payment: 7

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E033351

Country of ref document: HU

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: HU

Payment date: 20170322

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160824

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170406

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20180322

Year of fee payment: 8

Ref country code: GB

Payment date: 20180328

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20180326

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20180417

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20180607

Year of fee payment: 8

Ref country code: DE

Payment date: 20180411

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20180417

Year of fee payment: 8

Ref country code: BE

Payment date: 20180417

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160824

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20180430

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181008

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181106

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180407

Ref country code: RO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180406

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190406

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160824

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602011029594

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160824

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20190501

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190430

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191101

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190406

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180407

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161224

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20200828

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200407

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190407

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180407

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180406